Lehmar RNG

10 Lehmer Random Number Generator. A case study

e Fast random number generators are essential blocks of many signal processing and modelling
algorithms.

e We discuss a number of possible hardware implementations of a 31-bit Lehmer Random Number
Generator (LRNG).

e Some of these implementations were described in [1] and the reader is referred to this work for furthe
details not presented in this case study.

e The Lehmer random number generator was used in some software packages, specifically in [2], and
the idea here is to design an integrated circuit implementing the LRNG, or embed it in a bigger desigt
in order to speed up the software applications.

e We will show that generation of the next (pseudo-) random numbers by LRNG can be reduced to
addition/subtraction of not more than seven appropriately rotated copies of the current random numb
modulo a specific Mersenne prime number.

e Such operation can be performed in at least three different ways, namely: word-parallel, word-serial
and bit-serial. These three ways are typical to all arithmetic algorithms.

e This aspect makes the LRNG case study a good representative of a big class of signal processing
algorithms.
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10.1 Description of Lehmar random number generator

The Lehmer random number generator belongs to the class of the linear multiplicative congruential
generator.

It generates 31-bit uniformly distributed pseudo-random numbers.

The main part of the generator, NRN, producesrtéet random number, R, from the current random
number,7Z, as in Figure 10-1.
Z
ol

NRN
R=a-ZmodM

31T
R

Figure 10-1.The Next Random Number (NRN) block of the Lehmer random number generator.

The algorithm can be described by the following multiplicative congruential expression:

R=a-Z modM (10.1)
(R anda - Z are congruent moduld/) '

(Note that we have
a- sz R

TR

)
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R=a-7Z modM
where
e Z andR are thecurrent and thenext random numbers, respectively,
e a is a specially selected 15-brtultipier :

a = 7" = 16807 = (100 0001 1010 0111)

with seven ones located in the positions: 14, 8,7, 5, 2, 1, O,

e M is themodulus:
M=2"—1

which is a 31-bit Mersenne prime number.
It can be shown that using egn (10.1) recursively, and starting with any seed number
Zell ... M—1]

we will generateVl — 2 different numbers.

At every step generated numbers are uniformly distributed in the rBngel ... M — 1].
If we interpret generated pseudo-random numbers as fractions, then we have:

R-27%epst o127
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10.2 The implementation method

In the subsequent sections we will show that the LRNG algorithm to be implemented be the NRN circuit
and described by egn (10.1) can be reduced to the following operations:

R = (E14 + FEs+ E7+ Es+ Es+ Eq + E()) mod M (102)
= (B + Es+ E; + Es + B3 — Ey) mod M (10.3)
where
E; =1rot (¢, 2)

IS the left rotation of the 31-bit input numbg&r
Z = 230229 - . - 23120

by positions. Obviously we havE, = Z. For future reference, the rotated input numbers are collected in
the following matrix:

_ Fiy _ _ 216 #15 %14 «--20 230--- 224 223 222 221 <20 <19 £18 <17 _
Ey 222 221 220 e 230 <29 228 <27 226 <25 ~24 <23
FEr 223 222 221 ce R0 <30 229 228 227 226 <25 224
Es | = | za5 204203 ... 22 21 20 230 229 228 227 226 (10.4)
Es 208 297 226 ... 25 24 23 22 Z1 20 230 229
Er 209298 207 ... 26 25 24 23 Z2 21 20 230
I Ey . | 230 <29 <28 KT <6 <5 <4 <3 <2 &1 <) |
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Hence, thd. RNG algorithm can be implemented by either
e adding sevenappropriately rotated 31-bit numbers modulbas in egn (10.2),
R=(Fu+ Es+ E;+ E5+ Ey + Ey + Ey) mod M
or
¢ adding five and subtracting onenumber as in egn (10.3)

R:(E14+E8+E7+E5+E3—Eo)mOdM

We will show that addition moduld/ = 23! — 1 can be easily performed usingwclic carry method,
that is, adding the output carry back to the least significant position.
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10.3 Basic properties of the modulo operation

In what follows we need to use a few basic properties of the modulo operations. We start with the
following definition:
A= BmodM (A andB are congruent modul®/)

10.5
<= there exists an integersuchthatB =¢- M + A ( )

In other wordsA is a remainder from division aB by M.

Example

19mod7=(2-7+5)mod7=>5 (5and 19 are congruent modulp 7
12mod7 = (1-7+5)mod7 =15 (5and 12 are congruent modulp 7

From the definition (10.5) we can easily prove the following two useful properties:

Property 1: For any integer; we have

(¢g- M +r)modM =r modM (10.6)

Property 2: Addition modulo)/ is distributive, that is:
(A+ B)modM = (AmodM + mod M) (10.7)

Example:
(11+8)mod7 = (11 mod7 + 8 mod7) mod7 = (4 + 1) mod7
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10.4 Derivation and transformations of the LRNG algorithm

Using the above two properties of the modulo operation, we can decompose the algorithm (10.1) into the
following sum:

R = a-ZmodM = (100 0001 1010 0111)5 - Z mod M
— (Z- M4+ 2. 842242224+ 2-2*+7Z-2+ Z)modM

= (B4 + Es+ E7 + E5 + By + Ey + Ey) mod M (10.8)
where
E,=Z7-2"modM (10.9)
The method otvaluating E; defined in eqn (10.9) is graphically depicted in Figure 10-2. We start with
re X 31 >
— —> I
e i
Ci \:\ D; AL

Figure 10-2: Graphical illustration of formation 6}

partitioning the 31-bit input numbéf into ani-bit more significant part and tH81 — 7)-bit less significant
part, so that we have:
Z = CZ : 231—i + D;
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After shifting Z by i positions we have
Z-2=C;- 2+ D; - 2

Now, performing the moduld/ operation and applying properties (10.6) and (10.7), we can evalijate
the following way:

E, = Z-22modM = (C;-2*' + D; - 2") mod M
= (C;- 22— Ci+Ci+ D;-2)ymodM = (C; - (2° — 1)+ D; - 2' + C;) mod M
= (CZM+DZ2Z+CZ>mOdM

and finally, after dropping out’; - M , we have
E; = (D;-2"+C;) modM = Irot (i, Z) (10.10)
which shows that); can be indeed created by the leftosition rotation of the input numbe.

In order to consider a method afldition modulo M we first observe that a standard addition or
subtraction of two 31-bit numbers can be represented be the following equation:
4 B
5 A+ B=dy 221+ 8 (10.11)
1S
whereS is the 31-bit sum ands; is the output carry.
In general, for additiors; € {+1,0}, and for subtractiods, € {0, —1}.

ds]
—
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Now, performing the modul@d/ operation and applying properties (10.6) and (10.7), we can obtain the
following 31-bit resultF”

F = (A+£ B)modM = (d3; - 2°' + S) mod M = (ds; - 2°" — d3; + d3; + S) mod M
= (d31 M+ S+ d31) mod M
and finally we have
F = (A + B) modM = S + d3; (10.12)

This is an elegant result which states that addition/subtraction mddwo23! — 1 is equivalent to &yclic
addition in which the output carry from the most significant position is fed back and added to the least
significant position as illustrated in Figure 10-3.

A B A B
31 31 31 31

d
311 ADD/SUB <2

31y 31t
YF F

Figure 10-3:The cyclic addition/subtraction of two 31-bit numbers.
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It can be easily shown that feeding back the output carry does not result in an unstable circuit in which th.
output carry oscillates between 0 and 1. Note that the output darey 1 is generated by the most

significant position with bitsa; andb; being both equal to 1 irrespective of the input carry to:thie

position. This fact makes oscillations impossible.
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To illustrate this fact consider the worst case scenario as shown in the following example.

1. 11 .1
dy=10 ... 000 ... 0 ¢=1

)

It the example there is only one carry-generate position, all others propagate carry through.

The output carryl;; = 1 is independent of the input carey.
The next example further clarifies the principle of the cyclic addition:

65043210

—_ O

(el eI

f

1
1
0

_—_ O

0
0
1

1
1
0
1
1

There is an output carrg = 1 originated from the 3rd position.
After adding it to the least significant position, only this position has been modified.
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10.5 Word-parallel implementation of the LRNG

The word-parallel implementation of the Next Random Number (NRN) circuit is a structured
combinational circuit consisting of a number of appropriately connected adders and subtractors to add
seven or six numbers as in egn (10.2) or (10.3).

The first approach to build a word-parallel LRNG is presented in the left-hand side of Figure 10-4.
This implementation is based on six serially connected 3tdrity-propagate moduloM adders such as
presented in Figure 10-3. The adders add seven numbers madgémerating the next 31-bit random
numberR.

This solution has two drawbacks: firstly, that adders a connected serially, and secondly, that a
carry-propagate adders are used. The adding time in the worst case situation is

ti1=6x31 xt,=186t%,

wheret,, is the propagation time for a single 1-bit adder. For simplicity, we assumed that the carry is
propagate serially through the 31-bit adder.

An improvement to this solution is presented in the right-hand side of Figure 10—4. Here, the six adders a
connected in a form of a tree (the Wallace tree) and the number of adder levels is reduced to three. Henc
the maximum value of the adding time has been reduced to

o =3x3l xt, =931,

Some improvements can be made by speeding up the carry-propagate circuit. If we assume that the
speeding factor is four, we can reduces the NRN formation timdé tpand23¢,, respectively.
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3 3 3 3 3 3 3 3

Y mod M Y mod M Y mod M Y mod M
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Y mod M Y mod M Y mod M
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Y Y 3 3
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E,
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Y mod M
E;
a3
Y mod M
Ey=27
a3
> mod M

1

Figure 10-4Word-parallel implementation of the NRN circuit based on the carry-propagate adders.
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Radical improvement in the adding time is achieved by replacing the carry-propagate adders with the
carry-save adders.

The 31-bitcarry-save adder(CSA) is build from 31 standard 3-input 2-output adders as discussed
previously. For convenience we repeat here an arithmetic relationship linking inputs and outputs of the

1-bit adder: la'lb' &

)y
di/ lSz‘

whered; ands; are the output carry and sum, respectivelyb;, c; being three inputs.

2-di+s@-:a@-—|—b¢+ci (1013)

In the n-bit carry-save adder the carry bits generated at the individual positions are not transferred to the
next position as in the carry-propagate adder, but instead they directly form the second output.

Aegp T i

sl-- =)=
l & G ¥ Hg, bs

$30

Therefore, the input and output n-bit words are related in a way as in the 1-bit adder, namely:
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4B
CSA 2-D+S=A+B+C (10.14)

DY 1S

Comparing the carry-save adder described by egn 10.14 with its carry-propagate counterpart described |
eqn 10.11 we note that

e the carry-propagate adder add® n-bit numbers and generatesraiit sum and al-bit output
carry,

e the carry-save adder adtisee n-bit numbers and generates antit sum and am-bit output carry .
Note that because the carry is not propagated between position the result is ready after the time

The 31-bitcarry-save adder modulo M can be easily obtained from the standard carry-save adder in the
following way:

(A+ B+C)modM = (2-D+S)modM = S+ D (10.15)
where

A

D=2-DmodM = <d29 dog . .. dy d30)2 (1016)

In order to perform the modul®d/ carry-save addition, the most significant carry Bit, must be rotated
over to the least significant position, as for the carry-propagate addition.

In other words the moduld/ addition requires no modification to the CSA adder and only a
rearrangement of the carry bits is needed to obtain the correct result.
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10.5 Word-parallel implementation of the LRNG
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October 7, 2004

e The word-parallel NRN circuit based on a tree of the modulo
carry-save adders.

e This implementation combines carry-save adders arranged in a
tree as in Figure 10.5.

e The circle on the carry outpuf), symbolizes the left rotation
operation as described in egn (10.16).

e The NRN circuit consists of 4 levels of the carry-save adders

moduloM and a final carry-propagate adder which generates the
next random numbeg;.

e The nominal time to obtain the result is now:
ts = (44 31/4) x t, = 12t,

which is a significant improvement on the carry-propagate
solution.

e The question remains whether application of egn (10.3) can
deliver a better implementation to the one discussed above.

Subtraction of one number requires an additional circuit.
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31}E1431}E8 3¢E7 3¢E5 31}E3 3&Z
c B A [¢ B 4

CSA CSA
D S D S
D — Ah e The simplest solution seems to be the one based on the following
3 3y 3y modification of eqn (10.3) in which the subtraction is replaced
© B4 with complementation and an increment, = E, + 1):
D S
D JR—
3 3y 3 R=(Fuy+ Es+ FEr+ E;+ Es+ Eg+1)modM  (10.17)
c B A
H R e The block-diagram of the NRN circuit based on the above
b equation is is similar to that presented before, however,
3 : Y e One carry-save adder has been replaced by a carry-save
CSinc incrementer, CSinc.
D S
b e Logic equations for such an incrementer are as follows:
i S L Ja@b for i=0 L [ai+bi fori=0
% mod M L a; D b; for i=1...30 L a; - b; for i=1...30
31( (10.18)
R
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10.6 Block-diagram of the complete generator

The complete generator consists of the Next-Random-Number circuitry as described previously, a registe
storing the current random numbeft, and a multiplexer to load the seed (an initial random number).

Operation table

op operation
0 <=7 nop
1| Z < (a-Z)modM | generate next
2 7 <= Z load seed
-—d—jf———§ L —REGCASTER-
1 -y

J
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10.6 Block-diagram of the complete generator
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kN D st| zr
> A register :
opa
Q
Al Al0]
|\ |e | Next state logic
clk q D,
opb B register
Q N | ] nxtSt
B[0] a0
B ~b I
lk clk ¢ 4 clk D
clk D opc ‘ > .
— & == Cre State register
p cnt cr
- D Q rst
7k r ] Q
STT
Figure 6-2: The datapath of the serial adder
As intended, we have three registers A, B and C, the 1-bit adder %, Y
and a step counter, k.
For each register, we have to specify the set of operations, typically OPCOde 10810
some of operations like: hold (nop), load, shift, count, etc. Details
have been discussed in sec. 5.5.
We are now ready to consider the control unit. A good way to start is ‘ OPCdS
to prepare a flow-chart of operations in a form of a state transition
diagram which describes details of the algorithmic state machine. Figur e 6—4: The control unit
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10.6 Block-diagram of the complete generator
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10.6 Block-diagram of the complete generator
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