
Intro. Comp. NeuroSci., Prac 4 September 13, 2004

CSE2330 Introduction to Computational Neuroscience

Associative Memory Networks

Tutorial 4 Duration : two weeks

4.1 About this tutorial

The objective of this tutorial is to introduce the concept of Associative or Contents-Addressable
Memory and study its various implementations and properties.
In addition we will study a simple model of the Alzheimer’s disease.

Contents

4.1 About this tutorial . 1
4.2 Feed-Forward Linear Associative Memory . 2

4.2.1 Introductory concepts . 2
4.2.2 Encoding multiple memories . 3
4.2.3 Decoding operation . 3
4.2.4 A simple script for the linear associator . 4

4.3 Recurrent Associative Memory — Discrete Hopfield networks 7
4.3.1 Structure . 7
4.3.2 Example of the Hopfield network behaviour form = 3 8

4.4 Simple model of Alzheimer’s disease . 9
4.4.1 Background information . 9
4.4.2 Specification of the fundamental memories to be stored 9
4.4.3 First implementation of the model . 12
4.4.4 Second implementation of the model . 15

getting started ...

The amount of information and the number of technical terms, computational methods and concepts
that you are expected to master increase quickly, therefore, you are strongly advised to come well
prepared to the practical classes.
Read at least the previous prac manuals, but you cannot go wrong if you also read related lecture
notes and book chapters.
I also encourage you to execute MATLAB scripts line-by-line in order to build-up your
understanding of computational methods involved.

A.P. Paplínski, L. Gustafsson 1

Intro. Comp. NeuroSci., Prac 4 September 13, 2004

4.2 Feed-Forward Linear Associative Memory

4.2.1 Introductory concepts

At the introductory level the concept of memorizing a pattern in synaptic weights and its retrieval is
based on the “read-out” property of the outer product of two vectors that we studied in prac 1.
Assume that we have apair of column vectors:

p-component vector ξ representing the input pattern
m-component vector q representing the desired output association with the input pattern

The pair{ ξ, q } to be stored is called afundamental memory.

Encoding a single memory

Westore or encodethis pair in a matrixW which is calculated as an outer product (column× row)
of these two vectors

W = q · ξT (1)

Decoding a single memory

Theretrieval or decoding of the store pattern is based on application of the input patternx to the
weight matrixW . The result can be calculated as follows:

y = W · ξ = q · ξT · ξ = ||ξ|| · q (2)

The equation says that the decoded vectory for a given input patternξ is proportional to the encoded
vectorq, the length of the input patternξ being the proportionality constant.

The above considerations give rise to a simple feed-forward associate memory known also as the
linear associator. It is a single layer feed-forward network withm neurons each withp synapses as
illustrated in Figure 1.

σ

afferent signals

m
at

ri
x

w
ei

gh
t

ef
fe

re
nt

 s
ig

na
ls

σ

σ

σ

p W m

mp

...
...

1

2

m

y

y

y

x]= [1x x2 x

..

1:

2:

m:

w

w

w

.

p
T

W = ...

. . .

2

.

1

2

m

1v

v

v

x y

m

..
...

...
...

w11 w12 ww1p

w21

. . .

. . .w22 ww2p

. . .wm1 wm2 ww

Figure 1: The structure of a feed-forward linear associator:y = σ(W · x)

For such a simple network to work as an associative memory, the input/output signal are
binary signalswith

{0, 1} being mapped to{−1, +1}

A.P. Paplínski, L. Gustafsson 2

Intro. Comp. NeuroSci., Prac 4 September 13, 2004

4.2.2 Encoding multiple memories

Extending the introductory concepts let us assume that we would like to store/encodeN pairs of
columnvectors(fundamental memories) arranged in the two matrices:

Ξ = ξ(1) . . . ξ(N) a matrix ofp-component vectors representing the desired input patterns
Q = q(1) . . . q(N) a matrix ofm-component vectors representing the desired output associations with the input patterns

In order toencodethe{Ξ, Q} patterns wesum outer productsof all pattern pairs:

W =
1

N

N∑
n=1

q(n) · ξT (n) =
1

N
Q · ΞT (3)

The sum of the outer products can be conveniently replaced by product of two matrices consisting of
the pattern vectors. The resultingm × p matrixW encodes all the desiredN pattern pairs
x(n), q(n).

Note that eqn (3) can be seen as an extension of the Hebb’s learning law in which we multiply
afferent and efferent signals to form the synaptic weights.

4.2.3 Decoding operation

Retrieval of a pattern is equally simple and involves acting with the weight matrix on the input
pattern (the key)

y = σ(W · x) (4)

where the functionσ is the sign function:

yj = σ(vj) =

{
+1 if vj ≥ 0
−1 otherwise

(5)

It is expected that

1. x = ξ

If the key (input vector)x is equal to one of the fundamental memory vectorsξ, then the
decoded patterny will be equal to the stored/encoded patternq for the related fundamental
memory.

2. x = ξ + n

If the key (input vector)x can be considered as one of the fundamental memory vectorsξ,
corrupted by noisen then the decoded patterny will be also equal to the stored/encoded
patternq for the related fundamental memory.

3. x 6= ξ + n

If the key (input vector)x is definitely different to any of the fundamental memory vectorsξ,
then the decoded patterny is a spurious pattern.

A.P. Paplínski, L. Gustafsson 3

Intro. Comp. NeuroSci., Prac 4 September 13, 2004

• The above expectations are difficult to satisfy in a feedforward associative memory network if
the number of stored patternsN is more than a fraction ofm andp.

• It means that thememory capacityof the feedforward associative memory network islow
relative to the dimension of the weight matrixW .

In general, associative memories also known as content-addressable memories (CAM) are divided in
two groups:

Auto-associative: In this case the desired patternsQ are identical to the input patternsX, that is,
Q = X. Also p = m.

Hetero-associative: In this case the inputX and stored patternsQ and are different.

4.2.4 A simple script for the linear associator

In the first example we test how the linear associator encodes and decodes binary patterns.

% p4ffAM.m
% 12 September 2004
% Feed-Forward Auto-Associative Memory
clear
% Generation of binary patterns to be stored
p = 4 ; % number of bits. 2ˆp possible patterns

% dimensionality of patterns and number of neurons
N = 5 ; % number of patterns
% generate pp = 2ˆp - 1 integer numbers
pp = 2ˆp - 1 ;
Xd = randperm(pp) % generate pp integer random numbers
Xd = Xd(1:N) ; % taking the first N numbers
X = (dec2bin(Xd, p) - ’0’)’ % convert integers to binary strings
% recoding {0, 1} to {-1 , +1}
X = 2* X - 1 % the matrix of patterns to be stored
W = (X* X’)/N ; % storing the patterns in the weight matrix
W_ = num2str(W)
% decoding
% Creating all possible p-bit patterns coded {-1, +1}
Xall = 2 * ((dec2bin(1:pp) -’0’)’) -1 ;
Xall_ = num2str(Xall)

% Recalling all possible binary patterns
Yb = (W* Xall >= 0) ; % in {0, 1} form
Yb_ = num2str(Yb)
Y = 2* Yb -1 ; % recoded to {-1, +1} form
Y_ = num2str(Y)

% recoding recalled patterns to decimals

A.P. Paplínski, L. Gustafsson 4

Intro. Comp. NeuroSci., Prac 4 September 13, 2004

pwrs2 = fliplr(2.ˆ((1:p)-1)) % powers of 2
Yd = pwrs2 * Yb ; % conversion to equivalent decimal numbers
X_Yd = num2str([1:pp ;Yd], ’%3d’)
Xd

figure(1)
plot(1:pp, Yd, ’ * ’, Xd, Xd, ’o’),
grid on, axis([0 2ˆp 0 2ˆp]),
xlabel(’input patterns’), ylabel(’o-stored and * -retrieved patterns’)
% print -f1 -depsc2 p4ffAM
k = sum(Xd == Yd(Xd)) ;
sprintf(’Correct recalls: %d out of %d’, k, N)
spuriousPatterns = setdiff(Yd, Xd)

Results can be similar to the following:

Xd = 2 4 6 10 11

X = 0 0 0 1 1
0 1 1 0 0
1 0 1 1 1
0 0 0 0 1

X = -1 -1 -1 1 1
-1 1 1 -1 -1

1 -1 1 1 1
-1 -1 -1 -1 1

W_ = 1 -0.6 0.2 0.6
-0.6 1 -0.6 -0.2

0.2 -0.6 1 -0.2
0.6 -0.2 -0.2 1

Xall_ =
-1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1
-1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 1 1
-1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1

1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1
Yb_ =

0 0 1 0 0 0 0 1 1 1 1 0 1 1 1
0 0 0 1 1 1 1 0 0 0 0 1 1 1 0
0 1 1 0 0 1 0 1 0 1 1 0 0 1 1
1 0 1 0 1 0 1 1 1 0 1 0 1 0 1

Y_ =
-1 -1 1 -1 -1 -1 -1 1 1 1 1 -1 1 1 1
-1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 1 -1
-1 1 1 -1 -1 1 -1 1 -1 1 1 -1 -1 1 1

1 -1 1 -1 1 -1 1 1 1 -1 1 -1 1 -1 1

A.P. Paplínski, L. Gustafsson 5

Intro. Comp. NeuroSci., Prac 4 September 13, 2004

X 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Yd 1 2 11 4 5 6 5 11 9 10 11 4 13 14 11

Xd = 2 4 6 10 11
Correct recalls: 5 out of 5
spuriousPatterns = 1 5 9 13 14

0 5 10 15
0

2

4

6

8

10

12

14

16

input patterns

o−
st

or
ed

 a
nd

 *
−

re
tr

ie
ve

d
pa

tte
rn

s

Figure 2: Encoding and decoding binary patterns in a feed-forward associative memory

Note that the pattern11 = (1011)2 is recalled also for patterns3 = (0011)2 and15 = (1111)2

that can be considered as a noisy version of11 (difference on only one position), but also for
8 = (1000)2 that differs no two positions.
There are also five spurious patterns that have not been originally encoded.

Exercise 4. 1
Run the above script forp = 5 and different values ofN , ten times for eachN , and record the
percentage of correct recalls and spurious patterns.

A.P. Paplínski, L. Gustafsson 6

Intro. Comp. NeuroSci., Prac 4 September 13, 2004

4.3 Recurrent Associative Memory — Discrete Hopfield networks

4.3.1 Structure

σ

D D D

D
(k+1)(k)

δ (k).
σW mm

x1

x2

xm

σ

σ

w wwmm

v

v

.
yy

x
2

..
...

...
...

w11 w12

w21

. . .

. . .w22

...

m

1

2

m

...

1

2

m

y

y

y

ww1m

ww2m

1v

. . .wm1 m2

Figure 3: A dendritic and block diagram of a recurrent associative memory

• A recurrent network is built in such a way that the output signals are fed back to become the
network inputs at the next time step,k

• The working of the network is described by the following expressions:

y(k + 1) = σ (W · y(k)) ; y(0) = x for k = 0, 1, 2, . . . (6)

• A discrete Hopfield network is a model of an associative memory which works with binary
patterns coded with{−1, +1}
Note that ifv ∈ {0, 1} thenu = 2v − 1 ∈ {−1, +1}

• The feedback signalsy are often called the state signals.

• During thestorage (encoding) phasethe set ofN m-dimensional fundamental memories:

Ξ = [ξ(1), ξ(2), . . . , ξ(N)]

is stored in a matrixW in a way similar to the feedforward auto-associative memory
networks, namely:

W =
1

m

N∑
n=1

ξ(n) · ξ(n)T − N · Im =
1

m
Ξ · ΞT − N · Im (7)

By subtracting the appropriately scaled identity matrixIm the diagonal terms of the weight
matrix are made equal to zero,(wjj = 0). This is required for a stable behaviour of the
Hopfield network.

A.P. Paplínski, L. Gustafsson 7

Intro. Comp. NeuroSci., Prac 4 September 13, 2004

• During theretrieval (decoding) phasethe key vectorx is imposed on the network as an initial
state of the network

y(0) = x

The network then evolves towards a stable state (also called a fixed point), such that,

y(k + 1) = y(k) = ys

It is expected that theys will be equal to the fundamental memoryξ closest to the keyx

4.3.2 Example of the Hopfield network behaviour form = 3

Consider a discrete Hopfield network with three neurons as in Figure 4

x2

x3

σ

σ

σ

D

−2/3

−2/3 −2/3

−2/3

2/3

2/3

D

x1

D

v 3y

1y

2y2

1

2

1v

v

3

W =
1

1

 0 −2 +2
−2 0 −2
+2 −2 0

Figure 4: Example of a discrete Hopfield network withm = 3 neurons: its structure and the weight
matrix

With m = 3 neurons, the network can be only in23 = 8 different states.

It can be shown (see the exercise below) that out of 8 states only two states are stable, namely:
(1, −1, 1) and(−1, 1, −1).
In other words the network stores two fundamental memories Starting the retrieval with any of the

eight possible states, the successive states are as depicted in Figure 5.

Exercise 4. 2
For the Hopfield network described in sec. 4.3.2 write a MATLAB script that generates all attractors
(stable states) of the network and verify the network states presented in Figure 5

2

A.P. Paplínski, L. Gustafsson 8

Intro. Comp. NeuroSci., Prac 4 September 13, 2004

(−1,−1,−1)

2

y1

y3

(y , y , y)3 2 1

(−1,−1,1)

(1,−1,−1) (1,−1,1)

(−1,1,1)

(1,1,−1) (1,1,1)

(−1,1,−1)

y

Figure 5: Evolution of states for two stable states

4.4 Simple model of Alzheimer’s disease

4.4.1 Background information

Alzheimer’s disease (AD) is the most common type of dementia in the elderly. The disease is
characterised by a gradual loss of higher cognitive functions typically involving memory loss [1]

In our simple model of Alzheimer’s disease we use a binary Hopfield recurrent neural network (as
illustrated in Figure 3) as a model of human memory and the memory loss will be then modelled by
gradual killing of synapses.

It must be however said that [1]

Studies using neural network models of associative memory demonstrate very clearly
that cell death cannot produce amnesia similar to that observed in AD [. . .]
Furthermore, call death is not a consistent correlate of cognitive decline in the AD brain.

Do not be discouraged by the above statements. Our simple model was one of the first that was used
to model Alzheimer’s disease. The big advantage of this model is its simplicity.

4.4.2 Specification of the fundamental memories to be stored

The patterns that will be stored in synapses of the network (in the matrixW) are compositions by
Tex (Swedish painter). Each composition consists of three equilateral colored triangles. The length
of edges is constant and carefully measured to retain details of the painting.

Location of each triangle is specified by the(x, y) coordinates of the leftmost corner and rotation
angle around that corner. Thex, y resolution is 0.5mm and each coordinate is represented by an
eight bit number.

Rotation anglesφ are represented by seven bit numbersα = 90 − φ. The angular resolution is
approximately one degree.

A.P. Paplínski, L. Gustafsson 9

Intro. Comp. NeuroSci., Prac 4 September 13, 2004

Each triangle iscolored red, green or blue. The intensity for each color is given by two bits. A red
triangle thus has the color vector[3 0 0] = [1 1 0 0 0 0] , a green triangle has the color
vector[0 3 0] = [0 0 1 1 0 0] , a blue triangle has the color vector[0 0 3] = [0 0
0 0 1 1] .

Hence, each composition is coded bym = 3(8 + 8 + 7 + 6) = 87 bits. The network consists of
m neurons, each withm synapses. In other words the weight matrixW is 87 × 87.

Here and there we use a complex-number notation. A complex number is a two-dimensional vector
written in the formx + jy, wherej =

√
−1. Do not be stunned by that: it is just a convenient way

of writing a pair of coordinatesx, y as a “single” number.

You can download the following script from
http://www.csse.monash.edu.au/courseware/cse2330

% trnglDefB.m
% 10 September 2004
%
clear
edg = [12 25 41]; % lengths of triangle sides in mm
vv = [0; 1; exp(j * pi/3)] ; % vertices of a unity equilateral triangle

% written as complex numbers
% vertices of all three triangles before rotation and translation:
vrt = vv * edg ;
m = 87 ; % number of bits in triangle specification (number of neurons)

% TB set contains a variety of red, green and blue triangles
% x y deg r g b
TBd = [14 57.5 37 3 0 0

36 55 101 0 0 3
17.5 16.5 43 0 3 0

%
51 32 45 0 0 3
25.5 14 101 0 3 0
21 19 38 3 0 0

%
53 44.5 106 0 3 0
20 10 41 3 0 0
6 37.5 67 0 0 3

%
8.5 14.5 70 3 0 0

45 46.5 80 0 3 0
29.5 28 19 0 0 3

%
16 84 0 3 0 0
21 22 60 0 0 3
21 59.5 58 0 3 0]; % 15 x 6

A.P. Paplínski, L. Gustafsson 10

Intro. Comp. NeuroSci., Prac 4 September 13, 2004

% scans TBd row-wise and converts each number to an 8-bit string
% check first the following sequence of functions to see the structure
% Bt = dec2bin(TBd’,8) , bin2dec(Bt)

Bt = (dec2bin(2 * TBd’,8) - ’0’)’; % is is 8 x 5 * 3* 6
B = reshape(Bt, 8 * 3* 6, 5) ; % is 8 * 3* 6 x 5
% We need only the following bits (rows of B)
k = [1:8 (1:8)+8 (1:7)+2 * 8 (6:7)+3 * 8 (6:7)+4 * 8 (6:7)+5 * 8] ;
k = [k k+48 k+2 * 48] ;
TB = B(k,:) ; % is 87 x 5
% recoding each set from {0, 1} to {-1, +1}
TB = 2* TB - 1;

Exercise 4. 3
Explain details of the scripttrnglDefB.m . Comment on the structure and the role of each variable

2

To see the above compositions (four first) execute the scriptpltSetB.m that you can also
download from the web. To execute the script you have to type in:
pltSetB(vrt, TB, ’can you see’)

% pltSetB.m
% 11 Sept 2004
function pltSetB(vrt, TB, ttl)
for k = 1:4

Trb = TB(:,k) ;
Tr = reshape((Trb+1)/2, 29, 3) ;
xx = pow2(6:-1:-1) * Tr(1:8,:) ;
yy = pow2(6:-1:-1) * Tr((1:8)+8,:) ;
zt = xx+j * yy ;
fi = pow2(6:-1:0) * Tr((1:7)+2 * 8,:) ;
rot = exp(j * pi * (90-fi)/180) ;
r = [2 1] * Tr((1:2)+23,:) ;
g = [2 1] * Tr((1:2)+25,:) ;
b = [2 1] * Tr((1:2)+27,:) ;
cc = [r ; g ; b]/3 ;
% rotation and translation of three tiangles vrt
z = vrt. * rot([1 1 1],:) + zt([1 1 1],:) ;
X = real(z) ; Y = imag(z) ;
subplot(2,2,k)
fill(X(:,1), Y(:,1), cc(1,:), ...

X(:,2), Y(:,2), cc(2,:), ...
X(:,3), Y(:,3), cc(3,:))

axis([0 80 0 80]), axis equal, grid on
if k ==1, title(ttl), end

end

A.P. Paplínski, L. Gustafsson 11

Intro. Comp. NeuroSci., Prac 4 September 13, 2004

Exercise 4. 4
Modify the scripttrnglDefB.m into trnglDef6.m by adding your own three triangles.
Modify the scriptpltSetB.m into pltSet6.m so that you could see all six compositions.

2

4.4.3 First implementation of the model

This is a demo of a simple model of the Alzheimer’s disease based on the recurrent Hopfield neural
network with autoassociative memory, represented by the weight matrix. The Alzheimer is modelled
by “killing synapses”, that is, by setting individual synaptic weights to zero.

% Alzh.m
% 11 September 2004
clear
trnglDefB % definition of triangles

% test plot of the triangle set
figure(1), clf
ttl = ’Initial set’ ;
pltSetB(vrt, TB, ttl)

% matrix TB (87 x 5) contains specification of
% Ncomp = 5 triangle compositions, i.e,
% five fundamental memories, each described by 87 bits
m = 87 ;
Ncomp = 5 ;
SurvF = 0.9 ; % survival factor determines the number of killed synapses

% encoding fundamental memories
WW = (TB* TB’)/Ncomp ; % outer products of fundamental memories

NKilledSynapses = zeros(1, Ncomp); % numbers of killed synapses
relKill = zeros(1, Ncomp) ; % ratio of killed synapses
cntS = zeros(1, Ncomp) ; % counters will be stored here

for k = 1:Ncomp % composition loop
% We now gradually destroy the memory matrix by killing a given
% proportion of synapses. We multiply each weight by a randomly
% generated 0 or 1
rKill = round(SurvF * rand(size(WW)));
W = rKill. * WW; % a weight matrix with "killed" synapses

% Now we want to know how many synapses we have killed.
% and their fraction
NofKilledSynapses(k) = sum(sum(abs(sign(W-WW)))) ;
relKill(k) = NofKilledSynapses(k)/(mˆ2) ;

% The Hopfield relaxation loop should converge to an attractor,

A.P. Paplínski, L. Gustafsson 12

Intro. Comp. NeuroSci., Prac 4 September 13, 2004

% that is, should find a pattern (triangle) stored in a memory
% matrix starting from a given initial state.
% Naturally we may end up in a spurious attractor.
% The memory matrix is given as W. The initial state is given
% by a vector TB(:,k).
% To know how long the while loop runs we also set a counter.

cnt = 1;
yTr = sign(W * TB(:,k)); % calculate the output pattern

% for the initial pattern
dyTr = yTr; % change in the pattern
while (max(abs(dyTr))>0) & (cnt < 250)

yTr22 = sign(W * yTr);
dyTr = yTr22 - yTr ;
yTr = yTr22 ;
cnt = cnt+1 ;

end

% the attractors yTr are stored in a matrix Attr
Y(:, k) = yTr ;

% the counter is also stored
cntS(k) = cnt ;

end

% Now we calculate the number of vector elements where
% the attractors and the compositions differ.
NofDiffElements = sum(abs(sign(TB(:,1:Ncomp)- Y))) ;

figure(2), clf
ttl = ’Final set’ ;
pltSetB(vrt, Y, ttl) % plotting the decoded set

[’# Killed synapses: ’, ...
num2str(NofKilledSynapses), sprintf(’\n’), ...

’Fraction of killed synapses: ’, ...
num2str(relKill, ’%1.2f ’), sprintf(’\n’), ...

’# Different Elements: ’, ...
num2str(NofDiffElements), sprintf(’\n’), ...

’# Relaxation runs: ’, num2str(cntS)]
% print -f1 -depsc2 AlzhInit
% print -f2 -depsc2 AlzhFinal

The script produces figures similar to the following:

A.P. Paplínski, L. Gustafsson 13

Intro. Comp. NeuroSci., Prac 4 September 13, 2004

0 20 40 60 80
0

20

40

60

80
Initial set

0 20 40 60 80
0

20

40

60

80

0 20 40 60 80
0

20

40

60

80

0 20 40 60 80
0

20

40

60

80

0 20 40 60 80
0

20

40

60

80
Final set

0 20 40 60 80
0

20

40

60

80

0 20 40 60 80
0

20

40

60

80

−20 0 20 40 60 80
0

20

40

60

80

A.P. Paplínski, L. Gustafsson 14

Intro. Comp. NeuroSci., Prac 4 September 13, 2004

Exercise 4. 5
Run the above script a number of times and record in a table:SurvF , NofKilledSynapses ,
relKill , cntS . Comment on the obtained results.
2

4.4.4 Second implementation of the model

Second implementation of the model follows the same principle of operation. For convenience there
is a Graphical User Interface (GUI) built that makes running the script easier.

Download the following scripts:AlzhGUI.m, AlzhGUI.fig, trnglDef.m,
HopfConv.m, plotSet.m

Invoke the main scriptAlzhGUI.m that should open new window in which you can set up
parameters run a simulation.

Exercise 4. 6
Run simulations for different triangle sets and different parameters and record the results in a table
as in the previous exercise.
Comment on the obtained results.
2

Written Submission

Your written submission should include results of all exercises you have performed (relevant
MATLAB scripts, figures, numerical results, etc) with brief comments and explanations.
It should be in a form ready for electronic submission when requested.

References

[1] David H. Small, “Do acetylcholinesterase inhibitors boost synaptic scaling in Alzheimer’s
disease,”TRENDS in Neuroscience, Vol. 27, No. 5, May 2004

A.P. Paplínski, L. Gustafsson 15

