
March 23, 2006

CSE2306 Digital Logic CSE1308

Practical 3: Canonical forms. Decoders.

3.1 About this practical
The objective of this practical is to reinforce your knowledge of canonical forms of logic functions.
We also study decoders as generators of minterms and maxterms.
In addition we introduce a concept of simulation scripts and examine an automatically generated
VHDL description of a logic circuit.

Contents
3.1 About this practical . 1
3.2 Designing your own 2-to4 decoder. 1
3.3 Simulation of a 2-to-4 decoder . 3

3.3.1 Creating a simulation script . 3
3.4 The VHDL source code for the 2-to-4 decoder . 4
3.5 Implementing a logic function using a 3-to-8 decoder 5

3.5.1 Selecting your logic function to be implemented 6
3.5.2 Building the block diagram of the canonical implementations 6

3.6 Simulation of your logic function implementations 8
3.7 The report . 9

3.2 Designing your own 2-to4 decoder.
Follow the instructions from prac1 to create a new project with a new block diagram that will be
used in simulation.

• Start Designer Manager invoking FPGAdv tools.

• In the Getting Started wizard select Create a new Project button and click OK

• In a Creating a New Project wizard specify:

Name of new project: P3you
Directory in which your project folder will be created: DigDes

where you should be replaced with your initials.

Digital Logic, Prac 3 March 23, 2006

• Open a Block Diagram window by selecting in the Design Manager
File→ New → Graphical view → Block Diagram

• In the Block Diagram create a 2-to-4 decoder as in Figure 1

x : std_logic_vector(1 DOWNTO 0)

SIGNAL xb : std_logic_vector(1 DOWNTO 0)

m : std_logic_vector(3 DOWNTO 0)

Package List
LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_arith.all;

inv
I0

x

Declarations
Ports:

Diagram Signals:

m

xb(1)

xb(0)

m(0)

by app on 15 Mar 2006

2-to-4 decoderTitle:

CSIT

Path:

Edited:

P3app_lib/dec2to4app/struct

Project:

app are my initials. Please use your own.

P3app

and

I1

and

I2

and

I3

and

I4

x(1)

x(0)

xb(1)

x(0)

xb(0)

x(1)

m(1)

m(2)

m(3)

P3app_lib/dec2to4app/struct

Page 1 of 1Printed by app on 15/03/2006 at 08:39:59 AM

Figure 1: Logic diagram of a 2-to4 decoder

• Save the diagram as: dec2to4you
where you should be replaced with your initials.

• In the Design Manager expand the design unit P3you lib and find the symbol for
dec2to4you . Double-click on the “symbol” to open the Symbol window.

• Modify the symbol to look similar to that in Figure 2

Such a symbol can be now use in you future designs.

A.P. Papliński 2

Digital Logic, Prac 3 March 23, 2006

Package List
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;

Declarations
Ports:

User:

P3app_lib
dec2to4app

Generic Declarations

m : (3:0)

m : OUT std_logic_vector (3 DOWNTO 0)

x : (1:0)

x : IN std_logic_vector (1 DOWNTO 0) ;

by app on 14 Mar 2006

 <<--

2-to-4 decoder: symbolTitle:
Symbol for 2-to-4 decoder

P3app<company name>

Path:
Edited:

P3app_lib/dec2to4app/symbol

P3app_lib/dec2to4app/symbol

Page 1 of 1Printed by app on 14/03/2006 at 05:22:44 PM

Figure 2: Symbol of a 2-to4 decoder

3.3 Simulation of a 2-to-4 decoder
• To start ModelSim simulator select in the Block Diagram window

Tasks → ModelSim Flow → Run Single

• Accept defaults in the Start ModelSim window clicking OK .

• In the ModelSim window, in its left pane, select first an instance dec2to4you , and then from
the pull-down menu: View → Signals . A window signals is created in which all
input/output signals (ports) are listed.

• In the signals window select Add→ Wave → Signals in design . This opens a
wave – default window with all signals ready to be monitored.

• Observe the command window of the simulator

• In the signals window click on ‘+’ against the x bus to see the individual signals
x(1),x(0)

• Select x(1) and then Edit→ Clock. . . . A dialog window Define Clock pops up.

Specify: Duty — 50[%], Period — 10[ns], FirstEdge — Falling and click OK .

• Similarly select x(0) and then Edit→ Clock. . . .

Define clock as: Duty — 40[%], Period — 5[ns], FirstEdge — Falling and click OK .

• Run simulation for 20ns.

The result displayed in the wave – default window should be similar to that in Figure 3.

3.3.1 Creating a simulation script

In order to simplify the repetitive simulation tasks we can create and run the simulation script. One
way of doing so is to use the transcript file created in your previous simulation.

A.P. Papliński 3

Digital Logic, Prac 3 March 23, 2006

0 1 2 3 0 1 2 3

0001 0010 0100 1000 0001 0010 0100 1000

0 4 8 12 16 20

/dec2to4app/x 0 1 2 3 0 1 2 3

/dec2to4app/m 0001 0010 0100 1000 0001 0010 0100 1000

(3)

(2)

(1)

(0)

Entity:dec2to4app Architecture:struct Date: Wed Mar 15 08:25:02 HDS 2006 Row: 1 Page: 1

Figure 3: Simulation waveforms for a 2-to-4 decoder

• In the ModelSim window execute File→ Transcript→ Save Transcript As . . .
Save transcript in a file dec2to4.sim . Note that this file will be created most likely in
the directory P3you lib .

• Use your favourite text editor and edit the dec2to4.sim file to look like the following

dec2to4.sim
restart -force -nowave
view signals
add wave -uns x
add wave m
force -freeze x(0) 0 0, 1 {2 ns} -r 5
force -freeze x(1) 0 0, 1 {5 ns} -r 10
run 20
.wave.tree zoomfull

• If you have observed the command window you can interpret most of the commands. However
sooner or later you have to go to Help→ HTML Documentation and study details of each
command.

• Before we run the script execute the command pwd to verify that you are in the directory
P3you lib/work .

• To execute the simulation script type in: do ../dec2to4.sim

This should re-run the simulation for 20ns

3.4 The VHDL source code for the 2-to-4 decoder
ModelSim generates the VHDL code describing your circuit. Execute view source command
to obtain the source window.
The VHDL code should be similar to the following:

A.P. Papliński 4

Digital Logic, Prac 3 March 23, 2006

-- VHDL Entity P3app_lib.dec2to4app.symbol
--
-- Created: by - app.UNKNOWN (ANDROO)
-- at - 08:24:07 15/03/2006
-- Generated by Mentor Graphics’ HDL Designer(TM) 2004.1 (Build 41)
--
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;

ENTITY dec2to4app IS
PORT(

x : IN std_logic_vector (1 DOWNTO 0);
m : OUT std_logic_vector (3 DOWNTO 0)

);
END dec2to4app ;

-- VHDL Architecture P3app_lib.dec2to4app.struct
-- Created: by - app.UNKNOWN (ANDROO)
-- at - 08:24:07 15/03/2006
-- Generated by Mentor Graphics’ HDL Designer(TM) 2004.1 (Build 41)
--
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;

ARCHITECTURE struct OF dec2to4app IS
SIGNAL xb : std_logic_vector(1 DOWNTO 0);

BEGIN
m(0) <= xb(1) AND xb(0);
m(1) <= xb(1) AND x(0);
m(2) <= xb(0) AND x(1);
m(3) <= x(1) AND x(0);
xb <= NOT(x);

END struct;

We will discuss details of the code in class.

3.5 Implementing a logic function using a 3-to-8 decoder
The objective of this exercise is to implement a logic function in four different forms using a 3-to-8
decoder and four gates, OR, AND, NOR, NAND as in Figure 4
We will use a decoder from the ModuleWare library.

A.P. Papliński 5

Digital Logic, Prac 3 March 23, 2006

Figure 4: Implementing a logic function in four equivalent ways

3.5.1 Selecting your logic function to be implemented

There are five logic functions to choose from. The choice is based on the last digit of your student
ID number as follows:

ID # function
0, 5

∑
(0, 4, 6, 7)

1, 6
∑

(0, 2, 4, 7)

2, 7
∑

(1, 2, 3, 4)

3, 8
∑

(3, 4, 5, 6)

4, 9
∑

(1, 2, 5, 7)

3.5.2 Building the block diagram of the canonical implementations

• You should start with saving and closing all windows but the Design Manager. You can even
exit the FPGAdv tools and restart it continuing the P3you project.

• Open a new Block Diagram window by selecting in the Design Manager
File→ New → Graphical view → Block Diagram and save it as youLgcFun .

• Add ModuleWare: Go to the moduleware library to the combinatorial group and instance
the Decoder (combined output) in your block diagram.

• You have to set up parameters of the decoder to be 3-to-8. Double click on the decoder symbol
to open the ModuleWare Parameters window.

• Change the Value parameters for din and dout signals to be 3 and 8, respectively.
Click OK .

• You should aim at a block diagram as in Figure 5.

• The number of inverters (or the number of input/output signals in the inverter) will be adjusted
automatically when you connect by a bus the decoder output with the inverter input.

A.P. Papliński 6

Digital Logic, Prac 3 March 23, 2006

x : std_logic_vector(2 DOWNTO 0)
m : std_logic_vector(7 DOWNTO 0)
mm : std_logic_vector(7 DOWNTO 0)
selerror : std_logic
yand : std_logic
ynand : std_logic
ynor : std_logic
yor : std_logic

P3app_lib/appLgcFun/struct

inv

moduleware

Package List
LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.std_logic_arith.all;

x

Declarations
Ports:

Diagram Signals:

by app on 15 Mar 2006

Canonical formsTitle:

CSIT

Path:

Edited:

decoder1

I0

or
I5

selerror

 <<--

Rip appropriate signals from

the buses to implement your

logic function

P3app

I1

and
I2

nor
I4

yor yand

nand
I3

mm

m

ynor ynand

P3app_lib/appLgcFun/struct

Page 1 of 1Printed by app on 17/03/2006 at 11:30:54 AM

Figure 5: Four canonical implementations of a logic function (incomplete).

• To get the number of inputs to the gates increased to 4, double click on the gate and in the
ModuleWare Parameters window, in the options section, increase the Dynamic number of
ports to 4.

• To rotate the symbol of the gate right-click on it and select appropriate action from the pop-up
menu.

• From the same pop-up menu you can show/hide the description (text) associated with each
gate (or element).

• When you have a block diagram similar to that in Figure 5 the final step is to connect the
gates to the appropriate signals from two busses and implement your logic function in four
equivalent canonical ways.

A.P. Papliński 7

Digital Logic, Prac 3 March 23, 2006

3.6 Simulation of your logic function implementations
Using the simulation script similar to the following

LgcF.sim
restart -force -nowave
view signals
add wave -uns x
add wave -dec m mm
add wave yor yand ynor ynand
force -freeze x(0) 0 0, 1 {2 ns} -r 4
force -freeze x(1) 0 0, 1 {4 ns} -r 8
force -freeze x(2) 0 0, 1 {8 ns} -r 16
run 32
.wave.tree zoomfull

you should obtain the simulation waveforms similar to those in Figure 6.

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

1 2 4 8 16 32 64 -128 1 2 4 8 16 32 64 -128

-2 -3 -5 -9 -17 -33 -65 127 -2 -3 -5 -9 -17 -33 -65 127

0 10 20 30

/applgcfun/x 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

/applgcfun/m 1 2 4 8 16 32 64 -128 1 2 4 8 16 32 64 -128

(7)

(6)

(5)

(4)

(3)

(2)

(1)

(0)

/applgcfun/mm -2 -3 -5 -9 -17 -33 -65 127 -2 -3 -5 -9 -17 -33 -65 127

(7)

(6)

(5)

(4)

(3)

(2)

(1)

(0)

/applgcfun/yor

Entity:applgcfun Architecture:struct Date: Wed Mar 22 09:43:44 HDS 2006 Row: 1 Page: 1

Figure 6: Simulation waveforms.

A.P. Papliński 8

Digital Logic, Prac 3 March 23, 2006

3.7 The report
In your report (due after prac 4) include the results in the form of:

• block/logic diagrams,

• VHDL programs (if available),

• simulation scripts (if available),

• simulation waveforms,

• short description of the above.

Wherever possible publish the results selecting in the Block Diagram window
File → HTML Export Specify the export target directory to be ...\DigDes\Reports.

A.P. Papliński 9

