
Digital Logic/Design. — L. 13 May 23, 2006

13 Multipliers

• Multiplication methods can be classified into three groups:

• bit-serial, word-serial and parallel algorithms.

• Read the appendix at the end of the chapter for further clarification.

• We consider multiplication of two numbers represented by numerals Q and D:

P = Q ∗D

— MultiplicandAAK

Product —�
�
���

— MultiplierC
C
CCO

where

• Q is n-bit multiplier: Qn−1:0 = [qn−1 . . . q1 q0]

• D is m-bit multiplicand: Dm−1:0 = [dm−1 . . . d1 d0]

• P is (k = m + n)-bit product: Pk−1:0 = [ak−1 . . . a1 a0]

A.P. Papliński 13–1

Digital Logic/Design. — L. 13 May 23, 2006

13.1 Word-Serial Multiplication Processor – the Booth’s algorithm

• The word-serial Booth’s algorithm is probably the most popular multiplication algorithm used in most
of the general purpose processors.

• In a word-serial algorithm a partial product is formed as a shifted sum of the previous partial product
and a product of the multiplicand and a i-th digit of the multiplier.

• The one-bit Booth’s multiplication algorithm can be described by the following pseudo-code:

P [0] = 0 ; q−1 = 0 ;
for (i = 0 ; i < n ; i++) {

q̂i = −qi + qi−1 ;
P [i + 1] = (P [i] + q̂i ·D) · 2−1 ;

}

qi qi−1 q̂i

0 0 0

0 1 +1

1 0 −1

1 1 0

• Examination of the pseudo-code reveals the following details of the algorithm:

– The partial product, P [i], is initialised to zero: (P [0] = 0).

– The additional, q−1, bit is appended to the multiplier and is also initialised to zero.

– At each step, a Booth’s multiplier digit, q̂i = −qi + qi−1 (q̂i ∈ {−1, 0, +1}), is formed from a pair
of adjacent multiplier digits, qi, qi−1 ∈ {0, +1}.

– The Booth’s multiplier digit, q̂i is used to determine the way in which the next partial product,
P [i + 1], is calculated from the previous one.

A.P. Papliński 13–2

Digital Logic/Design. — L. 13 May 23, 2006

– At each multiplication step one of three possible operations is performed, namely, subtraction of
D, no-operation, or addition of D, that is, either (P [i]−D), or P [i], or (P [i] + D).

– The result of this operation (P [i] + q̂i ·D), is then shifted right by one position to form the next
partial product, P [i + 1].
The shift-right operation implements multiplication by 2−1.

– The final product is

P = P [n] = Q ·D

• A numerical example is given in Figure ?? and will be examined in detailed in the subsequent section.

• In the next design step, the pseudo-code description of the algorithm is converted into

– a structure of the datapath and

– a specification of the control unit given in a form of a flow-chart of operations performed by the
word-serial multiplication processor.

• Remember that all registers are triggered by the positive-edge of the clock signal clk, and their
operations are controlled by op-code signals generated by the control unit.

A.P. Papliński 13–3

Digital Logic/Design. — L. 13 May 23, 2006

13.2 The top-level structure of the processor

• The top level schematic of the wsm processor consists of
two components, namely, the datapath and the control unit:

• Two symbols, dpath and cntp, representing the datapath
and the control unit components, respectively, are created
and instantiated into the top level schematic wsm

• It is assumed that the multiplier and the multiplicand are
8-bit two’s-complement numbers and are entered through
the input ports qq(7:0) and dd(7:0), respectively.

• The 16-bit result is available at the output port
aq(15:0).

• The multiplication operation is initialised with the
assertion of the start signal, st.

Word-Serial Multiplication Processor

• The completion of the operation is signaled by the ready signal, rdy.

• The clock and reset signals are clk and rst, respectively.

• The control unit generates the required 7-bit op-code op(6:0) to specify micro-operations
performed by the functional blocks of the datapath.

• Upon completion of the required number of the multiplication steps, the step counter from the data
path generates the signal zI which is interpreted in the control unit.

• Refer to the flow-chart of operations for details.

A.P. Papliński 13–4

Digital Logic/Design. — L. 13 May 23, 2006

13.3 Datapath of the word-serial multiplication processor implementing the 1-bit Booth’s algorithm

• The block diagram of the datapath consists of the registers which store variables used in the
pseudo-code (sec 13.1), and combinatorial blocks like an ALU (adder/subtractor) which perform
required operations on the stored variables.

D — the multiplicand register,

Q — the multiplier register,

A — the more-significant half of the
product register.
The least-significant part of the product
is in the Q register, so that, the (partial)
products are stored in the concatenated
P = (A Q) register.

F — the ALU (Adder/Subtractor)
performing operations F <= A±D,
or F <= A.

fo

’0’

D−REGISTER A−REGISTER

n−1:0n

Q−REGISTER

zI

Qn−1:−1

Q

DD AA

B A

QQ

Dop

op

clk

clk

Multiplicand

Aop

op

ALU (Adder/Subtractor)

clk

F

Fop

Qop

op
sr

clk

F/2 = asr(F)

Multiplier

Sop
op

’0’

clk
COUNTER

Sc

AD

F

AQ

DD
n

m−1:0

QQ

D
m−1:0A

m m

m

m−1:0F

q
−1

q
0:−1

m

The output F of the ALU is loaded into the A-register after an arithmetic shift-right operation,
asr(F) = F/2, is performed.

The least significant bit, f0, is shifted into the Q-register.

Sc — the step counter which counts from ’0’ to n− 1 and generates the signal zI when Sc = n− 1.

A.P. Papliński 13–5

Digital Logic/Design. — L. 13 May 23, 2006

13.4 State diagram of the control unit

• The flow-chart of the word-serial
multiplier using the one-bit Booth’s
method is implemented as a state
diagram of the control unit.

• In the initial state, SI, when st= 0, the
multiplicand and the multiplier are
loaded into the registers D and Q

respectively, and the signal rdy is
reset.

• When the start signal st= 1 the control
unit goes into the state SM in which
multiplication steps are repeated n

times (signal zI).

• In the final state, SF, the correct result
is available at the port (A Q). This is
indicated by the signal rdy being
asserted.

SM

SF

SI

stst

zI zI

st

st

rdy <= 1

A <= 0 , Q <= QQ ,
D <= DD , q−1 <= 0 ,
rdy <= 0, Sc <= 0

F <=


A if q0 ≡ q−1

A + D if q̄0 · q−1

A−D if q0 · q̄−1

(A Q) <= asr(F Q),
Sc <= Sc + 1,
zI <= (Sc = n− 1)

QQ and DD represent the
multiplier and the multiplicand
respectively.

Sc is the step counter initialised
with zero. The signal zI
indicates the Sc = n− 1, that is,
that the last multiplication step is
performed.

F is the output of the ALU,
which performs conditional
operations as described.

(F Q) is a concatenation of the
outputs from the adder and from
the Q register.
(F Q) is arithmetically shifted
one position right and then
loaded into the concatenation of
the registers A and Q.

st — the START signal,

rdy — the READY signal,
asserted when the multiplication
is completed.

• In order to multiply the next numbers, the start signal, st, must go low.

A.P. Papliński 13–6

Digital Logic/Design. — L. 13 May 23, 2006

13.5 Numerical example
D = (101101)2 = −19 ; QQ = (101001)2 = −23

A[i], D Q q−1

101001 0 q̂0 = −q0 + q−1 = −1
A[0] 000000
D̄ 010010
c0 1
F 010011 F = A−D

- 10100 1 q̂1 = −q0 + q−1 = +1
A[1] 001001 1
D 101101
F 110110 1 F = A + D

- - 1010 0 q̂2 = 0
A[2] 111011 01 A[2] = A[1] · 2−1

- - -101 0 q̂3 = −q0 + q−1 = −1
A[3] 111101 101
D̄ 010010
c0 1
F 010000 101 F = A−D

- - - - 10 1 q̂4 = −q0 + q−1 = +1
A[4] 001000 0101
D 101101
F 110101 0101 F = A + D

- - - - - 1 0 q̂5 = −q0 + q−1 = −1
A[5] 111010 10101
D̄ 010010
c0 1
F 001101 10101 F = A−D

- - - - - - 1
A[6] 000110 110101

A = A[6] = Q ·D = +437

• Initially, the multiplicand, DD, is loaded in an m-bit register D, and the
multiplier, QQ, is loaded in an n-bit register Q,

• The initial value of the partial product, P [0] = 0, is loaded in the register
A.

• The adder has the width m, which is equal to the number of bits of the
multiplicand, D, and to the number of bits of the more significant part of
the partial products which are stored in the register A.

• At each step, i-th, the digit of the Booth’s multiplier, q̂i, is determined from
the two least-significant bits of the register Q, and the value q̂i ·D is added
to the more significant part of the partial product, A[i].

• The result of this addition, F , and the multiplier, Q, are shifted right by one
position and loaded back into a combined A−Q register.

In this way, the least significant bits of the partial products are gradually
shifted into a register Q, while the least significant bits of the multiplier are
shifted out of the register Q through the additional position Q−1.

• The final product resides in the concatenated register A−Q.

A.P. Papliński 13–7

Digital Logic/Design. — L. 13 May 23, 2006

13.6 Operations of the datapath blocks

• From the flow-chart we can now compile tables of operations of each block of the datapath assigning
opcodes for each elementary operation.

multiplicand register, D
Dop operation

0 D ⇐ D nop
1 D ⇐ DD load

• The multiplicand register is very simple and performs only two
operations as shown in the table

partial product register, A
Aop operation

0 A ⇐ A nop
1 A ⇐ F/2 ldAshr

2, 3 A ⇐ 0 reset

• The partial product register performs three operations.

• The ldAshr operation, that is, “load arithmetically shifted right
signal vector F (3..0) into A”, can be more precisely described as

A <= (F (3) , F (3..1))

multiplier register, Q
Qop operation

0 Q ⇐ Q nop
1 Q ⇐ shr(F(0),Q) shrQ

2, 3 Q ⇐ (QQ & 0) load

• The multiplier register is an (n+1)-bit register, e.g., Q(3 ..−1)

(warning: in VHDL negative subscripts are not allowed). It
performs three operations.

• The shift operation can be alternatively described as:

Q <= (F (0) , Q(3..0))

A.P. Papliński 13–8

Digital Logic/Design. — L. 13 May 23, 2006

step counter, Sc
Sop operation

0 Sc ⇐ Sc nop
1 Sc ⇐ Sc+1 count

2, 3 Sc ⇐ 0 reset

• The step counter load the initial value (zero), and counts up until
the value n− 1 is reached. It generates signal:

zI <= (Sc = n− 1)

ALU, F
Fop operation
0, 3 F ⇐ A pass
1 F ⇐ A + B add
2 F ⇐ A − B subtract

• The ALU performs three operations: addition, subtraction and
“pass”

• The op-codes for the ALU, Fop, are equal to the value of the
current pair of the least significant multiplier digits.
Therefore, we have:

Fop = Q(0 : −1).

• Wherever possible we should use mnemonic names for op-codes to retain flexibility of the design

• Binary values of the op-codes can be changed during the design process in order to simplify the
internal structure of the components of the datapath.

• All op-codes can be, for convenience, collected in one 7-bit op-code word:

op(6:0) = (Dop, Aop, Qop, Sop)

• The ALU is driven directly by two least significant bits of the multiplier register.

A.P. Papliński 13–9

Digital Logic/Design. — L. 13 May 23, 2006

13.7 Designing the datapath

The procedure of designing the datapath consists of two main steps:

• Synthesis and simulation of all components (functional blocks) of the data path.

For every block follow the steps described in the previous sections for typical sequential and
combinatorial components.

• Connection of the components into a complete datapath.

This can be achieved in one of following three ways:

– Use schematic (graphical) entry tools of the CAD package and interconnect blocks as shown in the
datapath block-diagram

– Write a new VHDL entity and architecture for the datapath combining codes for the individual
components.

– Interconnect components using the VHDL structural design method.

• It is a good practice to simulate every new bit of the design, therefore, we should simulate not only all
components of the datapath, but the complete datapath as well.

• However, due to its complexity it may be easier to do so after the control unit is designed and
connected to the datapath.

A.P. Papliński 13–10

Digital Logic/Design. — L. 13 May 23, 2006

13.8 The control unit

• The control unit is a synchronous state machine also
knows as an algorithmic state machine.

• It has a typical structure in which we have to specify:

– Number of bits in the state register (two in this case)

– Input/output signals

• If we design the control unit manually, we convert the
flow-chart (state diagram) into the excitation (next state)
table and the output table.

• We can start with the symbolic names of the states SI,
SM, SF and perform the state allocation when
convenient.

• Similarly, the output table specify the way in which states
are re-coded into the opcodes.

rdy

State register

clk

rst
Q

D

st

OpCode logic

Next state logic

stt(1:0)

nxtSt(1:0)

zI

op(6:0)

• I practical situations we specify the state diagram as behavioural VHDL code.

A.P. Papliński 13–11

Digital Logic/Design. — L. 13 May 23, 2006

13.8.1 The VHDL program for the control unit

The program consists of the entity cntu in which input/output ports are specified, and an architecture
behv which describes details of the behaviour of the control unit.
-- cntu the control unit -- by app

library IEEE ;
use IEEE.std_logic_1164.all ;

ENTITY cntu IS -- the control unit by app
PORT (rst, clk, st, zi : IN STD_LOGIC ;

op : OUT STD_LOGIC_VECTOR(6 DOWNTO 0) ;
-- stt : OUT STD_LOGIC_VECTOR(1 DOWNTO 0) ;

rdy : OUT STD_LOGIC
) ;

END cntu ;

ARCHITECTURE behv OF cntu IS
-- TYPE states IS (SI, SM, SF) ;
-- SIGNAL stt, nxtSt : states := SI ;

SIGNAL stt, nxtSt : STD_LOGIC_VECTOR(1 DOWNTO 0) ;
-- we can use a "hard" encoding of states

CONSTANT SI : STD_LOGIC_VECTOR(1 DOWNTO 0) := "00" ;
CONSTANT SM : STD_LOGIC_VECTOR(1 DOWNTO 0) := "01" ;
CONSTANT SF : STD_LOGIC_VECTOR(1 DOWNTO 0) := "10" ;

-- Internal op-code signals and related constants
SIGNAL Aop, Qop, Sop : STD_LOGIC_VECTOR(1 DOWNTO 0) ;
SIGNAL Dop : STD_LOGIC ;
CONSTANT ldD : STD_LOGIC := ’1’ ;
CONSTANT nopD : STD_LOGIC := ’0’ ;
CONSTANT nop : STD_LOGIC_VECTOR(1 DOWNTO 0) := "00" ;
CONSTANT ldAshr,shrQ,cnt : STD_LOGIC_VECTOR(1 DOWNTO 0) := "01" ;
CONSTANT reset, load : STD_LOGIC_VECTOR(1 DOWNTO 0) := "10" ;

A.P. Papliński 13–12

Digital Logic/Design. — L. 13 May 23, 2006

BEGIN
-- to synthesize edge-triggered flip-flops
-- with asynchronous reset when rst = 0

clkd: PROCESS (clk, rst)
BEGIN

IF (rst = ’0’) THEN
stt <= SI ;

ELSIF (clk’EVENT AND clk = ’1’
AND clk’LAST_VALUE = ’0’) THEN

stt <= nxtSt ;
END IF ;

END PROCESS clkd ;

-- the stm process describes the transitions between states
-- and the output signals
stm: PROCESS (stt, st, zi)
BEGIN
-- default assignments

nxtSt <= stt ;
Dop <= nopD ;
Aop <= nop ;
Qop <= nop ;
Sop <= nop ;
rdy <= ’0’ ;

-- state transitions and output signals
CASE stt IS

WHEN SI =>
rdy <= ’0’ ;
Dop <= ldD ;
Aop <= reset ;
Qop <= load ;
Sop <= reset ;
IF (st = ’1’) THEN nxtSt <= SM ; END IF ;

A.P. Papliński 13–13

Digital Logic/Design. — L. 13 May 23, 2006

WHEN SM =>
Aop <= ldAshr ;
Qop <= shrQ ;
Sop <= cnt ;
IF (zi = ’1’) THEN nxtSt <= SF ; END IF ;

WHEN OTHERS => --- when SF
rdy <= ’1’ ;
IF (st = ’0’) THEN nxtSt <= SI ; END IF ;

END CASE ;
END PROCESS stm ;

op(6) <= Dop ;
op(5 DOWNTO 4) <= Aop ;
op(3 DOWNTO 2) <= Qop ;
op(1 DOWNTO 0) <= Sop ;

END behv ;

A.P. Papliński 13–14

Digital Logic/Design. — L. 13 May 23, 2006

After the control unit is compiled and synthesized it is important to verify its behaviour by simulation.
The following waveforms were obtained during simulation of the control unit:

SCHEMATIC1

SCHEMATIC1

SCHEMATIC1

SCHEMATIC1

SCHEMATIC1

SCHEMATIC1.Bc

SCHEMATIC1.Bc

SCHEMATIC1

SCHEMATIC1.Bc

SCHEMATIC1.Bc

SCHEMATIC1.Bc

SCHEMATIC1.Bc

Context

rst

clk

st

rdy

zI

nxt_st

stt

op

Dop

Aop

Qop

Sop

Signal

'1'

'1'

'1'

'0'

'0'

1

1

15

'0'

1

1

1

Value

X 0 1 2 0

X 0 1 2 0

X00 6A 15 00 6A

X0 2 1 0 2

X0 2 1 0 2

X0 2 1 0 2

0ns 100ns 200ns 300ns 400ns 500ns 600ns 700ns 800ns

• The signal rst resets the state of the control unit to SI.

• If the signal st is low, the control unit remains in the state SI until the first rising edge of the clock
after the signal st goes high when the state SM is reached.

• From the state SM the transition to the state SF is made on the rising edge when the signal zI from
the step counter is asserted.

• It is important to verify that the control unit generates correct op-codes in every state.

A.P. Papliński 13–15

Digital Logic/Design. — L. 13 May 23, 2006

13.9 The complete word-serial multiplication processor

• Once the datapath and the control unit are synthesized and simulated the can be connected them
together to form the complete word-serial multiplication processor.

• The following waveforms were obtained during simulation of the complete multiplication processor:

+ + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + +

+ + + + + + + + + + + + + + + + +

69 36 10 69

53 00

65 00

0065 D6B2 14D9 E0EC 19F6 0CFB DCFD EE7E 20BF 0000

/rst

/clk

/st

/zI

/rdy

/op(6:0)

/dd(7:0)

/qq(7:0)

/aq(15:0)

0.0 200.0 400.0 600.0 800.0 1000.0 1200.0 1400.0 1600.0

Time(ns)

• Note that the processor correctly multiplies 53H × 65H = 20BFH .

• More exhaustive tests are needed to confirm the correctness of the design.

A.P. Papliński 13–16

Digital Logic/Design. — L. 13 May 23, 2006

13.10 Appendix: Multiplication methods

Consider multiplication of two numbers represented by numerals Q and D

P = Q ∗D

— MultiplicandAAK

Product —�
�
���

— MultiplierC
C
CCO

If the multiplier, Q, and the multiplicand, D, are represented by the n–digit and m–digit numerals,
respectively, then the product, P , is represented by the (n+m−1)–digit numeral as follows:

Qn−1:0 = [qn−1 . . . q1 q0]

Dm−1:0 = [dm−1 . . . d1 d0]

Pk−1:0 = [ak−1 . . . a1 a0] ; k = m + n

If we use the above notation, then the product numeral, Pk−1:0, can be elegantly expressed as a matrix
product of the multiplier numeral, Qn−1:0, and the Sylvester resultant matrix of the multiplicand
〈Dm−1:0〉n−1

Pk−1:0 = Qn−1:0 · 〈Dm−1:0〉n−1 (13.1)

A.P. Papliński 13–17

Digital Logic/Design. — L. 13 May 23, 2006

The Sylvester resultant matrix, which also known as the convolution matrix, is formed from the shifted
numeral Dm−1:0 in the following way:

〈Dm−1:0〉n−1 =


dm−1 dm−2 · · · d0

dm−1 dm−2 · · · d0 0

0
.

dm−1 dm−2 · · · d0


6

n

?
� n+m−1 -

(13.2)

The angle brackets have been used to denote the resultant matrix. The bold 0s in the resultant of eqn
(13.2), represent appropriate triangles of zeroes.

In general, eqn (13.1) can be thought of as a parallelised description of the multiplication algorithm of two
numerals.
Each row of the resultant represents a shifted numeral Dm−1:0 which is multiplied by the respective digit
of the multiplier.
Subsequently, the columns of the resultant are summed up to give the ‘pseudo-digits’ of the result.
The carry propagation is neglected at this level of the multiplication algorithm.
In this sense that the carry is incorporated into the ‘pseudo-digits’ of the result.

A.P. Papliński 13–18

Digital Logic/Design. — L. 13 May 23, 2006

Example

Consider multiplication of the following decimal numerals

P5:0 = Q2:0 ∗D3:0 = 3 2 1︸︷︷︸
Q2:0

∗ 1 2 3 4︸ ︷︷ ︸
D3:0

This multiplication operation can be described in the following matrix form:

P5:0 = Q2:0 · 〈D3:0〉2

[
3 2 1

]
·

 1 2 3 4 0 0

0 1 2 3 4 0

0 0 1 2 3 4

 =
∑

cl

 3 6 9 12 0 0

0 2 4 6 8 0

0 0 1 2 3 4


=

[
3 8 14 20 11 4

]
where

∑
cl

denotes the column-wise summation, that is, addition of rows of the matrix.

The product numeral P5:0 contains “pseudo-digits”, that is, digits which are greater than the base b = 10. In
order to obtain the ‘proper’ digits, the following carry propagation operation is required:

3 8 4 0 1 4

0 1 2 1 0 0

P5:0 = 3 9 6 1 1 4 = 321 ∗ 1234

A.P. Papliński 13–19

Digital Logic/Design. — L. 13 May 23, 2006

The above example can easily be extended into a generic multiplication algorithm. If we combine eqns
(13.1) and (13.2) we obtain the following expression describing the first step of a generic multiplication
algorithm:

Pk−1:0 =
∑
cl


qn−1 ·[dm−1 · · · d1 d0 0 · · · 0]

...
...

q1 · [0 · · · dm−1 · · · d1 d0 0]
q0 · [0 · · · 0 dm−1 · · · d1 d0]

 (13.3)

Denoting the products of individual digits of multiplier and the multiplicand by

rij = qi · dj

we obtain from eqn (13.3)

Pk−1:0 =
∑
cl


rn−1,m−1 · · · rn−1,1 rn−1,0 0 · · · 0

...
0 · · · r1,m−1 · · · r11 r10 0
0 · · · 0 r0,m−1 · · · r01 r00

 (13.4)

In a binary case, when, in general, the digits qi, dj ∈ {−1, 0, +1}, the elementary products are also,
rij ∈ {−1, 0, +1}.

In the second step of a generic multiplication algorithm, the elementary products in the matrix (13.4), are
to be summed up in columns. For a purely binary case, this operation yields the counts of ones in each
column.

Finally, the column sums must be added together, in a step which involves carry propagation.

A.P. Papliński 13–20

Digital Logic/Design. — L. 13 May 23, 2006

The above generic multiplication algorithm can be implemented in at least the following ways:

The word-serial algorithm. This is probably the most popular algorithm in which the final product is
formed by adding rows of the matrix (13.4) one by one. In practice, we employ a single m–bit adder,
and the partial products are shifted one position right between n successive steps of the multiplication
process.

Parallel algorithms. These are the fastest implementations of the multiplication operation. In this case we
use enough adders (approximately n m-bit adders), so that the multiplication operation is performed in
one step.

Two groups of algorithms belonging to this class are called the matrix method, and the Wallace-tree
method, respectively.

The column-serial algorithms. In this case, first elementary products in a column of the matrix (13.4) are
added serially, and then operation is repeated for the next more significant column. In other words,
there is a single 1-bit adder, and every addition operation is performed in m steps. This is clearly the
slowest method, but the amount of hardware required is minimal.

The distributed arithmetic algorithms. We present details of such algorithms in the subsequent sections.

A.P. Papliński 13–21

Digital Logic/Design. — L. 13 May 23, 2006

13.11 The Booth’s multiplier

In the context of multiplication it is often convenient to convert a two’s-complement number into a
signed-digit form. The multiplication method using the multiplier in the signed-digit form is known as the
Booth’s method.

Let

Qn−1:0 = [qn−1 · · · q1 q0] , where qi ∈ {0, 1} .

Consider now the following identity:

qi = 2qi − qi

Using the above identity it is now possible to obtain another numeral representation of the number q in the
following way:

2n−1 2n−2 · · · 21 20

Qn−1:0 = [qn−1 qn−2 · · · q1 q0]
= [−qn−1 2qn−2 − qn−2 · · · 2q1 − q1 2q0 − q0]
= [−qn−1 + qn−2 −qn−2 + qn−3 · · · −q1 + q0 −q0 + 0]

Q̂n−1:0 = [q̂n−1 q̂n−2 · · · q̂1 q̂0]

where

A.P. Papliński 13–22

Digital Logic/Design. — L. 13 May 23, 2006

q̂i = −qi + qi−1 , or,

qi qi−1 q̂i

0 0 0

0 1 +1

1 0 −1

1 1 0

, and q−1 = 0 . (13.5)

Hence, after re-coding, the Booth’s multiplier is

Q̂n−1:0 = [q̂n−1 · · · q̂1 q̂0] , where q̂i ∈ {−1, 0, +1} .

Obviously the value of the multiplier has not changed in the re-coding process and we have:

q = −qn−12
n−1 +

n−2∑
i=0

qi2
i =

n−1∑
i=0

q̂i2
i

Example

(1 0 0 1 0 1 1)2 = −26 + 23 + 2 + 1 = −53

(1 0 1 1 1 0 1)2 = −26 + 24 − 23 + 22 − 1 = −53

A.P. Papliński 13–23

