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6.5 Self-Organizing Feature Maps

6.5.1 Structure of Self-Organizing Feature maps

Self-Organizing Feature Maps (SOFMs, or SOMs) also known as Kohonen maps or topographic maps
were first introduced by von der Malsburg (1973) and in its present form by Kohonen (1982).

Self-Organizing Feature Maps are competitive neural networks in which, in addition, neurons are
organized in an l-dimensional lattice (grid):
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Example:

• (p = 2)-dimensional input
space

• m = 12 neurons located on a
2-D 3 × 4 = 12 lattice.

• The weight matrix W is m× p

• (l = 2)-dimensional feature
space.

• Positions of neurons in the grid
can be specified by a positions
matrix V

Note the similarity measure layer, the competitive (WTA) layer and the neuronal grid.
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General structure of a Self-Organizing Map:
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The complete SOM is characterized by the following parameters:

p — dimensionality of the input space
l — dimensionality of the feature space
m — the total number of neurons
W — m× p weight matrix
V — m× l position matrix

We can say that for a given matrix of neuronal weights, W , the network maps an nth stimulus x(n) into
a position of the winner v(n), that is, the neuron with the weight vector most similar to the stimulus.

v(n) = g(x(n); W ) ; v ∈ Rl (6.11)

In subsequent considerations neurons will be identified either by their index k = 1, . . . ,m, or by their
position vector V (k, :) in the neuronal grid.
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6.5.2 Feature Maps

If the dimensionality of the input (stimulus) space is low, typically p = 1, 2, 3, a Feature Map is a plot of
synaptic weights in the input space in which weights of the neighbouring neurons are joined by lines or
plane segments (patches).

Consider the following typical example of the weight and position matrices when both input and feature
spaces are two-dimensional:

W = 0.83 0.91 V = 1 1
0.72 2.01 2 1
0.18 2.39 3 1
2.37 0.06 1 2
1.38 2.18 2 2
1.41 2.82 3 2
2.38 1.27 1 3
2.06 1.77 2 3
2.51 2.61 3 3
3.36 0.85 1 4
3.92 2.05 2 4
3.16 2.90 3 4

A Feature map for 2-D input and feature map
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The feature map describes the mapping of the input space into the future space.

Neurons linked with the grid are allocated to clusters of input data.
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6.5.3 Learning Algorithm for Self-Organizing Feature Maps

The objective of the learning algorithm for a SOFM neural network is formation of a feature map which
captures the essential characteristics of the p-dimensional input data and maps them on an l-D feature
space.

The learning algorithm consists of two essential aspects of the map formation, namely, competition and
cooperation between neurons of the output lattice.

Competition is implemented as in the competitive learning:

each input vector (stimulus) x(n) is compared with each weight vector from the weight matrix W

and the position V (k(n), :) of the winning neuron k(n) is established.

For the winning neuron k(n) the distance

dk = |xT (n) −W (k(n), :)|
attains a minimum (as in MATLAB ‘:)’ denotes all column elements of a matrix).

Cooperation All neurons located in a topological neighbourhood of the winning neurons k(n) will
have their weights updated

with a strength Λ(j) related to their distance ρ(j) from the winning neuron,

ρ(j) = |V (j, :) − V (k(n), :)| for j = 1, . . . ,m.
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The neighbourhood function, Λ(j), is usually an l-dimensional Gausssian function:

Λ(j) = exp(−ρ2(j)

2σ2
)

where σ2 is the variance parameter specifying the spread
of the Gaussian function.

• The neighbourhood function should shrink when the
learning progresses.

• Feature map formation is critically dependent on the
learning parameters, namely, the learning gain, η, and
the spread of the neighbourhood function specified for
the Gaussian case by the variance, σ2.

• In general, both parameters should be time-varying,
and their values are selected experimentally.
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Usually, the learning gain, η, should stay close to unity during the ordering phase of the algorithm which
can last for, say, 1000 iteration (epochs).
After that, during the convergence phase, should be reduced to reach the value of, say, 0.1.

The spread, σ2, of the neighbourhood function should initially include all neurons for any winning neuron
and during the ordering phase should be slowly reduced to eventually include only a few neurons in the
winner’s neighbourhood.
During the convergence phase, the neighbourhood function should include only the winning neuron.
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Details of the SOFM learning algorithm

The complete algorithm can be described as consisting of the following steps

1. Initialise:

(a) the weight matrix W with a random sample of m input vectors.

(b) the learning gain and the spread of the neighbourhood function.

2. for every input vector, x(n), n = 1, . . . , N :

(a) Determine the winning neuron, k(n), and its position V (k, :) as

k(n) = arg min
j
|xT (n) −W (j, :)|

(b) Calculate the neighbourhood function

Λ(n, j) = exp(−ρ2(j)

2σ2
)

where
ρ(j) = |V (j, :) − V (k(n), :)| for j = 1, . . . ,m.
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(c) Update the weight matrix as

∆W = η(n) · Λ(n) · (xT (n) −W (j, :))

All neurons (unlike in the simple competitive learning) have their weights modified with a strength
proportional to the neighbourhood function and to the distance of their weight vector from the
current input vector (as in competitive learning).

The step (2) is repeated E times, where E is the number of epochs.

3. (a) During the ordering phase, shrink the neighbourhood until it includes only one neuron:

σ2(e) =
σ2

0

e
where e is the epoch number and σ2

0 is the initial value of the spread (variance).

(b) During the convergence phase, “cool down” the learning process by reducing the learning gain.
We use the following formula to reduce η

η(e) =
η0

1 + ηpe

where η0 is the initial value of the learning gain, and ηp is selected so that the final value of the
learning gain, reaches the prescribed value, η(E) = ηf .
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6.5.4 Example of a Self-Organizing Feature Map formation

• In this example we consider two-dimensional stimuli
generated by two sources marked by by o and +
respectively.

• We use three groups of data each containing 10 stimuli
(i.e. points in a two-dimensional space) in each source,
sixty points all together.

• The sources can be thought of as producing, e.g., two
dialects of a very limited protolanguage, each with three
protophonemes.

Training stimuli:
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• We can imagine that a source is a representation of a parent of a child pronouncing three phonemes in
ten slightly different ways.

• The parallel is far from perfect but might be helpful for a conceptual understanding of the map
formation and interpretation.

• Real sensory stimuli, like the phonemes of speech are of course larger in number and dimension.
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The next step is to define details of the neural network and initialise the weights.

% Specification of the neuronal lattice
p = 2 ; % dimensionality of afferents
m = [3 3] ; % neuronal lattice

% formation of the neuronal position matrix
[V2, V1] = meshgrid(1:m(2), 1:m(1)) ;
V = [V1(:), V2(:)] ;

W = % random initialization around the mean of stimuli

Before we start the process of self-organization, that is, mapping neurons to stimuli, we set first the
relevant parameters:

sig2 = 50 ; % 2 sigmaˆ2 initial spread of the neighbourhood function
eta0 = 0.1 ; % The initial learning gain
etap = 0.02 ; % learning gain reducing factor
nepochs = 100; % the number of epochs in each simulations

Finally, the script for the learning loop follows. We will plot the feature map at the end of each epoch.

% Map formation
for epch = 1:nepochs % the epoch loop
eta = eta0/(1+etap*epch) ; % gain is reduced for every epoch

for n=1:N % stimulus loop
% training data is applied in a random order
xn = X(:, round((N-1)*rand)+1) ; % a new stimulus (datapoint)

% WTA: distance between the datapoint and weight vectors
xW = xn(1:2,onesm) - W’ ;
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% grid coordinates of the winning neuron V(kn, :)
% and the difference between the datapoint and
% the weight vector of the winner
[TtlDif kn] = min(sum(xW.ˆ2)) ; vkn = V(kn, :) ;

% squared distance from the winning neuron
rho2 = sum(((vkn(onesm, :) - V).ˆ2), 2) ;
% Gaussian neighbourhood function, Lambda, is
% centered around winning neuron
Lambda = exp(-rho2*epch/sig2) ;
% Kohonen learning law
W = W + eta*Lambda(:,ones(p,1)).*xW’;

end % stimulus loop

• Self-organizing map of 3 × 3 lattice of neurons

• The resulting feature map assigns nine neurons to
three pairs of stimuli clusters (60 stimuli),

• Note that neurons are assigned either to data clusters,
or to groups of clusters to have the best
approximation of data distribution.

• Three neurons in the centre of the grid seem to be not
assigned to any group.
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6.5.5 Higher dimension Kohonen maps — Categorization of data

• If the dimensionality of data is high, practically higher than 3, we cannot visualise the feature map in
the input space.

• Assuming that the dimensionality of the feature (neuronal) space is 2, the feature map can be
visualised on the neuronal grid, assigning a label of the closest data cluster to each neuron.

• Classical example of a hexagonal
SOM mapping Finnish phonemes to
a grid of 5 × 12 neurons.

• The neurons, shown as circles, are
labeled with the symbols of the
phonemes with which they made the
best match.

• A phoneme is typically described by
12 to 14 parameters describing its
frequency components.

from: T. Kohonen: Self-Organizing Maps. Springer, 2001
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Categorization of animals — Example

• Our animal kingdom consists of 32 animals each characterized by 18-dimensional data.

• The animals are listed below sorted
according to their weight:
Grey whale, Hippopotamus, White rhinocerous,
Kodiak bear, Polar bear, Grevy’s zebra,
Przewalski’s horse, Tiger, Lion, Anaconda,
Jaguar, Puma or cougar, Panther, Leopard, Snow
Leopard, Canis lupus (Wolf), Atlantic salmon,
Cheetah, Grey western kangaroo, Eurasian lynx,
Rainbow trout, Dingo, Swamp wallaby, Serval,
Ocelot, Fishing cat, Mute (white) swan, Black
swan, Domestic cat (even coloured), Domestic
cat (striped), Domestic cat (black), Siamese cat.
(Half of the animals are variety of cats.)

• In addition, for testing of the generalization of
the multi-map structure we use two unusual
animals, one being a domestic cat weighing two
tonnes (‘catWhale’), the other, Andrewsarchus
mongoliensis, is an extinct cloven-hoofed
1-tonne carnivour.

• The features chosen to characterize these animals
are as follows:

x1 log(weight)
x2 ∈ {1, 2, 3} food (herbivores, omnivores, car-

nivores)
x3, x4, x5, x6 ∈ {0, 1} locomotion (fins, wings, two legs,

four legs)
x7 ∈ {0, 1} equipped with hooves (perisso-

dactyls) or cloven hooves (artio-
dactyls)

x8 ∈ {0, 1} equipped with claws
x9 ∈ {0, 1} equipped with other feet

x10 ∈ {1, 2, 3} cover (fur, feathers and scales)
x11 ∈ {0, 1} colour black
x12 ∈ {0, 1} colour white
x13 ∈ {0, 1} even coloured
x14 ∈ {0, 1} spotted

x15 ∈ {0, 1/4} striped
x16 ∈ {2, 4} facial feature (short faced, long

faced)
x17 ∈ {1, 2, 3} aquatic
x18 ∈ {1, 2, 3} social behaviour (single living,

pair living, group living).
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• After learning that consisted of 400 epochs of presentations of input vectors to the network, the
following map has been obtained:

• The haviest animals are grouped at the top right part
of the map, the lightest, the house cats, are at the
bottom left corner.

• All type of cats are grouped in the bottom right part of
the maps.

• The two animals that were presented to the map
without any prior learning, the fictitious catwhale and
the extinct Andrewsarchus are represented in a
reasonable way:

• The catwhale is close to the lion which is a good
compromise for an animal with the conflicting features
of a house cat except for the weight of a rhino.

• The Andrewsarchus is closed to Hippopotamus and
White rhinocerous, which is reasonable, given the
features by which it was described.
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Un-assigned neurons are located between the neurons that are closest
to a given animal or a group of animals.
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