
Lehmar RNG

10 Lehmer Random Number Generator. A case study

• Fast random number generators are essential blocks of many signal processing and modelling
algorithms.

• We discuss a number of possible hardware implementations of a 31-bit Lehmer Random Number
Generator (LRNG).

• Some of these implementations were described in [1] and the reader is referred to this work for further
details not presented in this case study.

• The Lehmer random number generator was used in some software packages, specifically in [2], and
the idea here is to design an integrated circuit implementing the LRNG, or embed it in a bigger design,
in order to speed up the software applications.

• We will show that generation of the next (pseudo-) random numbers by LRNG can be reduced to
addition/subtraction of not more than seven appropriately rotated copies of the current random number
modulo a specific Mersenne prime number.

• Such operation can be performed in at least three different ways, namely: word-parallel, word-serial
and bit-serial. These three ways are typical to all arithmetic algorithms.

• This aspect makes the LRNG case study a good representative of a big class of signal processing
algorithms.

October 7, 2004 10–1 A.P.Paplínski

Lehmar RNG 10.1 Description of Lehmar random number generator

10.1 Description of Lehmar random number generator

The Lehmer random number generator belongs to the class of the linear multiplicative congruential
generator.

It generates 31-bit uniformly distributed pseudo-random numbers.

The main part of the generator, NRN, produces thenext random number, R, from the current random
number,Z, as in Figure 10–1.

NRN
R = a · Z modM

?

?

′31

′31

Z

R

Figure 10–1:The Next Random Number (NRN) block of the Lehmer random number generator.

The algorithm can be described by the following multiplicative congruential expression:

R = a · Z modM

(R anda · Z are congruent moduloM)
(10.1)

(Note that we have
a · Z
M

= Q +
R

M
)

October 7, 2004 10–2 A.P.Paplínski

Lehmar RNG 10.1 Description of Lehmar random number generator

R = a · Z modM

where

• Z andR are thecurrent and thenext random numbers, respectively,

• a is a specially selected 15-bitmultipier :

a = 75 = 16807 = (100 0001 1010 0111)2

with seven ones located in the positions: 14, 8, 7, 5, 2, 1, 0,

• M is themodulus:
M = 231 − 1

which is a 31-bit Mersenne prime number.

It can be shown that using eqn (10.1) recursively, and starting with any seed number

Z ∈ [1 . . . M − 1]

we will generateM − 2 different numbers.

At every step generated numbers are uniformly distributed in the rangeR ∈ [1 . . . M − 1].
If we interpret generated pseudo-random numbers as fractions, then we have:

R · 2−31 ∈ [2−31 . . . 1− 2−30]

October 7, 2004 10–3 A.P.Paplínski

Lehmar RNG 10.2 The implementation method

10.2 The implementation method

In the subsequent sections we will show that the LRNG algorithm to be implemented be the NRN circuit
and described by eqn (10.1) can be reduced to the following operations:

R = (E14 + E8 + E7 + E5 + E2 + E1 + E0) modM (10.2)

= (E14 + E8 + E7 + E5 + E3 − E0) modM (10.3)

where
Ei = lrot (i, Z)

is the left rotation of the 31-bit input numberZ

Z = z30z29 . . . z31z0

by i positions. Obviously we haveE0 = Z. For future reference, the rotated input numbers are collected in
the following matrix:



E14

E8

E7

E5

E2

E1

E0



=



z16 z15 z14 ...z0 z30... z24 z23 z22 z21 z20 z19 z18 z17

z22 z21 z20 . . . z30 z29 z28 z27 z26 z25 z24 z23

z23 z22 z21 . . . z0 z30 z29 z28 z27 z26 z25 z24

z25 z24 z23 . . . z2 z1 z0 z30 z29 z28 z27 z26

z28 z27 z26 . . . z5 z4 z3 z2 z1 z0 z30 z29

z29 z28 z27 . . . z6 z5 z4 z3 z2 z1 z0 z30

z30 z29 z28 . . . z7 z6 z5 z4 z3 z2 z1 z0



(10.4)

October 7, 2004 10–4 A.P.Paplínski

Lehmar RNG 10.2 The implementation method

Hence, theLRNG algorithm can be implemented by either

• adding sevenappropriately rotated 31-bit numbers moduloM as in eqn (10.2),

R = (E14 + E8 + E7 + E5 + E2 + E1 + E0) modM

or

• adding five and subtracting onenumber as in eqn (10.3)

R = (E14 + E8 + E7 + E5 + E3 − E0) modM

We will show that addition moduloM = 231 − 1 can be easily performed using acyclic carry method,
that is, adding the output carry back to the least significant position.

October 7, 2004 10–5 A.P.Paplínski

Lehmar RNG 10.3 Basic properties of the modulo operation

10.3 Basic properties of the modulo operation

In what follows we need to use a few basic properties of the modulo operations. We start with the
following definition:

A = B modM (A andB are congruent moduloM)

⇐⇒ there exists an integerq such thatB = q ·M + A
(10.5)

In other wordsA is a remainder from division ofB by M .

Example

19 mod7 = (2 · 7 + 5) mod7 = 5 (5 and 19 are congruent modulo 7)

12 mod7 = (1 · 7 + 5) mod7 = 5 (5 and 12 are congruent modulo 7)

From the definition (10.5) we can easily prove the following two useful properties:

Property 1: For any integerq we have

(q ·M + r) modM = r modM (10.6)

Property 2: Addition moduloM is distributive, that is:

(A + B) modM = (A modM + modM) (10.7)

Example:
(11 + 8) mod7 = (11 mod7 + 8 mod7) mod7 = (4 + 1) mod7

October 7, 2004 10–6 A.P.Paplínski

Lehmar RNG 10.4 Derivation and transformations of the LRNG algorithm

10.4 Derivation and transformations of the LRNG algorithm

Using the above two properties of the modulo operation, we can decompose the algorithm (10.1) into the
following sum:

R = a · Z modM = (100 0001 1010 0111)2 · Z modM

= (Z · 214 + Z · 28 + Z · 27 + Z · 25 + Z · 22 + Z · 2 + Z) modM

= (E14 + E8 + E7 + E5 + E2 + E1 + E0) modM (10.8)

where
Ei = Z · 2i modM (10.9)

The method ofevaluatingEi defined in eqn (10.9) is graphically depicted in Figure 10–2. We start with

Ci Di Z

Ci Di Z · 2i

Di Ci Ei

� 31 -
� i -

� i - � i -

PPPPPPPPPPPPPq

Figure 10–2: Graphical illustration of formation ofEi

partitioning the 31-bit input numberZ into ani-bit more significant part and the(31− i)-bit less significant
part, so that we have:

Z = Ci · 231−i + Di

October 7, 2004 10–7 A.P.Paplínski

Lehmar RNG 10.4 Derivation and transformations of the LRNG algorithm

After shiftingZ by i positions we have

Z · 2i = Ci · 231 + Di · 2i

Now, performing the moduloM operation and applying properties (10.6) and (10.7), we can evaluateEi in
the following way:

Ei = Z · 2i modM = (Ci · 231 + Di · 2i) modM

= (Ci · 231 − Ci + Ci + Di · 2i) modM = (Ci · (231 − 1) + Di · 2i + Ci) modM

= (Ci ·M + Di · 2i + Ci) modM

and finally, after dropping outCi ·M , we have

Ei = (Di · 2i + Ci) modM = lrot (i, Z) (10.10)

which shows thatEi can be indeed created by the lefti-position rotation of the input numberZ.

In order to consider a method ofaddition modulo M we first observe that a standard addition or
subtraction of two 31-bit numbers can be represented be the following equation:

Σ

? ?

�

?

A B
d31

S

A±B = d31 · 231 + S (10.11)

whereS is the 31-bit sum andd31 is the output carry.
In general, for additiond31 ∈ {+1, 0}, and for subtractiond31 ∈ {0,−1}.

October 7, 2004 10–8 A.P.Paplínski

Lehmar RNG 10.4 Derivation and transformations of the LRNG algorithm

October 7, 2004 10–9 A.P.Paplínski

Lehmar RNG 10.4 Derivation and transformations of the LRNG algorithm

Now, performing the moduloM operation and applying properties (10.6) and (10.7), we can obtain the
following 31-bit resultF :

F = (A±B) modM = (d31 · 231 + S) modM = (d31 · 231 − d31 + d31 + S) modM

= (d31 ·M + S + d31) modM

and finally we have
F = (A±B) modM = S + d31 (10.12)

This is an elegant result which states that addition/subtraction moduloM = 231− 1 is equivalent to acyclic
addition in which the output carry from the most significant position is fed back and added to the least
significant position as illustrated in Figure 10–3.

ADD/SUB

?
′31

A

?
′31

B

?

′31

F

� �
d31 c0 ≡ Σ modM

?
′31

A

?
′31

B

?

′31

F

Figure 10–3:The cyclic addition/subtraction of two 31-bit numbers.

It can be easily shown that feeding back the output carry does not result in an unstable circuit in which the
output carry oscillates between 0 and 1. Note that the output carryd31 = 1 is generated by the most
significant position with bitsai andbi being both equal to 1 irrespective of the input carry to thei-th
position. This fact makes oscillations impossible.

October 7, 2004 10–10 A.P.Paplínski

Lehmar RNG 10.4 Derivation and transformations of the LRNG algorithm

To illustrate this fact consider the worst case scenario as shown in the following example.

1 . . . 1 1 1 . . . 1

d31 = 1 0 . . . 0 1 0 . . . 0 c0 = 1

�
�

�
�� �� �� �

It the example there is only one carry-generate position, all others propagate carry through.

The output carryd31 = 1 is independent of the input carryc0.

The next example further clarifies the principle of the cyclic addition:

6 5 4 3 2 1 0

0 1 1 0 0 1

1 0 1 1 0 1

1 0 0 0 1 1 0

1 = c6

0 0 0 1 1 1

�
��
XXXXXXXX -

There is an output carryc6 = 1 originated from the 3rd position.
After adding it to the least significant position, only this position has been modified.

October 7, 2004 10–11 A.P.Paplínski

Lehmar RNG 10.5 Word-parallel implementation of the LRNG

10.5 Word-parallel implementation of the LRNG

The word-parallel implementation of the Next Random Number (NRN) circuit is a structured
combinational circuit consisting of a number of appropriately connected adders and subtractors to add
seven or six numbers as in eqn (10.2) or (10.3).
The first approach to build a word-parallel LRNG is presented in the left-hand side of Figure 10–4.
This implementation is based on six serially connected 31-bitcarry-propagate moduloM adders such as
presented in Figure 10–3. The adders add seven numbers moduloM generating the next 31-bit random
numberR.
This solution has two drawbacks: firstly, that adders a connected serially, and secondly, that a
carry-propagate adders are used. The adding time in the worst case situation is

t1 = 6× 31× ta = 186 ta

whereta is the propagation time for a single 1-bit adder. For simplicity, we assumed that the carry is
propagate serially through the 31-bit adder.
An improvement to this solution is presented in the right-hand side of Figure 10–4. Here, the six adders are
connected in a form of a tree (the Wallace tree) and the number of adder levels is reduced to three. Hence
the maximum value of the adding time has been reduced to

t2 = 3× 31× ta = 93 ta

Some improvements can be made by speeding up the carry-propagate circuit. If we assume that the
speeding factor is four, we can reduces the NRN formation time to46 ta and23 ta, respectively.

October 7, 2004 10–12 A.P.Paplínski

Lehmar RNG 10.5 Word-parallel implementation of the LRNG

Σ modM

? ?
31′ 31′

Σ modM

? ?
31′ 31′

Σ modM

? ?
31′ 31′

Σ modM

? ?
31′ 31′

Σ modM

? ?
31′ 31′

Σ modM

? ?
31′ 31′

?

31′
R

E14 E8

E7

E5

E2

E1

E0 = Z

Σ modM

? ?
31′ 31′

Σ modM

? ?
31′ 31′

Σ modM

? ?
31′ 31′

E14 E8 E7 E5 E2 E1 Z

Σ modM

? ?
31′ 31′

Σ modM

? ?
31′ 31′

Σ modM

? ?
31′ 31′

?

31′
R

Figure 10–4:Word-parallel implementation of the NRN circuit based on the carry-propagate adders.

October 7, 2004 10–13 A.P.Paplínski

Lehmar RNG 10.5 Word-parallel implementation of the LRNG

Radical improvement in the adding time is achieved by replacing the carry-propagate adders with the
carry-save adders.

The 31-bitcarry-save adder(CSA) is build from 31 standard 3-input 2-output adders as discussed
previously. For convenience we repeat here an arithmetic relationship linking inputs and outputs of the

1-bit adder:

Σ

? ? ?

�
�� ?

ai bi ci

di si

2 · di + si = ai + bi + ci (10.13)

wheredi andsi are the output carry and sum, respectively,ai, bi, ci being three inputs.

In then-bit carry-save adder the carry bits generated at the individual positions are not transferred to the
next position as in the carry-propagate adder, but instead they directly form the second output.

Therefore, the input and output n-bit words are related in a way as in the 1-bit adder, namely:

October 7, 2004 10–14 A.P.Paplínski

Lehmar RNG 10.5 Word-parallel implementation of the LRNG

CSA
? ? ?

�
�� ?

A B C

D S

2 ·D + S = A + B + C (10.14)

Comparing the carry-save adder described by eqn 10.14 with its carry-propagate counterpart described by
eqn 10.11 we note that

• the carry-propagate adder addstwo n-bit numbers and generates ann-bit sum and a1-bit output
carry ,

• the carry-save adder addsthree n-bit numbers and generates andn-bit sum and ann-bit output carry .
Note that because the carry is not propagated between position the result is ready after the timeta.

The 31-bitcarry-save adder modulo M can be easily obtained from the standard carry-save adder in the
following way:

(A + B + C) modM = (2 ·D + S) modM = S + D̂ (10.15)

where
D̂ = 2 ·D modM = (d29 d29 . . . d0 d30)2 (10.16)

In order to perform the moduloM carry-save addition, the most significant carry bit,d30 must be rotated
over to the least significant position, as for the carry-propagate addition.

In other words the moduloM addition requires no modification to the CSA adder and only a
rearrangement of the carry bits is needed to obtain the correct result.

October 7, 2004 10–15 A.P.Paplínski

Lehmar RNG 10.5 Word-parallel implementation of the LRNG

CSA

? ? ?

31′ 31′ 31′

i
C B A

D

D̂

S
CSA

? ? ?

31′ 31′ 31′

i
C B A

D

D̂

S

CSA

? ? ?

31′ 31′ 31′

i
C B A

D

D̂

S

CSA

? ? ?

31′ 31′ 31′

i
C B A

D

D̂

S

CSA

? ? ?

31′ 31′ 31′

i
C B A

D

D̂

S

Σ modM

? ?
31′ 31′

?

31′
R

E14 E8 E7E5E2 E1 Z • The word-parallel NRN circuit based on a tree of the moduloM

carry-save adders.

• This implementation combines carry-save adders arranged in a
tree as in Figure 10.5.

• The circle on the carry output,̂D, symbolizes the left rotation
operation as described in eqn (10.16).

• The NRN circuit consists of 4 levels of the carry-save adders
moduloM and a final carry-propagate adder which generates the
next random number,R.

• The nominal time to obtain the result is now:

t3 = (4 + 31/4)× ta ≈ 12 ta

which is a significant improvement on the carry-propagate
solution.

• The question remains whether application of eqn (10.3) can
deliver a better implementation to the one discussed above.

Subtraction of one number requires an additional circuit.

October 7, 2004 10–16 A.P.Paplínski

Lehmar RNG 10.5 Word-parallel implementation of the LRNG

CSA

? ? ?

31′ 31′ 31′

i
C B A

D

D̂

S
CSA

? ? ?

31′ 31′ 31′

i
C B A

D

D̂

S

CSA

? ? ?

31′ 31′ 31′

i
C B A

D

D̂

S

CSA

? ? ?

31′ 31′ 31′

i
C B A

D

D̂

S

CSinc

? ?

31′ 31′

i
B A

D

D̂

S

Σ modM

? ?
31′ 31′

?

31′
R

E14 E8 E7 E5 E3 Z

• The simplest solution seems to be the one based on the following
modification of eqn (10.3) in which the subtraction is replaced
with complementation and an increment (−E0 = E0 + 1):

R = (E14 + E8 + E7 + E5 + E3 + E0 + 1) modM (10.17)

• The block-diagram of the NRN circuit based on the above
equation is is similar to that presented before, however,

• one carry-save adder has been replaced by a carry-save
incrementer, CSinc.

• Logic equations for such an incrementer are as follows:

si =

 ai ⊕ bi for i = 0

ai ⊕ bi for i = 1 . . . 30
di =

 ai + bi for i = 0

ai · bi for i = 1 . . . 30
(10.18)

October 7, 2004 10–17 A.P.Paplínski

Lehmar RNG 10.6 Block-diagram of the complete generator

10.6 Block-diagram of the complete generator

The complete generator consists of the Next-Random-Number circuitry as described previously, a register
storing the current random number,Z, and a multiplexer to load the seed (an initial random number).

Operation table

op operation
0 Z ⇐ Z nop
1 Z ⇐ (a · Z)modM generate nextZ
2 Z ⇐ Zs load seed

October 7, 2004 10–18 A.P.Paplínski

Lehmar RNG 10.6 Block-diagram of the complete generator

October 7, 2004 10–19 A.P.Paplínski

Lehmar RNG 10.6 Block-diagram of the complete generator

October 7, 2004 10–20 A.P.Paplínski

Lehmar RNG 10.6 Block-diagram of the complete generator

October 7, 2004 10–21 A.P.Paplínski

Lehmar RNG 10.6 Block-diagram of the complete generator

October 7, 2004 10–22 A.P.Paplínski

Lehmar RNG 10.6 Block-diagram of the complete generator

October 7, 2004 10–23 A.P.Paplínski

Lehmar RNG 10.6 Block-diagram of the complete generator

October 7, 2004 10–24 A.P.Paplínski

Lehmar RNG REFERENCES

References

[1] A. P. Paplínski and N. Bhattacharjee. Hardware implementation of the Lehmer random number generator.IEE Proc.-Comput. Digit. Tech.,
143(1):93–95, January 1996.

[2] The MathWorks Inc.Using MATLAB, 2000.

October 7, 2004 10–25 A.P.Paplínski

