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CSE2330 Introduction to Computational Neuroscience

From soap to volts — hardware of the brain
Tutorial 5 Duration: two weeks

5.1 About this tutorial
The objective of this tutorial is to study a low level electrical activities of a neuron, in particular the
way the train of spikes arriving at a synapse is aggregated into a post-synaptic potential (PSP) at the
membrane of the neuron, and the way a neuron generates a train of spikes known as action potentials.
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getting started ...
The amount of information and the number of technical terms, computational methods and concepts
that you are expected to master increase quickly, therefore, you are strongly advised to come well
prepared to the practical classes.
Read at least the previous prac manuals, but you cannot go wrong if you also read related lecture
notes and book chapters.
I also encourage you to execute MATLAB scripts line-by-line in order to build-up your
understanding of computational methods involved.
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5.1.1 Biological neurons and their connections

Recall that a biological nerve cell known as a neuron consists of the following major parts illustrated
in Figure 1.

Figure 1: Major components of biological neurons and their networks

Identify the cell body, membrane, axon, dendride and synapses.

We will study the low level neuronal activities that can be described in the following simplified way:

• An efferent neuron generates a train of spikes known as action potentials.

• The spikes arrive at the synapse of an afferent neuron and generate a post-synaptic potential
(PSP) at the membrane of the neuron.

Other facts to remember are:

• Working of neurons is described by the movements of chemicals and associated ions which are
electric carriers (charges)

• Movement of electric charges creates an electric current which flows under the influence of
related voltages, or potentials.

The best analogy for the above electrical quantities is a water flowing (current) under pressure
(potential/voltage) through small pipes (resistors) and big containers (capacitors).

A.P. Papliński, L. Gustafsson 2



Intro. Comp. NeuroSci., Prac 5 September 23, 2005

5.2 Cell membrane as an RC electrical circuit
The biological membrane surrounding the cell can be first approximated as an electrical circuit
consisting of a conductor (resistor) and a capacitor.

Figure 2: The cell membrane and its RC model

• Modeling the neuron as an electrical circuit involves predicting

voltage changes based on current flow.

• In the case of neurons we typically are injecting currents, or thinking about the effects of extra
pores that cause extra current to flow into the cells.

• Electric current is a rate of change of charge.

• Typical charges are: electrons, ions and charged proteins

A.P. Papliński, L. Gustafsson 3



Intro. Comp. NeuroSci., Prac 5 September 23, 2005

5.2.1 Resistors

• Voltage across a resistor is proportional to the current flowing
through the resistor.

v = R · i =
1

g
i

• Resistance (or its inverse, conductance) is a property of material
through which the current flows.

• If we inject current into the resistor a voltage across the resistor
appears.

• If we apply voltage then the current flows.

5.2.2 Capacitors

• Charge on a capacitor is proportional to the voltage applied to the
capacitor.

q = C · v

• Conversely, voltage across the capacitor is proportional to the
amount of charge stored on the capacitor

• Capacitance is a property of the geometry of the charge storing
plates, the membrane, in our case.

Current through a capacitor

• If the charge stored in the capacitor varies, then the current
(derivative of charge) flows and can be calculated as

q = C · v ; i =
dq

dt
= C

dv

dt

• Current flowing through the capacitor is proportional to the gradient
(time derivative) of the voltage on the capacitor
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5.2.3 Summing currents — Kirchhoff’s law

• Kirchhoff’s law on conservation of charge says that the sum of
currents incoming into an electric node and outgoing from the node
is equal.

Hence
iin = iR + iC

It means that the injected current, iin flows into the resistor iR and
capacitor iC

5.2.4 Equation of the RC circuit

• Substituting expressions related currents and voltages in resistors
and capacitors, we can write the following equation:

iin =
1

R
v + C

dv

dt

• For a given injected current, the unknown quantity is a time varying
voltage across the membrane v = v(t). Therefore the equation, after
multiplication by R is usually re-written in the form with swapped
left and right-hand sides:

R C
dv

dt
+ v = R iin

Let us denote

τm = R · C — a time constant of the membrane, and Vin = R · iin

The equation for the voltage across the membrane can now be written as:

τm
dv

dt
+ v = Vin

It is a first order, linear differential equation for v(t) that can be easily analytically solved if you
know the trick. Let us guess that the solution for a constant iin is:

v(t) = Vin(1− e−
t

τm )
we can verify this solution substituting it back into the
equation and confirming that LHS = RHS.

The solution described the way the voltage across the membrane, v(t), evolves with time.
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5.2.5 Time constant of the RC circuit

• If a constant current is injected, the voltage across the membrane (RC circuit) grows
exponentially, until it saturates at the value Vin = R iin

(e ≈ 2.7183 is the base of the natural logarithm)

• If analytical solution is known (which is hardly ever the case) it is simple to use your favourite
MATLAB to get the plot of the voltage.

g = 1 ; % mS/cmˆ2
% R = 1/g ; % kOhm x cmˆ2
C = 1 ; % uF/cmˆ2
taum = C/g ; % ms
Iin = 1 ; % uA/cmˆ2
Vin = Iin/g; % mV
t = 0:0.1:5; % time in ms
v = Vin*(1-exp(-t/taum));
plot(t, v), grid on

Note the typical values of parameters:

• conductance : g = 1 mS/cm2

• capacitance : C = 1µF/cm2

• time constant : τm =
C

g
= 1 ms

• injected current : iin = 1µA/cm2

• max voltage : Vin = iin
g

= 1 mV
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Exercise 5. 1
Calculate and plot on a single figure voltage across the membrane for three different time constants
to demonstrate how the time constant influences the change of the voltage
2 2 marks

If analytical solution cannot be found, differential equations can be solved recursively using
approximation of derivatives.

τm
dv

dt
+ v = Vin use:

dv

dt
≈ ∆v

∆t
=

v(t + ∆t)− v(t)

∆t

Substitution yields:

τm

∆t
(v(t + ∆t)− v(t)) + v(t) = Vin

Dividing by
τm

∆t
and grouping the like terms we obtain

v(t + ∆t) =
(
1− ∆t

τm

)
v(t) +

∆t

τm

Vin

This can be written in the following simple form:

v(k + 1) = r · v(k) + (1− r) · Vin where r = 1− ∆t

τm

and t = k ·∆t

This equation is a simple geometric progression with the ratio r and can be easily solved recursively
with a simple program, starting with zero initial value.

v(1) = 0;
for k = 1:K

v(k+1) = r*v(k)+(1-r)*Vin;
end

5.3 Temporal integration
• Consider a current pulse of duration tp ms injected through the membrane,

• Results depends on the relative ratio of the current pulse duration tp and the membrane’s time
constant τm

Consider the following MATLAB script:

% TempInteg.m
% Voltage across membrane after
% injection of m current pulses
% fixed frequency

clear
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% membrane parameters
g = 0.8 ; % mS/cmˆ2 conductance
C = 2 ; % uF/cmˆ2 capacitance
taum = C/g; % ms membrane time constant
Iin = 0.8; % uA/cmˆ2 current pulse amplitude
Vm = Iin/g; % mV equivalent voltage amplitude
tp = 4 ; % ms Current pulse period
tp1 = 1; % ms Current pulse duration
kk = 40 ; % number of time steps per period tp
dt = tp/kk; % ms Time step
kk1 = round(tp1/dt) ; % steps per pulse
r = 1-dt/taum; % progression ratio
np = 1 ; % number of pulses
% simulation time
v = zeros(1, np*kk+1) ;
% during the pulse
for n = 1:np

for k = (1:kk1)+(n-1)*kk
v(k+1) = r*v(k) + (1-r)*Vm;

end
% after the pulse
for k = ((kk1+1):kk)+(n-1)*kk

v(k+1) = r*v(k) ;
end

end
t = (0:(np*kk))*dt; % ms
% current pulse
ip = [0 kron(ones(1,np),[Iin*ones(1,kk1) zeros(1,kk-kk1)])];
figure(1)
plot(t, v, t, ip), grid on
title(’Current pulses and voltage across the membrane’)
xlabel(’t [ms]’), ylabel(’i [\mu A], v [mV]’)
text(1.1*tp1, 0.95*Iin, [’\tau = ’,sprintf(’%1.2f ms’, taum)])
axs = axis; axis([axs(1:3) 1.1*Iin]);
% print -f1 -depsc2 pulses

The script has been executed with two different membrane parameters an the following results have
been obtained:
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τm = 0.25 tp “fast”/high conductance membrane τm = tp “slow”/low conductance membrane
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If the membrane time constant is long comparing with the pulse duration (“slow” or low
conductance membrane),

• the voltage across the membrane does not reach its maximum value during the pulse, and

• does not go back to zero in the period equal to the current pulse duration.

5.3.1 Temporal integration of two current pulses

• We will show first that temporal integration is achieved when the membrane time constant is
sufficiently long comparing with the current pulse duration.

• Integration depends on the relative value of the membrane time constant τm

• In the example, pulses are tp = 1 ms duration and repeated every 5 ms.

Short membrane time constant
τm = 0.5ms = 0.5 tp
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τ = 0.50 ms

The membrane voltage is NOT integrated.

Long membrane time constant
τm = 2.5ms = 2.5 tp
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τ = 2.50 ms

The membrane voltage is integrated (summed
up).
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Exercise 5. 2
Modify the TempInteg.m script to produce the plots as in sec. 5.3.1
2 5 marks

5.3.2 Temporal integration of many current pulses

• To investigate further the problem of temporal integration let us observe the membrane voltage
after injection of 20 pulses of duration tp = 1ms.

• The time intervals between pulses randomly vary by 20% from its average value of 3ms.

Short membrane time constant
τm = 0.3ms = 0.3 tp
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τ = 0.30 ms

• Nothing interesting happens.
The voltage resembles the current pulses.
The membrane is too quick to respond.

Long membrane time constant
τm = 20ms = 20 tp
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τ = 20.00 ms

• Here the membrane reacts slower to the pulses
— the voltages caused by each current pulse
are “stretched out” in time and therefore add
up.

• This is temporal integration.

Exercise 5. 3
Modify the TempInteg.m script to produce the plots as in sec. 5.3.2.
Change:

• the pulse duration to tp = 1.5ms,

• the average interval between pulses to t0 = 4.5ms, so that the pulse repetition period is
tr = 6ms,

• random variations of the distance between pulses to rv=30%.
2 5 marks
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5.3.3 Membrane as a frequency detector

• In this example the pulses have been generated with three different frequencies.

• We can observe that withe a membrane with a long time constant act as frequency detector.
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• You can clearly see when the frequency changes.

• The membrane voltage replicates the frequency changes after a not settle down period.

• The voltages induced by current spikes are called Post-Synaptic Potentials (PSPs)

Exercise 5. 4
Modify the TempInteg.m script to produce the plot as in sec. 5.3.3. Use the pulse parameters
as in the previous exercise.
2 5 marks
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5.4 Model of Post-Synaptic Potentials
The postsynaptic potential (PSP) is typically modeled by means of the alpha functions:

y = t · e−
t

τα (1)

Note that y attains maximum for time: t = τα. The maximum is equal to ym = τα · e−1.
Dividing y by ym we get the alpha function with the maximum equal to one. Renaming y to
current Iin we get

Iin = Im · t

τα

· e1− t
τα (2)

Figure 3: Alpha functions with onset at 5 ms and amplitude of 5 µA/cm2. Three curves with τα =
2, 4, 6 ms. Note that τα equals the time from onset to peak. τα also determines decay time.

The alpha function rises quickly for τα time and then falls slowly over about 5τα (a little slower than
exponentially).

It can be shown that the function as in eqn (1) can be generated recursively by the following
equation:

y(k) = 2ry(k − 1)− r2y(k − 2) + tsrδ(k) (3)

where r = e−
ts
τα is the decaying factor
ts is the sampling time
τα is the time constant

δ(k) =

{
1 for k = 0
0 for k 6= 0

Exercise 5. 5
Use the recursion (3) and develop a MATLAB script that produces the plots as in Figure 3.
2 10 marks
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5.5 Hodgkin-Huxley model
Please read Lecture Notes for full explanation. Here we present equations that are used in the
simulation script.

Figure 4: The Hodgkin-Huxley parallel conductance model

The membrane voltage equation:

C · dVm

dt
= glk · (Elk − Vm) + gK · (EK − Vm) + gNa · (ENa − Vm) + Iin (4)

Membrane capacitance: C = 1µF/cm2

5.5.1 Potassium Channel

Potassium battery: EK = −12 mV relative to the resting potential of the axon.
Potassium conductance:

gK = GK · n4 (5)

Maximum Potassium conductance: GK = 36 mS/cm2

Activation particle n:

τn
dn

dt
= n∞ − n (6)

A time constant and a steady-state value:

τn =
1

αn + βn

, n∞ = αn · τn =
αn

αn + βn

(7)

The voltage-dependant rate constants:

αn(V ) =
10− V

100(e(10−V )/10 − 1)
, βn(V ) = 0.125e−V/80 (8)

where V is the membrane potential relative to to the axon’s resting potential in millivolts.
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5.5.2 Sodium Channel

Sodium battery: ENa = 115 mV sodium reversal potential relative to the resting potential of the
axon.
Sodium conductance:

gNa = GNa ·m3 · h (9)

Maximum Sodium conductance: GNa = 120 mS/cm2

τm
dm

dt
= m∞ −m τh

dh

dt
= h∞ − h (10)

The time constants and steady state values are defined in terms of the rate constants:

τm =
1

αm + βm

m∞ = αm · τm =
αm

αm + βm

τm =
1

αm + βm

(11)

h∞ = αh · τh =
αh

αh + βh

(12)

The voltage-dependant rate constants are experimentally derived to be equal to

αm(V ) =
25− V

10(e(25−V )/10 − 1)

βm(V ) = 4e−V/18

αh(V ) = 0.07e−V/20 (13)

βh(V ) =
1

e(30−V )/10 + 1

5.5.3 Membrane Leakage

Leakage conductance: glk = 0.3 mS/cm2 is voltage-independent.
Leakage battery is calculate from the equilibrium condition:

gK(Vm) · (EK − Vm) + gNa(Vm) · (ENa − Vm) + glk · (Elk − Vm) = 0 (14)

where Vm is the membrane relative resting potential. Assuming for simplicity Vm = 0 we have

Elk = −gK(0) · EK + gNa(0) · ENa

glk

= 10.613 mV (15)

The above set of equations have been implemented in the MATLAb script
...\prac5\HodgHux.m

Exercise 5. 6
Run the script for different values of the current pulse Iin = 8 : 0.2 : 9.
Plot each group of results/curves on the common plots and annotate the curves with the value of the
current pulse.
2 6 marks
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Written Submission

Your written submission should include results of all exercises you have performed (relevant
MATLAB scripts, plots, numerical results, etc) with brief comments and explanations.
It should be in a form ready for electronic submission when requested.
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