Lennart Gustafsson August 18, 2004

Two lectures on autism

This first lecture contains some of the material that has
been published in

1. Gustafsson L. “Inadequate cortical feature maps: a
neural circuit theory of autism” Journal of

biological Psychiatry 1997; 42: 1138-1147.

2. Gustafsson L. “Neural network theory and recent
neuroanatomical findings indicate that inadequate
nitric oxide synthase will cause autism” In: Pallade
V, Howlett RJ, Jain L, editors. Lecture notes in
artificial intelligence 2003; Vol 2774, part II. New
York: Springer-Verlag. P 1109-14.

3. Gustafsson L. “Comment on ‘Disruption in the
Inhibitory Architecture of he Cell Minicolumn:
Implications for Autism’” The Neuroscientist 2004;
Vol 10, Nr. 3, p. 189-191.

The second lecture will be based on the joint research by
Lennart Gustafsson and Andrew Paplinski.
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Trying to understand autism
through neural networks

Autism, or autism spectrum disorders, are
enigmatic (gatfulla).

Insights through mathematical analysis and
computer simulations - is it possible?

The idea is gaining momentum.

I, for one, believe it’s possible.




A broad picture
complete with a hypothetical explanation

It certainly is incomplete

It might even be wrong towards the end
(that’s the nature of hypotheses)

but it surely fascinates me.




Autism

Leo Kanner (1943) in Autistic Disturbances of
Affective Contact

Hans Asperger (1944) in Die ”Autistischen
Psychopaten” im Kindesalter

Ewa Scucharewa (1926) in Die Schizoiden
Psychopatien im Kindesalter




Autism - what is 1t?

Diagnostic criteria, DSM-IV:
impairments in social interaction

impairments in verbal and nonverbal
communication

restricted repertoire of activities and interests

Diagnostic criteria are based on behavior!




But — how i1s autism caused?

Up till the early seventies, psychodynamic (blame
the mothers) explanations.
Presently biological explanations.

A multitude of brain abnormalities found

in post mortem examinations and fMRI

studies.

Few consistent findings (different individuals
— different abnormalities).

How do we start modelling?




A brain atlas by Brodmann from 1909

The different Brodmann areas fulfill different
processing tasks- they are specialists — and they
cooperate. The brain is a parallel processor.




The primary sensory cortices correspond
directly to the brain’s environment, ...

Sensory homunculus
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... Whereas higher order sensory cortices
make abstract representations of the world
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This is not the final organization scheme
from the HELA project, but the
organization scheme of the macaque
monkey vision
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Whatever the level in the processing
hierarchy, and the particular task there
1S a common architecture: the neural
columns (mini- and macrocolumns).

Mountcastle 1957 ...

Y B. Mountcastle
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Fig. 16 Diagram of the arrangement ol E curons, dendri :s.:ndamnsn vertical modules of the striate cortex of the macaque monkey.
Left. A drawing 1o show the arrangeme of the apical dendrit tp}mmdl cells; for clarity, only one-half of the neurons present are
shown. Thcpyra.rmdnl ells Iyrslilm IVA and V are hu'w n red, those in layer V1 in green. Neurons of IVB and [VC are shown

without dendrites, in grey: GABA«; c neurons in azure, Total urnben of GABAErgic and non-GABAergic cells are given to the right
of the drawing. Rg.n A drawing to represent the pyramidal cell modu h: (columns) showing the arrangement of dendrites and axons.
Colour scheme the same as for the left, pyramidal cell axons are shown in blue. (From Peters and Sethares, 1996, w:hpenmumfmm
Wiley-Liss.)




Artificial Neural Networks (ANN’s) are

information extracting (from signals, stimuli)
artefacts

-

learning artefacts — an ANN develops through
learning, from building experience

designed with some influence from knowledge

about the brain

The tield was initiated by neuropsychologists for the
study of mind/brain more than 50 years ago.




An Artificial Neural Network (ANN)
1s defined by

a model of a neuron

a network architecture

a learning rule




A sketch of a biological neuron

Pyramidal cell in cortex
(from Kolb & Whishaw)
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A model (MATLAB) symbol for a neuron:

Inputs  Multiple-Input Neuron

A mathematical model of a neuron:
n=2w;p;, +b  w;is the synapse "strength”

a = f(n)

Is the model simplifed? Certainly!




Biological network architecture
(from Kolb & Whishaw)
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Artificial neural network (ANN) architectures

Afferent axons

tnput layer Output layer Efferent axons
of source of neurons
nodes
Feedforward network Self-organizing network
(from Haykin) (from Kohonen)

Are the ANN architectures simplified? Certainly!




Learning in an ANN:

Learning paradigms:
Supervised learning
/

Self—organization (unsupervised learning)

(Reinforcement learning)

Hebb’s law, 1949 — “neurons that fire together wire
together” — experimentally established much later
“Technical improvements™:

Error back-propagation

Winner Take All

How important is adherence to biological modelling
of learning?




Theories of autism derived from theory of
Artificial Neural Networks (I)

I.L. Cohen “An artificial neural network analogue of
learning in autism” Journal of Biological Psychiatry
1994; 36:5-20.

\

Idea: too many neurons will cause autistic features,
notably poor generalization.

Support: abnormally many neurons have been
documented in parts of cortex in individuals with autism.

From Huttenlocker (1990):
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FIGURE 4.1. Synaptic density and estimate of to1al synapses in human visual cor-
tex as a functon of age. From Huttenlocher (1990). Copyright 1990 by Pergamon
Press, Lid. Reprinted by permission.




Why would too many neurons cause problems?

examples to be learned
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Neural networks with too many neurons for a given task
will cause the network to learn exactly but be unable to

generalize, i.e. produce reasonable outputs to inputs not
learned.




Theories of autism derived from theory of
Artificial Neural Networks (II)

L. Gustafsson “Inadequate cortical feature maps: a
neural circuit theory of autism” Journal of
Biological Psychiatry 1997, 42: 1138-1147.

Idea: cortical feature maps inadequately organized
to process stimuli (signals) to extract information.

Signal activity drives self-organization of maps,
consisting of neural columns as feature detectors.

With too narrow (and too many) neural columns
cortical maps are not adequately organized to
process stimuli or signals.




Verification

Manuel Casanova et al. (2002): “Minicolumnar
pathology in autism”

Abnormal columnar organization (narrow and
many minicolumns) in autism reported.




Hypothesis in my 1997 paper:

The inhibitory lateral feedback connections in
cortex are excessive (in neural networks this causes
narrow columns).
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Fig. 5.5a,b. Clustering of activity in a two-dimensional array. (a) Positive
(b) Negative feedback stronger : :




The next step: explain how
narrow neural columns emerge

Neural columns emerge in neural networks when
there is a proper balance between lateral excitatory
and inhibitory feedback connections.
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Difficulties with my 1997 hypothesis:

Epilepsy is a common comorbidity with
autism, these cases are helped by increasing
one kind of synaptial inhibition.

Which inhibitory neurotransmitter/modulator
would be a possible candidate — where is the
smoking gun?




Alternate/complementary explanations

A serotonin abnormality

A nitric oxide abnormality




A serotonin abnormality

The most consistent finding in searches for a genetic
linkage to autism.

One report (Chugani et al.) shows that children with autism
have an initially low production capacity of serotonin in the
CNS but maintains that capacity.

Serotonin plays a role in synaptogenesis (at least in rats).

A high level of serotonin causes barrel fields in rats to
almost merge a low level causes narrow barrel fields.




An alternate hypothesis - background

Cortical self-organization with neural columns may
emerge without lateral feedback, only relying on
the mechanism of a diffusible messenger — nitric
oxide, NO.

Gally, Montague et al. supported this hypothesis
through neural network simulations in the
beginning of the nineties.

Bart Krekelberg and John Taylor supported this

hypothesis through mathematical analysis in
1996-97.

Their analysis showed that low production of NO
causes narrow neural columns.

(Would any psychiatrist read Krekelberg and
Taylor? ) ‘




How does it work?

From Krekelberg and Taylor:

Excitation from sensory surface S causes
somewhat scattered activity in cortex C.
NO is released at activities and spread.
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How does it work? (Cont.)

A different excitation in S weakens the connection
that caused the previous extraneous activation.
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The first excitation now causes only one compact
bubble of activity, a neural column in one
dimension.

Semvsomse




Rules for changing synaptic strengths

(from Gally & Montague)
Table 1
Rules for changes in synaptic strength
High [] Low (]

Presynaptic terminal

firing increase decrease
Presynaptic terminal

not firing decrease no change

[x], concentration of diffusible signal. High [x] and low [x] represent values of [x]
that are above or below thresholds for potentiation or depression. See Appendix 1
for these thresholds.



Signal levels

Signal levels
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A simple simulation

Adequate NO — discriminating neural columns with

high outputs.

After self-organization: outputs when one incomplete stimulus is present
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Signal levels

Signal levels

A simple simulation

Too much NO — neural columns don’t discriminate

well.

After self-organization: outputs when one incomplete stimulus is present
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Signal levels

Signal levels

A simple simulation

Inadequate NO — neural columns narrow with low

outputs.
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Two-dimensional neural columns,
entirely driven by nitric oxide

Fig. 2. Narrow and wide neural columns driven by the nitric oxide level.

In the left map the supply of nitric oxide was low, in the
right map it was high.



An alternate hypothesis - presentation

Neural network theory and recent neuroanatomical
findings indicate that inadequate nitric oxide
synthase will cause autism

Presentation at session on ‘“Neural network models

of brain disease, plasticity and rehabilitation” at a
conference in Oxford this September.

The neural network part has been covered —
inadequate NO will cause narrow neural columns.

What about the recent neuroanatomical findings?




Neuroanatomical finding I:

Abnormal early brain growth in autism

Many papers in recent years (Eric Courchesne and
others) report this.

Another question of balance!
Neurotrophins causes the brain to grow.

“Arresting factors” balances this growth.

NO is an arresting factor. Inadequate NO will
result in abnormal brain growth.




Neuroanatomical finding I (cont.):

The abnormal brain growth is not uniform. The
occipital lobe (visual cortex) is not much affected.

Vision is relatively spared in autism.

Csillik et al. (1998, animal experiments): NO is not
important in columnar organization of area 17 in
the occipital lobe (primary vision area) but for the
prefrontal lobe (heavily affected in autism).

Tobin et al. (1995, animal experiments): Inhibition
of NO does not impair visual discrimination.




Neuroanatomical finding II:

A deficit of Purkinje cells in the cerebellum

This is one of the few consistent finding in autism

Hypothesis by Courchesne in 2002: abnormal
growth of the cerebrum causes excitotoxicity which
kills Purkinje cells.

Snyder (1993): NO can play a neuroprotective role.
Chiani t al. (2001): NO can protect against some

forms of excitotoxicity.

It is possible that a lack of NO could diminish the
chances for Purkinje cells to survive.

Granule cells of the cerebellum?




Animal experiments lend further support
to the hypothesis that inadequate NO will
cause autism:

Motor problems

Sleep problems

Aggressive behavior

Nociception (pain) from thermal and mechanical
abuse



The famous Janus face of nitric oxide

Nitric oxide is synthesized from nNOS, eNOS and iNOS.

The effects of nitric oxide often depends on the source and
the effects from different sources are often antagonistic.

Nitric oxide from nNOS (and possibly iNOS) is
proconvulsant

Nitric oxide from eNOS is anticonvulsant




Could there be subclasses of autism with
characteristics as follows?

Insufficient eNOS will (in mice):

Make it easier to induce epilepsy
Make aggressive behavior in males less likely
Cause anxiety in certain learning situations

Insufficient nNOS will (in mice):

Make it more difficult to induce epilepsy

Make aggressive behavior in males more likely
Reduce sleep |

Reduce pain from mechanical and thermal abuse




Two lectures on autism
Second lecture

This second lecture reflects our current level of
understanding of the importance of the nature of the
attention shifting abnormality that is prevalent in autism.

We have previously used two-dimensional stimuli and
results obtained have been published in

Gustafsson L. and Paplinski A., “Self-organization of an
artificial neural network subjected to attention shift
impairments and novelty avoidance: Implications for the
development of autism”, Journal of Autism and
Developmental Disorders, Vol. 34, No. 2, pp. 189-198,
April 2004.

In this lecture we use higher-dimensional stimuli and
draw from a conference presentation:

Paplinski A and Gustafsson L., “An attempt in modelling
early intervention in autism using neural networks”, in
Proceedings 2004 IEEE International Joint Conference
on Neural Networks, Vol.1, pp. 29-34.



Effects of self-organization under restricted
attention shifting

There is an attention shifting abnormality in autism.

But is it caused by:
a general attention shifting impairment?
or

a restriction of attention shifting by familiarity
preference?

There are proponents for both hypotheses.




A neural network test of the two hypotheses

Objects from two sources are randomly presented to a self-
organizing neural network which will adapt to the objects,
i.e. learn them.

Source A contains animals of a wide assortment

Source B contains different felines

Source B has objects with little variability compared to
source A.

Which object will the network learn?

It depends on the character of the attention shifting.




A block diagram of learning for the purpose
of testing the importance of different
attention shifting mechanisms
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Attention shifting modes

Mode 1: attention shifts to the source presenting a new
object (novelty seeking learning)

Mode 2: attention shifts to the source presenting a new
object but only with a low probability (general attention
shifting impairment)

Mode 3: attention shifting
initially to the source presenting a new object
then with a preference for the most familiar source
then last,
if both sources have become well familiar, to the
source presenting a new object

if both sources have not become familiar
attention shifting ceases.




Resulting map from learning with normal
attention shifting (attention shifted to
source of new stimulus). Stimuli from both
sources are learned well.

Mode 1 m1May04

tiger 22 pima s
KBear 22 . snwLprd13

4 PBear 29 lion 27 leopards
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2 { Anacond6 Kangaro19 fishCat13
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Trout 16 BSwan 18 catBlck7

11\ salmon 21 WSwan 21 catStrp?

Attentlon shift = 49. 8%
Shared = 68.8% Singles = 25.0% Unassigned = 6.3%




Number of attention shifts grows linearly in
normal attention shifting. The familiarity
with source B grows faster than familiarity
with source A.

Mode 1 Attention Shifts m1iMay04
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Resulting map from learning with a general
attention shifting impairment (attention
shifted to source of new stimulus with low
probability). Stimuli from both sources are
learned well.

Mode 2 m2May04

KBear 48
PBear 2

tiger 16
jaguar 28

cheetah33
snwlLprd6
eoparc

Hippo 20
Rhino 23

Zebra 15
Horse 13

Trout 22
Salmon 16

catBlck9
catStrp7

Wallaby20
Kangaro24

1 2
Attention shift = 0.6%
Shared = 62.5% Singles = 25.0% Unassigned = 12.5%




Number of attention shifts grows sluggishly
ly in general impairment of attention
shifting.

Mode 2 Attention Shifts m2May04
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Resulting map from learning with attention
shifting restricted by familiarity preference.
Stimuli from source B (the source with the
lowest variability are learned well.

Mode 3 m3May04

tiger 21
4 jaguar 0 lion 24 PBear 53

2k ® fishCat13
eatSia
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catBlck1
3 4
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catStrp11
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1 2
Attention shift = 6.3%
Shared = 31.3% Singles = 50.0% Unassigned = 18.8%




Attention shifting ceases to occur when
source B has become familiar (above a
threshold level) and is also more familiar
than source A.

Mode 3 Attention Shifts m3May(04
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Observations of attention shifting are fed
into an early intervetion controller to
counteract the ceasing of attention shifting.
Observations include acceptance of
attention shifting to a source ( and ) and
rejection of attention shifting to a source (
and ). The probability for the next stimulus
coming from source A is the output of the
controller. When a source is starting to be
rejected it is given more chances for
exposure to the self-organizing map.
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Resulting map from learning with attention
shifting restricted by familiarity preference
and early intervention. Stimuli from both
sources are learned well.

Mode 3 m3May04

BSwan 18
WSwan 20
Wallaby22
Kangaro22
Zebra 13
Horse 14

catBlck7
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e

Hippo 19
Rhino 24

fishCat20
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KBear 26
PBear 25
1 2 3
Attention shift = 48.0%

Shared = 62.5% Singles = 25.0% Unassigned = 12.5%



The controller steps in to give source A
preferential treatment. There will be an
overshoot so it will have to change the
preferential treatment several times before

the map will become familiar with both
sources. Attention shifting to both sources
resumes.
Mode 3 Attention Shifts m3May04
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