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Abstract

A common problem in pixelwise classification or semantic segmentation is

class imbalance, which tends to reduce the classification accuracy of minority-

class regions. An effective way to address this is to tune the loss function,

particularly when Cross Entropy (CE), is used for classification. Although sev-

eral CE variants have been reported in previous studies to address this problem,

for example, Weighted Cross Entropy (WCE), Dual Cross Entropy (DCE), and

Focal Loss (FL), each has their own limitations, such as introducing a vanishing

gradient, penalizing negative classes inversely, or a sub-optimal loss weighting

between classes, which limits their ability to improve classification accuracy or

ease of use. Focal Loss has proven to be effective at loss balancing by intensify-

ing the loss on hard-to-classify classes, however, it tends to produce a vanishing

gradient during backpropagation. To address these limitations, a Dual Focal

Loss (DFL) function is proposed to improve the classification accuray of the

unbalanced classes in a dataset. The proposed loss function modifies the scaling

method of FL to be effective against a vanishing gradient. In addition, inspired

by DCE, a regularization term has also been added to DFL to put a constraint

on the negative class labels that further reduces the vanishing gradient effect

and intensities the loss further on hard-to-classify classes. In this way, the pro-

posed loss function offers a better training performance over CE, WCE, FL and
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DCE. Experimental results show that DFL provides better accuracy in every

test run conducted over a variety of different network models and datasets.

Keywords: Cross entropy loss, deep neural networks, semantic segmentation,

class imbalance.

1. Introduction

Image segmentation plays a key role in feature or object identification, and

automatic labelling, for a diverse variety of applications, including medical imag-

ing. Deep neural network-based semantic segmentation has recently gained pop-

ularity due to its high level of accuracy and efficiency compared to manual seg-

mentation [1, 2]. A limitation of traditional approaches, such as intensity, edge

or hand-crafted feature based segmentation is that accuracy tends to degrade

in the presence of complex textures, or when image quality is low. Semantic

segmentation, overcomes these difficulties by breaking down the image into a

set of high-to-low level feature maps using encoder-decoder type deep neural

network (DNN) models and adapting these to the characteristics of the data

during training [3]. As semantic segmentation refers to pixelwise classification,

it can suffer from class imbalance, whereby the network is biased towards classes

having the greatest number of examples, which degrades overall performance [4].

To address this, a popular technique is to apply a weighting factor to the loss

function so that the probabilistic decision is balanced between the classes, which

improves classification accuracy, for example, [5], [6].

Finding the ideal class weight parameters is a challenging problem. A com-

mon technique is to set the weight factor based on the inverse of the number of

pixels belonging to each class [7], [8], [6], [9]. However, this does not guarantee

the most accurate semantic segmentation results, because the spatial distribu-

tion and correlation of the pixels has more effect on semantic segmentation

than the pixel frequency for individual classes [10]. Another approach is to use

trial and error [11], [12], [13]. Although this may yield suitable weightings, it

requires manual adjustment of weights over multiple test runs, and does not
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guarantee an optimal classification. A recent approach to finding class weights

is to identify “hard-to-classify” examples and assign greater weights to them.

For example, Lin et al, [5] introduced a variant of cross entropy (CE), Focal Loss

(FL), by defining the class weight factor as a function of the network’s predic-

tion confidence. In this way, difficult to classify examples had greater weights

than easy to classify examples, with the resulting classification outperforming

conventional weighted cross entropy (WCE).

A limitation of FL is that its gradient becomes significantly smaller than

that of original CE when the predicted output from the classification layer pre-

maturely approaches the actual output. This introduces a “vanishing gradient”

effect that dramatically slows down the training of the network. An alternative

approach by Li et al. [14] for achieving a better classification accuracy on im-

balanced datasets is the use of a Dual Cross Entropy (DCE) loss function. This

puts a constraint on negative class labels to alleviate the vanishing gradient

effect, but has the limitation that the additional regularization term actually

decreases the loss when the prediction error increases on a negative class, which

undermines the training process.

In this paper, a novel Dual Focal Loss (DFL) function is proposed, whereby

the beneficial properties of FL is integrated with that of the DCE. A modi-

fied formulation of FL is used to avoid early gradient saturation in addition

to increasing the relative loss on hard-to-classify classes, and a modified for-

mulation of DCE is used to increases the loss when the prediction error grows

higher on a negative class. The accuracy and consistency of this new method is

tested under varying conditions by performing semantic segmentation on four

different datasets using two different fully convolutional network (FCN) models:

DeepLabV3+ [15] and VGG19 [16]. The datasets used are: the MICCAI MRI

dataset for prostate segmentation [17], transrectal ultrasound (TRUS) images

for prostate segmentation, the Camvid dataset [18] and the Cityscape dataset

[19]. Results show that the proposed loss function improves the semantic seg-

mentation accuracy over some state-of-the-art loss functions, such as CE, WCE,
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FL, and GDL. The following section presents related research. The proposed

methodology is then developed in detail. Model testing and evaluation is then

performed and the results summarised.

2. Related Work

Many strategies have been proposed to address the class imbalance problem

in classification problems, including semantic segmentation. One of the most

common approaches is to balance the classes in the training data set. For exam-

ple, Havaei et al. [20] proposed a two-phase training technique where the DNN

is first trained on a dataset containing an equal number of labels of each class. A

second training is performed, keeping the weights fixed, but tuning only the out-

put layer using a more representational sample of the data. A similar strategy

was adopted by Matthew [21], using training samples with equally distributed

positive and negative examples. A limitation of these data sampling approaches

is that they require large data sets in order that the balanced, sampled data

is sufficient for training the DNN. Another approach is to replicate the data of

minority classes, commonly known as oversampling [22]. Although this method

has been shown to be effective in several studies [23], [24], [25], it can cause

overfitting [26], [27]. To address this, researchers have tried alternative meth-

ods of resampling. For example, Jo and Japkowicz [28] divided the datasets

into a number of clusters and then separately oversampled each cluster. Shen

et al. [29] selectively chose the training examples to uniformly distribute the

classes in each mini-batch. Guo and Viktor [30] produced synthetic datasets of

difficult-to-classify examples of both majority and minority classes. One prob-

lem of oversampling is that it requires additional preprocessing of data, which

is computationally expensive when the volume of data is large. An alternative

approach is undersampling majority classes in order that they have a compa-

rable size to the minority classes. Although Drummond et al. [31] show that

undersampling is preferable to oversampling in real-world domains, one limita-
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tion is that it may eliminate data required by the DNN to learn essential image

features, thereby reducing the effectiveness of the model [4].

Other researchers have addressed class imbalance by proposing modifications

to the learning algorithm, or training scheme. Thresholding is one such method,

whereby the outputs of a classifier are influenced by a threshold parameter.

Lawrence et al. [32], set the threshold value using optimization. Richard and

Lippmann [33], use a prior probability measure of the classes in the dataset

based on class frequency. An alternative approach is to apply separate costs

to each class. For example, Kukar et al. [34] impose a cost parameter to the

learning rate, so that examples with high cost have a greater effect on weight

updating. A similar, popular approach is to apply a class weight parameter

to the loss function itself [7], [8], [6], [9]. This approach typically involves

classwise magnification of the cross entropy (CE) loss function [14]. Weighted

cross entropy [35, 6], the simplest version of this approach, applies a weighting

factor to the CE loss to increase the penalty to the minority classes over the

majorities in an attempt to balance the loss between imbalanced classes. Li et

al. [14] proposed dual cross entropy (DCE) to increase the overall loss when

prediction tends to favour a negative class. Lin et al. [5] proposed Focal Loss

(FL) where the weighting factor is formulated as a function of output error so

that the hard-to-classify examples will be given greater priority over the easy

examples.

A key advantage of FL over WCE is that it offers a dynamic weighting

factor instead of fixed weighting that adapts with learning accuracy, and thus

focuses more on the minority classes, that may suffer inaccuracy due to class

imbalance. As a different approach, Sudre et al. [36] propose a non-CE based

loss function, Generalized Dice Loss (GDL), that combines the Dice coefficient

with a class weighting method. A limitation of GDL is that it tends to perform

poorly on small-sized arrays [37], because a few misclassifications in such cases

may result in a larger loss, making it difficult to achieve proper convergence.

This is why CE variants have gained a great popularity due to their suitability
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with different output structures. Although these CE variants, e.g. WCE and

FL, have shown to alleviate the class imbalance issue to some extent, they do

not put any additional constraint on negative classes that can potentially im-

prove the convergence condition. This can be achieved by Dual Cross Entropy

(DCE) [14], which uses an additional regularization term to penalize the nega-

tive classes directly, by increasing when the prediction error on negative classes

decreases, and vice-versa. This improves the accuracy by alleviating the vanish-

ing gradient problem, despite being counter-intuitive with respect to the neural

network learning rule, and balancing loss between classes. In the following sec-

tion, a modified formulation of the scaling factors in FL and DCE is presented.

This overcomes the limitations of each method to achieve greater classification

accuracy than either method alone could achieve.

3. Methodology

3.1. Weighted cross entropy loss

For the n-th input to the network, belonging to i-th class among c total

classes, Cross Entropy (CE) loss, LnCE, is a measure of the deviation between

the predicted output zn, and the expected output yn, given by

LnCE = −y>n · log zn = −
c∑
i

yi,n log(zi,n). (1)

Here, {zn = s(un) : ui,n ∈ IR and zi,n ∈ [0, 1]}, where s(·) is a classifier

activation function, typically softmax, given by

zi,n = s(ui,n) =
eui,n∑c
i e
ui,n

. (2)

When a dataset contains an unbalanced proportion of classes, the classifier

tends to focus more on the class that has the greatest number of samples. This

biases the classification performance towards the dominant class. Class imbal-

ance is very common in semantic segmentation, where the number of pixels per

class varies greatly. To address this, a common practice is to use weighted cross
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entropy (WCE), LnWCE, as the loss function. This is a variant of standard CE

with an additional class weight parameter, wi, inversely related to the number

of pixels in each class i, to balance the influence of each class. Thus

LnWCE = −
c∑
i

wiyi,n log(zn). (3)

3.2. Dual cross entropy

Dual cross entropy [14], LnDCE, adds an additional regularization term to

LnCE as

LnDCE = −
c∑
i

yi,n log(zn) + β

c∑
i

(1− yi,n) log(α+ zn). (4)

Here, β ≥ 0 and α > 0 are chosen manually to control the intensity of the loss.

The additional regularization term puts a constraint on the negative classes in

order to reduce the vanishing gradient effect. However, the gradient of this

regularization term decreases as zi,n → 1 for the negative classes, that is {zi,n :

yi,n = 0}. This prevents {zi,n : yi,n = 0} converging towards {yi,n : yi,n = 0}

as {zi,n : yi,n = 1} → {zi,n : yi,n = 0}, which is counter-intuitive, but improves

the behaviour of CE by mitigating the vanishing gradient effect. Therefore, it is

likely that the regularization term can be optimised to improve the behaviour

of the CE function further.

3.3. Focal loss

Focal Loss (FL) [5] is a variant of WCE that formulates the weighting factor

as a dynamic value by expressing it as a function of the error between zi,n and

{yi,n : yi,n = 1}, giving

LnFL = −α
c∑
i

(1− zi,n)γyi,n log(zn). (5)

In this formulation, classes with low prediction accuracy, that is, hard-to-classify

examples, result in greater loss than the easy-to-classify examples. Eq. (5)

also shows that FL employs two additional scaling coefficients, α ∈ [0, 1] and

γ ≥ 0, to control the intensity of the loss. When γ = 0, FL becomes the WCE
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and α acts as the class weight parameter. When γ ≥ 1, the weighting factor

(1−zi,n)γ increases as zi,n → 0 and vice-versa. Therefore, when zi,n is lower, for

a particular class, the weighting factor becomes proportionally larger, increasing

the loss value for that class. However, a drawback of FL is that as zi,n → yi,n,

the gradient becomes prematurely smaller than that of CE, which exacerbates

the vanishing gradient problem compared with CE.

3.4. Dual focal loss

We now propose a new loss function, Dual Focal Loss (DFL), by combining

the mechanism of FL and DCE, and improving their individual scaling factors.

First, to improve the condition of the DCE loss function, we modify the regu-

larization term, β(1− yi,n) log(α+ zn)) to β(1− yi,n) log(ρ− zi,n) as shown in

Eq. (6), where β ≥ 1 and ρ ≥ 1. It can be seen that when zi,n → 1 for neg-

ative classes, that is {zi,n : yi,n = 0}, the modified term penalizes the network

proportionally unlike DCE. Appendix A shows in detail that this modification

imposes a larger gradient than CE when the network tends to impose a false

positive on a class. It also shows that the modified regularization term intro-

duces a similar effect to FL, that is, it imposes a greater loss on hard-to-classify

classes compared to CE.

Ln modified DCE = −
c∑
i

(
yi,n log(zn) + β(1− yi,n) log(ρ− zi,n)

)
, (6)

Second, the dynamic weight factor of FL, α(1 − zi,n)γ is modified as α(|yi,n −

zi,n|)γ , where α, γ ≥ 1. This weight factor is then added to the CE loss term

instead of mulitplying (as applied in FL given by Eq. (7)). This method results

in a greater loss value and gradient in the original CE loss term, LnCE com-

pared to FL, since {yi,n, zi,n : 0 ≤ yi,n, zi,n ≤ 1}. Moreover, it allows the loss

function to explicitly take into account the error feedback from negative classes,

making the derivative of the loss function more robust. Appendix B verifies

these assumptions through detailed analysis of the behaviour of gradients of FL

and our proposed modification to it (Eq. (7)). The analysis shows that the

proposed modification to FL preserves the idea of FL by imposing a greater loss
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on hard-to-classify classes, and also improves the condition of the gradient while

doing so.

Ln modified FL = α(|yi,n − zi,n|)γ −
c∑
i

yi,n log(zn). (7)

Thus, our proposed loss function, LnDFL is

LnDFL = −
c∑
i

(
yi,n log(zn) + β(1− yi,n) log(ρ− zi,n) + α(|yi,n − zi,n|)

)
. (8)

Note that the value of the loss intensity control parameters in the loss func-

tions, such as α, β, γ and ρ, can influence the performance of the loss functions

arbitrarily, as observed in earlier studies [5, 14]. Therefore, in order to have

a fair comparison and focus on the formulation of DFL, DCE, and FL, these

parameters were set to 1 throughout this study.

Using Eq. (1),(4), (5) and (8), and putting α, β, γ, ρ = 1, we get the deriva-

tives of DCE, FL, and DFL as,

δLnCE

δzi,n
=
−yi,n
zi,n

(9)

δLnDCE

δzi,n
=
−yi,n
zi,n

+
1− yi,n
1 + zi,n

(10)

δLnFL

δzi,n
=
−yi,n
zi,n

(1− zi,n) + yi,n log(zi,n) (11)

δLnDFL

δzi,n
=
−yi,n
zi,n

+
1− yi,n
1− zi,n

+
|yi,n − zi,n|
yi,n − zi,n

. (12)

Fig. 1a and 1b show these derivatives with respect to zi,n for {yi,n : yi,n = 1}

and {yi,n : yi,n = 0} respectively. It can be seen that when {yi,n : yi,n = 1} FL

is marginally greater than CE initially, but decreases quickly compared to CE

as zi,n → yi,n, and approaches to zero. This results in a slower learning rate of

the network, and introduces the vanishing gradient problem when zi,n → yi,n.

By contrast, DFL always has a larger derivative than CE at any given point,

and thus improves the condition of FL. When {yi,n : yi,n = 1}, CE and DCE

produces identical derivative; however, when {yi,n : yi,n = 0}, the derivative of

DCE decreases exponentially as zi,n → 1, while the derivative of CE and FL

remains zero. This behaviour of DCE is counter-intuitive from the aspect that
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it penalizes the network for classifying the negative classes as true negative. We

improve this behaviour by DFL, which exponentially increases the derivative

when {zi,n : yi,n = 0} → 1, as shown in Fig. 1b. Section 3.5 discusses why

such change in derivative by DFL provides better convergence condition than

FL and DCE.

3.5. Derivative of the loss function vs. learning

During the training phase, the output of the softmax classifier function, zi,n,

given by Eq. (2), is evaluated by a loss function, L(zi,n, yi,n). As shown in Eq.

(A.3) in Appendix A, the derivative of L with respect to any softmax input,

ui,n is

δL

δui,n
= zi,n

(
δL

δzi,n
−

c∑
k

(
zk,n

δL

δzk,n

))
. (13)

Let δL
δzi,n

= qi,n. Then,

δ δL
δui,n

δqi,n
=

δ

δqi,n

(
zi,n

(
qi,n −

c∑
k

(zk,n qk,n)

))
= zi,n − z2

i,n. (14)

Here, {zi,n : 0 < zi,n < 1}. Therefore,
δ δL
δui,n

δqi,n
→ 0 when zi,n → 0, or zi,n → 1.

Otherwise,
δ δL
δui,n

δqi,n
> 0. This means that when the softmax function is used,

δL
δzi,n

proportionally affects δL
δui,n

, and the effect is significant when the value of

zi,n is within its mid-range. Therefore, if the loss value is increased, so too is the

derivative δL
δui,n

during training. However, this does not ensure better learning,

given by L(w + ∆w) < L(w), where w is a given weight in the neural network

that is subjected to change ∆w, and

∆w = f(
δL

δw
). (15)

Eq. (15) shows that ∆w will gradually decrease as the learning progresses

in order to reach w = arg minwL(w). Due to the high degree of nonlinearity

between w and L, L(w) would usually contain multiple local minima. It is

still an open research problem of how to avoid these local minima to reach the

global minimum. Nonetheless, a smaller δL
δw has a better chance of reaching the
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minimum, since a larger δL
δw will result in a greater oscillation of w around the

minimum point, reducing the likelihood of convergence. On the other hand,

a smaller δL
δw will introduce the vanishing gradient problem when the neural

network contains a large number of hidden layers. Therefore, it is important

to balance the vanishing gradient effect and the decaying of δL
δw throughout the

hidden layers. An efficient technique to achieve both effects together is to use

residual/skip connections between layers [38], which is why this technique has

gained an enormous popularity in recent years [39, 40].

The vanishing gradient, and decay of δL
δw can also be addressed through loss

functions by introducing a variable weighting factor so that δL
δw is increasingly

sensitive to error. This results in a larger gradient in shallow layers during the

inital training process, but also achieves a reduced gradient in both the shallow

and deep layers when the network is achieving greater accuracy. Although both

FL and DCE use the variable weighting factors, as shown in the earlier sections,

FL results in a vanishing gradient, and DCE hinders δL
δw to decrease when the

network is achieving greater accuracy, which prevents the deeper layers from

optimal convergence. By contrast, DFL alleviates the vanishing gradient prob-

lem, and also reduces δL
δw significantly as the predicted and actual output tend

towards convergence. In this way, DFL offers a better control of the gradient

throughout the hidden layers and thus improves the learning procedure.

4. Experimentation scheme

4.1. DNN models and datasets

Semantic segmentation tasks require a variant of DNNs known as fully con-

volutional networks FCNs, in which the fully connected layer of the DNN is

replaced by convolution and upsampling layers to produce a pixelwise classi-

fication output of an image. In this study, two different models were used:

DeepLabV3+ [15], and VGG19 FCN [3, 16] to evaluate the effectiveness of the

proposed scheme. For DeepLabV3+, ResNet-18 [41] was used as the back-
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bone architecture. The structural details and description of DeepLabV3+ and

VGG19 FCN are given in references [15] and [3] respectively.

Four different image datasets were used: (1) 3D MHD formatted images of

the prostate for 80 patients from the MICCAI Grand Challenge [17], (2) 3D

DICOM formatted volumetric Transrectal Ultrasound (TRUS) images of the

prostate for 5 patients from the Alfred Hospital, Melbourne; (3) the CamVid

dataset [18]; and (4) the Cityscape dataset [19]. Fig. 2 shows sample images

from each dataset. Since semantic segmentation is performed only on 2D images

in this study, the volumetric images of MRI and TRUS datasets were converted

into sets of 2D images. Each 2D MRI and TRUS image consisted of only two

pixel classes: prostate and background. The prostate regions were manually

segmented by expert radiologists to provide a ground truth comparison. The

CamVid dataset contains a collection of streetview images of a city taken while

driving. These images are comprised of 32 pixel classes such as road, car, pave-

ment, and pedestrian. In this study, some of these classes have been merged

together to simplify the training. This reduced the total number of classes to 11,

consisting of: sky, cars, buildings, trees, fences, poles, pedestrians, bicyclists,

road, pavement, and signposts. The Cityscape dataset contains similar imagery

to the CamVid dataset. These images contain 30 pixelwise classes. The number

of classes of the Cityscape dataset was reduced to 8 by grouping multiple similar

classes to reduce training time. Images from all four datasets were resized to 224

x 224 pixels to match the default input image size of the FCN models. MRI and

TRUS images consisted of single-channelled grayscale images, whereas CamVid

and Cityscape images were three channel, RGB images. All images were in

portable network graphics (PNG) format to avoid compression loss. A sum-

mary of the image sets used is given in Table 1. Apart from CE, WCE, FL and

DCE, a non-CE based loss function - Generalized Dice Loss (GDL) [36] has also

been included due to its popularity for class-imbalanced semantic segmentation

tasks [36], [42], [43], [44], [45].
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Table 1: Size and distribution of the datasets.

Datasets Total size Training size Validation size Testing size

MRI prostate 1378 1309 35 34

TRUS prostate 55 47 4 4

CamVid 701 665 18 18

Cityscape 3301 2000 326 975

4.2. Platform and computational resource

MATLAB was used to implement the FCN models, convert the 3D volu-

metric images into 2D image sets, and train and test the FCN models. The

MASSIVE High Performance Computing (HPC) cluster at Monash University

was used for all computation. The computing unit was comprised of: 13 pro-

cessors, 120GB of RAM and an Nvidia Tesla K80 GPU. The training algorithm

throughout was Adaptive Moment Estimation (ADAM) [46]. Training param-

eters were set as follows: initial learning rate = 0.0001, learn rate drop factor

= 0.30, and learn rate drop frequency = 10. These parameters were kept con-

stant for all loss functions, FCN models and datasets. However, the number of

epochs varied for different cases, because early stopping, [47] was followed using

the validation dataset to avoid overfitting.

4.3. Metrics

Two different metrics were used to quantify the segmentation performance:

• Intersection over Union (IoU) – a similarity based metric, and

• Hausdorff distance (HD) – a surface distance based metric.

Intersection over Union is given by,

IoU(X,Y ) =
|X ∩ Y |

|X|+ |Y |+ |X ∩ Y |
, (16)

where X and Y are the corresponding pixels belonging to “ground truth” and

“predicted” region of a particular class, with ‘| |’ indicating the cardinality of

the respective sets.
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Hausdorff distance is given by,

HD(S1, S2) = max(D(A,B), D(B,A)), (17)

where

D(A,B) = max
aεS1

(min
bεS2

(||a− b||))

D(B,A) = max
bεS2

(min
aεS1

(||b− a||)).

Here, a and b are two sets of points belonging to surface S1 and S2 respec-

tively. HD is defined as the maximum of the minimum distances between the

sets of points of two surfaces. In case of semantic segmentation tasks, S1 and

S2 are 2D binary image matrices each belonging to a 3D one-hot array version

of the corresponding categorical matrix, that is, the semantic segmentation out-

put. Therefore, to measure HD for semantic segmentation, S1 and S2 are first

converted into distance maps [48, 49] to measure the surface distance. In this

study, Euclidean distance [49] was used for the distance map conversion.

4.4. Design of Experiments

Experiments were fully factorial, with two FCN models, four different datasets,

and five popular state-of-the-art loss functions, as well as the Dual Focal Loss

function. For each combination of FCN model, dataset, and loss function, 10

trials were performed using 10-fold cross-validation. The accuracy of each loss

function was measured by mean and standard deviation of IoU and HD taken

over the average accuracy of each cross-validation fold.

5. Results and discussion

5.1. Results

5.1.1. Performance with DeepLabV3+

Table 2 shows the performance of each loss function with the DeepLabV3+

FCN model across different datasets. Results show that DFL outperforms other
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five loss functions for all four datasets in terms of the mean and standard devia-

tion of both IoU and HD. The second best performing loss function is DCE, while

the relative accuracy of other loss functions was inconsistent across the different

datasets. DFL shows the greatest increase in accuracy for the MRI dataset, and

the lowest for the Cityscape dataset. The MRI dataset contains classes with the

greatest imbalance, where the pixel frequency ratio of background to prostate

region ranges is approximately 15. By contrast, the Cityscape dataset has the

fewest imbalanced classes, where the highest pixel frequency ratio between two

classes is approximately 5. A similar degree of improvement can be seen for the

CamVid dataset, where the pixel frequency ratio between two classes having

the greatest imbalance is approximately 6.

Table 2: Performance of the loss functions with DeepLabV3+

(a) Dataset: MRI prostate

Loss

functions

IoU (%) HD (mm)

Mean Std dev. Mean Std dev.

CE 86.34 1.47 1.77 1.18

WCE 83.02 1.71 1.96 1.14

DCE 88.41 1.64 1.75 1.19

FL 87.69 1.29 1.65 1.27

GDL 82.30 1.23 1.50 1.29

DFL 91.26 1.09 1.51 1.17

(b) Dataset: TRUS prostate

Loss

functions

IoU (%) HD (mm)

Mean Std dev. Mean Std dev.

CE 85.31 1.97 2.53 1.48

WCE 80.07 1.13 3.12 1.61

DCE 89.33 1.20 2.35 1.24

FL 88.47 1.04 2.46 1.22

GDL 87.27 1.01 2.48 1.25

DFL 90.40 0.96 2.31 1.17

(c) Dataset: CamVid

Loss

functions

IoU (%) HD (mm)

Mean Std dev. Mean Std dev.

CE 61.64 0.27 7.72 2.17

WCE 52.71 0.32 8.56 4.04

DCE 63.18 0.58 7.68 2.20

FL 59.93 0.43 7.83 3.08

GDL 62.09 0.34 7.41 3.91

DFL 64.99 0.17 7.03 2.11

(d) Dataset: Cityscape

Loss

functions

IoU (%) HD (mm)

Mean Std dev. Mean Std dev.

CE 57.88 0.42 4.40 1.88

WCE 47.72 0.62 4.76 1.60

DCE 61.54 0.38 4.10 1.67

FL 58.38 0.47 4.29 1.68

GDL 59.56 0.64 4.18 1.77

DFL 62.39 0.3 3.99 1.45
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5.1.2. Performance with VGG19 FCN

Table 3 shows the performance of the loss functions when VGG19 FCN was

applied to the four datasets, and shows that DFL again achieves the greatest

accuracy on all four datasets. The next most accurate loss function over all

four datasets appears to be DCE. These results, and those presented previously,

indicate that the greatest improvement to accuracy is obtained for the MRI

dataset having the greatest class imbalance. Our analysis of why this should be

so is discussed later.

Table 3: Performance of the loss functions with VGG19 FCN

(a) Dataset: MRI prostate

Loss

functions

IoU (%) HD (mm)

Mean Std dev. Mean Std dev.

CE 86.54 2.38 4.83 2.45

WCE 84.23 1.14 4.96 2.35

DCE 84.09 2.11 4.99 1.98

FL 87.80 3.34 4.22 2.33

GDL 83.73 6.36 5.13 2.29

DFL 88.65 1.76 4.12 1.81

(b) Dataset: TRUS prostate

Loss

functions

IoU (%) HD (mm)

Mean Std dev. Mean Std dev.

CE 79.05 2.69 2.91 1.33

WCE 83.33 1.46 5.76 3.34

DCE 84.41 1.83 5.7 1.88

FL 83.62 1.68 5.16 1.02

GDL 82.92 2.27 2.52 1.44

DFL 85.45 1.34 2.26 1.63

(c) Dataset: CamVid

Loss

functions

IoU (%) HD (mm)

Mean Std dev. Mean Std dev.

CE 57.45 1.15 9.70 3.38

WCE 57.81 1.64 9.27 3.55

DCE 59.26 2.18 8.81 3.50

FL 57.35 1.41 9.94 3.97

GDL 57.93 2.36 9.38 3.79

DFL 61.39 0.57 9.04 2.92

(d) Dataset: Cityscape

Loss

functions

IoU (%) HD (mm)

Mean Std dev. Mean Std dev.

CE 58.97 0.78 5.08 1.46

WCE 58.72 1.62 4.96 1.74

DCE 59.87 1.04 4.90 1.59

FL 58.92 1.08 5.11 1.32

GDL 58.87 1.12 5.16 1.29

DFL 60.68 1.03 4.60 1.54

A comparison of Tables 2 and 3 shows that DeepLabV3+ offered better

segmentation accuracy than VGG19 FCN. Some qualitative segmentation re-

sults have been demonstrated in Fig. 3 to 6 using the given loss functions with

DeepLabV3+.
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5.2. Discussion

5.2.1. Influence of DFL on class imbalance

Results in Table 2 and 3 indicate that DFL has improved the classification

accuracy for all datasets. This improvement is greater for the datasets having a

greater class imbalance. This can be seen in Fig. 3 to 6, where DFL resulted in

a greater improvement in segmentation quality for the MRI and TRUS datasets

compared to the CamVid and Cityscape datasets. As discussed in Section 3,

this is because the DFL results in a greater derivative than other loss functions

for hard-to-classify classes. In addition, it alleviated the vanishing gradient

problem by prohibiting the loss function approaching zero prematurely. This

offered a better weight tuning in the shallower layers. The reason additional

penalization for hard-to-classify classes improves the learning relates back to

the typical class imbalance problem. During backpropagation, all elements be-

longing to the output feature map contribute to the gradient that trains the

synaptic weights. Due to this, the loss derivatives received from a large num-

ber of pixels belonging to the majority class will have a greater impact on the

updating of weights compared to the loss derivatives received from the small

number of pixels of the minority class. This causes the weights to converge

more towards the majority class than the minority class. Additional scaling

of the loss derivatives belonging to the minority class pixels would balance the

learning gradient. However, achieving this balance by assigning a fixed class-

wise weight, such as WCE, derived from the prior distribution of the per-class

pixels in the dataset, would not ensure an optimal training [50]. This is why

WCE had a lower accuracy across the experimental results compared to CE. By

contrast, over-penalizing the hard-to-classify classes, in functions like FL and

DFL, resulted in a better balancing in the weight update, because they offered

a flexible on-demand weighting of the gradient throughout the training as a

function of error between actual and predicted output, making the weighting

adaptive to the outcome. This in turn resulted in a more accurate classifica-

tion with imbalanced datasets. Furthermore, Fig. 7 shows that DFL has the
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best training performance, measured as the reduction in Mean Absolute Error

at each iteration, compared to the other loss function for all combinations of

datasets and FCN models.

5.2.2. Inter-FCN model accuracy

Tables 2 and 3 shows that the overall accuracy level of DeepLabV3+ is

higher than VGG19 FCN model across the given loss functions and datasets.

The primary reason is that VGG19 FCN model does not contain any residual

connections, unlike DeepLabV3+, and, as as discussed in Section 3.5, VGG19

FCN results in a poor flow of gradients to the shallower weight layers. Although

DFL improved the accuracy compared to the other loss functions, residual con-

nections would likely improve the accuracy level significantly. Apart from these,

DeepLabV3+ offers a dilated separable convolution operation that minimizes

the effect of local noises in the image. Moreover, DeepLabV3+ performs the

pooling operation more effectively with Spatial Pyramid Pooling and Image

Pooling technique [15].

5.2.3. Vanishing gradient vs. larger relative loss

Tables 2 and 3, and Fig. 7, show that DCE has the best performance, after

DFL. This suggests that the vanishing gradient plays a significant role in the

training of FCN models, since a key focus of DCE is to mitigate against the

reducing gradient. FL appeared to be less accurate in training compared to

other loss functions for most of the cases, possibly due to premature saturation

of the gradient. However, due to a greater difference of relative loss between

hard and easy-to-classify classes, FL dealt better with the class imbalance issue

than CE as observed in MRI and TRUS segmentation results. This indicates

that mitigating the vanishing gradient problem as well as a high relative loss

difference between hard and easy-to-classify classes are both important for a

better training of the network.
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6. Conclusion

This paper has proposed a novel Dual Focal Loss (DFL) function to address

the class imbalance and class weakness problems of semantic segmentation. DFL

was primarily motivated by the idea of Focal Loss (FL) and Dual Cross Entropy

(DCE), which are two recent variants of the Cross-Entropy (CE) loss function.

DFL modifies the formulation of FL and DCE, and exploits the advantages of

each in order to achieve a better outcome than either could achieve separately.

DFL puts a greater loss value to hard-to-classify classes, but prohibits the early

saturation of gradient unlike FL. DFL also introduces an additional constraint

on negative class labels, however, with a better formulation so that it generates

a better loss feedback compared with DCE. In this way, DFL offers a better

gradient flow throughout the network, and also a better inter-class loss balance

during backpropagation.

Experiments were conducted on two different network models and four dif-

ferent datasets with 10-fold cross-validation technique to investigate the per-

formance of the loss functions in various conditions. Experimental results show

that DFL provides greater accuracy than some of the most popular state-of-the-

art loss functions including FL and DCE for different combinations of datasets

and network models. The improvement of segmentation accuracy obtained by

DFL was greater when the degree of imbalance of the dataset was greater, in-

dictating its effectiveness at addressing class imbalance. Results also show that

the vanishing gradient effect and large relative loss between unbalanced classes

both play a significant role in classification accuracy.

A limitation of this study is that it ignores the effect of additional loss inten-

sity control parameters. These are usually tuned manually, and can arbitrar-

ily influence the performance of the loss functions and classification accuracy.

Hence, it is likely that effective automatic tuning of the control parameters would

make the loss function more robust. This is currently under consideration as a

potential future study.
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Appendix A

Analysis of the behaviour of δL
δui,n

, where

L = −
∑C
i yi,n log(zi,n)−

∑C
i (1− yi,n) log(1− zi,n)

1. Derivative of the loss function with respect to any input of softmax

function

Given a softmax output, zi,n, and its corresponding expected output, yi,n,

the derivative of the loss function, L(zi,n, yi,n) = Ln modified DCE (Eq. (6)), with

respect to zi,n is
δL

δzi,n
=
−yi,n
zi,n

+ β
1− yi,n
1− zi,n

. (A.1)

From Bishop [47], the derivative of zk,n with respect to ui,n, where {k : i ∈

k and k = 1, 2, 3, . . . , c}, is

δzk,n
δui,n

=

zi,n(1− zk,n), if i = k

−zi,nzk,n, otherwise.

(A.2)

Applying the chain rule, the derivative of L with respect to ui,n is

δL

δui,n
=
∑
k

δL

δzk,n
· δzk,n
δui,n

= zi,n

(
δL

δzi,n
−
∑
k

(
zk,n

δL

δzk,n

))
. (A.3)

Putting β = 1 in Eq. (A.1), Eq. (A.3) becomes

δL

δui,n
= zi,n

(
−yi,n
zi,n

+
1− yi,n
1− zi,n

−
∑
k

(
zk,n
−yk,n
zk,n

+ zk,n
1− yk,n
1− zk,n

))

=
zi,n − yi,n
1− yi,n

− zi,n
∑
k

zk,n − yk,n
1− zk,n

=
zi,n − yi,n
1− yi,n

− zi,n

(
zj,n − 1

1− zj,n
+
∑
m

zm,n
1− zm,n

)
(A.4)

where {j : yj,n = 1}, and {m : ym,n = 0}.
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2. Derivative of the loss function with respect to the positive class

When, yi,n = 1, i = j. Therefore,

δL

δuj,n
= −1− zj,n

(
−1 +

∑
m

zm,n
1− zm,n

)

= zj,n − 1− zj,n

(∑
m

zm,n
1− zm,n

)
. (A.5)

Let, e = |zi,n − yi,n|.

Then, for yi,n = 1, |zj,n − yj,n| = −(zj,n − 1), because {zj,n : 0 < zj,n < 1}.

Thus, e = −zj,n + 1, or, zj,n = 1− e.

Hence, Eq. (A.5) becomes,

δL

δuj,n
= 1− e− 1− (1− e)

(∑
m

zm,n
1− zm,n

)

= −e− (1− e)

(∑
m

zm,n
1− zm,n

)
. (A.6)

The above equation indicates the following:

• e ≥ 0 and
∑
m

zm,n
1−zm,n ≥ 0. Therefore, δL

δuj,n
≤ 0.

• e has a direct relationship with
∑
m

zm,n
1−zm,n . It is because zj,n = 1− e, and

zj,n+
∑
m zm,n =

∑
i zi,n = 1. It means that

∑
m

zm,n
1−zm,n decreases as zj,n

increases. Thus, (1− e) has an inverse relationship with
∑
m

zm,n
1−zm,n .

• Since f(zm,n) =
zm,n

1−zm,n is a reciprocal function, a linear increase of (1−e)

causes an exponential decrease of
∑
m

zm,n
1−zm,n .

Therefore, in Eq. (A.6), as e increases, δL
δuj,n

becomes exponentially large.

3. Derivative of the loss function with respect to the negative classes

When yi,n = 0, i = m. Therefore,

δL

δum,n
=

zm,n
1− zm,n

− zm,n

(
−1 +

∑
m

zm,n
1− zm,n

)
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=
zm,n

1− zm,n
+ zm,n − zm,n

(∑
m

zm,n
1− zm,n

)

=
zm,n

1− zm,n
+ zm,n − zm,n

(
zm,n

1− zm,n
+
∑
l

zl,n
1− zl,n

)
,

where {l : l 6= m, j and yl,n = 0}.

∴
δL

δum,n
=

2zm,n − 2z2
m.n

1− zm,n
− zm,n

(∑
l

zl,n
1− zl,n

)

= zm,n

(
2−

∑
l

zl,n
1− zl,n

)
. (A.7)

When yi,n = 0, e = |zi,n − yi,n| = |zm,n − ym,n| = zm,n. Consequently,

δL

δum,n
= e

(
2−

∑
l

zl,n
1− zl,n

)
. (A.8)

There are plausible values of zl,n for which:(
2−

∑
l

zl,n
1− zl,n

)
≤ 0. (A.9)

Therefore, for certain values of zl,n, δL
δum,n

can be negative or zero. Although

this behaviour looks problematic for proper training, it discontinues shortly after

the training begins. It is because, as shown earlier, δL
δuj,n

< 1, and δL
δuj,n

→ 1.

It means that δL
δuj,n

always try to increase zj,n so that zj,n ≈ 1. This causes∑
l

zl,n
1−zl,n to decrease gradually as the training goes on, because zj,n + zm,n +∑

l zl,n = 1. As a result, even if
∑
l

zl,n
1−zl,n was large enough at the beginning

of the training that satisfies Eq. (A.9), it keeps decreasing exponentially as zj,n

increases and passes the point where Eq. (A.9) is no longer satisfied. Thus,

δL
δum,n

increases/decreases exponentially as zm,n = e increases/decreases as the

training progresses.
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Appendix B

Evidence that |yi,n − zi,n|+ LnCE produces similar δL
δui,n

to LnFL

1. Derivative of Ln modified FL with respect to any input of softmax

function

From Eq. (1), the standard CE loss is given by,

LnCE = −
c∑
i

yi,n log(zn). (B.1)

We propose to modify LnFL by adding α
∑c
i (|yi,n − zi,n|)γ to LnCE, giving

Ln modified FL = −
c∑
i

yi,n log(zn) + α

c∑
i

(|yi,n − zi,n|)γ . (B.2)

Then for any element zi,n, putting α, γ = 1 in Eq. (B.2),

δLn modified FL

δzi,n
=
yi,n
zi,n
− |yi,n − zi,n|

yi,n − zi,n
. (B.3)

Taking L(zi,n, yi,n) = Ln modified FL in Eq. (A.3),

δL

δui,n
= zi,n

(
δL

δzi,n
−
∑
k

(
zk,n

δL

δzk,n

))

= zi,n

((
−yi,n
zi,n
− |yi,n − zi,n|

yi,n − zi,n

)
−
∑
k

zk,n

(
−yk,n
zk,n

− |yk,n − zk,n|
yk,n − zk,n

))

= zi,n

((
−yi,n
zi,n
− |yi,n − zi,n|

yi,n − zi,n

)
−A

)
, (B.4)

where A =
∑
k zk,n

(
−yk,nzk,n

− |yk,n−zk,n|yk,n−zk,n

)
.

Here,
|yk,n−zk,n|
yk,n−zk,n = 1 when yk,n = 1, and

|yk,n−zk,n|
yk,n−zk,n = −1 when yk,n = 0.

Therefore,

A =

(
zj,n

(
− 1

zj,n
− 1

)
+
∑
m

zm,n

)
. (B.5)

where {j : yj,n = 1} and {m : ym,n = 0}.
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Since
∑C
i zi,n = 1,∑

m

zm,n = 1− zj,n

∴ A = (−1− zj,n + 1− zj,n) = −2zj,n (B.6)

1.1 Derivative of the loss function with respect to the positive class

When yi,n = 1, i = j, thus

δL

δui,n
= zi,n

((
− 1

zi,n
− 1

)
+ 2zj,n

)
= −1− zi,n + 2z2

i,n

= zi,n − 1− 2zi,n + 2z2
i,n

= zi,n − 1 + 2zi,n (zi,n − 1) . (B.7)

Using the above equation, when yi,n = 1, the graph of absolute error, |zi,n−yi,n|,

vs. δL
δui,n

becomes,

1.2 Derivative of the loss function with respect to the negative

classes When yi,n = 0,

δL

δui,n
= zi,n ((0 + 1) + 2zi,n) = zi,n + 2zi,nzj,n. (B.8)

The above equation contains two variables: zi,n and zj,n, where zi,n + zj,n ≤ 1.

Therefore, for yi,n = 0, the graph of |zi,n − yi,n|, vs. δL
δui,n

will be a 3D surface

plot as shown in Fig. B.2.
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2. Derivative of LnFL with respect to any input of softmax function

The focal loss function is given by,

LnFL = −
c∑
i

α(1− zi,n)γyi,n log(zn), (B.9)

where α andγ two additional loss intensity parameters such that 0 ≤ α ≤ 1 and

γ > 0.

Then, for any element, zi,n,

δLnFL

δzi,n
= −α(1− zi,n)γ

yi,n
zi,n

yi,n + αγ(1− zi,n)γ−1yi,n log(zi,n) = B, (B.10)

where B = −α(1− zi,n)γ
yi,n
zi,n

yi,n + αγ(1− zi,n)γ−1yi,n log(zi,n).

Taking L(zi,n, yi,n) = LnFL in Eq. (A.3),

δL

δui,n
= zi,n

(
B −

∑
k

(zk,nB)

)
. (B.11)

When yi,n = 1,

B = −α(1− zi,n)γ
1

zi,n
yi,n + αγ(1− zi,n)γ−1yi,n log(zi,n), (B.12)

and, when yi,n = 0, B = 0. Therefore, when yi,n = 1, δL
δui,n

becomes,

δL

δui,n
=
(
−α(1− zi,n)γ + αγ(1− zi,n)γ−1zi,n log(zi,n)

)
− zi,n

(
−α(1− zj,n)γ + αγ(1− zj,n)γ−1zj,n log(zj,n)

)
, (B.13)

where {j : yj,n = 1}.

2.1 Derivative of the loss function with respect to the positive class

When yi,n = 1, i = j. Therefore,

δL

δui,n
= D − zi,nD = D(1− zi,n), (B.14)

where D = −α(1− zi,n)γ + αγ(1− zi,n)γ−1zi,n log(zi,n).

Although Lin et al. [5] found that α = 0.25, and γ = 2 provides the best result

in their study, α = 1, and γ = 1 will be used in this analysis in order to avoid the
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influence of these additional parameters and focus primarily on the formulation

of FL. So, using α, γ = 1,

D = −(1− zi,n)2 + zi,n log(zi,n). (B.15)

The graph of the absolute error, |zi,n−yi,n|, vs δL
δui,n

is plotted using Eq. (B.14)

and (B.15).

2.2 Derivative of the loss function with respect to the negative

classes

When yi,n = 0,

δL

δui,n
= 0− zi,n

(
α(1− zi,n)γ + αγ(1− zi,n)γ−1zi,n log(zi,n)

)
= −zi,nD (B.16)

The above equation contains two variables: zi,n and zj,n, where zi,n+
∑
j zj,n =

1. Therefore, for yi,n = 0, the graph of |zi,n− yi,n| vs δL
δui,n

will be a 3D surface

plot as shown in Fig. (B.4), where D is as given in Eq. (B.15).

3 Comparison between the derivatives of Ln modified FL and LnFL

From Fig. (B.1), (B.2), (B.3), and (B.4), it can be seen that, the intensity

of both ( δL
δui,n

)modified FL and ( δL
δui,n

)FL keep increasing as |zi,n − yi,n| increases.

However, it is also noticeable that both derivatives have a local minimum when

yi,n = 1, and a local maximum when yi,n = 0, near the point, |zi,n − yi,n| ≈ 1,

where their intensity starts to decrease as |zi,n − yi,n| increases. Nevertheless,

such local extrema do not prevent the network from convergence, because both

derivatives return a non-zero negative value for any |zi,n − yi,n| > 0. The non-

zero negative value ensures that {zi,n : 0 < zi,n < 1} always tends to approach

yi,n.

A notable difference between ( δL
δui,n

)modified FL and ( δL
δui,n

)FL is that the ratio,

|( δL
δui,n

)modified FL|
|zi,n−yi,n| is always greater than 1, whereas

|( δL
δui,n

)FL|
|zi,n−yi,n| is less than 1 for

almost the entire region of |zi,n − yi,n| ∈ [0, 1]. It means that ( δL
δui,n

)modified FL

results in faster convergence than ( δL
δui,n

)FL and avoids early saturation of the

gradient.
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