
VHDL April 3, 2006

2 Introduction to VHDL

Any Hardware Description Language (HDL) aims at describing variety
of aspects of digital devices like their structure and functional and
time behaviour in order to perform either modelling, simulation and
testing of a device, or to synthesize it in a selected technology.

Typically, we can assume that any HDL description can be converted
into time waveforms specifying the time behaviour of a digital device,
or into a structural or physical domain in a specified technology, as
illustrated in the following diagram:

WAVEFORMS

modelling6

�� ��HDL STATEMENTS

?
synthesis

DEVICE

For example a statement

clk <= NOT clk AFTER 50 ns

can describe generation of a signal, or a waveform clk with the period
of 100 ns, whereas, a similar statement

y <= NOT x

can describe an inverter in any underlying technology.

A.P.Papliński 1

VHDL April 3, 2006

VHDL is one of the most popular Hardware Description Languages
and according to the above introductory remarks can be used to

• model the functional and the time behaviour of digital systems
(modelling, simulation and testing)

• describe or infer the structure of digital hardware, that is, give the
circuit specification and/or describe the way in which the circuit
can be build synthesis)

The syntax of VHDL was influenced by the ADA language and was
initially developed by the US DoD (1981). The first IEEE standard
was published in 1987 (VHDL–87). The revised standard is called
VHDL 1076-1993, and its current revision can be found in [1]. Full
description of VHDL is available in [2].
From the language specification it transpires that the structure of
VHDL is rather complex, not only in order to make possible the
description of the two relatively different sides of digital systems,
namely, their structure and behaviour, but also to provide very
flexible language mechanisms. One of the aspects worth noticing is
that components of digital devices operate concurrently, therefore, the
VHDL is inherently a parallel or concurrent language.
Despite of its complexity, it is possible to specify a subset used for
synthesis which is significantly simpler. It is because many essential
language constructs, like file operations, complex data structures,
explicit time references, etc., do not directly represent any sensible
hardware. A formal specification of the possible synthesis subset is
given in the IEEE standards [3, 4]. See also [5].

A.P.Papliński 2

VHDL April 3, 2006

2.1 Basic terminology

Component

• A component is a central concept in description of digital
hardware using VHDL and is used to hierarchically represent
digital circuitry from a simple gate to a complex processing
system.

• A component representing digital hardware can be thought of as a
box in which we specify the input-output ports and the
component’s structure or behaviour.

ain bin cin(3:0)
v v v

eout fout do(2:0)
v v v

STRUCTURE
or

BEHAVIOUR

Figure 1: A component

• Ports can represent single wires (or signals), e.g. ain, bin, eout,
fout, or a group of wires (or signals), that is, buses (vectors of
signals) e.g. cin(3:0) and do(2:0). Ports can be, in general, of
the input, output and bi-directional (or input-output) type.

• One component can be instantiated in another using various
language mechanisms.

• Description of a component consists of the entity and
architecture

A.P.Papliński 3

VHDL April 3, 2006

Entity

Typically, the entity is the declaration of the component’s input-output
ports and its name.

Example: an entity for a 1-bit adder

a b c
v v v

d s
v v

add1_b

Figure 2: A 1-bit adder as a black-box (entity)

The VHDL code for such an entity is typically stored in a file
add 1b.vhd and can have the following form:

-- this is a comment
-- VHDL is NOT case sensitive
-- To emphasize, the key words are capitalized or in bold
-- this is a black-box describing 1-bit adder
ENTITY add_1b IS
PORT (a, b, c : IN bit ;

s, d : OUT bit) ;
END add_1b ;

Memorize the syntax and read comments in the program. With signals
we have associated data types. The simplest data type of a digital
signal is called bit. As expected, a signal of the type bit takes on just
two values, 0 and 1.

A.P.Papliński 4

VHDL April 3, 2006

Often, it is convenient to be able to assign more than two values to a
digital signal, for example, we might need the high-impedance value,
’Z’, or a “don’t care” condition. In such cases we replace the bit type
with a std logic data type which is available in a library IEEE.
In most simple situations, however, we can use the bit type in place of
the std logic type.

Example: an entity for a 2-to-4 decoder

a1
y(

0:
3)

v

en

de
co

de
r2

x4

v

v

v a0

Figure 3: A 2-to-4 decoder as an entity.

LIBRARY IEEE
USE ieee.std_logic_1164.all

ENTITY decoder2x4 IS
PORT (a0, a1, en : IN std_logic ;

y : OUT std_logic_vector(0 to 3)) ;
END decoder2x4 ;

Note the following elements introduced in the above program:

• We refer to all components of the library
ieee.std_logic_1164 which specifies the std logic data
type and operations performed on signals of this type.

• The entity called decoder2x4 has three input ports, a1, a0
and en, and four output ports, y(0), y(1), y(2), y(3) arranged in
a single bus, that is, in a vector of signals, y(0:3).

A.P.Papliński 5

VHDL April 3, 2006

• The std logic vector (and also bit vector), is a predefined
array type of std logic (or bit), the range “0 to 3” specifies
the array size.

• The range of vectors must be constant, that is the arrays are static.

• The range expression, e.g, “0 to 3” implicitly uses the signals of
the type integer.

A.P.Papliński 6

VHDL April 3, 2006

Architecture

• An architecture defines a body for the component entity and
describes either its structure or behaviour.

• It is possible to associate a number of architectures with a given
entity.

Consider two possible architectures for a 1-bit adder entity as in
Figure 4:

-- dataflow architecture for add_1b
ARCHITECTURE d_flow_a OF add_1b IS
BEGIN
s <= a XOR b XOR c ; -- a SIGNAL assignment
d <= (a AND b) OR ((a OR b) AND c) ;

END d_flow_a ;

d_flow_b

����
����

����
����

	�	

s

a

b

c

d

d_flow_a

����

�
�

����

����

s

a

b

c

e

d

Figure 4: Two possible implementations of a 1-bit adder

This is our first VHDL architecture therefore note the following:

• the architecture name which refers to the entity name,

• a signal assignment operator ‘<=’ ,

• logic operators, XOR, OR and AND,

• parentheses, which specify the order of operation.

A.P.Papliński 7

VHDL April 3, 2006

Another possible architecture for the add 1b entity:

-- another dataflow architecture for add_1b
ARCHITECTURE d_flow_b OF add_1b IS
SIGNAL e : std_logic ; -- internal signal declaration

BEGIN
e <= a XOR b ;
s <= e XOR c ;
d <= (a AND b) OR (e AND c) ;

END d_flow_b ;

A new element introduced in the d flow b architecture is an
internal signal e which is specified as being of the type std logic.
The internal signals are always bi-directional and are used in the
description of the circuit.
The complete VHDL program for the above 1-bit adder specification
can look as follows

LIBRARY ieee ;
USE ieee.std_logic_1164.all;

ENTITY tst1 IS
PORT (a, b, c : IN std_logic ;

s, d : OUT std_logic) ;
END tst1 ;

ARCHITECTURE a1 OF tst1 IS
BEGIN
s <= a XOR b XOR c ; -- a SIGNAL assignment
d <= (a AND b) OR ((a OR b) AND c) ;

END a1 ;

ARCHITECTURE a2 OF tst1 IS
SIGNAL e : std_logic ; -- internal signal declaration
BEGIN
e <= a XOR b ;
s <= e XOR c ;
d <= (a AND b) OR (e AND c) ;

END a2 ;

A.P.Papliński 8

VHDL April 3, 2006

2.2 Circuit Specification Styles

In general, using VHDL, the internal details of a digital device are
specified by an architecture body using the following three component
specification styles, or their combination:

As a set of interconnected components to represent the structure of
the top-level component.

As a set of concurrent assignment statements to represent the data
flow inside the component.

As a set of sequential assignment statements to represent the
behaviour of the component.

In a general descriptive sense we will be using terms like, digital
device, circuit, block or component interchangeably. In VHDL all
these terms are replaced by “component”.

2.2.1 Structural Style of Component Specification

In this style of specification a component is described as a set of other
interconnected components. Each constituent component is a black
box with an unspecified, at this stage, function or behaviour, but with
precisely defined ports.

In the declarative part of the architecture we specify input-output ports
of all components used in the architecture body in a way identical to
the respective entity declarations for these components. The
components may already exist in libraries, or can be specified later.

A.P.Papliński 9

VHDL April 3, 2006

Consider a structural architecture of a 1-bit adder shown in Figure 5

SP

����

����

����

����

XE

s

a

b

c

e

d

x1

x2
x1

x2
y

y

p1

p2

q1

q2

XS

Figure 5: Structural representation of a 1-bit adder

-- structural architecture for add_1b
ARCHITECTURE struct1 OF add_1b IS
COMPONENT xor2 -- 2-input exclusive-or
PORT(x1, x2 : IN std_logic ;

y : OUT std_logic) ;
END COMPONENT ;
COMPONENT aor22 -- sum of two 2-input products
PORT(p1, p2, q1, q2 : IN std_logic ;

y : OUT std_logic) ;
END COMPONENT ;
SIGNAL e : std_logic ;

BEGIN
XE: xor2 PORT MAP (a, b, e) ;
XS: xor2 PORT MAP (e, c, s) ;
SP: aor22 PORT MAP (c, e, b, a, d) ;

END struct1 ;

Note that

• In the architecture body the library components are instantiated
as many times as specified by the schematic describing the
architecture using a port map component instantiation
statement.

A.P.Papliński 10

VHDL April 3, 2006

• Each component instantiation statement is labelled as its
schematic equivalent. In the example, two different library
components, “xor2” and “aor22” are instantiated three times in
total, as components “XE”, “XS” and “SP”.

• Interconnections between components are specified by the port
map statement. For it to work, every net in the schematic, that is,
all external and internal signals, must be assigned a name.

• These names are specified either in the entity declaration as ports,
or in the architecture as signals, e.g., the signal e.

• Every port map statement is associated by positions with the
respective component declaration.

• For example, the net e connects the output (position 3) of the
component “XE” with an input (position 1) of the component
“XS” and an input (position 2) of the component “SP”.

As expected, the structural component specification describes precisely
the internal structure of the component, but says noting about it
behaviour. It can be, of course, inferred if the behaviour of the
constituent components is known.

A.P.Papliński 11

VHDL April 3, 2006

2.2.2 Dataflow Style of Component Specification

In this style of specification, the flow of data through a digital device is
expressed using a variety of the concurrent signal assignment
statements.

The architecture of the component does not contain an explicit
description of its internal structure.

The dataflow style is perhaps the easiest to obtain the correct
synthesizable code. It is similar to the concept of the “register transfer”
description.

Consider as an example a simple combinational circuit presented in
Figure 6 which will be described using the dataflow style.

f

a

c

d

s

b

1

0
y

MUX

e

Figure 6: A simple combinational circuit

The circuit consists of three simple combinational circuits, namely, a
NAND gate, an AND gate and a 2-to-1 multiplexer. In the VHDL code
a concurrent assignment statement will be associated with every gate
and the multiplexer.

ARCHITECTURE dataflow OF combD IS
SIGNAL e, f : std_logic ;

BEGIN
y <= e WHEN s = ’0’ ELSE f ; -- statement 1
e <= a NOR b ; -- statement 2
f <= c AND d ; -- statement 3

A.P.Papliński 12

VHDL April 3, 2006

END combD ;

There are three concurrent statements in the program which describes
the flow of data through the circuit. The order of these statements is
unimportant, because these statements are executed/interpreted
concurrently. Details of the concurrent statements will be discussed in
the subsequent sections.

A.P.Papliński 13

VHDL April 3, 2006

2.2.3 Behavioural Style of Component Specification

The behavioural style of specification is expressed by sequential
statements executed/interpreted in the specified order. The
sequential statements are enclosed inside a process statement which
by itself is a concurrent statement.
Consider as an example an architecture of a two-to-four decoder as in
Figure 7

en

y(0)

y(1)

y(2)

y(3)

DEC

a

b

Figure 7: A 2-to-4 decoder

ARCHITECTURE behav OF dec2to4 IS
BEGIN
PROCESS (a, b, en)
VARIABLE aB , bB : std_logic ;

BEGIN
aB := NOT a ; -- statement 1
bB := NOT b ; -- statement 2
IF (en = ’1’) THEN -- statement 3
y(0) <= NOT (aB AND bB) ; -- statement 4
y(3) <= NOT (a AND b) ; -- statement 5
y(1) <= NOT (aB AND b) ; -- statement 6
y(2) <= NOT (a AND bB) ; -- statement 7

ELSE
y <= "1111"; -- statement 8

END IF ;
END PROCESS ;

END behav ;

Note that

A.P.Papliński 14

VHDL April 3, 2006

• In the above example we have introduced the process statement,
which is a concurrent statement in itself, but is used to
encapsulate sequential statements, like the if statement. We will
discuss other sequential statements in the subsequent sections.

• The list of signals specified with the process statement
constitutes a sensitivity list. During execution of the VHDL
program, the process is invoked whenever an event occurs on any
signal from the sensitivity list. Typically, all input signals should
be on the sensitivity list.

In this example we have also introduced variables. Variables are
similar to signals , however:

• Variables can be declared only within a process and they are
local to that process. Signals cannot be declared inside a process.

• The assignment operator for variables is the := symbol.

• In the context of component modelling, the variables are assigned
values instantaneously, as opposed to signals which are assigned
values after a delay (default, or specified explicitly).

• In the context of synthesis, signals represent electrical nets,
variables are not directly represented in the circuit.

2.2.4 Mixed Style of Component Specification

It is obvious that all specification styles can be mixed. Some problems
are easier to describe in a particular way, namely, structural, dataflow
or behavioural. We will study this issue in some depth in the
subsequent sections.
As an example of a mixed specification style let us consider a
combinational circuit as in Figure 8

A.P.Papliński 15

VHDL April 3, 2006

d����pm

a

b
bb

x1

x2

x3

ys

yd

Ad1b

Σ
0

1

s

MUX
y

Figure 8: A simple combinational circuit modelled using a mixed style.

There are three components of the circuit: an XOR gate, a 1-bit adder,
and a 2-to-1 multiplexer. In order to illustrate the concept of the mixed
style of component specification, the VHDL description of the circuit
will consist of three different-style concurrent statements:

• a structural port map statement for the 1-bit adder,

• a process statement to describe the behaviour of the XOR gate,

• a concurrent assignment statement to describe the data flow
through the multiplexer

LIBRARY IEEE
USE ieee.std_logic_1164.all

ENTITY CombCircMx IS
PORT (a, b, pm, sd : IN std_logic ;

y : OUT std_logic) ;
END CombCircMx ;

-- mixed mode architecture for CombCircMx
ARCHITECTURE MxdMd OF CombCircMx IS

COMPONENT add1bit
PORT(x1, x2, x3 : IN std_logic ;

ys, yd : OUT std_logic) ;
END COMPONENT ;

SIGNAL bb, s, d : std_logic ;

A.P.Papliński 16

VHDL April 3, 2006

BEGIN
-- Structural statement
AD1b: add1bit PORT MAP (a, bb, pm, s, d) ;

-- dataflow statement
y <= s WHEN sd = ’0’ ELSE d ;

-- behavioural statement
PROCESS (b, pm)
BEGIN
IF (pm = ’0’) THEN
bb <= b ;

ELSE
bb <= NOT b ;

END IF ;
END PROCESS ;

END MxdMd ;

A.P.Papliński 17

VHDL April 3, 2006

2.2.5 A clock generator

In this section we will discuss and example of a VHDL program
intended not for synthesis, but for generation of waveforms, a single
clk of a period 100 ns. Such a generator can be connected to another
VHDL component using a component instantiation statement. This
open a very important area of modelling and testing using VHDL
specifications.

--- a clock generator
LIBRARY ieee ;
USE ieee.std_logic_1164.all;

ENTITY clk_gen IS
PORT (clk : OUT std_logic) ;

END clk_gen ;

ARCHITECTURE gen OF gen3b IS
SIGNAL ck : std_logic := ’0’;
CONSTANT halfperiod : TIME := 50 ns ;

BEGIN
PROCESS (ck)
BEGIN
ck <= NOT ck AFTER halfperiod ;

END PROCESS ;
clk <= ck ;

END gen ;

Note that

• The internal signal ck is initialised to a value ’0’ .

• We use a constant of the type time equal to 50 ns

• The generator generates a waveform of the 100 ns period.

A.P.Papliński 18

VHDL April 3, 2006

2.3 Summary

The following introductory VHDL concepts have been discussed in
this section:

• Component

– entity — component I/O ports (interface),

– architecture — component specification.

• Basic data types

– bit and std logic — single signals,

– bit vector and std logic vector — array os signals, signal
busses.

– The range expression.

• Three basic types of VHDL statements and related component
specification styles

– concurrent statements — dataflow specification

– sequential statements — behavioural specification

– interconnection of components (port map — component
instantiation statement) — structural specification.

• Signals — external and internal. Variables.

• A waveform generator.

A.P.Papliński 19

VHDL April 3, 2006

4 Basic Features of VHDL for Synthesis

4.1 Libraries and Packages

A package consists of the package declaration and a package body
and contains definitions of objects, procedures, functions, etc. that can
be used in a VHDL description. An entity or architecture may not be
defined in a package, therefore, a package does not represent a circuit.
Packages are typically grouped in the libraries, and the general form to
include a package in a VHDL description is of the following form:

library libr ;
use libr.package.selection ;

4.1.1 Fundamental packages

Packages STANDARD and TEXTIO are predefined and need not to be
declared. They typically resides in the library std.
Package STANDARD predefines a number of types, subtypes, and
functions. Some of the declarations from this package are as follows:

package standard is
type boolean is (false,true);
type bit is (’0’, ’1’);
type character is (...) ;

...
type integer is range -2147483648 to 2147483647;
type real is range -1.0E308 to 1.0E308;
type time is range -2147483647 to 2147483647

...

Operations and functions defined for the above types are specified in
the body of the package standard. Such a body is usually invisible.

Package TEXTIO contains declarations of types and subprograms that
support formatted I/O operations on text files.

A.P.Papliński 1

VHDL April 3, 2006

The library ieee contains a number of packages related to the
std logic types and we will often refer to packages from the library.

The library work refers to the directory containing the design under
specification and need not to be declared.

4.2 Types

Every object in a VHDL source, that is, constants, signals and
variables, needs to be declared and needs to be of a specific type. A
type is characterised by a set of values and a set of operations. For the
purpose of synthesis we can concentrate on the following two classes
of types:

4.2.1 Scalar types

Scalar types consist of enumeration types, integer types, physical
types, and floating point types.

Enumeration types Basic enumeration types are specified in the
package standard. We have been already using the 9-value
std logic type specified in the package std logic 1164 in the
following way:

PACKAGE std_logic_1164 IS
-- logic state system (unresolved)
TYPE std_ulogic IS (’U’, -- Uninitialized

’X’, -- Forcing Unknown
’0’, -- Forcing 0
’1’, -- Forcing 1
’Z’, -- High Impedance
’W’, -- Weak Unknown
’L’, -- Weak 0
’H’, -- Weak 1
’-’ -- Don’t care

);

A.P.Papliński 2

VHDL April 3, 2006

SUBTYPE std_logic IS resolved std_ulogic;

You can see that std logic is a subtype of the std ulogic. The
resolution function is called when we have two concurrent
assignment statements to any signal of type std logic in order to
determine the final value of the signal.

A relevant constant can be defined, if needed. in the following
way:

constant HiImp : std_logic := ’Z’ ;

A user can easily define any enumeration type, for example:

type states is (init, st1, st2, final);

A signal can now be defined as:

signal stt : states ;

Integer types are predefined in the package standard covers the range
of values represented by a 32-bit twos complement number. It is
possible to define integer types with different ranges, for example

type integer0_15 is range 0 to 15 ;

Any object of type integer0_15 can only contain integer values in
the range specified.

Floating-point types are predefined in the package standard and it is
possible, as in the integer type case, to define floating-point types
located within a specified range. This type is not normally used in
synthesis.

A.P.Papliński 3

VHDL April 3, 2006

Physical types represent relations between quantities. The type time
is predefined in the following way:

type time is range -2147483647 to 2147483647
units
fs;
ps = 1000 fs;
ns = 1000 ps;
us = 1000 ns;
ms = 1000 us;
sec = 1000 ms;
min = 60 sec;
hr = 60 min;

end units;

The type time is usually used to model the delay of circuits, and
in generation of waveform. It is not normally used in synthesis.

4.2.2 Composite types

Array types An array is a composite object consisting of elements of
the same subtype. The array type can be constrained or
unconstrained.

For the constrained array type, the number of elements and the
name of the elements (the index) are defined and fixed in the type
definition. For example:

type byte is array (7 downto 0) of std_logic};
constant ten : byte := "00001010" ;
signal a8 : byte ;

Individual elements of the array object can now be referred to
using indexing, for example, ten(3).

It is possible to refer to slices of the array, for example
ten(4 downto 1) which value is ”0101”.

A.P.Papliński 4

VHDL April 3, 2006

In the unconstrained array type, the number of elements and the
name of the elements in not defined in the type definition. Only
the subtype of index is specified. For example, the pre-defined
bit vector type:

type bit_vector is array (natural range <>) of bit;

The index range is usually constrained in the object declaration

In order to define a valid object of an unconstrained array type,
we need to constrain the index range. This is normally done on
the object declaration, for example:

constant nine: bit_vector(5 downto 0) := "001001";

Using the unconstrained array type we can define arrays of
vectors as in the following example, which specifies the truth
table of a 1-bit adder

TYPE arr_vec IS ARRAY (natural range <>)
OF std_logic_vector(1 downto 0);

CONSTANT add1bit : arr_vec(0 to 7) := (
-- d s abc
----------------- the truth table of a 1-bit adder
"00", -- 0 0
"01", -- 1 1
"01", -- 2 1
"10", -- 3 2
"01", -- 4 1
"10", -- 5 2
"10", -- 6 2
"11"); -- 7 3

A.P.Papliński 5

VHDL April 3, 2006

We can also specify multi-dimensional array types, for example:

type matrix is array (natural range <>, -- rows
natural range <>) of bit ;

The first index specifies the row number, the second – column
number.

Using a multi-dimensional array the previous definition of the
truth table of the 1-bit adder can be transposed into the following
more compact form.

TYPE arr2d IS ARRAY (natural range <>,
natural range <>) OF std_logic;

CONSTANT faddTT : arr2d(1 downto 0, 0 to 7) := (
--0123 4567
"0001 0111" , --1 d
"0110 1001"); --0 s

In the library ieee.std logic arith there are two types defined
which are similar to std logic vector , namely

type UNSIGNED is array (NATURAL range <>) of STD_LOGIC;
type SIGNED is array (NATURAL range <>) of STD_LOGIC;

Arithmetic operators are defined for these two types, which can
be easily converted to the std logic vector type.

A.P.Papliński 6

VHDL April 3, 2006

Record types A record type defines a collection of values which can
be of different types. Consider for example the following
definition:

type date is
record
day : integer range 1 to 31 ;
month : month_name ;
year : integer range 0 to 4000 ;

end record ;

The elements day and year are integers with the
appropriately restricted ranges.

The element month is of type month name and it is
assumed that such a enumerates the names of all months.

The elements of a record type can be of any type, but cannot be an
unconstrained array.

Consider as an example the following object of type date
specified above:

constant DDay : date := (6, June, 1944);

Individual elements of a record object can be accessed with a
selected name. A selected name consists of the object name,
followed by a dot (.) and the element name, for example:

DDay.year selects the year field out of DDay and returns
the integer value 1944.

A.P.Papliński 7

VHDL April 3, 2006

4.2.3 Type conversion

A VHDL expression of a specific type can be converted into a closely
related type using the following conversion mechanism:
<target_type> (< expression >)

For example, if we have an expression of the type unsigned, we can
use the following conversion function:
std_logic_vector (<unsigned_expression>)

because the two types are closely related.
What will not work, for example, are the following conversions

bit_vector (<std_logic_vector_expression>) -- error
integer (<unsigned_expression>) -- error

because such types are not closely related. In such cases, the libraries
provide specialised conversion functions and we can write:

to_bitvector (<std_logic_vector_expression>)
conv_integer (<unsigned_expression>) -- error

For details you have to consult the libraries.

A.P.Papliński 8

VHDL April 3, 2006

4.3 Objects

An object in VHDL is represented by a name and contains a value of a
specific type. For our purpose we can group objects in three informal
groups:

Constants, Signals, Variables .

The declaration of a constant, signal or variable assigns a name
and a type to the object.

In addition a declaration of a constant assigns a value to the
constant which cannot be changed.

Optionally a declaration of a signal, or variable can also assign an
initial value to the object. This value is usually ignored during
synthesis, but can be used in the waveform specification.

Signals represent wires (or nets) and their value are changed
using the signal assignment statements (<=). Assignments to
signals are not immediate, but are scheduled to be executed after a
delta delay.

Variables can be declared and used only in processes, functions
and procedures. Assignments to variable (using ‘:=’ operator), as
opposed to signal assignments, are immediate.

A.P.Papliński 9

VHDL April 3, 2006

A loop variable does not have to be declared and it gets its type and
value from the specified range in the iteration scheme. For
example:

for i in 7 downto 0 loop
c(i+1) <= a(i) AND b(i) ;

end loop ;

In the example, the loop variable i is a integer with values 7,
6, ... , 0.

A loop variable can only be used inside the loop, and there can be
no assignments to the loop variable.

For synthesis, the range specified for the loop variable must be a
compile-time constant, otherwise the construct is not
synthesizable.

A.P.Papliński 10

VHDL April 3, 2006

Ports and Generics are declared inside the entity specification.

A port is an interface terminal of an entity and is an object
similar to a signal, that is, its declaration assigns the name, type,
and optionally an initial value.

In addition, a port has a direction property which indicates the
possible information flow through the port. Possible directions
are in, out, inout and buffer, where inout and buffer describe
a bidirectional port.

A port can be used in the architecture as any other signal with
restrictions flowing from its directionality: an input port cannot be
assigned to, and the output port cannot be used in an expression.

A.P.Papliński 11

VHDL April 3, 2006

Generics are parameters specified inside the component entity
declaration. They are typically used to pass information about the
sizes of signal ports and to specify component’s timing
parameters. Generics are declared in a generic list.

Consider the following typical example

ENTITY combNxM IS
GENERIC (N : integer := 8 ; M : integer := 5) ;

PORT (X : in bit_vector (N-1 downto 0) ;
Y : out bit_vector (1 to M)) ;

end combNxM ;

The generics N and M can now be used inside the entity, to
define the size of ports, and in the related the architecture.

An important feature of generic specification is that the values
assigned in the entity declaration can be overwritten by a
generic map statement in the component instantiation of the
entity.

C1 : combNxM GENERIC MAP (N => 16, M => 10)
PORT MAP (X => C1X, Y => C1Y) ;

A generic map statement is used to specify the values of
parameters of the instantiated components, in a way similar as the
a port map statement specifies the name of port signals.

A.P.Papliński 12

VHDL April 3, 2006

4.4 Basic operations and operators

As it has been already said, a type is characterized by a set of values
and a set of operations. The set of operations of a type the basic
operations and the predefined operators.
A basic operation is an operation that is inherent in, among others, a
numeric literal, a string literal, a bit string literal, an aggregate, or a
predefined attribute.

4.4.1 Literals

Literals are use to define types and as constants in expressions.
Examples include:

• Character Literals: ’a’ ’0’ ’Z’ ’%’#

Character literals contain only a single character, and are single
quoted.

• String Literals:
"ZX--1" "10101" "hallo!" "!@#$%ˆ&*" String literals are

double quoted and contain an array of characters.

• Bit String Literals: B"1011_0101" X"B5" O"2_65"

Bit string literals are double quoted and contain an array of the
characters 0 and 1, and are preceded by a base specifier, B
(binary), O (octal), or X (hexadecimal). Bit string literals
can contain underscores which are used only for readability.

• Decimal Literals represent integer or real values:
-525.3 -5.253E2 32 32_000 0.32E-5

• Based Literals are also integer or real values, but are written in a
based form <base>#<digits>#[E<digits>], e.g.:

2#10101# 4#32_13# 12#B2A# 3#201#E+2 (= 171)

A.P.Papliński 13

VHDL April 3, 2006

Note the difference between the bit literal, say, O"47" which is
an array of bits, and corresponding octal literal 8#47# which is
an integer (or real) equal to decimal 39.

• Physical Literals: 14 ns 3.3 V 47 pF

• Identifiers

4.4.2 Aggregates

An aggregate is a basic operation combining values into a composite
value of a record or array type:
(expression , expression , ...)

We have been using aggregates already, mainly in definitions of
constants, see sec. 4.2.2, but they can be conveniently used in the
signal assignment statements. The length of the aggregate must match
the length of the target object, for example

SIGNAL a, b : bit_vector (1 to 2) ;
SIGNAL c, d : bit_vector (1 to 3) ;
...
c <= (a, b(1) AND b(2)); -- error, length 2, 3 is expected
d <= (a(1), a(2), b(1) AND b(2)) ; -- correct

A.P.Papliński 14

VHDL April 3, 2006

Finally, we consider a description of a multi-bit multiplexer using an
aggregate which arguable is the most elegant:

LIBRARY ieee ;
USE ieee.std_logic_1164.all;
ENTITY mux3 IS
GENERIC (N : integer := 4 ; M : integer := 3) ;
PORT (a, b, c : IN std_logic_vector (N-1 downto 0) ;

s : IN integer range 1 to M ;
y : OUT std_logic_vector (N-1 downto 0)) ;

END mux3 ;
ARCHITECTURE aggr OF mux3 IS
TYPE arr2d IS ARRAY (natural range <>)

OF std_logic_vector(a’RANGE);
SIGNAL yy : arr2d(1 to M) ;

BEGIN
yy <= (a, b, c) ; -- an aggregate
y <= yy(s) ;

END aggr ;

Please refer to the language manual for a full description of aggregates.

A.P.Papliński 15

VHDL April 3, 2006

4.4.3 Operators

Operators are predefined for objects of the predefined types, like bit,
integer, etc., and overloaded in the libraries for objects of the new
types, like std logic, and unsigned. Operators are grouped in classes
which are listed in order of increasing precedence:

logical operators and , or , nand , nor , xor , xnor

relational operators = , /= , < , <= , > , >=

shift operators sll , srl , sla , sra , rol , ror

adding operators + , - , &

sign operators + , -

multiplying operators * , / , mod , rem

miscellaneous operators ** , abs , not

The shift operators are predefined for the bit vector type and are not
overloaded neither in the ieee.std logic 1164 nor in
ieee.std logic arith libraries for the type std logic vector. However,
in the ieee.std logic arith library there are two shift functions

shl(arg, count) , shr(arg , count)

where arg can be unsigned or signed, and count
must be unsigned.

A concatenation operator & combines a single elements or array
slices into an array slice. In many cases it works in a way similar to
aggregates. Consider the following example:

SIGNAL a, b : bit_vector (1 to 2) ;
SIGNAL c, d : bit_vector (1 to 8) ;
...
c(2 to 7) <= a & b(1) AND b(2) & B"10";

Note that it is more flexible than a corresponding expression with
aggregates.

A.P.Papliński 16

VHDL April 3, 2006

One way of warning regarding complex arithmetic operations. If we
have, for instance, in our VHDL code a statement like

a <= b * c

then the synthesizer will synthesize such a statement using
unstructured, that is, “random” logic, which typically results in a big
circuit consisting of lots of gates. If we have a particular way of
implementing such an operation, say, a bit-serial implementation, in
mind, we have to write a suitable VHDL code which results in such an
implementation.

A.P.Papliński 17

VHDL April 3, 2006

4.5 Attributes

Attributes play an important role in VHDL coding facilitating the
flexible style of writing VHDL specification.
Attributes denote values, functions, types, and ranges associated with
various kinds of named entities. We will consider first attributes which
describe values and ranges of objects of a specific type. If t
describe type, then the related attributes result in the following values
of type t:

t’left — the left bound of t
t’right — the right bound of t
t’high — the upper bound of t
t’low — the lower bound of t

t’range — the range of t
t’reverse range — the reverse range of t

t’length — number of values in the range t

For example:

signal vx : bit_vector (8 downto 3) ;
...
vx’LEFT -- returns integer 8
vx’RIGHT -- returns integer 3
vx’LENGTH -- returns integer 6
vx’RANGE -- returns range 8 downto 3

A.P.Papliński 18

VHDL April 3, 2006

References

[1] IEEE Std 1076-2002, 1076 IEEE Standard VHDL Language
Reference Manual, May 2002.

[2] K.-C. Chang, Digital Design and Modelling with VHDL and
Synthesis. IEEE Computer Society Press, 1997.

[3] IEEE Std 1076.6-1999, IEEE Standard for VHDL Register
Transfer Level (RTL) Synthesis, September 1999.

[4] IEEE Std 1076.3-1997, IEEE Standard VHDL Synthesis Packages,
March 1997.

[5] Mentor Graphics Corporation, LeonardoSpectrum HDL Synthesis,
2001. in: /sw/leonardo spectrum/doc/hdl syn.pdf.

A.P.Papliński 19

