
CSE2330 Introduction to Computational Neuroscience

Tutorial/Assignment 2: Model of Limulus Vision

2.1 About this tutorial
The objective of this tutorial is to introduce:

• computational building blocks used in modelling the input stage of a
simple vision system.

• study a model of the input stage of a simple vision system and its
operation.

The vision system is based on that of a famous limulus that has been extensively
studied due to its simplicity. Read about it in:
http://www.mbl.edu/animals/Limulus, and in the 1967 Nobel Prize
presentation speech at the end of this prac manual.
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2.2 getting started ...
• Invoke MATLAB and in the desktop window that will be open identify two important panes:

Command window and Current Directory.

• Navigate in the Current Directory pane to your favourite working prac directory (folder). I
will refer to it as $YFD . Create there the directory prac2 and navigate to it. Type in
MATLAB command window pwd to confirm that you are in $YFD/prac2.

• From the pull down menu select New M-file. This will open an Untitled editor window.
Save As say, myprac2.m or under any name you like. That will be the name of your
MATLAB script file that you will build up in the course of this prac.

It is easier to type in a command in the editor window, try type in a = 5, and then execute
this statement selecting from the pull down menu

Debug − > Save and Run

or just pressing the F5 function key.

If you would like to execute only part of your script, insert command return to break
program at that point. There are more sophisticated tools to do so, but we do not need them at
this point.

• Remember to use a semicolon ; at the end of a statement to suppress printing. Imagine that
a 100 × 100 matrix consists of 10 000 numbers that will be printed if ; is not present at the
end of the statement.

2.3 A simple test image
A simple image in MATLAB is an r × c matrix, each element of the matrix (known as a pixel)
representing intensity of the pixel. Mathematically such an image can be also represented as a
surface in three-dimensional space, the pixel value gives the elevation of the surface.

Our first test image will be a cylinder of the unity hight, so that its image will be just a circular disk.
Let us start with the following MATLAB commands that you should type in in the editor window
called myprac2.m or something similar:

% myprac2.m
% 29 July 2005
clear, close all
m = 80 ;
x = 1:m ;
[X Y] = meshgrid(x,x) ;
% 2-D cylinder:
Z = ((X - m/2).ˆ2 + (Y - m/2).ˆ2) < (0.125*mˆ2) ;
islogical(Z) % Z is logical
figure(1)
imagesc(Z), axis image
figure(2)
surf(double(Z)) % conversion to double and visaalisation

A.P. Papliński, L. Gustafsson 2



Intro. Comp. NeuroSci., Prac 2 August 29, 2005

This should produce the two following plots showing the top view and the perspective view of the
unity high cylinder. We will use this image to test the way the vision system model works.

top view: perspective view:
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Figure 1: A simple test image

2.4 One-dimensional model of the limulus vision
The central aspect of a simple neural model of the limulus vision is based on the concept of lateral
inhibition, which is instrumental in image enhancement through sharpening edges in the image.
Having said “simple” model, I am fully aware that we have some background knowledge to work out
first.

2.4.1 A rectangular signal

To start with let us first extract from the image just one horizontal line, say line 13, and see the
profile of intensity along that line. This can be done using the following code that you should append
to you script in the editor window and execute:

% the intensity profile along the line 13
u = Z(13,27:56) ; % row 13, columns 27 to 56
figure(1)
plot(u), grid on,
title(’intensity profile along the line 13’)
m = max(size(u))

As a result you should see the plots of the intensity profile as in Figure 2. The second plot has been
obtained using stem(u) instead of the plot(u) command. Note that for clarity we have
extracted only 30 points from the original image line numbered originally from 27 to 56.
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Figure 2: The intensity profile along the horizontal line 13

2.4.2 1-D feedforward model of lateral inhibition

We can imagine that the vector u contains all m = 30 intensity signals coming from the visual
receptors to synapses of 30 neurons.
The essence of the operation performs by the limulus on the signals from receptors is the
sharpening the edges present in the perceived signals.
In order to achieve such an effect the signal ukfrom the k-th receptor R is connected to an excitatory
synapse of the k-th neuron and at the same time ic connected to the inhibitory synapses of the
neighbouring neurons, k − 1 and k + 1. Such a sidewise connection is known as the lateral
inhibition. A one-dimensional feed-forward model of the limulus vision based on lateral inhibition
is illustrated in Figure 3.
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Figure 3: One-dimensional feed-forward model of the limulus vision
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In the example you can identify five neurons, the central one with the efferent (output) signal yk.
Along the dendrite of each neuron we have three synapses, the central excitatory synapse with the
weight w0 > 0 accepts the afferent signal uk from the receptor. This signal goes also to two
neighbouring neurons inhibiting them. The weights of the inhibiting synapses are negative, w1 < 0
Note that all neurons have synapses with identical weights, [w1, w0, w1]

2.4.3 Maths of lateral inhibition. A Mexican hat mask

The diagram of a 1-D limulus vision system can now be converted into equations and subsequently
into a modelling program. First note that, assuming that σ = 1, a single efferent signal yk is
calculated as a weighted combination of all three synaptic signals, uk−1, uk, yk+1:

yk = w1 · uk−1 + w0 · uk + w1 · uk+1 = [w1 w0 w1] ·

 uk−1

uk

uk+1

 (1)

In the above equation we recognize the familiar inner product of two vectors, namely, the weight
vector [wi−1 wi wi+1] and the afferent signal vector [uk−1 uk uk+1].

We can use a matrix notation to calculate all efferent signal in one step. All, meaning 30, might be
too much, but we can try three to get the following equation

 yk−1

yk

yk+1

 =

 w1 w0 w1 0 0
0 w1 w0 w1 0
0 0 w1 w0 w1

 ·


uk−2

uk−1

uk

uk+1

uk+2

 (2)

Eqn (2) looks horrible, I know, but it still says that every efferent signal, say yk, is formed as a inner
product of the respective row weight vector and the signal vector.

Exercise 2. 1
From eqn (2) write down expressions for yk−1 and yk+1 similar to that of eqn (1).
2 2 marks

To simplify eqn (1) we introduce the important concept of a mask, h that describes the pattern of
lateral exhibition and excitation:

h =
[

w1 w0 w1

]
Now we can re-write eqn (2) into a more concise form:

 yk−1

yk

yk+1

 =

 h 0 0
0 h 0
0 0 h

 ·


uk−2

uk−1

uk

uk+1

uk+2

 (3)

As you can see, we need five (1+3+1 = 5) signals u on the right hand side of the equation to obtain
three signals on the left hand side of the equation.
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It is possible to write the above equation in a user-friendly matrix-vector form, which, after small
peripheral adjustments, can be expressed in the following way:

y = W · u (4)

where y,u are vectors of the efferent signals and the afferent signals from the visual receptors,
respectively, and W is the weight matrix built from the mask vector h.

In its simplest form the mask might look as follows

h =
[
−1 +3 −1

]
The specific values have been selected having in mind the lateral symmetry and the balance of
inhibitory and excitatory behaviour.
The equivalent matrix W for this mask has the following form (eqn (3)):

W =

 −1 3 −1 0 0
0 −1 3 −1 0
0 0 −1 3 −1


Let us visualise the above mask and another similar in MATLAB adding the following commands to
our script which produce the adjacent plot.

h1 = [0 0 0 -1 3 -1 0 0 0] ;
h2 = [0 -2 -1 2 4 2 -1 -2 0] ;
n = floor(max(size(h1))/2)
figure(2)
plot(-n:n, [h1’ h2’]), grid on
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h1
,  
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Such a plot with the positive and negative parts representing the lateral inhibition is called a
Mexican hat mask.

Now, an exciting step is coming (next section) in which we apply a Mexican hat mask to one line of
the image presented in Figure 2.

Let us first do some signal calculations related to eqn (4).
Assume now that the afferent signals and the mask are specified as follows

u = [2 3 1 2]’ and h = [-1 3 -1]
and calculate y2 = −1 · u1 + 3 · u2 − 1 · u3 = 6
Similarly y3 = −1 · u2 + 3 · u3 − 1 · u4 = −2

Exercise 2. 2
For the above u and h write down the full form of the eqn (4) so that all individual signals and
parameters are visible and calculate all efferent signals yk for k = 1, . . . , 4.
2 3 marks
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2.4.4 Correlation and convolution

From the above exercise you can see that the output signals are calculated sliding the mask h along
the vector u and forming the required sum of products.
Calculation of such sum of products with a mask h sliding along the vector u is very tedious.
Fortunately this is a typical operation with vectors called correlation. For the symmetric masks
correlation is identical with convolution.
That is the function that we will be using in MATLAB. Such an operation with a mask is also called
filtering.

Let us continue our MATLAB script in the following way:

u = [2 3 1 2]
h = [-1 3 -1]
y = conv(u, h)

The result of the convolution of two vectors, u and h should be y=[-2 3 6 -2 5 -2].
Simple and effective! Compare it with the results of your calculations in the last exercise.

Let us now apply a simple three-element mask

h = [h1 h0 h1] =
[
−1 3 −1

]
to a rectangular intensity profile as in Figure 2. Such a mask describes lateral inhibitory connection
as in Figure 3. The relevant script is as follows:

% the intensity profile along the line 13
u = Z(13,27:56) ; % row 13, columms 27 to 56
y = conv(u, h) ; % magic happens here

figure(1)
subplot(2,1,1)
plot([0 u 0])
grid on, axis([0 30 -1 2.5])
title(’original rectangular signal along receptors’)
ylabel(’u’)
subplot(2,1,2)
plot(y)
grid on, axis([0 30 -1 2.5])
title(’after application of lateral inhibition’)
ylabel(’y’)
xlabel(’pixel/receptor #’)

The script generates plots as in Figure 4. From the plots we can note that the Mexican hat mask,
inhibiting the neighbouring neurons, amplifies a change of intensity along the receptors which
results in enhancement of the image edges.
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Figure 4: Sharpening the visual signal in a 1-D feedforward lateral inhibition circuit

2.4.5 Designing a good Mexican hat mask

In the processing we might like to make sure that the level of the signal is maintained, that is, if the
afferent signal is constant one, then it stays constant one after processing with the mask. We will say
that such a circuit/filter has a unity dc gain. The acronym ‘dc’ stands for ‘direct-current’ and is a
shortcut for a constant level signal.
To ensure the unity dc gain we just need a mask in which sum of its all coefficients is unity, e.g,

yc = [h1 h2 h3] ·

 1
1
1

 = h1 + h2 + h3 = 1

More formally we can say that for a n-element mask the dc gain should satisfy the following
condition:

yc =
n∑

i=1

hi = 1 (5)

Another aspect that we would like to control in the output signal is the amount of negative/positive
overshoot. This can be easily calculated if we imagine that the mask has its all negative values
matching signal u = 1 all other mask’s values being still at u = 0.
For a simple 3-element symmetric mask

h = [h1 h0 h1] , where h1 < 0 end h0 > 0

it just means that the overshoot is equal to the absolute value of h1

ym = |h1|
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and the output signal varies from −ym to 1 + ym.

For a general mask the overshoot ym is a sum of all negative coefficients. If we number coefficients
of the symmetric mask in the following way:

h =
[

hn . . . h1 hp1 . . . hpk h1 . . . hn

]
then the overshoot can be calculated as follows:

ym = |
n∑

i=1

hi| (6)

and the dc gain (constant level) as

yc =
k∑

i=1

hpi − 2ym (7)

For example the mask

h =
[
−0.1 −0.4 2 −0.4 −0.1

]
has the overshoot equal to

ym = | − 0.1 − 0.4| = 0.5

and the dc gain/constant level

yc = −0.1 − 0.4 + 2 − 0.4 − 0.1 = 1

Exercise 2. 3
Design a 5-element Mexican hat mask with the overshoot equal to ym = 0.7 and the unity dc gain,
yc = 1.
Plot the output signal for such a 5-element mask (as in Fig. 4).
Compare the slope of the edge for the 3-element and the 5 element mask.
2 6 marks

2.4.6 Sigmoidal activation function

One, a bit inconvenient, effect of the processing with the Mexican hat mask is the change of the
range of the numbers: they are expanded from the input range range, say {0, 1}, to the output range
{−ym, 1 + ym} both in the negative and positive directions due to overshoot.
One way of dealing with this problem is to pass signals through the saturating function, y = σ(v)
(see Figure 3) in order to put the signals back into the range {0, 1}.
Typically such a saturating function is defined as a sigmoidal function as illustrated in Figure 5.
In Figure 5 ‘tanh’ is a shifted hyperbolic tangent that can be expressed by means of an exponential
function exp(v) = ev.

Let us see what happens if we add such a saturating function to our previous script in the following
way:
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y = σ(v) =
1

2
(tanh(0.5v) + 1) =

1
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Figure 5: Sigmoidal function

MnMx = [min(y) max(y)]
y1 = 0.5*(tanh(0.5*y)+1) ;
MnMx1 = [min(y1) max(y1)]

The resulting minimum and maximum values of the efferent signals are:

MnMx = [-1 2]= [h(1) 1-h(1)]
MnMx1 = 0.2689 0.8808

which means that the sigmoidal function squashed the range of numbers so that they are well in the
range between 0 and 1, which might be desired.

Exercise 2. 4
Plot the output signals as in Figure 4 after passing them through the sigmoidal function. Use the
5-element mask from the previous exercise.
2 3 marks

2.4.7 From a convolution matrix to a weight matrix

It is a simple method computationally to use the convolution function, but it might be convenient to
work with a weight matrix as in eqns (2), (3) and (4). Such a weight matrix will have a size equal to
a number of neuronal inputs and outputs.

Let us consider again a simple feedforward network as in Figure 3 where we have m = 5 neurons
and also p = 5 afferent signals. Assuming that k = 3 and that the mask h = [h1 h0 h1], we can write
a matrix equation describing processing of signals by the network similar to eqn (2):

y1

y2

y3

y4

y5


︸ ︷︷ ︸

=


h0 h1 0 0 0
h1 h0 h1 0 0
0 h1 h0 h1 0
0 0 h1 h0 h1

0 0 0 h1 h0


︸ ︷︷ ︸

·


u1

u2

u3

u4

u5


︸ ︷︷ ︸

y = W · u

(8)

It is good to know that the weight matrix W in this constant along diagonal form is called the
convolution matrix. In MATLAB there is a function convmtx that can be used to form the
weight matrix, W , from the mask h. Note also that the matrix W of eqn (8) is a symmetric matrix
(with respect to diagonal). Now we need a bit of a MATLAB practice to be able to swallow all the
new bits.
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u = [0 0 1 1 1]’ % a step function
h = [-1 3 -1] % a mask as before
W = convmtx(h, 5) % convolution matrix
W = W(:, 2:end-1) % weight matrix (the 1st and last columns removed)
y = W*u % output signals
yc = conv(u, h) % to compare

Exercise 2. 5
Re-write eqn (8) for the 5-element mask h = [h2 h1 h0 h1 h2].
Calculate the matrix W using the convmtx function for the mask as in exercise 2.3.
2 4 marks

2.4.8 Feedforward and recurrent networks

The feedforward network implemented above transforms input (afferent) signals into the output
(efferent) signals in one processing step:

y = W · u

In the next model of the limulus vision, we will add the feedback loops connecting the output signals
to the input synapses. Networks with feedback are also referred to as recurrent networks. The
following block diagrams clarify the concepts.

conv(y(n−1),h)u, h )

Feedforward network

u y v

Recurrent network

y(n)
u(n)

D
y(n−1)

conv(

y = W · u y(n) = W · y(n − 1) + u(n)

The big circle at the output of the convolution block represents a summation y = v + u. More
precisely, the recurrent processing can be described by the following equation

y(0) = u(0), y(n) = W · y(n − 1) + u(n) = conv(y(n − 1),h) + u(n) , for n = 0, 1, . . . (9)

The variable n represents time and is the number of the current processing step. The unit-delay
block “D” in the recurrent network block-diagram performs the delay of output signals by one time
step, that is, it forms y(n − 1) form y(n).

It can be safely assume that the feedback brings additional complexity in processing signals. Nature,
however, has no problems in dealing with complexities. What we have to do is just follow nature.
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Figure 6: 1-D recurrent model of limulus vision

2.4.9 1-D recurrent model of limulus vision

A simple one-dimensional recurrent model of limulus vision is presented in Figure 6. Comparing
with a feedforward network of Figure 3 we note that in the recurrent network the vision receptors are
connected only to one synapse, whereas the laterally inhibiting signals are formed from the fed back
output signals. This is a more realistic model of the limulus vision.

For the feedworward processing, we were able to design a mask according to eqns (5) and (6) to
achieve a required behaviour, namely, to maintain the constant level yc and to control the overshoot
ym.

Behaviour of recurrent networks as described by eqn (9) is significantly more complex, therefore
designing the prescribed behaviour of a recurrent network is also, in general, difficult. In our case,
however, with a simple 1-D Mexican hat mask we can again be in a full control of the network
behaviour.

Exercise 2. 6
For a 3-element mask as in Figure 6 re-write eqn (9) in a form similar to eqn (8).
2 2 marks

Referring to eqn (9) we note that now, since we are adding the afferent signals u, we should modify
the mask h so that the sum of its coefficients should be zero, that is,

hc =
n∑

i=1

hi = 0 ; h = [h1 . . . hn] (10)

where hi represents all coefficients of the mask. This will ensure maintaining the constant level
through recurrent addition of u.
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To work out overshoots is a bit more complicated. They depend on the sum of negative coefficients.
One way of dealing with the complexity is to introduce one parameter, g, called feedback gain and
multiply the Mexican hat mask by g:

h = g · [h1 h2 . . . hp . . . h2 h1]

Now, we will find out that the amount of overshoot and its shape will depend, first of all, on the value
of the feedback gain, g.
The MATLAB script that implements the recurrent network can have the following form:

m = 40 ;
u = zeros(m,1) ;
u((1:m/2)+m/4) = ones(m/2,1) ; % rectangular signal
g = 0.2 ; % a gain parameter
h = g*[-1 2 -1] ; % a mask
sum(h) % must be zero
W = convmtx(h, m); % convolution matrix
W = W(:, 2:end-1); % weight matrix
figure(3)
y = zeros(m, 1) ; % initial value of the afferent signals
x = (1:m)’ ; % used in plotting
nn = 16 ; % number of recurrent runs
for n = 1:nn

y = W*y + u ; % recurrent network
plot(x, [u y] ), grid on
title(sprintf(’gain = %1.2f, recurrent run n = %d’, g,n))
% axis([0 m -1 2])
pause(2) % the loop goes every 2 secs

end

The final form of the efferent signals is given in the following figure:

0 10 20 30 40
−1

−0.5

0

0.5

1

1.5

2
gain = 0.20,   recurrent run n = 16

receptor #

y,
 u

Note that the there are spatial (along the receptors) oscillations around the edges of the signal.
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Exercise 2. 7
I would like you to observe how the gain g influences the behaviour of the recurrent network.

• Plot the maximum value of overshoots versus time steps (recurrent runs) n = 1 . . . 40 for the
following gains: g = 0.16, 0.2, 0.24, 0.26

• Note that there is a critical value of the gain (for a given mask) beyond which the network
becomes unstable. Estimate this value.

Unstable in particular means that the overshoots grow without limitations.
2 6 marks

2.5 Recurrent 2-D model
We now jump straight into 2-D recurrent networks that are real model of the limulus vision.

2.5.1 2-D structure of the limulus vision

The structure of such a network is a bit more complicated to represent, but the principle is the same
as in Figure 6, namely, that the central neuron inhibits neighbouring neurons and is also inhibited by
the neighbours. This idea is illustrated in Figure 7.

p

uR

uR

uR

uR

uR

uR

uR

uR

uR

��
��
��
��l rud y

0

0

Figure 7: 2-D structure of the limulus vision system

In Figure 7 the central neuron marked y and checkered is inhibited by its four neighbours, from left,
right, up and down. Relevant synapses and equivalent elements of the 2-D mask h are marked,
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l, d, u, r, respectively. The mask element related to the local excitatory feedback signal is marked
with p.

Conversely, every neuron, inhibits its four neighbours. For the checkered neuron only connections to
neurons straight above and below are shown, for clarity.

The afferent signals from visual receptors are marked u in Figure 7, and they are organized into a
matrix U , representing the image to be processed.

2.5.2 2-D masks and convolution

The simplest 2-D mask describing interconnections between neurons as in Figure 7 can now be
represented by the following matrix H:

H = g ·

 0 hu 0
hl hp hr

0 hd 0

 , hu, hl, hr, hd < 0 , hp > 0 (11)

where g is a feedback gain.
Following arguments from the previous section, in order to maintain the constant level of signals
during recurrent runs, the the sum of all coefficients of the mask H must be zero:

hu + hl + hr + hd + hp = 0 (12)

Such a mask is applied to each element of processed image in a way similar to a 1-D case. For the
simple mask as in eqn (11) an efferent signal y is formed as a linear combination of the mask
elements and relevant image pixels (receptor signals):

y = hp · y + hu · yu + hl · yl + hr · yr + hd · yd + u

However complicated it sounds, the good news is that there exists a 2-D convolution that takes an
image, say U and a matrix mask, H , and creates the output image, say Y sliding the mask over every
pixel of the input image and forming the necessary sum of products of mask elements and image
pixels. Mathematically we just write:

Y = conv2(U,H) (13)

We will use modification of this expression in a recurrent loop in the next section.

2.5.3 2-D recurrent network operations

A 2-D recurrent visual network operates as described in eqn (9) with a suitable change from vectors
to matrices:

Y (0) = U(0), Y (n) = conv2(Y (n − 1), H) + U(n) , for n = 0, 1, . . . (14)

We are now ready to process the simple test image presented in Figure 1. Let us start with a bit more
complicated Mexican hat mask of the following form:
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H = g ·

 −1 −2 −1
−2 12 −2
−1 −2 −1

 (15)

where gain g will be selected with stability of the processing in mind.

Before we start our next MATLAB exercise it might be a good idea to save the current script and
open a new one named, say myprac2d.m. It will be still possible to copy and paste from the
previous script if we need that.

In the new script we can type in the commands to create a mask as in eqn (15):

% myprac2d.m
clear, % close all
g = 1/12
HH = [-1 -2 -1 ; -2 12 -2 ; -1 -2 -1]
% visualization of the mask
H1 = zeros(5, 5) ; % adding a ring of zeros around the mask
H1(2:4,2:4) = g*HH
figure(1)
surf(H1)

You should see a rather low resolution 2-D Mexican hat.

With a mask established, we can create a test image. We can copy the relevant commands from the
previous script:

% test image
m = 100 ;
x = 1:m ;
[X Y] = meshgrid(x,x) ;
U = ((X - m/2).ˆ2 + (Y - m/2).ˆ2) < (0.125*mˆ2) ;
figure(1)
imagesc(U), axis image
grid on, colormap(1-gray(2))

This will reproduce the familiar cylinder. Finally, we can run our network with the selected image
and mask:

% recurrent 2-D network
Y = zeros(size(U)) ; % initial value of the afferent signals
g = 0.04 ; % adjustable feedback gain
H = g*HH ; % mask adjusted with gain
nn = 10 ; % number of recurrent runs
figure(2)
for n = 1:nn

Y = conv2(Y, H, ’same’) + U ; % 2-D recurrent network
subplot(2,2,1)
imagesc(Y), axis image % top view of the cylinder
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colormap(1-gray(256))
text(60,-6, sprintf(’gain = %1.2f, recurrent run n = %d’, g,n))
subplot(2,2,2)
surf(Y), grid on, view(-30, 20) % perspective view
axis([0 100 0 100 -1 2])
subplot(2,2,3)
plot(Y(50,1:30)) % cross-section along the row 50
grid on, axis square
xlabel(’receptor # in row 50’)
pause(2) % the loop goes every 2 secs

end

The result, after 10 iterations, with a given gain is shown in Figure 8.

gain = 0.04,   recurrent run n = 10
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Figure 8: Processing a test image by a recurrent neural network

As in a 1-D case the jump in intensity results in sharpening the edge and creates an overshoot, or
oscillations, depending on the value of the feedback gain.

Exercise 2. 8
Design your own 5 × 5 Mexican hat mask and repeat recurrent runs on the test image. Describe the
results.
2 4 marks
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2.6 Images in MATLAB
Finally, we apply our 2-D vision network to processing a real image. For simplicity we use first with
gray scale (monochrome) image. Such an image in MATLAB is just an r × c matrix, each element
of the matrix (known as a pixel) representing intensity of the pixel.

Externally, images are stored in multiplicity of formats, such as jpg, png, pdf, gif, tif and many
others. To begin with, download a test image from
http://www.csse.monash.edu.au/coursware/cse2330/Pracs/apple.png
to $YFD/prac2 directory.

Now type in in the editor window the following commands:

clear
fnm = ’apple.png’; % an image file name
UU = imread(fnm, ’png’) ; % getting the image in a MATLAB matrix
figure(2)
image(UU), axis image, colormap(gray(255))

Execute the above script. As a results you should get a gray scale image of an apple. The image is
stored in a variable (matrix) UU. To get the basic parameters of the image execute the following
commands

imsz = size(UU)
MnMx = [min(min(UU)) max(max(UU))]

Note that the image size is imsz = [116 115] and the range of pixel values (image
intensities) is MnMx = [1 245] (assuming that you work with the same apple I do).

In the pane Workspace you should see all four variables that we created by now including their
sizes and classes. Classes are a bit of a computational “bad news”, but we need to be aware
of the existence of two types: double and uint8.

The uint8 type means “unsigned 8-bit integer” that will be used only when we load images in
MATLAB. 8-bit integers can take values from 0 to 255.

All other numbers in MATLAB are of type double. They can store all values possible that you might
ever need. Therefore, the next command we execute is conversion of our image from uint8 to
double. This can be done using the command:

U = double(UU)/256 ; % remember ; here !

In addition, by dividing by 256 we have scaled the range of pixel values to be between 0 and 1,
which is more convenient for neuronal modelling.

The script processing an apple image looks as follows (remember to specify the mask HH):

% recurrent 2-D network
U = double(UU)/256 ; % U is between 0 and 1
Y = zeros(size(U)) ; % initial value of the afferent signals
g = 0.05 ; % adjustable feedback gain
H = g*HH ; % mask adjusted with gain
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nn = 10 ; % number of recurrent runs
for n = 1:nn

Y = conv2(Y, H, ’same’) + U ; % 2-D recurrent network
imagesc(Y)
axis image, colormap(gray(255))
title(sprintf(’gain = %1.2f, recurrent run n = %d’, g,n))
pause(2) % the loop goes every 2 secs

end

The resulting apple has visibly sharpened edges and might look as in Figure 9.

Figure 9: Original apple image and the image after sharpening its edges

Exercise 2. 9
As the final exercise write a MATLAB script to enhance edges in a colour image of your choice
preferably in the jpg format. Use recurrent network with 5 × 5, or greater mask.

Note that a colour image in MATLAB is stored as an array of size r × c × 3, each r × c matrix
storing a single primary colour information, that is, Red, Green, and Blue, respectively.

Use the 2-D convolution separately for each color component.
2 6 marks

Submission
In your report/submission include answers/solutions to all exercises.

Include relevant derivations, equations, scripts, results and plots with suitable comments.
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2.7 The Nobel Prize in Physiology or Medicine 1967
Presentation Speech by Professor C.G. Bernhard, Member of the Nobel Committee for
Physiology or Medicine of the Royal Caroline Institute

Your Majesty, Royal Highnesses, Ladies and Gentlemen.

Light, shadows and colours do not exist in the world around us. What we perceive visually and call
light is the result of the action of a certain portion of the electromagnetic radiation on the sensory
cells in the retina of the eye. Our awareness of the play of light in nature, the multiplicity of the
forms and the richness of the colours is ultimately dependent on the pattern of this radiation with
respect to frequency and intensity. The light is composed of packets of energy, which combine the
properties of waves and particles. When these particles – the quanta – strike the retina of the eye
they are caught by the specialized sense cells – rods and cones. It is known that one quantum, which
represents the least possible amount of light, is sufficient to initiate a reaction in a single rod. The
excitation of the sensory cells results in messages directed towards the brain. As there are no direct
connections from the eye to the brain the messages must be transmitted through several relays which
combine signals from several sensory cells and translate the message into a language which can be
understood by the brain. The primary relay is in the retina itself, represented by an intricate nerve
net, the structural beauty of which was revealed by the neurohistologist Ramón y Cajal, Nobel
laureate of 1906. In this complex structure messages from a great number of sensory cells converge
on a far smaller number of optic nerve fibers and this results in a transformation of the pattern of
signals.

Picasso has said: “To me painting is a sum of destructions. I paint a motif, then I destroy it. The
painting goes through a series of metamorphoses but in the solution of the problem nothing has been
lost. The final impression is still there in spite of all revisions”. However, it is obvious to everyone
that in the finished work a re-evaluation has taken place of the original elements of the motif. In
some way this is a description of what happens in the visual system. An image of the outer world is
formed on the retina in the same way as it is formed in the film of the camera. The image that falls
on the closely packed mosaic of light sensory cells is disintegrated, since different cell types respond
to various parts and qualities of the image. The primary data are then brought together in the nerve
net in which a considerable processing takes place involving not only addition but also subtraction.
This characterization of the message induces an impression in which there is a re-evaluation of the
image projected on the retina. Does it mean that we cannot rely on what the eye tells us? No, not in
the sense that there is full agreement between the external stimulus pattern and the composition of
the impression. But rather in the sense that certain characteristics of the picture with essential
biological and psychological significance are emphasized. There is a sharpening of contrast so that
forms stand out more clearly, colours are exaggerated and movements accentuated.

We now know the mechanism by which light triggers off the reaction in the sensory cells of the eye
thanks to the discoveries by George Wald and his coworkers among whom Ruth Hubbard – now
Mrs. Wald – should be mentioned in the first place. The light-sensitive substances in the sensory
cells, the visual pigments, consist in principle of two pieces. One, containing vitamin A, the smaller
piece or the chromophore, fits like a hooked puzzle piece in the surface profile of the larger protein
piece, the opsin. When a light quantum is taken up by the visual pigment the chromophore changes
its form: there is an isomerization from II-cis to all-trans. The puzzle piece straightens out and
releases itself from its position so that a successive splitting of the visual pigment follows. This
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molecular transformation induced by light – the isomerization triggers the subsequent events in the
visual system. All later changes – chemical, physiological and psychological – are as Wald says
“dark” consequences of this single light reaction. Wald’s conclusion that this reaction applies to the
whole animal world also emphasizes the broad significance of his discovery.

Our ability to differentiate colours requires that different visual cells respond characteristically to
different parts of the spectrum. Theories concerning the physiological basis of colour vision
originated with Isaac Newton, Thomas Young and Hermann von Helmholtz. These theories were
based on perception experiments. Today it is possible to attack this problem more directly with the
aid of electronics which permits interpretation of the language of the nerve cells, thanks to the
pioneer work in the 1920’s by E.D. Adrian, Nobel laureate 1932. It is a great pleasure to see Lord
Adrian here today and in this context I am reminded of his work with Yngve Zotterman which 40
years ago taught us the ABC’s of the symbols in the sensory cells’ language.

We honour Ragnar Granit for his discovery of elements in the retina possessing differential spectral
sensitivities as determined by means of electrophysiological methods. The first work together with
Svaetichin appeared in 1939. It was followed by an impressive series of investigations which led to
the conclusion that there are different types of cones representing three characteristic spectral
sensitivities. This important conclusion of Granit has recently been confirmed by Wald and
collaborators as well as by research groups in U.S.A. and Great Britain using other methods. The
discovery implies that the signal patterns which the optic nerve transmits to the brain and which
result in perception of colours are dependent on the contributions from the three types of cone cells.

Keffer Hartline’s elegant analysis of impulse generation in the sensory cells and the code they
transmit in response to illumination of different intensity and duration has given us the basic
understanding of how they evaluate the light stimulus. His later studies have led to the discovery of
fundamental principles according to which the rough data from the sensory cells are re- evaluated. A
precise quantitative analysis of the results was made possible by a refined technique and a careful
choice of a suitable object – the eye of the horseshoe crab, a large marine spider. This approach to
the problem led him to the discovery of the lateral inhibition, which in this eye was shown to be
mediated by simple neuronal connections. Already in the 1930’s Granit had shown the existence and
importance of inhibition in the complex vertebrate retina. After having shown the interconnections
of adjacent visual cells Hartline employed his discovery in a most imaginative way in order to obtain
a quantitative description how a nerve-net processes the data from the sensory cells by means of
inhibition. His discoveries have in a unique manner contributed to our understanding of the
physiological mechanism whereby heightened contrast sharpens the visual impressions of form and
movement.

Professor Granit, Professor Hartline, Professor Wald. Your discoveries have deepened our insight
into the nature of the subtle processes in the eye which form the basis of our ability to perceive light
and to distinguish brightness, colour, form and movement. They have also proved to be of
paramount importance for the understanding of sensory processes in general.

Professor Granit. About 100 years ago the distinguished physiologist in Uppsala, Frithiof Holmgren,
discovered the electrical response of the eye to light. The hopes that he expressed for the future
regarding the possibilities of all electrophysiological analysis of the retinal processes and the
mechanism of colour vision have been realized by your distinguished discoveries. These show the
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importance of inhibition in the integrative action of the retina and the principles for spectral
discrimination by retinal elements. Your discoveries have pointed the way in modern physiology of
vision and your stimulating research work has contributed to the fruitful development of this field.

Professor Hartline. Your laboratory has been described as a “slightly disorganized but extremely
fertile chaos”. Your work which – by the same right has been characterized by elegance in design,
expertise in manipulation and clarity in exposition has resulted in an exemplary limited number of
publications, each of which is a corner-stone in sensory physiology. They have given us the basic
knowledge about the impulse coding in the visual receptors and presented discoveries of the most
fundamental principles for data processing in neuronal networks which serve sensory functions. In
the case of vision they are vital for the understanding of the mechanisms underlying perceptions of
brightness, form and movement.

Professor Wald. With a deep biological insight and a great biochemical skill you have successfully
identified visual pigments and their precursors. As a byproduct you were able to describe the
absorption spectra of the different types of cones serving colour vision. Your most important
discovery of the primary molecular reaction to light in the eye represents a dramatic advance in
vision since it plays the role of a trigger in the photoreceptors of all living animals.

Gentlemen. It is with great satisfaction that Karolinska Institutet has decided to award you this
year’s Nobel Prize for physiology or medicine for your discoveries concerning the primary
physiological and chemical visual processes. On behalf of the Institute I wish to extend to you our
warm congratulations and I ask you to receive the prize from the hands of His Majesty the King.

From Les Prix Nobel 1967.

http://www.nobel.se/medicine/laureates/1967/press.html
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