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6.6 Supervised Learning

• Supervised learning is typically used for multilayer perceptrons to approximate complex nonlinear
mappings.

• In general, it is possible to show that two layers are sufficient to approximate any nonlinear function.

• Therefore, we restrict our considerations to such two-layer networks.

• The structure of the decoding part of the two-layer back-propagation network is presented in
Figure (6–4).
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Figure 6–4: A block-diagram of a single-hidden-layer feedforward neural network

• The structure of each layer has been discussed in sec. 4.4.

• Nonlinear functions used in the hidden layer and in the output layer can be different.

• The output activation function can be linear.

• There are two weight matrices: an L × p matrix W h in the hidden layer, and an m × L matrix W y

in the output layer.
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6.6.1 Detailed structure of a Two-Layer Perceptron — the most commonly used feedforward neural network

Signal-flow diagram:

x =

 t
t
t

-

-

-

...

...

x1

xi

xp

wh
11

�������:

b
b

b
bb

Q
QQs

J
J

J
J

J
J

J
J

J
J
Ĵ
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Figure 6–5: Various representations of a Two-Layer Perceptron
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6.6.2 The structure of the two-layer back-propagation network with learning

• The structure of the decoding and
encoding parts of the two-layer
back-propagation network:

• Note the blocks which calculate
derivatives, delta signals and the
weight update signals.
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• The process of computing the signals in the basic
back-propagation algorithm (pattern mode) during each time step consists of the:

forward pass in which the signals of the decoding part are determined starting from x, through
u = W hx , h = ψ(u) , v = W yh , y = σ(v) , and derivatives ψ′ , and σ′.

backward pass in which the signals of the learning part are determined starting from d, through
ε= d− y , δ = ε � σ′ , ∆W y = ηyδh

T , εh= W yTδh (back-propagated error), and
δh = εh� ψ′ , ∆W h = ηhδ

hxT

• Note that, in general, the weight updates are proportional to the synaptic input signals (x, or h) and the
delta signals (δh, or δ).

• The delta signals, in turn, are proportional to the derivatives the activation functions, ψ′, or σ′.
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6.7 Model of eye movement control
based on sec. 9.6 Distributed representation in eye movement control. from Lytton: From Computer to Brain . . .

• Multi-layer perceptrons, often called back-propagation networks have been used as a tool to model and
understand the complex structure of sensory and motor systems.

• Here we look at the mixture of sensory inputs that help control eye movement.

• There are several things that cause your eyes to move.

• Fast movements to look at something that has attracted your attention are called saccades.

• Slow movements are used to follow a moving visual target, for example a duck flying overhead. This
is called visual pursuit.

• There is another type of slow movement that is used for eye stabililization. This is called the
vestibulo-ocular reflex (VOR).

• Pursuit is based on the movement of an external visual target.

The VOR is based on the viewer’s own movement.

• Although apparent movement of the entire visual field is also used to stabilize the eyes, the major input
for the VOR is an inertial sensing mechanism called the semicircular canals, located together with the
sound sensing organs in the ears.

• The use of inertial sensing means that the VOR works in the dark.
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• (The closeness of visual and inertial sensation also accounts for the fact that retinal slip, the movement
of the entire visual field, produces the sensation of movement, as for example when a train next to
yours leaves the station. )

• The VOR compensates for head
movement that could otherwise cause the
image to disappear off of the retina.

• Both the VOR and pursuit operate
simultaneously, as for example when you
watch a duck fly by, while sitting in
amoving boat.

• Signals from both eye and ear
(semicircular canals) influence the
muscles controlling eye movement

• Visual
pursuit

• VOR

• The neurons that mediate eye movements are in the brainstem, a place where it is relatively hard to
record neuronal activity.

• Before any such recordings had been made, researchers had already been constructing models of eye
movement control, based largely on engineering principles.
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• They generally assumed that the neuronal systems for pursuit and VOR systems would remain
separate until they converged on the muscles of the eye.

• When brainstem recordings were finally made, people were surprised to find that many neurons could
not be strictly defined as “pursuit cells” or “VOR cells” but had a mixed response to both visual and
movement input.

• Even more surprising was that there were some cells where pursuit inputs were pulling in one direction
and VOR inputs were pushing in the opposite direction.

• Tom Anastasio and David Robinson were two researchers who looked into this by applying the
then-new back-prop algorithm for two-layer perceptron

to the problem of how pursuit and VOR inputs might distribute the information through a bunch of
interneurons (hidden units)

and still be able to produce the correct effects on the eye.

• This represented a different approach to understanding a neural circuit.

• Instead of using top-down ideas to figure out how the system might work, their model was allowed to
grow from the bottom up and was then analyzed by the researchers and compared to the real thing.

• This had some appeal since the nervous system has to develop from simpler rules that cannot take
account of how the finished brain ought to look.
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6.7.1 The two-layer perceptron model

A version of the model can consist of a two-layer feedforward network with:

n = 4 + 1 input signals x = [x1 x2 x3 x4 x5 = 1]

L = 4 + 1 hidden signals h = [h1 h2 h3 h4 h5 = 1]

m = 2 output signals y = [y1 y2]
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Additional, constant input and hidden signals are called the bias signals and are important for the proper

working of the network. The sigmoidal activation function σ(v) =
1

1 + e−v

Input and output signals are
interpreted as follows:

x1 — left VOR
x2 — left pursuit
x3 — right pursuit
x4 — right VOR

y1 — left eye
y2 — right eye
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Note that the input matrix W h is 4 × 5 and the output matrix W y is 2 × 5

The vector of output signals can be calculated as: y = σ(W y · σ(W h · x))
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• The training input/output pairs are simple in principle, but keeping track of crossing influences
pushing left and right makes it confusing.

• Left pursuit (visual target moving to left) makes the eyes move left, while left VOR (head move to the
left) makes the eyes move right.

• Here are the basic input/output mappings in the context of watching a duck flying by.

• There are K = 4 training pairs
x(k);d(k) for k = 1, . . . , 4, where
d(k) is a desired value of the output signal.

• One training pair is stored in a column of
matrices X and D, respectively.

h R h L d L d R
k = 1 2 3 4

X =


0 1 0.5 0.5

0.5 0.5 1 0

0.5 0.5 0.0 1

1 0 0.5 0.5


left VOR
left pursuit
right pursuit
right VOR

D =

[
1 0 1 0

0 1 0 1

]
left eye
right eye

• 0.5 is the value of spontaneous activity for a unit; 1 means full activation; 0 means that the unit is
being inhibited.

• Note that each of the training patterns activates only one neuronal output that activates relevant eye
muscles.

• For example, the 1 in the first column indicates that head turning right (h R) activates the right VOR
input and movement of the eyes left.
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• This mapping is easiest to understand if you
imagine your own head moving or your eyes
tracking a duck.

• Pattern k = 1 is pure right VOR.
This means that the head moves right so that
the right VOR unit is activated (1) and the left
VOR unit is inhibited (0).
The pursuit units remain at their resting
activation levels (0.5)..
The output is full activation (1) of the muscles
moving the eyes to the left and full inhibition
(0) of the muscles moving the eyes to the right.
Head goes right; eyes go left.

h R h L d L d R
k = 1 2 3 4

X =


0 1 0.5 0.5

0.5 0.5 1 0

0.5 0.5 0.0 1

1 0 0.5 0.5


left VOR
left pursuit
right pursuit
right VOR

D =

[
1 0 1 0

0 1 0 1

]
left eye
right eye

• Similarly, pattern k = 2 is pure left VOR.

• Pattern k = 3 is pure left pursuit. The duck goes left. Left pursuit input is activated and right inhibited.

VOR inputs both stay at rest. Left eye muscles are activated and right inhibited.

Duck goes left, eyes go left.

• In pattern k = 4, duck goes right, eyes go right.
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6.7.2 Learning procedure

• In order to obtain synaptic matrices W h and W y that implement required input/output mapping

we present the input/output patterns to the network,

calculate the error between the desired output d(k) and the real output y(k) generated by the
network, and

update weights according to an applied learning law (algorithm).

• The convergence is monitored by calculating the mean squared error.

• There are a number of learning algorithms available, the slowest is the basic back-propagation
algorithm presented in p. 6–44, the fastest (but complicated) is the Levenberg-Marquardt algorithm
that I have used to obtain the following weights (after rounding):

Wh = 4 -4 5 -4 -1
3 -2 0 -1 -2
5 6 6 21 24
-6 7 -5 5 0

Wy = -6 -11 -8 23 1
4 19 6 -21 -2

onek = ones(1,K)
Y = logsig(Wy*[logsig(Wh*[X; onek]) ; onek])

1.0000 0.0000 1.0000 0.0000
0.0000 1.0000 0.0000 1.0000
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mse(12 epochs) = 2.1e−012

Note that we have obtained a perfect mapping after a small number of training epochs.
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