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7 Associative Memory Networks
Related to/based on Lytton’s Chapter 10.

7.1 Introductory concepts

Consider the way we are able to retrieve a pattern from a partial key as in Figure 7–1.

Figure 7–1: A key (left image) and a complete retrieved pattern (right image)

Imagine a question “what is it” in relation to the right image.

• The hood of the Volkswagen is the key to our associative memory neural network and the stored
representation of the whole Volkswagen can be thought of as an network attractor for all similar keys.

• The key starts a retrieval process which ends in an attractor which contained both the whole car and its
name (maybe you go only for the name since the question is “what is it”)

• Storing a memory (an image) like the shape of a Volkswagen in an associative memory network and
retrieving it, starting with a key, i.e. an incomplete version of the stored memory is the topic of this
chapter.
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There are two fundamental types of the associate memory networks:

• Feedforward associative memory networks in which retrieval of a stored memory is a one-step
procedure.

• Recurrent associative memory networks in which retrieval of a stored memory is a multi-step
relaxation procedure.

Recurrent binary associative memory networks are often referred to as the Hopfield networks.

• For simplicity we will be working mainly with binary patterns, each element of the pattern having
values {−1, +1}.

• Example of a simple binary pattern:

ξM =

2 4 6 8

2

4

6

8

10

=



0 0 0 0 0 0 0 0 0
0 0 1 1 1 1 1 0 0
0 1 1 1 1 1 1 1 0
0 1 1 1 0 1 1 1 0
0 0 0 0 0 1 1 1 0
0 0 0 0 1 1 1 0 0
0 0 0 1 1 1 0 0 0
0 0 1 1 1 0 0 0 0
0 1 1 1 1 1 1 1 0
0 1 1 1 1 1 1 1 0
0 0 0 0 0 0 0 0 0



ξ = 2ξM(:)− 1 =



−1
−1

...
+1
+1
−1

...
−1
+1

...
−1


The pattern ξ is a column-scan of the matrix ξM , {0, 1} being replaced with {−1, +1}.
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7.1.1 Encoding and decoding single memories

The concept of creating a memory in a neural network, that is, memorizing a pattern in synaptic weights
and its subsequent retrieval is based on the “read-out” property of the outer product of two vectors that we
have studied earlier.

Assume that we have a pair of column vectors:

n-component vector ξ representing the input pattern
m-component vector q representing the desired output association with the input pattern

The pair { ξ, q } to be stored is called a fundamental memory.

Encoding a single memory

We store or encode this pair in a matrix W which is calculated as an outer product (column × row) of
these two vectors

W = q · ξT (7.1)

Decoding a single memory

The retrieval or decoding of the store pattern is based on application of the input pattern x to the weight
matrix W . The result can be calculated as follows:

y = W · ξ = q · ξT · ξ = ||ξ|| · q (7.2)

The equation says that the decoded vector y for a given input pattern ξ (the key) is proportional to the
encoded vector q, the length of the input pattern ξ being the proportionality constant.
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7.1.2 Feedforward Associative Memory

The above considerations give rise to a simple feed-forward associative memory known also as the
linear associator.
It is a well-known single layer feed-forward network with m neurons each with p synapses as illustrated
in Figure 7–2.
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Figure 7–2: The structure of a feed-forward linear associator: y = σ(W · x)

For such a simple network to work as an associative memory, the input/output signal are
binary signals with

{0, 1} being mapped to {−1, +1}
• During the encoding phase the fundamental memories are stored (being encoded)

in the weight matrix W

• During the decoding or retrieval phase for a given input vector x, which is the key to the memory, a
specific output vector y is decoded.
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7.1.3 Encoding multiple memories

Extending the introductory concepts let us assume that we would like to store/encode
K pairs of column vectors (fundamental memories) arranged in the two matrices:

Ξ = ξ(1) . . . ξ(K) a matrix of n-component vectors representing the desired input patterns

Q = q(1) . . . q(K) a matrix of m-component vectors representing the desired output
associations with the input patterns

In order to encode the {Ξ, Q} patterns we sum outer products of all pattern pairs:

W =
1

K

K∑
k=1

q(k) · ξT (k) =
1

K
Q · ΞT (7.3)

The sum of the outer products can be conveniently replaced by product of two matrices consisting of the
pattern vectors.
The resulting m × n matrix W encodes all the desired K pattern pairs x(k), q(k).

Note that eqn (7.3) can be seen as an extension of the Hebb’s learning law in which we multiply afferent
and efferent signals to form the synaptic weights.
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7.1.4 Decoding operation

Retrieval of a pattern is equally simple and involves acting with the weight matrix on
the input pattern (the key)

y = σ(W · x) (7.4)

where the function σ is the two-valued sign function:

yj = σ(vj) =

{
+1 if vj ≥ 0

−1 otherwise
(7.5)

It is expected that

1. x = ξ

If the key (input vector) x is equal to one of the fundamental memory vectors ξ , then the decoded
pattern y will be equal to the stored/encoded pattern q for the related fundamental memory.

2. x = ξ + η

If the key (input vector) x can be considered as one of the fundamental memory vectors ξ , corrupted
by noise η then the decoded pattern y will be also equal to the stored/encoded pattern q for the
related fundamental memory.

3. x 6= ξ + η

If the key (input vector) x is definitely different to any of the fundamental memory vectors ξ , then
the decoded pattern y is a spurious pattern.
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• The above expectations are difficult to satisfy in a feedforward associative memory network if the
number of stored patterns K is more than a fraction of m and n.

• It means that the memory capacity of the feedforward associative memory network is low relative to
the dimension of the weight matrix W .

In general, associative memories also known as content-addressable memories (CAM) are divided in two
groups:

Auto-associative: In this case the desired patterns Ξ are identical to the input patterns X , that is,
Q = Ξ. Also n = m.

Eqn (7.3) describing encoding of the fundamental memories can be now written as:

W =
1

K

K∑
k=1

ξ(k) · ξT (k) =
1

K
Ξ · ΞT (7.6)

Such a matrix W is also known as the auto-correlation matrix.

Hetero-associative: In this case the input Ξ and stored patterns Q and are different.
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7.1.5 Numerical examples

Assume that a fundamental memory (a pattern to be encoded) is ξ =
[
1 −1 1 1 1 −1

]T

The weight matrix that encodes the memory is:

W = ξ · ξT =



1
−1

1
1
1

−1

 ·
[

1 −1 1 1 1 −1
]
=



1 −1 1 1 1 −1
−1 1 −1 −1 −1 1

1 −1 1 1 1 −1
1 −1 1 1 1 −1
1 −1 1 1 1 −1

−1 1 −1 −1 −1 1


Let us use the following two keys to retrieve the stored pattern:

W · X = W · [x(1) x(2)] =


1 −1 1 1 1 −1

−1 1 −1 −1 −1 1
1 −1 1 1 1 −1
1 −1 1 1 1 −1
1 −1 1 1 1 −1

−1 1 −1 −1 −1 1

 ·


1 1

−1 −1
1 −1
1 1
1 1

−1 1

 =


6 2

−6 −2
6 2
6 2
6 2

−6 −2



Y = [y(1) y(2)]

= σ(W · X)
= σ(


6 2

−6 −2
6 2
6 2
6 2

−6 −2

) =


1 1

−1 −1
1 1
1 1
1 1

−1 −1

 = [ ξ ξ ]

• The first key, x(1), is identical to the
encoded fundamental memory,

but the other, x(2), is different from
ξ in two positions.

• However, in both cases the retrieved vectors y(1), y(2) are equal to ξ
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7.2 Recurrent Associative Memory — Discrete Hopfield networks

• The capacity of the feedforward associative memory is relatively low, a fraction of the number of
neurons.

• When we encode many patterns often the retrieval results in a corrupted version of the fundamental
memory.

• However, if we use again the corrupted pattern as a key, the next retrieved pattern is usually closer to
the fundamental memory.

• This feature is exploited in the recurrent associative memory networks.

7.2.1 Structure
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Figure 7–3: A dendritic and block diagram of a recurrent associative memory
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• A recurrent network is built in such a way that the output signals are fed back to become the network
inputs at the next time step, k

• The working of the network is described by the following expressions:

y(k + 1) = σ (W · (x · δ(k) + y(k)) =

{
σ (W · x) for k = 0

σ (W · y(k)) for k = 1, 2, . . .
(7.7)

• The function δ(k) is called the Kronecker delta and is equal to one for k = 0, and zero otherwise.

It is a convenient way of describing the initial conditions, in this case, the initial values of the input
signals are equal to x(0).

• A discrete Hopfield network is a model of an associative memory which works with binary patterns
coded with {−1, +1}
Note that if v ∈ {0, 1} then u = 2v − 1 ∈ {−1, +1}

• The feedback signals y are often called the state signals.

• During the storage (encoding) phase the set of N m-dimensional fundamental memories:

Ξ = [ξ(1), ξ(2), . . . , ξ(K)]

is stored in a matrix W in a way similar to the feedforward auto-associative memory networks,
namely:
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W =
1

m

K∑
k=1

ξ(k) · ξ(k)T − K · Im =
1

m
Ξ · ΞT − K · Im (7.8)

• By subtracting the appropriately scaled identity matrix Im the diagonal terms of the weight matrix
are made equal to zero, (wjj = 0).

This is required for a stable behaviour of the Hopfield network.

• During the retrieval (decoding) phase the key vector x is imposed on the network as an initial state
of the network

y(0) = x

The network then evolves towards a stable state (also called a fixed point), such that,

y(k + 1) = y(k) = ys

It is expected that the ys will be equal to the fundamental memory ξ closest to the key x

A.P. Papliński, L. Gustafsson 7–11



Intro. Comp. NeuroSci. — Ch. 7 September 7, 2005

7.2.2 Example of the Hopfield network behaviour for m = 3

(based on Haykin, Neural Networks)

Consider a discrete Hopfield network with three neurons as in Figure 7–4
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Figure 7–4: Example of a discrete Hopfield network with m = 3 neurons: its structure and the weight matrix

• With m = 3 binary neurons, the network can be only in 23 = 8 different states.

• It can be shown that out of 8 states only two states are stable, namely: (1, −1, 1) and (−1, 1, −1).

In other words the network stores two fundamental memories

• Starting the retrieval with any of the eight possible states, the successive states are as depicted in
Figure 7–5.
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Figure 7–5: Evolution of states for two stable states

Let us calculate the network state for all possible initial states

X =

[
y3

y2

y1

]
=

[
−1 −1 −1 −1 1 1 1 1
−1 −1 1 1 −1 −1 1 1
−1 1 −1 1 −1 1 −1 1

]
(The following MATLAB command does the trick: X = 2*(dec2bin(0:7)-’0’)’-1 )

Y = σ(W · X) =
1

3

 0 −2 +2

−2 0 −2

+2 −2 0

 ·

 −1 −1 −1 −1 1 1 1 1

−1 −1 1 1 −1 −1 1 1

−1 1 −1 1 −1 1 −1 1


= σ

1

3

 0 4 −4 0 0 4 −4 0

4 0 4 0 0 −4 0 −4

0 0 −4 −4 4 4 0 0

 =

 1 1 −1 1 1 1 −1 1

1 1 1 1 1 −1 1 −1

1 1 −1 −1 1 1 1 1


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It is expected that after a number of relaxation steps

Y = W · Y

all patterns converge to one of two fundamental memories as in Figure 7–5.
We will test such examples in our practical work.

7.2.3 Another example of Hopfield network (from Lytton)

• The Hopfield network, or a recurrent binary associative memory consists of four neurons, each with
four synapses.

• The example demonstrate the relationship between the dendritic and the flow diagram representations.

• Note that the weight matrix has the non-zero terms on the main diagonal therefore the stable pattern
retrieval is not guaranteed.
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7.2.4 Retrieval of numerical patterns stored in a Recurrent Binary Associative Memory (Hopfield network)
(from Haykin, pages 697, 698)

The network consists of m = 120 neurons therefore m2 = 14, 400 synapses (synaptic weights) and was
designed to retrieve eight digit-like patterns coded +1 for the black pixel and −1 for the white pixel (left
part of the figure).

Figure 7–6: Retrieval of numerical patterns in by a Hopfield network

• To demonstrate error-correcting capability of the network, a corrupted pattern representing ‘3’ was
applied to the network. After 35 iterations the output pattern was the perfect re-call of the pattern.

• Retrieval from a corrupted pattern (key) succeeds because it was within the basin of attraction of the
correct attractor, that is, a stored pattern, or fundamental memory.
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Figure 7–7: Unsuccessful retrieval of a numerical pattern in by a Hopfield network

This time retrieval from a corrupted pattern does not succeed because it was within the basin of attraction
of an incorrect attractor, or stored pattern. This is not surprising.
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In addition this network stores at least 108
spurious attractors found in computer
simulations:
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• Then what does all this mean?

• It means that you cannot store memories that are similar to each other,

because if you have a slightly corrupted version of one of two similar memories,

then you can easily end up in the other one.

• It also means that even if the stored memories are not similar to each other, there will be other,
spurious memories “in-between”.

• And if your corrupted initial input is closer to its own fundamental memory than to all the other
fundamental memories

it is still not certain that the proper fundamental memory will be retrieved,

it might well be a spurious attractor instead.

• The risk of retrieving the opposite of a fundamental memory is usually not great — your initial input
has to be very corrupted for that to happen.

• All this means that the associative memory networks as we have described them are far from ideal
from a legal witness point of view.

• But their shortcomings are not unheard of from human experience.

• So their shortcomings do not rule them out as first-order models of human memory.
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7.3 The energy landscape

• There is an “energy” associated with the states of a recurrent associative memory network.

• It is called energy because Hopfield, who used the energy concept to describe the retrieval process in
an associative memory network (in the beginning of the 1980’s) is a physicist and saw the purely
formal similarity with energy functions in mechanics.

• Each attractor gives rise to a minimum, i.e. a lower point than its immediate surroundings, in this
energy landscape.

• If the retrieval process starts from a corrupted memory, then it starts at a high energy and, like a ball in
a real landscape, it rolls down to a minimum, hopefully to the right one.

• A problem is that the ball rolls in a high-dimensional landscape, which makes it difficult to illustrate
on paper.

• The energy of the spurious attractors is generally higher than the energy of the fundamental memories,
so if you can “feel this energy” then you have a chance to say that what you seem to remember might
be wrong.

• The opposite attractors of the fundamental memories have the same low energies as the attractors
themselves so in this case you are left without assistance.
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The energy associated with a particular state y is defined as:

E = −
1

2

m∑
i=1

m∑
j=1

wji yi yj = −
1

2
yT · W · y (wii = 0)

where m is the number of neurons, each with m synapses.

The minus sign ensures that
we have minima for the “ball
to roll into”, rather than peaks
to climb. The main diagonal
terms in the weight matrix
should be zero to ensure that a
stable solution can be attained.

Example of an imaginary
energy landscape (from
Lytton):
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7.3.1 Example of a two-neuron recurrent associative
memory

W =

[
0 −1

−1 0

]
The four possible states of a two-dimensional
memory network are shown.
One is a fundamental memory, one is its
opposite and two lie on a limit cycle as Lytton
sees it.
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Chapter 10 Associative Memory Networks 

  A higher dimensional example 
 

 

 

Let us study an example. We begin by storing one vector as a fundamental memory. The 

particular choice of vector is not important , let us choose ξ1 = [1 1 1 1 1 1 1 1 1 1]'. 

 

The energy minimum has two minima at E  = -90, one for x = [1 1 1 1 1 1 1 1 1 1]' 

and  one for x = [-1 -1 -1 -1 -1 -1 -1 -1 -1 -1]',  just as was stated before. 

 

There are several more energy levels, but the levels are discrete since the elements can only 

assume the values 1 and –1. 

 

If we store two vectors, ξ1 = [1 1 1 1 1 1 1 1 1 1]' and ξ2 = [1 1 1 1 1 -1 -1 -1 -1 -1]', then as 

expected we have minima at E = -80 for ξ1 and ξ2 and their “opposites”. 
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Chapter 10 Associative Memory Networks 

     A higher dimensional example 

 

If we store three vectors, ξ1 = [1 1 1 1 1 1 1 1 1 1]' and ξ2 = [1 1 1 1 1 -1 -1 -1 -1 -1]' and  

ξ3=[1 -1 1 -1 1 -1 1 -1 1 -1]', then we have minima at E = -74 but only at ξ2 and ξ3.  

The energy at ξ1 is slightly higher, at –70. 

 

If we store four vectors, ξ1 = [1 1 1 1 1 1 1 1 1 1]' and ξ2 = [1 1 1 1 1 -1 -1 -1 -1 -1]',   

ξ3 = [1 -1 1 -1 1 -1 1 -1 1 -1]' and ξ4 = [1 1 -1 -1 1 1 -1 -1 -1 1]', then we have minima  

at E = -68 but only at ξ2, ξ3 and ξ4. Again  the energy at ξ1 is slightly higher, at –60. 

 

 

There are more differences between are four cases which become clear when we study the 

histograms for the energies. Let us do that. 
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Chapter 10 Associative Memory Networks 

        A higher dimensional example 
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Chapter 10 Associative Memory Networks 

     A higher dimensional example 
 

 

We see that as the number of fundamental memories increase we get many more intermediate 

energy levels. Also there is much less difference between the minimum energy levels and other 

low energy levels. In other words, the energy minima of the attractors are not as distinct when 

we have more fundamental memories.  

 

We can also expect some spurious attractors to have appeared, i.e. attractors that don’t 

correspond to fundamental memories (others than opposite attractors, which are always present). 

 

We might wonder if we have lost ξ1 as a fundamental memory, but that is happily not the case. 

If we let the input to the network be x = ξ1 then the output will be ξ1. This is of course not a big 

feat, but we haven’t lost the fundamental  memory. 

 

If we let the input be ξ1 with any one element changed from 1 to –1 we can calculate the energy 

level at – 36, thus all these slightly corrupted versions of ξ1 lie on a higher energy level than ξ1 

itself. We would expect to retrieve ξ1 from such corrupted versions. 

 


