
April 5, 2006

CSE2306 Digital Logic CSE1308

Practical 5: An n-bit Arithmetic-Logic Unit

5.1 About this practical
The objective of this practical is to design and test a 4-bit Arithmetic-Logic Unit (ALU) as discussed
in lecture notes.
Possible variants to consider:

• 1-bit component and 4-bit ALU designed using graphical entry

• Design 1-bit component in VHDL, 4-bit ALU graphically

• Design as single-level VHDL component using the “generate” statement.

• Design first a 1-bit VHDL component and then 4-bit ALU using the “component instantiation”
statement and “generate” statement.

• Simulate 1-bit design, or the complete ALU only.

I will try first the second option.

Contents
5.1 About this practical . 1
5.2 The 1-bit building block . 1

5.2.1 VHDL specification of the 1-bit ALU component 2
5.3 The 4-bit ALU . 4
5.4 Simulating the ALU . 5
5.5 The report . 6

5.2 The 1-bit building block
The n-bit Arithmetic-Logic Unit (ALU) that we are about to design will consist of 1-bit slices
connected in a linear array fashion. We design first such a 1-bit component. The operations
performed by the i-th bit of the ALU and its structure are presented in Figure 1.

Digital Logic, Prac 5 April 5, 2006

Function table:

opc function
0 0 0 a + b + c0

0 0 1 a⊕ b
0 1 0 a OR b
0 1 1 a · b
1 0 0 a− b− c0

1 0 1 a⊕ b
1 1 0 a · b
1 1 1 a OR b

Logic diagram of the 1-bit unit:

3

iai

bbi

aai

piqici+1 ci

fi

opc1

opc2

opc0

si

gi ri

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
����
��
��
��

��
��
��
��

��
��
��
�� ��

��
��
��

��
��
��
��

��
��
��
��

MUX
1 02

b

Figure 1: The ith bit of the ALU: the function table and the logic structure

5.2.1 VHDL specification of the 1-bit ALU component

• Start Designer Manager invoking FPGAdv tools.

• In the Getting Started wizard select Create a new Project button and click OK

• In a Creating a New Project wizard specify:

Name of new project: P5you
Directory in which your project folder will be created: DigDes

where you should be replaced with your initials.

• Open a Block Diagram window by selecting in the Design Manager
File → New → VHDL Views → VHDL Combined

• In the File Creation Wizard window specify:

– Entity name, e.g., ALU1b
– Architecture name, e.g., dflow

A.P. Papliński 2

Digital Logic, Prac 5 April 5, 2006

This will open a VHDL editor window with a VHDL template

• Enter the entity specification to be similar to the following:

ENTITY ALU1b IS
PORT (
a, b, c : IN std_logic ;

f, d : OUT std_logic ;
opc : IN std_logic_vector(2 downto 0)

);
END ENTITY ALU1b;

• In the dataflow architecture we specify all the internal signal and write all logic equations. The
architecture part may look as follows:

ARCHITECTURE dflow OF ALU1b IS
SIGNAL aa, bb, g, q, p, r, s : std_logic ;

BEGIN
aa <= a XOR opc(2) ;
bb <= b XOR opc(2) ;
p <= a XOR bb ;
g <= a AND bb ;
r <= aa AND bb ;
q <= aa OR bb ;
s <= p XOR c ;
d <= g OR (p AND c) ;

WITH opc(1 downto 0) SELECT
f <= s WHEN "00" ,

p WHEN "01" ,
q WHEN "10" ,
r WHEN OTHERS ;

END ARCHITECTURE dflow;

• Save the VHDL file.

• Now, we can generate the component and compile the VHDL specification. To do that select
in the VHDL window Tasks → ModelSim flow → Run single

• Most likely you will have syntactic errors reported in the log window. Fix the errors save
the file and re-run the ModelSim flow.

• At the conclusion of the successful compilation a window Start ModelSim appears. Accept
its default settings.

• It will open ModelSim simulation window.

A.P. Papliński 3

Digital Logic, Prac 5 April 5, 2006

Simulate or not to simulate

Since the time is an issue, I will leave the decision to you.

If not, you can quit the simulator for now.

• We now convert the VHDL view to graphics, to create a graphical block that can be used in
the the graphical entry. On way of doing so is to select in the VHDL window:

Convert to Graphics button (icon):

How to Use DesignPad
Document Operations

DesignPad Text Editor User Guide, Software Version 2.35 2-21
29 March 2004

For example, a combined VHDL entity and architecture file is collapsed in outline mode
to show only the entity and architecture declaration lines. You can expand the entity or
architecture and then expand lower level code blocks such as the port declarations.

Using Column Select Mode
When Column Select Mode is set in the Document menu you can select a column of
text by holding down the mouse button and dragging the cursor vertically down.

When this mode is unset, this action selects all text in the rows under the cursor.

Graphical Rendering
You can render any VHDL or Verilog HDL text view as a temporary or saved graphical
view which can be viewed using the HDL Designer Series graphical editors.

Refer to the “Graphical Rendering” chapter in the Graphical Editors User Manual for
information about these features.

Converting to Graphics
You can create a graphical view from the active HDL declaration by using the
button or by choosing Convert To Graphics from the Document menu to display the
Convert to Graphics wizard.

Showing as Graphics
You can render the active HDL view as a temporary graphical view by using the
button or by choosing the required view type (Block Diagram, IBD, Flow Chart or
State Diagram) from the Show As Graphics cascade of the Document menu.

Tracing to Graphics
You can trace a line of HDL text to the associated graphics, when the active HDL text
file has a corresponding graphics view. For example, when the HDL file has been
converted to graphics or you are viewing the HDL generated from a graphics file.

You can display the graphics view by using the button or by choosing Trace to
Graphics from the Document or popup menu. The graphics file is opened and
centered on the graphics corresponding to the HDL text under the cursor.

These commands are available when DesignPad is integrated with HDL
Designer, HDL Detective or HDL Assistant. However, you cannot render
graphics using a HDL Author license.

• If there are no errors (better not) in the Design Manager window you will now find an icon
symbol attached to the Design Unit ALU1b

• Double-click on this symbol to open up a graphical view of the symbol.

• Edit (and save) the symbol to look similar to the one in Figure 2.

Package List
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;

Declarations
Ports:

User:

a : IN std_logic ;
b : IN std_logic ;
c : IN std_logic ;
f : OUT std_logic ;
d : OUT std_logic ;
opc : IN std_logic_vector (2 downto 0)

Created using Mentor Graphics HDL2Graphics(TM) Technology
on - 14:08:00 29/03/2006
from - C:\app\teach\DigDes\Projects\p5ALU_lib\hdl\
ALU1b_dflow.vhd

p5ALU_lib
ALU1b

Generic Declarations

ab

cd

opc

by app on 29 Mar 2006

Project:

1-bit slice of the ALUTitle:
Move port around so that it will be easier
to create an n-bi ALU

p5ALU<company name>

Path:
Edited:

p5ALU_lib/ALU1b/symbol

f

p5ALU_lib/ALU1b/symbol

Page 1 of 1Printed by app on 29/03/2006 at 02:34:05 PM

Figure 2: The symbol of the 1-bit ALU component

5.3 The 4-bit ALU
We are now ready to create a 4-bit ALU using the 1-bit component specified previously. The symbol
for the 4-bit ALU will eventually be similar to the one in Figure 3.

• From the Design Manager open a new Block Diagram window by selecting
File → New → Graphical view → Block Diagram

A.P. Papliński 4

Digital Logic, Prac 5 April 5, 2006

Figure 3: The symbol of the 1-bit ALU component

• Create a 4-bit ALU similar to that in Figure 4.

• Save it under a sensible name, e.g. ALU4bit.

f f ff

a : std_logic_vector(3 DOWNTO 0)
b : std_logic_vector(3 DOWNTO 0)

opc : std_logic_vector(3 DOWNTO 0)

f : std_logic_vector(3 DOWNTO 0)

SIGNAL c1 : std_logic
SIGNAL c2 : std_logic
SIGNAL c3 : std_logic

c

a

Package List
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;

Declarations
Ports:

Diagram Signals:

c0 : std_logic

c4 : std_logic

p5ALU_lib
ALU1b

ab

d

opc : (2:0)

opc

b

c4

op
c b(

3)

a(
3)

I3

p5ALU_lib
ALU1b

ab

cd

opc : (2:0)

c3

op
c b(

2)

a(
2)

I2

p5ALU_lib
ALU1b

ab

cd

opc : (2:0)

c0p5ALU_lib
ALU1b

ab

cd

opc : (2:0)

c2

op
c

op
c b(

0)

b(
1)

a(
1)

a(
0)

I1 I0

c1

f(3
)

f(2
)

by app on 29 Mar 2006

 <<--

4-bit ALUTitle:

p5ALU
<company name>

Path:
Edited:

p5ALU_lib/ALU4b/struct

Note that each 1-bit component has
its own ID: I0 ... I3

f(1
)

f(0
)

f

p5ALU_lib/ALU4b/struct

Page 1 of 1Printed by app on 29/03/2006 at 03:40:59 PM

Figure 4: The block-diagram of the 4-bit ALU

5.4 Simulating the ALU
Simulation is a very difficult task and must be well planned. Our 4-bit ALU has 12 input signals. It
means that we might need to test 4096 different cases. It is a rather difficult task to perform it
manually. Therefore we will limit testing to the following cases:

1. For positive a and b such that there is no overflow in addition perform all 8 possible operations
for all opc.

Select c0 to be zero for addition and one for subtraction operation.

A.P. Papliński 5

Digital Logic, Prac 5 April 5, 2006

2. As above for negative a and b.

3. Two pairs of addition and subtraction operations to show overflow and correct results.

Write an appropriate simulation script to cover all the above cases.
The following graph can assist you with planning generation of the input signals:

opc 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 4 0 4
a + + + + + + + + − − − − − − − − a1 a2 a3 a4
b + + + + + + + + − − − − − − − − b1 b2 b3 b4

c0 0 ∗ ∗ ∗ 1 ∗ ∗ ∗ 0 ∗ ∗ ∗ 1 ∗ ∗ ∗ 0 0 1 1

You can assume that one time step is, say 10ns, and write the simulation script using the force
command. For yor convenience I attach the full description of the command in the file force.pdf .

5.5 The report
In your report (due after prac 6) include the results in the form of:

• Logic equations as specified in this manual,

• block/logic diagrams,

• VHDL programs (if available),

• simulation scripts (if available),

• simulation waveforms,

• short description of the above.

Wherever possible publish the results selecting in the Block Diagram window
File → HTML Export Specify the export target directory to be ...\DigDes\Reports.

A.P. Papliński 6

