
Autonomous Recharging of Swarm Robots

by

Jonathan Mullins

Thesis

Submitted by Jonathan Mullins

in partial fulfillment of the Requirements for the Degree of

Bachelor of Software Engineering with Honours (2770)

Supervisor: Dr. Bernd Meyer

Clayton School of Information Technology

Monash University

June, 2011

c© Copyright

by

Jonathan Mullins

2011

Contents

List of Tables . v

List of Figures . vi

Abstract . vii

Acknowledgments . ix

1 Introduction . 1

2 Literature Review . 3

2.1 Motivations and Strategies for Swarm Robot Systems 3

2.2 Control and Navigation in Nature Inspired Systems 4

2.2.1 Robot Navigation . 4

2.2.2 Swarm-based Optimisation . 5

2.2.3 Self Organisation in Signal Routing 6

2.2.4 Environment Coverage . 7

2.3 Other Self-Organised Spanning Structure Formation in Nature 9

2.3.1 DLA . 9

2.3.2 Shortest Path Formation . 10

2.4 Conclusion . 12

3 Object Localisation . 13

3.1 Introduction . 13

3.2 Gradient Generation and Detection . 13

3.3 Omni-directional Sound Source . 14

3.4 The Aseba Framework . 15

3.4.1 Extending the Framework . 17

3.5 E-coli Inspired Gradient Search . 18

3.6 Target Acquisition using Proximity Sensors 22

3.7 Staying Warm . 23

3.8 Experiments . 24

3.8.1 Method . 25

3.8.2 Results . 25

3.9 Future Work . 26

3.10 Contribution . 27

4 Collective Navigation . 29

4.1 Introduction . 29

4.2 Structure Formation . 29

4.3 Extending Aseba Playground . 30

4.4 Implementing DLA Aggregation . 30

iii

4.5 Navigating the DLA Structure . 32
4.6 Sending the Alert . 32
4.7 Synchronising the Swarm State . 33
4.8 Experiments . 35

4.8.1 Method . 35
4.8.2 Results . 36
4.8.3 Discussion . 37

4.9 Future Work . 38
4.10 Contribution . 39

5 Conclusion . 41

Appendix A Project Timeline . 43

Appendix B Algorithms . 45
B.1 Bacterial Search . 46
B.2 Collective Navigation . 49

Appendix C e-puck Experiment Results . 53

Appendix D Simulation Screenshots . 55

iv

List of Tables

3.1 Amplitude variance from orientation . 16
3.2 e-puck experiments summary of results . 25
3.3 e-puck experiments t-test results . 25

4.1 Control Experiment Results (hh:mm:ss) . 36
4.2 Collective Navigation Results - DLA Assisted Search (hh:mm:ss) 37

C.1 Acquisition times for e-puck experiments (h:mm:ss) 54

v

List of Figures

2.1 A computer generated DLA structure (From (Bourke, 2004)) 9
2.2 The trunk trail structure of the Pheidole milicida ant, found in southwestern

U.S. deserts (From (Hölldobler and Möglich, 1980)) 11

3.1 Microphone placement on the e-puck (E-puck Education Robot, 2010) 14
3.2 Microphone response to 3 meters . 15
3.3 Audio gradient created by a directional speaker in rectangular environment 15
3.4 Omni-directional speaker using plastic tubing 16
3.5 Communication flow between Aseba Studio and E-puck Robot 17
3.6 Chemotactic behaviour of E. coli (Passino, 2002) 19
3.7 Infrared proximity sensor locations on the e-puck robot (E-puck Education

Robot, 2010) . 22
3.8 Bacterial algorithm without proximity assistance (a) and with proximity

assistance (b) . 24
3.9 Bacterial algorithm without the warm area strategy (a), and with the warm

area strategy (b) . 24

4.1 Robots connected in a DLA structure rooted at the charging platform . . . 32

D.1 Swarm robots performing some arbitrary task. The red cylinder represents
the charging platform beacon, yellow lines indicate sound paths between
microphones / speakers . 55

D.2 Robot enters lowbatt state, sending alert to nearby agents who relay the
alert through the swarm . 56

D.3 Agents near the charging platform beacon (centre bottom) begin construc-
tion of DLA structure (indicated by red audio paths) 56

D.4 DLA structure continues to grow through the environment 57
D.5 Initiating robot in the lowbatt state makes first contact with a DLA con-

nected agent . 57
D.6 lowbatt robot traversing the DLA structure toward the lowest frequency . . 58
D.7 lowbatt robot has almost arrived at the charging platform 58
D.8 Robot has begun recharging; audio beacon is disabled, releasing the swarm

back to work . 59

vi

Autonomous Recharging of Swarm Robots

Jonathan Mullins
jlmul3@student.monash.edu

Monash University, 2011

Supervisor: Dr. Bernd Meyer
bernd.meyer@monash.edu

Abstract

The continuous operation of battery operated mobile robots requires that they have
access to a reliable power source, and can access it when required. The modified e-puck
robot (an educational swarm robot) that is the focus of this research, is equipped with a
pickup coil, enabling its battery to be recharged wirelessly by driving onto an inductive
charging platform. This goal of this research was to provide a means for the e-puck to
navigate to its charging platform when required, such that it can be operated for long
periods of time autonomously.

This research investigated nature inspired control and navigation strategies, and adapted
the foraging strategy of E. coli bacteria into an effective audio based navigation solution for
the e-puck to navigate to its charging platform. In simulation, the strategy was extended
to swarms of robots, using a process found in nature called diffusion limited aggregation
(DLA) for path formation. We conclude that both the bacterial search strategy and the
DLA based collective navigation strategy are useful not only for our specific problem of
robot recharging, but in many applications of Swarm Robot systems where navigation to
some point of interest in an unknown environment is a required outcome.

vii

Autonomous Recharging of Swarm Robots

Declaration

I declare that this thesis is my own work and has not been submitted in any form for
another degree or diploma at any university or other institute of tertiary education. Infor-
mation derived from the published and unpublished work of others has been acknowledged
in the text and a list of references is given.

Jonathan Mullins
June 16, 2011

viii

Acknowledgments

Much appreciation to Bernd, for being a constant source of insight, motivation and en-

couragement as I journeyed into the realm of robotics, particularly when every solution

opened up another two problems, and when the real-world seemed just too damn analog.

To my partner Christine, for your contribution of moral and financial support for the last

few years, and for your regular contributions of lateral thinking genius, I am forever in

your debt.

. . .

Jonathan Mullins

Monash University
June 2011

ix

x

Chapter 1

Introduction

Swarm Robotics is the application of distributed control systems to large groups of mo-
bile robots, taking inspiration mainly from the observation of social insects such as ants,
termites and wasps (Şahin, 2005). Such insects exhibit group intelligence in tasks such as
foraging, nest building, and transport, yet individuals use only local interactions to make
decisions, without knowledge of the global state of the swarm. Applying swarm behaviour
to multi-robot systems is appealing to researchers, as complex system level behaviour can
be achieved using relatively simple robots and without centralised co-ordination mecha-
nisms. Many applications of the approach have been proposed (Miner, 2007), including
environment mapping, search and rescue, mining, and space exploration, although as
Swarm Robotics is a relatively new field, many applications have yet to be realised. These
applications can benefit from robust and scalable properties of robot swarms, particu-
larly when the system is mission critical, and/or the size and characteristics of the target
environment are variable or unknown.

The autonomous operation of mobile robots is a desirable property for applications
where minimal human intervention is required, for example where the mission is of an
extended length (remote sensing), or is in an environment not accessible to humans (space
exploration). A key requirement for the ongoing operation of mobile robots is the access
to a reliable power source. Solutions to this may be in the form of some onboard generator
such as solar panels, however this project aims to investigate the autonomous recharging of
robots at one or more charging stations located throughout the target environment. The
physical robot that is the focus of this research is the e-puck, an educational swarm robot
developed by EPFL (E-puck Education Robot, 2010). Off the shelf, its battery must be
removed in order to be recharged, however a modification to the robot by Chen and Tong
(2009) means that it can be recharged wirelessly and in situ using an inductive charging
platform. The strategy for localisation and navigation to the charging platform had not
yet been addressed, and formed the key outcome for this research.

The requirement of locating and navigating to an object or area of interest is one
found in most applications of mobile robots, methods of achieving which vary depending
on robot capabilities, the nature of the target, and the robots environment. An approach
to navigation in a substantially complex environment might involve a robot knowing its
own position, the position of the target, then calculation of a suitable path between them
based on some known map of the environment (either preprogrammed or learned). Such
an approach, however efficient it may be, is dependent on spatial information, and does not
always allow for navigation in unknown or dynamic environments. Furthermore, reliance
on this information may increase the required complexity of the robot (in terms of sensory,
memory and processing capability), which is not a desirable property of Swarm Robot
agents (Şahin, 2005). For this reason our research was interested in navigation strategies
independent of pre-learned spatial information, and with minimal memory and processing

1

2 CHAPTER 1. INTRODUCTION

requirements for the individual robot agent. Although such search strategies may not be
as efficient as more complex ones, they have the benefit of potentially being implemented
on robots using only simple analog sensors and actuators (without a CPU), further aiding
miniaturisation.

In Chapter 2, an overview of Swarm Robotics is presented, including its motivations
and applications. A review of the relevant literature on nature-inspired navigation strate-
gies and naturally occurring structures is presented, which provides an insight into some
of the techniques and processes that were considered appropriate for the navigation prob-
lem that this research addresses. Chapter 3 describes how the foraging behaviour of E.
coli bacteria was successfully implemented on the e-puck robot as a means of navigating
through an artificial gradient (using audio as a medium) towards the charging platform.
In Chapter 4, a description of how this single robot approach was extended to a swarm
of robots is given, utilising the naturally occurring process of Diffusion Limited Aggrega-
tion as the foundation for a collective navigation strategy. This thesis presents these new
approaches to individual and collective robot navigation, which proved through experi-
mentation to be an effective solution for not just robot recharging, but many other robot
navigation problems with similar constraints.

Chapter 2

Literature Review

2.1 Motivations and Strategies for Swarm Robot Systems

The emergent behaviour exhibited by swarm robot systems is the key motivation for
research in the field. Utilising small and simple individual robots, they are capable of
collectively completing tasks that would require a much more sophisticated and expensive
centralised robotic system to achieve. Furthermore, the properties of swarm robot systems
provide advantages over centralised systems in a number of areas described below.

Interestingly, the system level properties of robot swarms are very different to that of
the individual robots. As is the case with insect swarms, individual agents are vulnerable,
incapable (relative to the system-wide goal), and determine their behaviour through local
interactions only. The system level properties, however, can be described as:

• Robust — the system is fault-tolerant, as the failure of some of the agents impacts
efficiency and not overall system success.

• Scalable — the control algorithms rely only on local interactions among swarm
agents, so scaling is much easier than centralised control schemes.

• Behaviourally complex — complex behaviour patterns emerge as a result of the large
number of independent and probabilistic decisions being made at the individual level.

Robustness and scalability are desirable properties of a mobile robot system, partic-
ularly in applications involving exploration or dynamic environments. Behavioural com-
plexity, on the other hand, can be a significant challenge in the development of swarm
robot control algorithms, as there is a low level of predictability compared to centralised
schemes, and proving algorithm correctness can be difficult. Simulation is usually required
to demonstrate correct system behaviour, in contrast to centralised control schemes where
it can be shown through formal proof (Şahin et al., 2008).

Self-organisation is intrinsic to the control strategies of swarm robot systems. A self-
organised system is defined by Collier and Taylor (2004) as a system that exhibits the
following features:

• The system is composed of units which respond to local stimuli.

• The units act together to achieve a division of labor.

• The overall system adapts to achieve a goal or goals more efficiently.

Dressler (2008) identified a generalised set of techniques that enable the desired behavior
of self-organised systems:

3

4 CHAPTER 2. LITERATURE REVIEW

• Interactions — The communication of information among system components, using
either the environment or direct messaging.

• Positive and negative feedback — Individual system components respond to positive
feedback with amplification, negative feedback provides a means of bounding the
reaction.

• Probabilistic techniques — Used in all self-organising systems for determining local
behaviours, or parameter settings for other deterministic algorithms.

The approach to control and navigation in swarm robot systems is what distinguishes
it from conventional mobile robotics. In keeping with the concepts of Swarm Robotics
described earlier, control algorithms are required to be simple, scalable and decentralised.
The algorithms are required to autonomously position and operate the robotic agents
throughout the environment according to the system objectives without global knowledge
of the swarm configuration. Various nature inspired control and navigation strategies are
described in detail in the following sections.

2.2 Control and Navigation in Nature Inspired Systems

2.2.1 Robot Navigation

The autonomous recharging problem that this research is addressing is principally a nav-
igation problem. In fact, navigation is of critical importance to mobile robot systems in
any application, as they must be positioned correctly to achieve any useful work. In a cen-
tralised navigation system, global mapping information of the target environment is used
to aid navigation. A key motivation of swarm robot systems, however, is the tolerance
of unknown environment characteristics, and therefore swarm robots cannot depend on a
global map for navigation. As a result they must implement clever distributed protocols
to navigate throughout the environment. Before addressing techniques for achieving this,
it is useful to describe some common navigational tasks required of swarm robots:

• Dispersion — the uniform distribution of agents throughout the environment.

• Collective search — co-operative localisation of objects in an environment.

• Collective homing — an extension to collective search where agents converge on the
target area.

• Path formation — arranging agents to form a path between two or more locations.

• Path following — the traversal of a path towards a goal (the path could consist of
fellow swarm agents or some other environmental markers).

Dispersion, path formation and path following involve the structural organisation of
the swarm, various techniques for which will be detailed later. The implementation of path
following on mobile robots is not a matter directly related to collective navigation, in that
it is conducted by a single agent. This paper will not attempt to review the multitude of
approaches, as they are specific to the sensory capabilities of the target system. A type
of collective navigation that is easily mappable from natural swarms to robotic swarms is
distributed gradient search, described below.

2.2. CONTROL AND NAVIGATION IN NATURE INSPIRED SYSTEMS 5

Distributed Gradient Search

Examples of collective search are found throughout nature. Fish swimming in schools,
for example, are able to collectively navigate to dense food sources by responding only to
environmental stimuli and the behaviour of nearest neighbours. This type of environment
can be modelled as a gradient on three dimensional space, with the fish performing a
distributed gradient search in order to navigate towards food sources.

(Bachmayer and Leonard, 2002), (Ogren et al., 2004), and (Burian et al., 1996) show
that distributed gradient search can be applied to applications of mobile robots where the
descent (or ascent) of a sensory gradient is required. Each agent is able to measure the
sensory gradient as it moves along its path, and compares its own gradient and bearing
with that of the surrounding agents, in doing so constructing a gradient map of its local
area. The agent then constructs a motion potential based on the gradient information,
including an attraction / repulsion force between agents to maintain both overall swarm
structure and adequate agent spacing. Once the potential is calculated for an agent, it is
applied as a velocity and bearing parameter to improve its navigation toward the gradient
minimum. An alternative to this approach is to have agents construct a gradient map
using only sensory data at its location compared to data at neighbouring agents, and does
not require the communication of bearing information along with sensor measurements.

(Kantor et al., 2006) showed a direct application of distributed gradient search to search
and rescue, where teams of robotic agents search for areas affected by high temperature
(i.e. a building fire) or noxious substances. It was successfully demonstrated in a burning
building, with the robots entering the building, finding the source of the fire, and relaying
visual and sensory data to a control centre before safely exiting again.

2.2.2 Swarm-based Optimisation

Swarm algorithms inspired by the behaviour of insects and bacteria have been applied to
optimisation problems, particularly in problems requiring high computational complexity
to solve using conventional analysis. Optimisation techniques based on swarming can
be applied to collective navigation, as both use distributed techniques to find points in
Euclidean space. Bacteria climb nutrient gradients and avoid noxious substances using
chemotaxes, motions affected by chemical attractants and repellants. Ant colonies mark
up the environment with pheromones in order to communicate favourable paths between
food sources and the nest. The study of these behaviours has been applied to optimisation
problems where gradient levels are unknown throughout the domain, and may be useful
for certain robot navigation problems, in that the target can be represented as an optimum
point in three dimensional space. Two prominent examples of swarm optimisation that
could be applied to robot navigation are described below.

Bacterial Optimisation using E. Coli Behaviour

(Passino, 2002) applied the foraging behaviour of E. coli bacteria to optimisation prob-
lems. E. coli are able to move in two ways, tumble and run. During a tumble, the
bacterium rotates on the spot to change its direction almost randomly. During a run the
bacterium moves forward in a relatively straight line, the length of the run determined by
the nutrient gradient (an increase in nutrient strength will result in a longer run). E. coli
alternate between these two movements for the duration of their lifetime. The increased
run lengths when climbing nutrient gradient result in an eventual convergence towards
nutrient sources. Attractants released by bacterium dependent on nutrient concentration
provide a swarming mechanism that helps to improve the performance of the bacteria
as a whole. Healthy bacteria (in higher nutrient concentrations) are likely to reproduce,
whilst unhealthy bacteria (in lower nutrient concentrations, or noxious substances) are

6 CHAPTER 2. LITERATURE REVIEW

likely to die, further improving swarm convergence on the maximum. This component of
the behaviour, however, is not directly mappable to swarms of robots.

The algorithm also implements an elimination / dispersion event (the removal of some
bacteria and replacement at a random location) to prevent convergence on local minima.
Implementation of elimination / dispersion in robot swarms could be achieved by ran-
domly moving a robot to another location in the environment. The algorithm deliberately
ignores some characteristics of the real-world behaviour, such as the consumption of nu-
trient by the bacteria. An application of the algorithm to swarm robot navigation was
also presented, treating obstacles as noxious substances and the navigation target as the
nutrient maximum. The simplicity of the algorithm makes it suitable for machines where
computational power is limited, such as miniaturised robots.

Ant Colony Optimisation

Ant colony optimisation (ACO) is an optimisation technique based on the observation of
path formation techniques exhibited in ant colonies, who lay pheromone trails in the envi-
ronment to communicate path information between food sources and the nest. Stigmergy
is the name given to this method of communication, where modification of the environment
is used rather than agent-to-agent signalling, and its concepts could be applied to path
formation in collective navigation systems. Whilst modification of the environment is not
necessarily a desirable property for a swarm robot system (and replicating chemical secre-
tion and detection is likely difficult), it is believed that stigmergy could be implemented
using some of the robot agents to mark up the environment.

ACO has been applied to discrete optimisation problems that are N-P hard, such as the
travelling salesman problem (TSP) and dynamic shortest path. Real world applications
include telecommunication network routing (discussed further in §2.2.3), scheduling, and
goods distribution, all examples of path formation problems and relevant to collective
navigation. Dorigo et al. (2006) illustrate the minor differences between three popular
ACO algorithms when applied to TSP, however to further illustrate the concept we will
describe the Ant System (AS) implementation, first proposed by Dorigo et al. (1996).

AS is an iterative algorithm that solves the TSP problem using virtual pheromone
level maintained at each edge on the graph, initially set to zero. After every iteration,
pheromone levels for the edges are updated by all ants that traversed the graph and
produced a possible solution. The strength of the pheromone applied to edges in a single
ants path is relative to the quality of the solution compared to that of the other ants (a
shorter path results in a stronger pheromone trail). Also, all pheromone levels are reduced
by a constant evaporation factor at each iteration. When traversing the graph, each ant
selects an unvisited node to move to next probabilistically, based on the length of the edge
(shorter is better) and the strength of the pheromone level on the edge. Eventually the
algorithm converges on a good (if not best) solution with all ants choosing the same path
at every repeated iteration.

2.2.3 Self Organisation in Signal Routing

The application of nature inspired self-organisation to signal routing in wireless ad-hoc net-
works has proved to be more suitable than traditional routing protocols that were initially
developed for wired networks, as ad hoc networks operate without any pre-determined
network infrastructure or configuration (Dressler, 2008). Self-organisation techniques can
be applied to maintain efficient network operation dynamically, and without global state
information. Particularly relevant to path formation in collective navigation is its ap-
plication to signal routing in networks, where routing tables are maintained dynamically
between nodes to ensure efficient network operation.

2.2. CONTROL AND NAVIGATION IN NATURE INSPIRED SYSTEMS 7

Probably the most celebrated application of nature inspired self-organisation to signal
routing is AntNet, first proposed in (Caro and Dorigo, 1998). AntNet is an adaptive and
distributed routing algorithm that takes inspiration from real ants’ behaviour in finding
shortest paths. Agents build routing tables and determine network status information
by using indirect communication while exploring the network, resulting in substantially
better network performance than routing algorithms that preceded it. The algorithms
characteristics can be summarised as follows:

• Mobile agents are periodically launched towards randomly selected destination nodes.

• Each agent moves step by step towards the destination looking for the shortest
path, selecting nodes probabilistically using routing table information at the node
and agent-private information.

• While moving, the agent collects information on time cost and congestion status
between nodes.

• Once arrived at the destination, the agent returns to its source along the same path,
modifying the routing tables of each node as a function of the goodness of the path
taken.

• Once returned to the source, agents die.

Experiments comparing AntNet to six routing schemes popular at the time showed it
out-performed competitors in almost all scenarios. It has since formed the basis for other
routing algorithms (Baran and Sosa, 2000) (Barán, 2001) and has been implemented for ns-
2, a networking simulation environment (The Network Simulator - ns-2, 2010). Applying
the algorithm to robot swarms could be achieved by having some of the agents act as
fixed nodes throughout the environment, with other mobile robots using them as beacons
to navigate to and from different areas. Information on minimum cost paths could be
maintained at the beacons by the mobile members of the swarm.

2.2.4 Environment Coverage

The capability of a robotic swarm to cover an area in uniform density is quite useful,
particularly in mobile sensing applications such as environment monitoring. Consider an
application to a natural or man-made disaster zone, where a remote operations centre
requires sensory data for an area that is considered too dangerous for humans to assess in
person. In such a scenario the physical characteristics of the environment could be sub-
stantially different to the available mapping information, as a result rendering centralised
coverage control impossible. Applying distributed coverage control to this application
allows sensors to disperse through the environment uniformly, using distributed routing
algorithms described in §2.2.3 to relay information back to the control centre. Two ap-
proaches to environment coverage that take inspiration from nature are potential fields
and diffusion limited aggregation (DLA). The use of potential fields provides uniform dis-
tribution throughout the environment, whereas DLA results in a randomly grown rooted
tree. DLA will be discussed further in §2.3.

Potential Fields

The concept of using potential fields for the problem of coverage uses virtual forces to
repel agents from one another and from obstacles. It is based on physics theory related to
forces including gravity and electromagnetism, where motion results from the interaction
between groups of particles or objects. Howard et al. (2002) applied potential fields to

8 CHAPTER 2. LITERATURE REVIEW

mobile robot coverage using a virtual electrostatic potential between agents. The repulsive
forces of the virtual potential is translated into motion that spreads the agents throughout
the environment uniformly. Whilst the approach has provable static equilibrium (where all
agents eventually become stationary), is relatively simple to implement, and completely
distributed and scalable, it does not guarantee the formation of structures that are efficient
for path planning and navigation. Further research is needed to demonstrate that this
approach is useful for not only environment coverage but navigation and path formation
tasks.

2.3. OTHER SELF-ORGANISED SPANNING STRUCTURE FORMATION IN NATURE9

2.3 Other Self-Organised Spanning Structure Formation in
Nature

Spanning structures are ubiquitous in nature (plant roots, trees, ant trails, snowflakes
etc.), and when used by living organisms are typically concerned with covering some
area at minimum cost. These structures are useful to distributed navigation problems
when efficient area coverage and path formation is required. This section will discuss
other natural spanning structure formations that could have applications to control and
navigation in distributed systems.

2.3.1 DLA

DLA is a process first discussed in Witten and Meakin (1983), where particles moving
about randomly aggregate to form Brownian trees (see Figure 2.1), a type of fractal
structure found in nature (e.g. crystal growth, dust coalescence and snowflakes). To clarify
the meaning of DLA, diffusion refers to the movement of particles due to temperature
fluctuations, limited refers to the increase in size by one particle at a time, and aggregation
refers to the collection of particles connected together. Simulation of DLA is typically
achieved with the following algorithm:

• A seed particle is added at the origin of a lattice.

• A second particle is added at a random location far from the origin. The particle
random walks until it visits a location adjacent to the seed.

• Particles are added continuously in this manner to the lattice, randomly walking
until joined to the cluster.

• If a particle random walks outside the bounds of the lattice, it is removed and a new
particle added again at a random location.

Figure 2.1: A computer generated DLA structure (From (Bourke, 2004))

10 CHAPTER 2. LITERATURE REVIEW

Beal et al. (2009) showed that DLA could be applied to environment coverage, using a
modified DLA algorithm called random coalescence which has two key differences to DLA:

• All robots exist in the environment from the start, rather than being added one at
a time

• A maximum neighbour constant β is introduced, such that a robot will not consider
itself connected if the number of adjacent neighbours is greater than β. In standard
DLA, β can be considered infinite.

The algorithm proved only to converge quickly within a small range of parameters, and
the authors suggest that a more intelligent strategy for the random walk component of
algorithm would be required to improve performance. Nature-inspired behaviour discussed
earlier in this paper such as E. coli foraging or potential fields could extend this algorithm
to yield more acceptable performance. Furthermore, the approach was only considered for
the problem of dispersion, and it is possible that the rooted tree structure created by the
DLA approach could be useful for problems of navigation, particularly homing.

2.3.2 Shortest Path Formation

MCST

Minimum cost spanning trees are useful in swarm robot systems for a number of rea-
sons. In a system where robot agents are dispersed through the environment, for example
environment sensing or mapping, the construction of an MCST could be useful for com-
munication back to a fixed node, or the navigation of one or more robots to another point
in the environment. Determining an MCST on a graph is a well known problem that
can be solved in polynomial time, however in distributed systems such as robot swarms a
different approach is needed.

Gallager et al. (1983) proposed a distributed algorithm for constructing minimum
spanning trees, aggregating fragments of nodes together repeatedly until all nodes are
connected. Initially, for n robots there are n fragments at level 0 each with one robot.
Each fragment then finds its minimum weight outgoing edge, and attempts to connect to
another fragment with it. If two fragments have the same level L, and the same minimum
weight outgoing edge, they combine to form a new fragment at level L+ 1. If fragment F
is at level L and fragment F ′ is at level L′ > L, fragment F is absorbed by fragment F ′

and the level remains L′. The algorithm was shown to construct a MCST without chance
of deadlock occurring.

Steiner Tree

The Steiner Tree problem is an extension to the MCST, where additional vertices and edges
may be added to the graph to further reduce the total cost of the tree. This is clearly
useful in path formation using mobile robots, as during the path formation agents could
intelligently select positions to move to when positioning themselves in the structure. The
problem is considered N-P hard to solve optimally, however nature-inspired algorithms
can produce good solutions with better efficiency.

The Physarum polycephalum plasmodium is a type of slime mould that arranges its
structure to efficiently cover nutrient sources when feeding. Experiments have shown
that the organism can configure itself over the shortest possible route between two food
sources in a maze (Nakagaki et al., 2001). Its behaviour can also be applied to the Steiner
tree problem, as demonstrated by the algorithm in Nakagaki et al. (2008). Basically,
the algorithm selects a source node in the graph at random, and probabilistically selects

2.3. OTHER SELF-ORGANISED SPANNING STRUCTURE FORMATION IN NATURE11

a sink node in the graph with respect to its Euclidian distance from the source. The
Physarum behaviour is applied between these nodes for a short time interval, and then the
algorithm repeated until convergence. Simulation showed that the algorithm performed
similarly to the natural organism, producing networks with lengths only slightly greater
than optimal. Further research is needed to show that this behaviour could be implemented
as a distributed algorithm for robot swarm path formation.

Trunk Trails

Trunk trails are a tree-like structure used by some species of ants to maintain a path from
a foraging area back to the nest (Hölldobler and Möglich, 1980). The trail starts in the
vicinity of the nest as a thick pathway, moving away from the nest and splitting first into
branches and then into twigs. Ants will typically not stray far from the pathway until
reaching the twig level, where they search for food and return it via the trail to the nest.
When a rich food source is found, ants lay stronger recruitment pheromones to encourage
other ants to take that path. A rich enough source results in a path at the twig level
becoming a new branch, leading to variances in the overall structure over time.

Figure 2.2: The trunk trail structure of the Pheidole milicida ant, found in southwestern
U.S. deserts (From (Hölldobler and Möglich, 1980))

(Schweitzer et al., 1997) modelled this behaviour in computer simulation, where active
random walkers move about the environment looking for food sources. The walkers choose
random directions to move to next, biased toward the current direction of travel and also
pheromone levels in surrounding locations. The simulations showed that similar structures
to trunk trails were formed, with dense paths leading from the nest and breaking off into
branches toward food sources. Whilst the simulations used virtual pheromones laid in the
environment, it is possible that when applied to mobile robots, some of the agents could
maintain path information whilst others perform actual work.

The trunk trail structure may have applications to path formation in robot swarms
where the location of some pre-determined “nest” must be maintained whilst investigating
the environment. The nest could be, for example, a recharging area that must be visited
periodically to maintain battery power. For applications where higher densities of robots
are required in areas of interest, this approach could ensure efficient use of the available
robot agents whilst still maintaining a path back to the power source.

12 CHAPTER 2. LITERATURE REVIEW

2.4 Conclusion

Applying distributed navigation and control algorithms to mobile robots can result in ro-
bust, adaptable, and scalable systems. Swarm Robotics applies nature-inspired techniques
to such systems, exploiting probabilistic local interactions among individual agents that
result in complex and capable system behaviour. This chapter has provided an insight
into some of the nature-inspired strategies that have been applied to navigation, optimisa-
tion and communication problems, and also described some naturally occurring structures
that may be useful to path formation tasks. The remainder of this thesis will describe how
we applied two of these natural processes to the research outcome of autonomous robot
recharging. In Chapter 3, an adaption of the E. coli foraging behaviour described in §2.2.2
is demonstrated through real-world experimentation to be an effective object localisation
strategy for individual robots. In Chapter 4, a collective navigation strategy is provided
using the DLA process described in §2.3.1 for path formation.

Chapter 3

Object Localisation

3.1 Introduction

The foraging behaviour exhibited by E-coli bacteria discussed in §2.2.2 is an example
of how navigation to some place of interest (in the case of E-coli, a food source) can be
achieved by iteratively improving the position of an agent using a simple and repetitive de-
cision making process. The bacteria perform a gradient search on a nutrient medium using
two types of movement, tumble and run. A navigation algorithm for a mobile robot based
on this behaviour is presented in this section, as well as improvements that were made to
it to make use of available sensors on the e-puck robot to improve its efficiency. Being
modelled on the behaviour of bacterium, the algorithm naturally satisfies the constraint
of being implementable with relatively little processing and memory requirements.

Development of the strategy required that a number of preliminary goals be achieved in
order to have the required technical infrastructure, including the construction of a gradient
source, and the extension of a robotics framework for experimentation. These preliminary
tasks consumed a significant amount of project time, evident in the timeline provided in
Appendix A. The method in which these goals were achieved will be discussed in §3.3
and §3.4, however many details of the technical challenges and achievements during this
phase have been omitted, as they are not directly relevant to the research outcomes. A
description of the navigation strategy itself will then be provided, and finally a formal
analysis. First, the process by which a suitable gradient medium was selected will be
described.

3.2 Gradient Generation and Detection

Selection of a suitable medium for use as a gradient source was primarily constrained by
the sensory capabilities of the e-puck robot. The available sensors on the e-puck that can
be used effectively for gradient detection are a low resolution video camera on the front of
the robot, and three microphones located on the top of the robot. It is possible that the
video camera could have been used to detect some light source, however the use of audio
was considered more appropriate for a number of reasons:

• Sound waves have better reflective properties off most surfaces than light, making
detection possible without line of sight.

• Using audio frequencies outside the human hearing range results in no environmental
disturbance to humans in range of the beacon, whereas the video camera is responsive
only to visible light.

13

14 CHAPTER 3. OBJECT LOCALISATION

• Audio and RF are conceptually similar, so adapting the method to the RF medium
is conceivable.

• High ambient light conditions would probably render the video camera ineffective,
whereas high ambient noise can be countered by analysing specific frequencies from
the microphones if necessary.

• The e-puck’s video camera is front facing, allowing detection of light in one direction
only. The top mounted microphones allow for audio detection from all directions
relatively evenly.

As illustrated in Figure 3.1, none of the e-puck’s microphones are situated dead centre.
To determine the variance of each microphone’s response with respect to the orientation
of the robot, a speaker generating white noise was placed near the robot, with volume
measurements taken from each microphone individually at different orientations. The
results (Table 3.1) showed that each microphone exhibited a significant variance, particu-
larly microphones 0 and 1 which are located at the very edges of the robot. Hence for all
experiments an average of the three microphones was used, minimising the bias introduced
by robot orientation.

Figure 3.1: Microphone placement on the e-puck (E-puck Education Robot, 2010)

An assessment of the microphone response over distance was then performed using the
same white noise source, to affirm that a meaningful gradient could be established using
the relatively insensitive e-puck microphones. Volume at each orientation was measured
at distances incrementing by 20cm, with the response curve (Figure 3.2) deemed to be
useful up to at least 1.5m, albeit with a number of local maximums resulting from room
reflections, and a small amount of rotational bias that under certain conditions could result
in the incorrect assessment of gradient.

3.3 Omni-directional Sound Source

A typical speaker (as found in computer speakers or a hi-fi system) is a directional sound
source by design. Preliminary investigations using a small speaker as an audio source in a
basic rectangular environment demonstrated that a usable gradient (as measured by the

3.4. THE ASEBA FRAMEWORK 15

Figure 3.2: Microphone response to 3 meters

e-puck robot) was only present in an arc extending directly outwards from the speaker, as
illustrated in Figure 3.3. Additionally, the steep edge at the boundary of the area in direct
range of the speaker was problematic when using the navigation strategies described later.
To generate a more even gradient in the environment, an omni-directional sound source
was constructed using some 70mm plastic tubing and a small speaker. The speaker was
mounted inside the tube facing downwards, with the tube elevated from the ground by
roughly 20mm with small timber legs. As pictured in the Figure 3.4, the device allows the
sound waves generated by the speaker to propagate in all directions relatively evenly.

Figure 3.3: Audio gradient created by a directional speaker in rectangular environment

3.4 The Aseba Framework

Development on the e-puck robot is typically done using the supplied C libraries in con-
junction with an appropriate compiler for the e-puck’s DSPIC-30f microcontroller. Once
compiled, a user program can be loaded onto the robot over bluetooth, or through cable
connection from an MPLAB ICD3 debugger (Microchip Development Tools, 2011). The

16 CHAPTER 3. OBJECT LOCALISATION

Figure 3.4: Omni-directional speaker using plastic tubing

ORIENTATION MIC0 MIC1 MIC2 AVG

0◦ 72 94 106 90.7

90◦ 66 145 75 95.3

180◦ 130 86 85 100.3

270◦ 120 55 81 85.3

VARIANCE 801 1045.5 136.2 30.8

Table 3.1: Amplitude variance from orientation

various sensors and actuators on the robot can be configured and controlled to perform
in the desired way, however there is no means to monitor the sensors in real-time whilst
a program is in execution. Development of algorithms that change the robots behaviour
according to sensory data are thus difficult to develop and debug. Furthermore, modifica-
tion of the program code requires recompilation, reloading and a microcontroller reboot
every time.

The Aseba Framework is an “event-based architecture for distributed control of mobile
robots” (Magnenat et al., 2011). At its core is a virtual machine that can be loaded onto
both real-world and simulated robots, allowing control of the robot through an interactive
IDE (Aseba Studio) that also provides real-time feedback of the robots sensory data over
bluetooth connection. Sensors and actuators specific to the robot being targeted are made
available to Aseba Studio through variables that can be read from and written to within
the control scripts. The control scripts can be debugged, recompiled and reloaded onto
the virtual machine without requiring a reboot of the robots microcontroller, making
development far easier than the native method. Figure 3.5 shows the communication
between Aseba Studio, the virtual machine on the robot and the robot hardware.

The Aseba developers provide a ready made implementation of the virtual machine
for the e-puck robot that provides control and monitoring of all the robots sensors and
actuators, with the exception of the microphone and speakers. The decision was made
to extend the Aseba virtual machine to support the audio capabilities of the robot (as
opposed to developing the control algorithms natively in C), as having real-time access
to the robots sensory data during algorithm development was predicted to be of great
importance. Furthermore, the simulation component of Aseba (Aseba Playground), which
was to be used for the second phase of development, includes a model of the e-puck (albeit

3.4. THE ASEBA FRAMEWORK 17

Figure 3.5: Communication flow between Aseba Studio and E-puck Robot

without audio support), so control scripts developed for the real robot could be loaded
into a simulated e-puck without modification.

3.4.1 Extending the Framework

Native functions are a concept in the Aseba framework where frequently used or processor
intensive functions can be implemented natively on the target robot, and called within
an Aseba script as required. Rather than implementing the processing of raw audio data
within the Aseba control scripts, a native function was implemented so that from within
a control script, a function get volume() could be called that returns the average ampli-
tude from the most recent samples taken by the three microphones. When called, the
virtual machine on the e-puck executes natively the equivalent of the following pseudo-
code, calculating the total amplitude of the most recent sample from each microphone,
and returning the average:

18 CHAPTER 3. OBJECT LOCALISATION

Algorithm 3.4.1: getVolume()

global micBuffer[3]

totalAmp← 0

// Wait 1 second to avoid residual motor noise
wait(1000)

// Determine amplitude for each mic buffer and add to total
for i← 0 to 2

do



high← −∞
low ←∞
for j ← 0 to length(micBuffer[i])

do


if micBuffer[i][j] > high

then high← micBuffer[i][j]
if micBuffer[i][j] < low

then low ← micBuffer[i][j]
totalAmp← totalAmp+ (high− low)

// Return the average
return totalAmp/3

Adapting the E-coli foraging behaviour to a robot control algorithm also required
random number generation for choosing rotation amounts probabilistically, and for the
ability to rotate the robot by a given number of degrees, so three further native functions
were implemented:

• get rand(mod) returns a random integer modulo some integer mod

• get norm(mean, std) returns a normally distributed random number with a mean
of mean and standard deviation of std, generated using the Box-Muller method (Box
and Muller, 1958)

• rotate degrees(deg) where deg is an integer specifying the rotation amount in
degrees, clockwise rotation for positive values, counter-clockwise for negative.

A variable cm was also defined in the virtual machine that is asynchronously updated
by the robot to represent the distance travelled in centimetres. It can be reset at will within
a control script, and was used as a convenient way to determine the distance travelled at
any point in time of algorithm execution.

3.5 E-coli Inspired Gradient Search

With a development environment now established, an adaption of the E. coli foraging
behaviour for the e-puck robot was developed. As discussed briefly in §2.2.2, the behaviour
(a type of chemotaxis) centers around two states, tumble and run. During a tumble, the
bacterium is rotating on the spot for a small amount of time (≈4sec), thereby picking a new
random direction to start moving, slightly biased toward the current direction of travel.
During a run phase, the bacterium is moving in a relatively straight line for an amount of
time, the length of which increases when the bacterium detects that it is moving toward a
more favourable nutrient source, or decreases if moving toward a noxious substance. When

3.5. E-COLI INSPIRED GRADIENT SEARCH 19

in some neutral substance (neither nutrient nor toxin), the bacterium will continuously
alternate between tumble and run states, essentially performing a random walk until
either nutrient or noxious substance is encountered. Figure 3.6c illustrates the movement
resulting from the chemotactic process, where the stronger nutrient solution is indicated
by darker shading.

Figure 3.6: Chemotactic behaviour of E. coli (Passino, 2002)

Adapting this behaviour to a navigation strategy for the e-puck required slightly al-
tering the way run lengths are modulated and rotations are performed. Whereas the
bacterium has the ability to constantly monitor the nutrient concentration during a run,
the e-puck must stop before measuring the audio level to avoid polluting the sample with
motor noise. Thus to fully mimic the E. coli behaviour, the e-puck would have to con-
tinuously stop the motors, measure the volume, and start the motors again during the
run phase, altering the run length accordingly. Instead, we proposed an algorithm where
the run length is determined by the improvement (or otherwise) achieved by the previous
run, not the improvement being made by the current one. For example, if run n results
in an increase in volume (∆vn > 0), then the length of run n + 1 will be increased. Of
course this would result in situations where a run yields an improvement, the robot then
tumbles (rotates) to a new direction φ, then performs a run of increased length which
may not be improving (or even worse, deteriorating) the robots position in the gradient
field. To overcome this, if a run yields an improvement, the following tumble is heavily
biased toward the current direction using a normal distribution around the robots current
bearing, otherwise the tumble amount is uniformly random between -180 and 180 degrees.
This makes it more likely that the increased length l of run n + 1 will still be improving
the robots position. If we specify a minimum and maximum run length of Lmin and Lmax

respectively, and the volume level at the target as Vtarget, then we can say that:

ln =

{
X : N (0, 60), if ∆vn−1 > 0 ∨ n = 0

Y : (−180, 180), otherwise
(3.1)

and

φn =

{
∆vn−1(Lmax−Lmin)

Vtarget
+ Lmin, if ∆vn−1 > 0 ∨ n = 0

Lmin, otherwise
(3.2)

Note that in equation 3.1 we chose a standard deviation of 60 to ensure 99.7% of values
will fall within ±180 degrees.

Another consideration was how to deal with collisions. A common strategy for mobile
robots is to apply a collision avoidance mechanism adapted from the theoretical vehicles

20 CHAPTER 3. OBJECT LOCALISATION

described in Braitenberg (1984), where an agent’s motion is linked directly to some sen-
sory feedback mechanism (for example multiple proximity sensors). A typical application
of the method for a two-wheeled robot such as the e-puck is to use measurements from
the proximity sensors around the robots turret, setting each wheel speed independently
by summing the sensor value / coefficient products for each sensor. The robot moves
forward in a straight until one or more of the sensors detects an object, at which time
the robot slows the opposing wheel proportional to how close the object is. The result
is a graceful deflection away from the obstacle. Considering our target was a detectable
object, however, simply incorporating this behaviour into the algorithm would result in
the robot never reaching the target. Instead a more simplistic approach was applied,
where we simply stop short the current run when an obstacle is detected. The volume
measurement occurs, and if we have not reached the target (i.e. v < Vtarget), the tumble
phase is performed until the robot is unobstructed. This also allowed for a more stringent
requirement for declaring that the target has been found, the requirement that there must
be some obstacle directly in front of the robot. This helped to avoid false positives (where
the robot measures v > Vtarget even though it is not quite at the target). With some
threshold P for the infrared proximity sensors on the robot, the exit condition for the
algorithm (when the target has been found) is defined as:

v > Vtarget ∧ (proxl > P ∨ proxr > P) (3.3)

where proxl and proxr are the front-left and front-right infrared proximity sensors respec-
tively.

First we define a simple algorithm for moving forward some distance. The S parameter
represents a maximum wheel speed, and the global variables lSpeed and rSpeed are used
to set the left and right wheel speeds of the robot:

Algorithm 3.5.1: drive(length)

global cm, proxl, proxr, lSpeed, rSpeed

// Reset odometer
cm← 0

// Move forward
while cm < length ∧ proxl < P ∧ proxr < P (1)

do

{
lSpeed← S
rSpeed← S

// Stop
lSpeed← 0
rSpeed← 0

The condition at (1) checks whether the the drive length has been achieved or a collision
is immanent, and subsequently stops the robot.

Now we define the search algorithm in full:

3.5. E-COLI INSPIRED GRADIENT SEARCH 21

Algorithm 3.5.2: bacterialSearch1()

global proxl, proxr, cm, lSpeed, rSpeed

v ← 0
lastV ol← 0
runLength← 0

while true

do



v ← getVolume()

// Check if we’ve reached target
if v > Vtarget ∧ (proxl > P ∨ proxr > P) (1)

then exit

// Check for improvement
if v > lastV ol

then

{
rotateDegrees(getNorm(0, 60)) (2)

runLength← (v−lastV ol)(Lmax−Lmin)
Vtarget

+ Lmin

else

{
rotateDegrees(getRand(360)− 180) (3)
runLength = Lmin

// Remember volume and move
lastV ol← v
drive(runLength)

Statement (1) checks if the exit condition is met, (2) and (3) generate a tumble amount
following an improving or deteriorating run respectively. Note that in (3) we subtract 180
from our angle such that −180 <= angle < 180, to rotate the robot counter-clockwise for
angles between 180 and 359.

Initial experiments with this algorithm only proved effective if the robot started the
search within close range of the charging platform. It became apparent that when the robot
was further than roughly 1.5m from the target, the gradient field was too noisy to be of
use, and the robot would spend extended periods of time making little or no progress, or
being regularly drawn toward small gradient peaks near the walls of the experiment area.
In time the robot would eventually stumble upon the useful gradient area and complete
the search, however it was considered too inefficient to be of practical use.

Drawing inspiration again from the E. coli chemotactic behaviour, the notion of having
an area of neutrality was introduced, whereby instead of attempting to climb the gradient
we just perform a random walk. In the case of our robot, the area outside of this useful
gradient field (1.5m radius around the charging platform) needed to be treated as a neutral
area rather than a usable gradient. A new constant Vmin was defined to specify the
volume level at the boundary of the useable gradient area, and then a variable numLow
to represent the number of consecutive volume measurements taken with v < Vmin. The
algorithm was then modified such that if numLow is greater than some constant W , a
pure random walk was initiated with length Lmax until detection of v > Vmin. The revised
tumble and run calculations then became:

22 CHAPTER 3. OBJECT LOCALISATION

tn =

{
X : (−180, 180), if ∆vn−1 <= 0 ∨ nlow > W ∧ n > 0

X : N (0, 60), otherwise
(3.4)

and

rn =


Lmax, if nlow > W
∆vn−1(Lmax−Lmin)

Vtarget−Vmin
+ Lmin, if ∆vn−1 > 0 ∨ n = 0

Lmin, otherwise

(3.5)

The extended algorithm (see B.1.1) resulted in an observable improvement, and whilst
local maximums were still present in the useable gradient area (on account of reflections
and sample noise), the robot was no longer trying to climb small gradients outside this
area that were largely meaningless.

3.6 Target Acquisition using Proximity Sensors

Figure 3.7: Infrared proximity sensor locations on the e-puck robot (E-puck Education
Robot, 2010)

In an attempt to improve the algorithms performance, we sought to exploit the infrared
proximity sensors on the robot to aid in acquiring the target when in close range of it.
Initial observations of the algorithm in execution had shown that while the robot was
acquiring the target successfully, there were frequent occurrences of a “near miss”, where
the robot drives within a few centimetres of the target without stopping. In the algorithm
just described, the exit condition requires that one of the front two proximity sensors
detects an object. The e-puck has another six proximity sensors around its body (Figure
3.7) that were thus far unused. A reverse collision avoidance method was implemented, in
that we have the robot steer towards the sensor with the highest value, rather than away
from it. This strategy was used when the robot was within a certain range of the target,
deemed to be when the most recent detected volume was above some level Vhot. The
algorithm is described by the following pseudo-code, and is called by the main algorithm
to perform a drive when v > Vhot:

3.7. STAYING WARM 23

Algorithm 3.6.1: driveHot(length)

global cm, lSpeed, rSpeed, ir[8] (1)

cm← 0

// Loop until length reached or collision immanent
while cm < length ∧ proxl < P ∧ proxr < P

do



hottestSensor
hottestSensorV al← 0

// Find the hottest IR sensor
for i← 0 to 7 (2)

do


if ir[i] > 0 ∧ ir[i] > hottestSensorV al

then

{
hottestSensor ← i
hottestSensorV al← ir[i]

if hottestSensorV al > 0 (3)
then set wheel speeds to steer toward sensor

else

{
lSpeed← S (4)
rSpeed← S

// Drive complete
lSpeed← 0
rSpeed← 0

At (2) the algorithm is determining the highest sensor value and setting the hottest-
Sensor variable (if any). If there is an object in range, (3) reduces the speed of one wheel
to steer the robot towards the object. If no object is in range, (4) sets both wheels to
maximum speed to continue moving in a straight line. Note that we now are accessing
all the IR sensors on the robot (1), rather than just the front left and right. To imple-
ment the the new behaviour into the bacterial search, the only change required was to call
the driveHot() algorithm if the last measured volume was above Vhot (see B.1.2 for full
implementation).

Figure 3.8 illustrates the difference between the algorithm with and without the prox-
imity sensor assistance. In the run phase between positions 3 and 4, where the robot would
have otherwise driven past the target, the right wheel speed is reduced as a result of the
right IR sensors detecting the target, and subsequently results in a successful acquisition.

3.7 Staying Warm

The probabilistic nature of the algorithm means that target acquisition does not necessarily
occur when the robot comes within relatively close range of the beacon. During the
tumble phase, the new rotation is chosen at random (either uniformly or biased toward
the current heading), and an unfortunate combination of tumbles can easily result in the
robot wandering away from the target again. This behaviour was somewhat dealt with
by the proximity assistance described in the previous section, however the limited range
of the sensors meant that this prevented near misses only at very close range (< 10cm).
An extension to the algorithm (B.1.3) was developed which utilised the concept of a warm

24 CHAPTER 3. OBJECT LOCALISATION

Figure 3.8: Bacterial algorithm without proximity assistance (a) and with proximity as-
sistance (b)

area, defined as the area immediately surrounding the beacon where the detected volume
v is above some threshold Vwarm, such that Vwarm < Vhot < Vtarget. Once entering the
warm area, if the robot wanders outside it, it performs a 180◦ turn and returns to the
previous position, ensuring that the progress made up to this point is not lost. Note that
Vwarm must be sufficiently high such that for the whole environment, no area other than
that directly surrounding the beacon has v > Vwarm. This is to ensure the robot does not
become trapped in some local maximum elsewhere in the environment.

This small modification to the algorithm (described in B.1.3) results in the robot
returning to its previous position after detecting v < vwarm. The runLength variable is
left untouched so as to run the same distance as the run that moved the robot out of
the warm area. Figure 3.9 demonstrates a scenario where implementing the warm area
strategy results in a quicker acquisition of the target. The shaded area around the beacon
indicates the area where v > Vwarm. In (b), after leaving the warm area and stopping at
position 4, the robot performs a 180 degree turn and returns to position 3 to resume the
search.

Figure 3.9: Bacterial algorithm without the warm area strategy (a), and with the warm
area strategy (b)

3.8 Experiments

Once development of the bacterial search algorithm was completed through iterations of
design, experimentation and informal assessment, some more formal experiments were

3.8. EXPERIMENTS 25

designed to determine if the approach was actually a useful object localisation strategy.
Not having any other object localisation approach implemented on the robot to compare
ours against, a simple experiment was designed comparing our baseline algorithm (B.1.1)
against a pure random walk. Subsequent experiments were carried out to calculate the
improvement (if any) that the extensions to the algorithm (B.1.3) had on performance. A
description of the experiment method and results follows.

3.8.1 Method

A rectangular environment 2400mm x 3600mm was constructed from MDF sheets for the
experiments, as the small amount of wheel clearance on the e-puck results in it becoming
stuck on all but the smoothest of surfaces. Walls were fixed to the edge of the environment
(roughly 50mm high) to contain the robot, and the audio beacon placed midway down the
long edge of the environment, 300mm from the wall. The audio beacon was connected to a
white noise source and operated at constant volume for all experiments. Reasonable values
for constants such as Vtarget, P , Lmin, Lmax etc. were chosen, and the starting position
and orientation of the robot was the same for each experiment. The algorithms were
implemented on the robot and modified such that after the robot successfully navigated
to the target, it performed a random walk of a fixed number of steps to a new location in
the environment to start again. Measurements were taken of the time taken to reach the
target from the start of each attempt (excluding random walk time between attempts),
and each algorithm was given 150 minutes of running time.

3.8.2 Results

Table 3.2 summarises the results of the experiments, illustrating an improvement in av-
erage acquisition times both from the control experiment (random walk) to the baseline
algorithm bacterialSearch2 (B.1.1), and also from the baseline algorithm to the algorithm
improved with proximity sensors and warm area behaviour (B.1.3). This improvement
in average acquisition times, whilst promising, is not substantial evidence to claim that
bacterialSearch2 is definitely better than the random walk, nor that bacterialSearch4 is
better than bacterialSearch2, as the sample sizes are small, particularly for the control.
To check statistical significance, a Student’s t-test was performed on the sets of individual
acquisition times for each algorithm. A t-test result gives the probability that two sample
groups are from populations with the same mean. Results for the t-tests are given in Table
3.3.

Algorithm No. acquisitions Avg. acquisition time

Control 14 8m 56s

bacterialSearch2 37 3m 05s

bacterialSearch4 47 2m 29s

Table 3.2: e-puck experiments summary of results

Control vs bacterialSearch2 0.012

Control vs bacterialSearch4 0.003

bacterialSearch2 vs bacterialSearch4 0.278

Table 3.3: e-puck experiments t-test results

26 CHAPTER 3. OBJECT LOCALISATION

The t-test results indicate that the performance improvement of both bacterialSearch2
and the extended bacterialSearch4 compared to the control experiment is statistically
significant, in that the probability that the samples come from populations with the same
mean is roughly 1%. The data does not, however, prove with any certainty that there
is a difference between bacterialSearch2 and bacterialSearch4, as there is a 28% chance
that the samples come from populations with the same mean. It is likely that if data
was collected for the two algorithms with lower variance, either by collecting much more
data or by starting each search attempt from the same location, the t-test result would
show a significant difference. Using less formal reasoning, it can be argued that correctly
implementing the proximity assistance and warm area behaviour will certainly not result in
a deterioration in performance, as even if the extensions provide no benefit, the underlying
algorithm remains the same.

3.9 Future Work

The bacterial algorithm developed for the e-puck proved to be a viable gradient-based
navigation method, extending the foraging behaviour of E. coli bacteria to utilise some
extra sensory information and memory available to the e-puck robot. There are, however,
some outstanding practical issues that remain to be addressed in order for it to operate au-
tonomously for extended periods of time. A brief description of these issues and suggested
resolutions follows.

The microcontroller on the e-puck has no access to the voltage level of the battery,
meaning that it has no means on predicting when a recharge is required. A workaround
for this could involve keeping track of the operating time of the robot, and after some
predetermined time beginning a search for the charging platform. This approach could be
successful, however the varying cycle times of different batteries would be problematic, as
would the fact that the charge is not drained linearly over time, but rather proportionally
to the amount of sensor and actuator activity. A more ideal solution would be to fit
a voltage sensor to the main circuit of the robot and provide this information to the
robots microcontroller, such that the decision to head for the charging platform could be
made using the actual voltage level, rather than the predicted level. Whether or not this
extension to the robot is possible given its circuit design has not been investigated.

The charging platform that provides the electromagnetic energy to charge the e-puck
requires that the robot be centred over the top of it for optimal energy transfer. The
omni-directional speaker described in §3.3 is intended to sit directly above the platform in
order to guide the e-puck to correct location, however the placement of the speaker at this
point means that the e-puck can never move to the optimal position over the platform. A
more suitable arrangement would be to have the audio beacon located high enough over
the platform that the robot could drive directly underneath it and into the optimal area.

The audio beacon used for the experiments emitted a white noise source as a gradient
for the e-puck to climb. If this approach were to be used in some real-world application of
swarm robots in the vicinity of people, it is likely that having a constant source of noise
would be unwelcome. We initially hoped to use a sound source higher than the audible
human hearing range, however doing so would require having each of the microphones on
the e-puck sample at a rate of at least 50KHz to sample a tone at 25KHz, which is above
the human hearing range. The e-pucks A/D converter operates at 100KHz, so sampling
all three microphones gives a maximum sample rate of 33KHz, insufficient for the task. It
would be possible to sample from two microphones at 50KHz each, however doing so would
require modification of the lower level microcontroller libraries, and was not attempted as
part of this research.

3.10. CONTRIBUTION 27

3.10 Contribution

This component of the research has demonstrated through physical experimentation that
the foraging behaviour of E. coli bacteria can be applied to real-world navigation prob-
lems successfully, using some gradient source and the capability to measure it. To our
knowledge this has not been demonstrated in the real-world before, and certainly not us-
ing audio as a gradient source. The approach could be beneficial to any application of
mobile robots where the individual agents have only basic sensory capabilities and limited
memory. Through extension of the algorithm to use the proximity sensors on the robot,
we have also demonstrated that the strategy is easily enhanced using sensory information
that is available within a smaller range of the target. The minimal sensory and memory
requirements of the base algorithm could be useful in applications of mobile robots where
miniaturisation is required, and whilst implemented as a solution for our specific problem
of robot recharging, could be applied to any number of scenarios where object localisation
is a required outcome.

In terms of the specific problem for which this project was undertaken (recharging of
the e-puck robot), this research has provided a solution to the navigation component of
the task, in that the e-puck can now navigate to the charging platform from within the
sensory limitations of its microphones. Whilst there are some outstanding technical issues
that need addressing to enable fully autonomous operation of the robot (described in §3.9),
a signification portion of the solution has been designed and implemented on the e-puck
robot successfully. Once fully autonomous operation is achieved, the robot will no longer
require manual intervention for recharging, increasing the ease of conducting experimental
research over extended periods of time.

28 CHAPTER 3. OBJECT LOCALISATION

Chapter 4

Collective Navigation

4.1 Introduction

The E. coli inspired algorithm described in the previous chapter proved through experi-
mentation to be a viable object localisation strategy within the context of which we applied
it. Considering, however, that the range of useful gradient in our experiments was roughly
1.5 meters from the charging platform, the strategy becomes ineffective once we extend
our robots environment to a larger area, as the robot resorts to random walks once outside
the gradient threshold. This chapter will describe how the search strategy was extended
to be effective in a much larger environment, through the introduction of more robot
agents and swarm behaviour. Implementing a collective navigation strategy based on the
DLA process discussed in §2.3.1, we demonstrate that the swarm can organise itself into
a useful structure that can assist a robot in navigating to the charging platform. Experi-
ments were conducted using the Aseba Playground robotics simulator, after extending it
for audio support, as discussed in the next section. Finally, an assessment of the collective
navigation strategy is made with respect to the robot work time that is sacrificed by the
swarm in order to assist an individual robot returning to the charging platform.

4.2 Structure Formation

Collective navigation strategies for swarms of robots using the behaviour of social or-
ganisms, insects or animals, have been proposed by Schmickl and Crailsheim (2007),
Schweitzer et al. (1997), Passino (2002), Passino (2000) and many others. The navigation
problem at the centre of this research is essentially a homing problem, where at some point
in time we require that our mobile agent visits a predefined location in the environment
for maintenance purposes, in our case for replenishment of their power source. It is easy
to draw a parallel between our requirement to move an agent to some useful location and
the requirement of an ant to return to its nest after foraging for food. As discussed in
§2.3.2, some species of ant perform this task through the formation of a tree-like structure
rooted at the nest. Whilst the ants achieve this through the laying of pheromones in
their environment, and we are interested in strategies that do not require this for reasons
already described, the formation of some useful structure is nonetheless a plausible way
to aid our robot agent in this task.

As a means to work around the constraint of our agents not altering the environment,
we propose an alternative, whereby the robot agents themselves act as the environmental
markers when required, and return to their primary work task (whatever that may be)
after assisting in the collective navigation task. In §2.3.1 we proposed that the naturally
occurring process of DLA may be useful for constructing pathways to some point of in-
terest, as it is a rooted tree structure. In the following sections a method of constructing

29

30 CHAPTER 4. COLLECTIVE NAVIGATION

a DLA tree rooted at the charging platform is given, using only the audio capabilities
available to the e-puck robot. In simulation we demonstrate that once the swarm has
constructed the DLA tree rooted at the charging platform, the agent requiring a recharge
can navigate there relatively easily, using the bacterial search algorithm presented in the
previous chapter with only minor modification.

4.3 Extending Aseba Playground

Given that this research had only a single physical robot available for experimentation,
a simulation environment was required for the swarm related component. In §3.4, the
extension of the Aseba virtual machine for the physical e-puck robot was described. A
similar extension was required for the virtual e-puck (provided by the Aseba Framework)
to support audio processing in the Aseba Playground simulator, as well as the extension
of the simulator environment itself.

The swis2d sound plugin for the Webots robot simulator was developed by Cyberbotics
in conjunction with Swarm-Intelligent Systems Group at the EPFL, Switzerland (Cyber-
botics, n.d.). It provides audio simulation in two-dimensional environments through the
association of virtual microphones and speakers to objects. The plugin was ported to
Aseba Playground such that any abstract robot object could be equipped with a speaker,
microphone, or both. During simulation, a robot equipped with a speaker object can emit
audio samples, which are detectable by any microphone object in the simulation within a
definable range. To calculate the detected audio samples at a given microphone, the swis2d
plugin calculates any sound paths that exist between the speaker and the microphone (in-
cluding reflected audio from walls and obstacles, the reflection amount definable within
the plugin configuration), and adjusts the transmitted samples to account for time delay
and amplitude drop over the path length. Whilst the plugin does not consider complex
frequency dependent room acoustics, it provided a semi-realistic model of audio properties
that were adequate for the research.

The key difference when comparing the sample data collected from the real e-puck robot
compared to the simulation was the absence of a noise floor, in that a simulated microphone
in an environment without speakers literally hears nothing, which is not the case in the
real world. However, in the bacterial search algorithm described in the previous chapter,
the parameter Vlow was used to differentiate between the noise floor and meaningful audio,
so this difference is somewhat trivial.

4.4 Implementing DLA Aggregation

Before considering how a robot could navigate a DLA structure formed by robot agents,
the task of constructing the structure was addressed. As described in §2.3.1, the process of
DLA involves the aggregation of randomly moving particles to one starting particle, which
results in a growth of a snowflake-like structure, the initial particle being at the centre.
To adapt this process to mobile robots, we simply need a starting growth point, a random
walk capability for the robots, and some means for the robot agents to determine that they
have aggregated (i.e. to stop random walking and become part of the DLA structure).
The bacterial search algorithm described in the previous chapter already implements a
random walk, and our fixed point to start the DLA growth was obviously the charging
platform, so an implementation of the particle aggregation was the only extension required
to achieve the DLA formation.

To implement aggregation, we required that an agent be able to determine when it
is within some range of the DLA structure. At the start of the structure formation, we
have only one particle in the structure, the charging platform, which is emitting an audio

4.4. IMPLEMENTING DLA AGGREGATION 31

tone. Again, our bacterial algorithm already has the capability to detect and measure the
volume of the tone, and as the volume is relative to the distance between the sender and
receiver, it was an obvious choice to use a volume level as the threshold for our virtual
aggregation. Of course, the DLA process does not simply involve agents aggregating to
the starting particle, it requires that any connected component of the structure become a
valid point for a new agent to connect to, so as our robot agents connect to the structure,
they too must begin emitting an audio tone for other agents to be able to detect and
connect to. With the introduction of some volume threshold Vdla for aggregation, and
some L as the random walk length, an implementation of the DLA process was given as:

Algorithm 4.4.1: dlaFormation1()

global out (1)

v ← getVolume()

// Loop until DLA found
while v < Vdla

do


rotateDegrees(getRand(360)− 180)
drive(L)
v ← getVolume()

// Stop here and transmit DLA signal
out← true

Note that at (1) we access a new global variable out which, when set to true, causes
the robot to emit a tone through its speaker.

This implementation does not specify what sound the connected nodes in the DLA
structure emit, or even what type of sound is being used, it could be a tone on a certain
frequency, or it could be white noise. Whilst in simulation this approach resulted in the
formation of a DLA structure, it failed to address two requirements that are needed to
make the structure useful. The first is that there is no simple way to signal deconstruction
the DLA structure when it is no longer required. Even if the root node (the charging
platform) were to disable its tone, its child nodes (the swarm agents) would remain with
v > Vdla as a result of their children’s tone output. The second issue is that the structure is
not yet useful for our homing problem, as a robot traversing it has no indication of where
the root is, and could quite easily make a wrong turn at a branch and begin heading
outwards towards leaf nodes.

A new iteration of the algorithm was developed, utilising frequency shifting to solve
both these problems simultaneously. First, we specify that the root node in the struc-
ture (the charging platform) emits a tone at some frequency Froot. As agents random
walk looking for the structure, they no longer simply measure the total volume in the
environment, but rather measure the frequency of the loudest tone they can hear, and
the volume at that frequency only. When a new agent aggregates onto the structure at
the root, it transmits a tone of Froot + 1. When an agent aggregates onto that node, it
transmits Froot + 2, and so on. The result is that we are now building a directed acyclic
graph (DAG) from the root, which is much more appropriate for our homing problem,
illustrated in Figure 4.1. Furthermore, the fact that each node is now listening only to the
volume level of its parent node, disconnecting the structure is a simple matter of disabling
the tone at the root node. The disconnection can then propagate through the rest of the
structure.

32 CHAPTER 4. COLLECTIVE NAVIGATION

Figure 4.1: Robots connected in a DLA structure rooted at the charging platform

To implement this, some new global variables were made available to the simulated
e-pucks’ control scripts. inFreq provides the frequency of the loudest tone the agent can
hear, and inV ol provides its volume (not the total volume over the whole audio spectrum
as before). We retain the out variable which is set to true to enable the agent’s speaker,
however we can also set the output frequency for the agent with outFreq. The updated
algorithm is given in B.2.2.

4.5 Navigating the DLA Structure

With a process for constructing and deconstructing the DLA structure established, we then
considered how the bacterial search could be adapted to take an agent from some point
in the environment to the root of the structure. The modification required was trivial, in
that the only significant change made was to have the agent calculate the gradient based
off the volume of the lowest frequency DLA tone detectable, rather than measuring the
total volume at the microphone. As the agent performs a gradient search toward a node
in the structure, it eventually comes within range of the node’s parent, and subsequently
begins the gradient search on the parent. This process is repeated until the agent reaches
the charging platform, the root node in the structure. The exit condition for the bacterial
search now requires that not only v > Vtarget, but also that the current input frequency
is f , the frequency being emitted by the charging platform. Once the charging platform
detects that a robot has boarded, it disables its audio output, which disconnects all robots
in the structure who can then return to performing their primary task. A description of
the algorithm is given in B.2.1.

4.6 Sending the Alert

At this point we had developed a mechanism to create a DLA structure, and to have a
robot agent navigate through it to the charging platform, however now some method was
required to initiate the process. It was believed that, ideally, a robot should be able to

4.7. SYNCHRONISING THE SWARM STATE 33

activate the swarm to create the DLA structure when it detects that it requires recharging.
To achieve this, another frequency Falert was specified (with Falert < Froot), transmitted
by an agent that requires a recharge. Upon detection of the signal, other swarm agents
retransmit the same signal such that it propagates through the swarm, and at the same
time they begin the DLA formation process. Once aggregated onto the DLA structure,
an agent no longer transmits Falert, they simply transmit their appropriate DLA tone.
When the agent requiring a recharge arrives at the charging platform, it disables its Falert

output, the charging platform disables its output, and the other swarm agents can return
to their primary task.

For an agent to begin alerting the swarm that it needs a recharge, a condition that its
battery level b is below some threshold Blow is introduced. Once its battery level is above
another threshold Bmax, the robot returns to its primary task. The following algorithm
describes the process as a whole:

Algorithm 4.6.1: swarmAgent1()

global inFreq, inV ol, outFreq, out, b

while true

do



// Check if recharge required
if b < Blow (1)

then



outFreq ← Falert

out← true
dlaBacterialSearch1()
out← false
while b < Bmax (2)

do wait()

// Check if DLA formation required
if inFreq = Falert (3)

then


outFreq ← Falert

out← true
dlaFormation2()

// Otherwise, do primary task
doSomeWork() (4)

Swarm agents are performing some arbitrary work task (4), until one of the two outer
conditions (1) or (3) holds true. At (1) the agent checks if it should be initiating a recharge,
and if so activates the swarm and begins the bacterial search towards the charging platform.
Once at the platform, the agent waits for its battery to be replenished (2). A robot that
hears the recharge tone (3) begins the DLA formation process, and returns to work when
the process is complete.

4.7 Synchronising the Swarm State

A significant challenge with Swarm Robot systems is that message delivery is not guaran-
teed to every member of the swarm, depending on their current configuration and physical
location in the environment. If the swarm becomes detached, in that there is a subset of
agents that are not in communication range of another subset, this can be problematic.
In some applications it is inconsequential, for example if all agents exist in one state and

34 CHAPTER 4. COLLECTIVE NAVIGATION

implement only one single behaviour. In algorithm 4.6.1, however, we have implemented
three states, let’s call them lowbatt, dla and worker. Clearly the lowbatt state is acti-
vated and deactivated by an agents own battery level, and is not a state that requires any
synchronisation amongst agents. The dla state, however, becomes active as the result of
a message, and requires that the an agent in that state becomes part of a DLA structure
for some time, before being disconnected and returned to the worker state. There is an
inherent problem with this arrangement, which is best illustrated using a scenario with
five swarm agents, a1−5:

• All agents are in the worker state

• a1 enters lowbatt state, and sends an alert which propagates to rest of the swarm,
placing them in the dla state

• a2−4 form a DLA structure

• a1 navigates through the DLA structure, begins recharging, disconnecting a2−4 and
placing them in the worker state again

• a5 never connected to the DLA structure, and is still in the dla state

• a2−4 come in range of a5, sending them back into the dla state, even though the
initial lowbatt agent has already been serviced

This scenario is not only plausible, but was observed in simulation to be very common
when dealing with agents in a suitably large environment. The randomness of the agents
dispersion results in many disconnected subsets of agents appearing in different locations
at different times, the resulting loop of dla requests completely incapacitating the swarm.
Even if we introduce another state in our protocol, where a dla agent becomes an allclear
agent after servicing the DLA request, who’s state takes precedence if one agent is trans-
mitting dla and another is transmitting allclear? The dla agent may still be transmitting
the alert that the allclear agent has already serviced, or it may actually be transmitting
a new alert for some other agent that has entered the lowbatt state since then.

With no immediately apparent solution to this problem without the use of some form
of synchronisation, the messaging protocol between agents was extended to depend on a
global clock t within the range Tmin to Tmax. Earlier we introduced a frequency Falert,
used to relay the DLA request through the swarm. Rather than have agents communicate
temporal information using a data connection, instead the protocol was modified such that
instead of having a constant Falert frequency, we select it from a frequency range Famin to
Famax such that:

falert =
t(Famax − Famin)

Tmax − Tmin
+ Famin (4.1)

and similarly, an “all clear” frequency such that:

fallclear =
t(Fcmax − Fcmin)

Tmax − Tmin
+ Fcmin (4.2)

with the frequency ranges for alert and allclear being of equal size, and with all frequency
ranges (including the DLA tones described in §4.4) being necessarily disjoint. Note that
in (4.1), the value of t is the time an agent enters the lowbatt state, and in (4.2) the value
of t is the time that the agent was disconnected from the DLA structure. Agents that are
simply relaying these tones through the swarm do so without shifting the frequency.

4.8. EXPERIMENTS 35

With this newly specified protocol, it was now possible for the agents to determine
the ordering of alert and allclear events based on the frequency at which the messages
are being transmitted on. Each agent maintains a variable freqAlert and fregClear, and
determines its state based on which variable is higher within its range. Agents update
their state using the following algorithm:

Algorithm 4.7.1: synchroniseState(freqAlert, freqClear)

// The frequencies detected by the microphone
global inFreqAlert, inFreqClear

// Check for updated messages
if inFreqAlert > freqAlert

then freqAlert← inFreqAlert
if inFreqClear > freqClear

then freqClear ← inFreqClear

The updated dlaFormation and swarmAgent algorithms are given in B.2.3 and B.2.4
respectively. The agent’s state is regularly synchronised as part of the main control loop,
and also when an agent is still random walking, trying to connect to the DLA structure.
The implementation of the revised algorithms in simulation resulted in the swarm being
able to maintain state information without entering an infinite loop of DLA formations. A
pictorial example of the algorithm at work in the Aseba Playground simulator is provided
in Appendix D.

4.8 Experiments

Following the development of this working algorithm through the same process used for the
real e-puck robot of iterating design, experimentation and informal assessment, some anal-
ysis was performed to determine the efficiency of the collective navigation strategy. Rather
than attempt to define any formal metrics for analysing collective navigation strategies
in general, we instead attempted to gather some meaningful statistics for the DLA based
navigation strategy, particularly with respect to the total amount of agent time committed
to returning a single agent to the charging platform. These statistics are useful in deter-
mining some performance requirements for the strategy to be more effective than having
each robot fend for itself, and help with the identification of further requirements for the
feasibility of the algorithm in a real-world scenario. This section will describe the design,
execution and results of the experiments, which were conducted on the Aseba Playground
simulator whose extension we described in §4.3. An analysis of the results is provided,
including a discussion of what applications may benefit from the approach, and how it
may be improved.

4.8.1 Method

Some simple statistics were identified as necessary for providing any meaningful analysis
of the strategy. Assuming some environment with n agents, and some agent entering the
lowbatt state from a given position, we need to know the:

• Average time taken for a to reach the charging platform

36 CHAPTER 4. COLLECTIVE NAVIGATION

• Average amount of total agent time spent assisting a in reaching the charging plat-
form (i.e. the sum of all time spent by helper agents)

Whilst it would be interesting to compare these statistics under different environ-
ment configurations, different swarm densities and different starting locations within the
environment, the time available for conducting these experiments limited us to one config-
uration, a simulated square environment 10m x 10m, with 60 virtual e-puck robots. The
charging platform and agent in the lowbatt state were placed on opposing sides of the en-
vironment with 30cm clearance from the wall, with the other agents distributed randomly
throughout the environment. As a control experiment, the helper agents were removed
for a series of passes, such that we could ascertain some statistics on the average time
for an agent to reach the charging platform without swarm assistance. Both experiment
configurations use implementations of the same swarmAgent2 algorithm (B.2.4).

4.8.2 Results

Predictably, the time taken for an agent to locate the charging platform in such a large
environment without the aid of other helper agents was on average very large, and also
with large variance as the agent is simply random walking through the environment until
coming in range of the charging platform. Table 4.1 contains the results of the control
experiments, where tlowbatt is the time the search started (ie. the agent went into the
lowbatt state), and tcharging is when the charging platform was located.1 The control
experiments resulted in an average of 1hr 53m for the robot to navigate to the charging
platform.

Table 4.2 contains the results of the experiments conducted with the help of the other
swarm agents for navigating to the charging platform. tcharging − tdla indicates the time
difference between when the agent first made contact with a DLA connected agent and
when it reached the target, whereas tcharging − tlowbatt is the total search time from when
the agent first sent the low battery alert to when it reached the target. Hence the difference
between tcharging − tlowbatt and tcharging − tdla is indicative of the time it took the swarm
to propogate the alert and build the DLA structure to an adequate size for the lowbatt
agent to detect it. The average total search time of 18m 20sec is substantially faster than
the control experiment, however it has come at a significant cost. The total work time
committed by other swarm agents tdowntime to aiding the robot in distress is on average
13hr 36m, a huge sacrifice in terms of the time lost for the swarm’s primary objective.2

Experiment tcharging − tlowbatt

20110606 173547 03:33:54

20110606 183323 01:16:00

20110606 184157 00:31:12

20110606 184925 04:24:59

20110606 191928 00:32:20

20110606 192957 02:32:42

20110606 194618 00:24:13

Average 01:53:37

Table 4.1: Control Experiment Results (hh:mm:ss)

1The time unit used for the measurement of simulation experiments was not taken from a clock cali-
brated to real world e-puck speeds, and is strictly for comparison within the simulation experiment results

2tdowntime is the sum of each agent’s time commitment to the DLA process, not the time difference
between when the first agent was recruited and the last agent was released

4.8. EXPERIMENTS 37

Experiment tdowntime tcharging − tdla tcharging − tlowbatt

20110606 145800 13:44:32 00:14:53 00:22:04

20110606 151420 21:30:56 00:26:27 00:31:07

20110606 152824 10:16:16 00:11:32 00:16:53

20110606 154050 21:13:50 00:12:48 00:25:36

20110606 155407 14:53:52 00:11:44 00:19:59

20110606 160556 09:21:51 00:10:28 00:14:16

20110606 161435 10:58:01 00:07:25 00:13:08

20110606 163237 11:10:19 00:08:18 00:14:30

20110606 164053 14:30:45 00:08:47 00:17:59

20110606 165307 08:54:51 00:06:07 00:11:26

20110606 170049 04:27:59 00:05:00 00:08:18

20110606 172015 22:14:24 00:18:51 00:24:51

Average 13:36:28 00:11:51 00:18:20

Table 4.2: Collective Navigation Results - DLA Assisted Search (hh:mm:ss)

4.8.3 Discussion

Even with the very small amount of data collected (particularly for the control experi-
ment), a t-test on the total search time for the agent in distress indicates with with 95%
probability that an improvement has been gained using the collective navigation strat-
egy. As already mentioned, however, the cost of this improvement is substantial, with an
average of over 13 hours work time lost by the swarm in the process. This loss may be
reduced through tweaking of the swarm density and DLA aggregation threshold, however
it is safe to assume that when using a collective navigation strategy to guide a single agent
to some location, the time cost is almost always going to outweigh the gain in search time
for the single agent. This of course does not render the strategy useless, and it is easy to
generalise a number of scenarios where this cost may be acceptable:

• The successful navigation of the agent to the target location is a primary objective
of the swarm (as opposed to a secondary objective such as battery recharging). In
such a scenario, the time cost to the swarm would not be considered a cost at all,
but rather a contribution to the objective.

• The average search time without a collective navigation strategy is unacceptable,
for example if the agents in our simulation had a battery life of one hour, using
the individual search strategy would result in most agents never making it to the
charging platform at all.

In terms of the scenario for which this strategy was developed, the case of each agent
needing periodic maintenance (battery charging), it is possible that with some extension
the strategy can become cost neutral, and even beneficial. Our experiments assume that
only one agent requires assistance in navigating to the charging platform, however in
reality (with the e-puck robot having a battery life of roughly 2 hours), it is likely that
in most cases there will be more than one agent requiring recharging when dealing with
a swarm size of 60. A break-even point can be established by determining the number
of agents that would need to simultaneously take advantage of the DLA structure at the
same time to offset the cost to the swarm. Given that in our experiments the average
search time gain when using the collective navigation strategy is 01:35:37, and our average
time cost to the swarm is 13:36:28, we would require that 9 agents (or 15%) of the swarm

38 CHAPTER 4. COLLECTIVE NAVIGATION

use the same DLA structure to achieve a benefit. Whether or not this threshold of %15
scales with swarm size is unknown, however it is likely that a number of factors including
swarm density and environment configuration would alter this threshold.

An obvious extension to our strategy would be to ensure that a threshold of .15n
agents are in the lowbatt state before beginning the DLA formation. Rather than an
agent entering the lowbatt state and immediately triggering the formation of the DLA
structure by the swarm, have each swarm agent maintain a list of agents known to be
in the lowbatt state, and share this information throughout the swarm. When an agent
detects that at least .15n agents require a recharge, it begins the DLA process. This
would result in an increase in total work time available to the swarm, thus resulting in a
preferable strategy to the “every man for himself” method.

4.9 Future Work

A number of outstanding issues remain with the DLA based collective navigation strategy
just described. Whilst the experiments have provided a proof of concept for the approach,
we did not test it in different environmental configurations (ie multiple rooms or a maze-like
structure), or with varying swarm densities. More experimentation is needed to determine
if there is a optimal way of selecting parameters such as swarm density and DLA connection
threshold. Also, a number of improvements could be made to the strategy. This section
will identify some of these improvements, as well as potential solutions for them.

Synchronisation of the swarm state currently depends on a global clock. This is not
something that can always be achieved easily (depending on the robot hardware, it may
not even be possible), and is an added layer of complexity to the strategy that would
ideally be removed. An implementation of a logical clock to manage causality would be
more desirable, as synchronisation would occur through the message passing protocol itself,
rather than through comparison with a common time source. Lamport’s Clocks are an
example of a logical clock (Lamport, 1978), whereby each agent maintains a counter that
they increment when sending or receiving a message, and include their counter value in
any messages they send. On receipt of a message, they compare their own counter with the
counter value received, and set theirs to the greater of the two. It creates partial ordering
of events, in that a ‘happened before’ relationship can be established between some events
in the system. This is not immediately useful to our collective navigation strategy, as the
swarm must be able to determine the happened before relationship between any request
or release for DLA formation, not just some events. Whilst a logical clock cannot provide
a full ordering of events (as we cannot possibly determine the causal ordering of two
independent events occurring in two disconnected subsets of agents), it is possible our
strategy can be modified to resolve an unknown ordering in some other way that retains
reasonable performance.

We described an extension to the strategy of requiring some minimum number of
agents in the lowbatt state to trigger the construction of the DLA formation. Our strategy
currently requires that the charging platform disable its beacon when it detects a robot
has boarded it, however this would no longer be a viable solution to releasing the swarm
back to its primary work task, as the charging platform would need to know how many
agents it is now expecting. Furthermore, if we attempt to extend the strategy to multiple
charging platforms, this becomes a more complex problem. The management of when
DLA connected agents are released back to work probably requires a significant change to
allow the strategy to work beyond one charging platform and one agent in search mode.

4.10. CONTRIBUTION 39

4.10 Contribution

This research has demonstrated in substantially realistic simulation that a collective nav-
igation strategy can be implemented using the DLA process at the swarm level, and the
bacterial navigation strategy described in §3 at the agent level, using audio as both a
means of communication and a gradient medium. Whilst collective navigation strate-
gies modelled on biology have been proposed before in (Schmickl and Crailsheim, 2007),
(Schweitzer et al., 1997), (Passino, 2002), (Nakagaki et al., 2001), (Edelstein-Keshet, 1994)
and many others, using the DLA process to form a navigable structure for mobile agents
has not been implemented in simulation before.

Applying the strategy to the problem of recharging mobile robots, we demonstrated
that the approach is a feasible solution for enabling individual agents to operate well
beyond the sensory range of their charging platform, and still be able to return to it in
reasonable time with assistance from the swarm. The limited experimental data suggests
that with suitable selection of parameters for a given environment, the approach can be
cost effective if the DLA structure is utilised by multiple agents at once. Also, with the
agents not needing geographical information on the placement of charging platforms, the
platforms could be relocated as required with minimal impact to the swarm.

More generally, the collective navigation strategy we developed could be useful in any
application where the navigation of one or more agents to some point of interest is an
objective of the system, and must be done so without prior knowledge of the point of
interest’s location, or even the environment they are situated in. Consider an application
such as search and rescue after a natural disaster, where known mapping information
could be inaccurate at best, useless at worst. Many agents could be dispersed into an
environment to locate a survivor. Upon locating the survivor, the swarm is required to
converge on the location and provide some form of assistance (transport or otherwise).
With only minor adjustment to our strategy, it could be adapted to act as a homing
mechanism, where leaf nodes continuously begin traversal towards the root until all agents
are at the required location.

In keeping with some of the fundamental concepts of Swarm Robotics, the navigation
strategy is decentralised, robust, and results in the swarm exhibiting an intelligence far
greater than that of the individual agent. Applications for the strategy include unknown
or dynamic environments, where paths between places of interest cannot be formed using
global knowledge of the environment, or there can be no assumption that previously
learned information on an area is still useful. It is likely that although the strategy was
developed for a particular problem of recharging, it has applications extending far beyond
robot maintenance.

40 CHAPTER 4. COLLECTIVE NAVIGATION

Chapter 5

Conclusion

This thesis is the culmination of a research project aimed not only at solving a real-
world localisation problem, but also at exploring new ways of adapting naturally occurring
processes to Swarm Robot systems. In Chapter 2, a literature review of work relevant to
this project was given, including the motivations for distributed control of robot systems,
and some of the navigation strategies used by social insects and animals to achieve complex
system level behaviour through localised agent interactions. We identified the foraging
strategy of E. coli bacteria as one of particular interest to this project, as it seemed
directly mappable to the task of having the e-puck robot navigate to its charging platform,
should we create an artificial gradient peaking at the platform. The literature review also
investigated naturally occurring structures, as they were considered to be of potential use
in extending the navigation strategy to swarms of robots.

The principal outcome of the research, to devise a means for the e-puck robot to au-
tonomously navigate to its recharging platform, was realised through the implementation
of an audio-based gradient search modelled on the behaviour of the E. coli bacteria, as
detailed in Chapter 3. The bacterial search proved through experimentation to be not
only effective, but extensible using more refined localisation techniques once within closer
range of the target. With some further work on the technical aspects of implementation,
the strategy will provide a robust solution for autonomous recharging of the robot, which
will aid future experimentation by providing continuous unaided operation. As well as
providing a solution for the e-puck recharging problem, the research has provided evi-
dence through experimentation that the bacterial foraging strategy is a viable solution to
object localisation problems where limited memory and sensory capabilities are available.
Minimising sensory and memory requirements for the mobile agents can also produce pay-
offs in terms of miniaturisation and cost to build, both of which are significant technical
constraints in real-world applications of Swarm Robot systems.

The naturally occurring process of diffusion limited aggregation was demonstrated in
Chapter 4 to be useful as a means of path formation for a collective navigation strategy.
In simulation, we demonstrated that a swarm of robots can form a tree structure using
DLA, resulting in a series of paths that all lead to some point of interest. Using only
audio signals, the strategy enables an individual agent to alert the swarm that it requires
assistance, causing the swarm to construct the DLA structure. The initiating agent then
traverses the structure to its root using the bacterial algorithm described in Chapter 3,
and subsequently the swarm are released back to their primary objective. An extension to
the strategy was described whereby it could not only provide a better search time for the
individual agent, but reduce the overall search time spent by the swarm as a whole. The
approach, developed for the specific task of having an agent return to a charging platform,
could be applied in any application that requires one or more agents to converge on a
point of interest in an environment.

41

42 CHAPTER 5. CONCLUSION

The research presented in this thesis has provided a contribution not only to the e-
puck recharging problem that was the initial focus of the work, but has also developed a
collective navigation strategy that we believe has applications well beyond the context of
recharging robots. We have presented implementations of nature-inspired search strategies
using a real-world robot, and a simulated swarm. The bacterial search algorithm is a
reliable search strategy that could be adapted to other gradient mediums, whilst the DLA
based collective navigation strategy was demonstrated in simulation to be a viable means
of path formation and homing, and with further refinement could become an effective
navigation approach for many applications of Swarm Robot systems.

Appendix A

Project Timeline

43

44 APPENDIX A. PROJECT TIMELINE

45

46 APPENDIX B. ALGORITHMS

Appendix B

Algorithms

B.1 Bacterial Search

Algorithm B.1.1: bacterialSearch2()

global proxl, proxr, cm, lSpeed, rSpeed

v ← 0
lastV ol← 0
runLength← 0
numLow ← 0 (1)

while true

do



v ← getVolume()

// Check if we’ve reached the target
if v > Vtarget ∧ (proxl > P ∨ proxr > P)

then exit

// Check if we’re outside usable area
if v < Vmin (2)

then numLow ← numLow + 1
else numLow ← 0

if numLow > W (3)

then

{
rotateDegrees(getRand(360)− 180)
runLength = Lmax

else



// Check for improvement
if v > lastV ol

then

{
rotateDegrees(getNorm(0, 60))

runLength← (v−lastV ol)(Lmax−Lmin)
Vtarget−Vmin

+ Lmin

else

{
rotateDegrees(getRand(360)− 180)
runLength = Lmin

// Remember volume and move
lastV ol← v
drive(runLength)

B.1. BACTERIAL SEARCH 47

The variable numLow is defined at (1), and incremented at (2) if we’re outside the
usable gradient area, or reset to zero if we’re not. At (3) the tumble and run parameters
are set for a random walk if the number of iterations outside of the useable gradient exceeds
W .

Algorithm B.1.2: bacterialSearch3()

global proxl, proxr, cm, lSpeed, rSpeed

v ← 0
lastV ol← 0
runLength← 0
numLow ← 0

while true

do



v ← getVolume()

// Check if we’ve reached the target
if v > Vtarget ∧ (proxl > P ∨ proxr > P)

then exit

// Check if we’re outside usable area
if v < Vmin

then numLow ← numLow + 1
else numLow ← 0

if numLow > W

then

{
rotateDegrees(getRand(360)− 180)
runLength = Lmax

else



// Check for improvement
if v > lastV ol

then

{
rotateDegrees(getNorm(0, 60))

runLength← (v−lastV ol)(Lmax−Lmin)
Vtarget−Vmin

+ Lmin

else

{
rotateDegrees(getRand(360)− 180)
runLength = Lmin

lastV ol← v

// Check if we should activate IR sensors for drive
if v > Vhot

then driveHot(runLength, P, S)
else drive(runLength, P, S)

48 APPENDIX B. ALGORITHMS

Algorithm B.1.3: bacterialSearch4(Vtarget, Vhot, Vwarm, Vmin, Lmin, Lmax, P, S, L)

global proxl, proxr, cm, lSpeed, rSpeed

v ← 0
lastV ol← 0
runLength← 0
numLow ← 0

while true

do



v ← getVolume()

// Check if we’ve reached the target
if v > Vtarget ∧ (proxl > P ∨ proxr > P)

then exit

// Check if we’re outside usable area
if v < Vmin

then numLow ← numLow + 1
else numLow ← 0

if numLow > W

then

{
rotateDegrees(getRand(360)− 180)
runLength = Lmax

else



// Check if we’ve moved outside the warm area
if lastV ol >= Vwarm ∧ v < Vwarm (1)

then rotateDegrees(180)

else



// Check for improvement
if v > lastV ol

then

{
rotateDegrees(getNorm(0, 60))

runLength← (v−lastV ol)(Lmax−Lmin)
Vtarget−Vmin

+ Lmin

else

{
rotateDegrees(getRand(360)− 180)
runLength← Lmin

lastV ol← v

// Check if we should activate IR sensors for drive
if v > Vhot

then driveHot(runLength, P, S)
else drive(runLength, P, S)

B.2. COLLECTIVE NAVIGATION 49

B.2 Collective Navigation

Algorithm B.2.1: dlaBacterialSearch1()

global inFreq, inV ol, proxl, proxr, cm, lSpeed, rSpeed (1)

lastV ol← 0
runLength← 0
numLow ← 0

while true

do



// Check if we’ve reached the target
if inV ol > Vtarget ∧ inFreq = F ∧ (proxl > P ∨ proxr > P) (2)

then exit

// Check if we’re outside usable area
if inV ol < Vmin

then numLow ← numLow + 1
else numLow ← 0

if numLow > W

then

{
rotateDegrees(getRand(360)− 180)
runLength← Lmax

else



// Check if we’ve moved outside the warm area
if lastV ol >= Vwarm ∧ inV ol < Vwarm

then rotateDegrees(180)

else



// Check for improvement
if inV ol > lastV ol

then

{
rotateDegrees(getNorm(0, 60))

runLength← (inV ol−lastV ol)(Lmax−Lmin)
Vtarget−Vmin

+ Lmin

else

{
rotateDegrees(getRand(360)− 180)
runLength← Lmin

lastV ol← inV ol

// Check if we should activate IR sensors for drive
if inV ol > Vhot

then driveHot(runLength)
else drive(runLength)

The global variables inFreq and inV ol (1) are used instead of the getV olume method
used previously. At (2) the exit condition now has a check to ensure the charging platform
frequency F has been localised.

50 APPENDIX B. ALGORITHMS

Algorithm B.2.2: dlaFormation2()

global inFreq, inV ol, outFreq, out

// Loop until DLA found
while inV ol < Vdla

do

{
rotateDegrees(getRand(360)− 180)
drive(L)

// Stop here and transmit DLA signal
outFreq ← inFreq + 1 (1)
out← true

// Wait until DLA signal lost, then continue
while inV ol >= Vdla (2)

do wait()

out← false

At (1) the output frequency is set to the detected DLA frequency plus one, and at (2)
we are simply waiting for our parent to disable its tone, signalling that we are finished
with the DLA process.

Algorithm B.2.3: dlaFormation3(freqAlert, freqClear)

global inDlaFreq, inDlaV ol, outFreq, out

// Loop until DLA found
while inV ol < Vdla

do



// Check for updated state messages
synchroniseState(freqAlert, freqClear)

if freqAlert− Famin ≤ freqClear − Fcmin

then exit
rotateDegrees(getRand(360)− 180)
drive(L)

// Stop here and transmit DLA signal
outFreq ← inFreq + 1
out← true

// Wait until DLA signal lost, then continue
while inV ol >= Vdla

do wait()

out← false

B.2. COLLECTIVE NAVIGATION 51

Algorithm B.2.4: swarmAgent2()

global outFreq, out, b

// Variables for retaining state
freqAlert← Famin

freqClear ← Fcmin

while true

do



// Update state information
synchroniseState(freqAlert, freqClear)

// Check for low battery
if b < Blow

then



outFreq ← Falert

out← true
dlaBacterialSearch1()
out← false
while b < Bmax

do wait()

// Check for DLA formation required
if freqAlert− Famin > freqClear − Fcmin

then


outFreq ← freqAlert
out← true
dlaFormation3(freqAlert, freqClear)

// Check if we should update a nearby robot with allclear
if inFreqAlert

then

{
outFreq = freqClear
out← true

// Just do some work...
doSomeWork()

52 APPENDIX B. ALGORITHMS

Appendix C

e-puck Experiment Results

53

54 APPENDIX C. E-PUCK EXPERIMENT RESULTS

Table C.1: Acquisition times for e-puck experiments (h:mm:ss)

Random walk bacterialSearch2 bacterialSearch4
0:10:09 0:01:19 0:00:32
0:06:08 0:00:29 0:01:05
0:04:14 0:04:48 0:06:17
0:14:04 0:02:09 0:00:12
0:09:39 0:05:11 0:01:08
0:18:08 0:02:47 0:04:02
0:09:52 0:00:19 0:01:44
0:23:59 0:01:26 0:01:58
0:05:08 0:02:37 0:04:23
0:05:19 0:01:59 0:09:37
0:00:33 0:01:41 0:00:56
0:03:09 0:04:04 0:02:39
0:01:36 0:03:43 0:01:18
0:13:09 0:00:10 0:00:18

0:03:23 0:02:49
0:00:16 0:02:25
0:01:22 0:00:45
0:02:58 0:03:56
0:01:22 0:04:33
0:06:24 0:02:15
0:01:14 0:03:03
0:04:12 0:02:35
0:01:42 0:00:02
0:01:40 0:02:26
0:01:33 0:03:39
0:00:26 0:01:17
0:04:35 0:05:26
0:01:18 0:03:21
0:03:06 0:02:32
0:02:44 0:01:51
0:04:20 0:02:17
0:02:20 0:00:30
0:02:51 0:01:51
0:10:03 0:01:26
0:05:32 0:04:59
0:03:24 0:00:26
0:15:01 0:01:51

0:06:10
0:02:11
0:00:39
0:00:00
0:02:46
0:03:03
0:03:04
0:01:59
0:02:11
0:02:52

Appendix D

Simulation Screenshots

Figure D.1: Swarm robots performing some arbitrary task. The red cylinder represents
the charging platform beacon, yellow lines indicate sound paths between microphones /
speakers

55

56 APPENDIX D. SIMULATION SCREENSHOTS

Figure D.2: Robot enters lowbatt state, sending alert to nearby agents who relay the alert
through the swarm

Figure D.3: Agents near the charging platform beacon (centre bottom) begin construction
of DLA structure (indicated by red audio paths)

57

Figure D.4: DLA structure continues to grow through the environment

Figure D.5: Initiating robot in the lowbatt state makes first contact with a DLA connected
agent

58 APPENDIX D. SIMULATION SCREENSHOTS

Figure D.6: lowbatt robot traversing the DLA structure toward the lowest frequency

Figure D.7: lowbatt robot has almost arrived at the charging platform

59

Figure D.8: Robot has begun recharging; audio beacon is disabled, releasing the swarm
back to work

60 APPENDIX D. SIMULATION SCREENSHOTS

References

Bachmayer, R. and Leonard, N. (2002). Vehicle networks for gradient descent in a sampled
environment, Decision and Control, 2002, Proceedings of the 41st IEEE Conference on
1: 112 – 117 vol.1.

Barán, B. (2001). Improved antnet routing, SIGCOMM Comput. Commun. Rev. 31(2
supplement): 42–48.

Baran, B. and Sosa, R. (2000). A new approach for antnet routing, Computer Commu-
nications and Networks, 2000. Proceedings. Ninth International Conference on pp. 303
–308.

Beal, J., Correll, N., Urbina, L. and Bachrach, J. (2009). Behavior modes for randomized
robotic coverage, Robot Communication and Coordination, 2009. ROBOCOMM ’09.
Second International Conference on, pp. 1 –6.

Bourke, P. (2004). Dla - diffusion limited aggregation. [Accessed May 26, 2010].
URL: http://paulbourke.net/fractals/dla/

Box, G. E. P. and Muller, M. E. (1958). A note on the generation of random normal
deviates, Annals of Mathematical Statistics 29(2): 610–611.

Braitenberg, V. (1984). Vehicles: Experiments in synthetic psychology., MIT Press.

Burian, E., Yoerger, D., Bradley, A. and Singh, H. (1996). Gradient search with au-
tonomous underwater vehicles using scalar measurements, Autonomous Underwater Ve-
hicle Technology, 1996. AUV ’96., Proceedings of the 1996 Symposium on pp. 86 –98.

Caro, G. D. and Dorigo, M. (1998). Antnet: Distributed stigmergetic control for commu-
nications networks, Journal of Artificial Intelligence Research .

Chen, L. and Tong, W. (2009). A contactless charging platform for swarm robots, Technical
report, University of Auckland.

Collier, T. and Taylor, C. (2004). Self-organization in sensor networks, Journal of Parallel
and Distributed Computing 64(7): 866–873.

Cyberbotics (n.d.). Webots user guide. [Accessed Mar 22, 2010].
URL: http://www.cyberbotics.com/cdrom/common/doc/webots/guide/section6.6.html

Dorigo, M., Birattari, M. and Stutzle, T. (2006). Ant colony optimization, Computational
Intelligence Magazine, IEEE 1(4): 28 –39.

Dorigo, M., Maniezzo, V. and Colorni, A. (1996). Ant system: optimization by a colony of
cooperating agents, Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Trans-
actions on 26(1): 29 –41.

61

62 REFERENCES

Dressler, F. (2008). A study of self-organization mechanisms in ad hoc and sensor networks,
Computer Communications 31(13): 3018–3029.

Edelstein-Keshet, L. (1994). Simple models for trail-following behaviour; trunk
trails versus individual foragers, Journal of Mathematical Biology 32: 303–328.
10.1007/BF00160163.

E-puck Education Robot (2010). [Accessed Sep. 21, 2010].
URL: http://www.e-puck.org/

Gallager, R. G., Humblet, P. A. and Spira, P. M. (1983). A distributed algorithm for
minimum-weight spanning trees, ACM Trans. Program. Lang. Syst. 5(1): 66–77.

Hölldobler, B. and Möglich, M. (1980). The foraging system of pheidole militicida (hy-
menoptera: Formicidae), Insectes Sociaux 27: 237–264. 10.1007/BF02223667.

Howard, A., Mataric, M. J. and Sukhatme, G. S. (2002). Mobile sensor network de-
ployment using potential fields: A distributed, scalable solution to the area coverage
problem, 6th International Symposium on Distributed Autonomous Robotics Systems,
pp. 299–308.

Kantor, G., Singh, S., Peterson, R., Rus, D., Das, A., Kumar, V., Pereira, G. and Spletzer,
J. (2006). Distributed search and rescue with robot and sensor teams, in S. Yuta,
H. Asama, E. Prassler, T. Tsubouchi and S. Thrun (eds), Field and Service Robotics,
Vol. 24 of Springer Tracts in Advanced Robotics, Springer Berlin / Heidelberg, pp. 529–
538.

Lamport, L. (1978). Time, clocks, and the ordering of events in a distributed system,
Commun. ACM 21(7): 558–565.

Magnenat, S., Rétornaz, P., Bonani, M., Longchamp, V. and Mondada, F. (2011). ASEBA:
A Modular Architecture for Event-Based Control of Complex Robots, IEEE/ASME
Transactions on Mechatronics 16(2): 321–329.

Microchip Development Tools (2011). [Accessed May 26, 2010].
URL: http://www.microchip.com/

Miner, D. (2007). Swarm robotics algorithms: A survey.

Nakagaki, T., Tero, A., Kobayashi, R., Onishi, I. and Miyaji, T. (2008). Computational
ability of cells based on cell dynamics and adaptability, New Generation Computing
27: 57–81. 10.1007/s00354-008-0054-8.

Nakagaki, T., Yamada, H. and !’gota TÛth (2001). Path finding by tube morphogenesis
in an amoeboid organism, Biophysical Chemistry 92(1-2): 47 – 52.

Ogren, P., Fiorelli, E. and Leonard, N. (2004). Cooperative control of mobile sensor
networks:adaptive gradient climbing in a distributed environment, Automatic Control,
IEEE Transactions on 49(8): 1292 – 1302.

Passino, K. (2000). Distributed optimization and control using only a germ of intelligence,
Intelligent Control, 2000. Proceedings of the 2000 IEEE International Symposium on
pp. P5 –13.

Passino, K. (2002). Biomimicry of bacterial foraging for distributed optimization and
control, Control Systems Magazine, IEEE 22(3): 52 –67.

REFERENCES 63

Şahin, E. (2005). Swarm robotics: From sources of inspiration to domains of application,
in E. Sahin and W. M. Spears (eds), Swarm Robotics, Vol. 3342 of Lecture Notes in
Computer Science, Springer Berlin / Heidelberg, pp. 10–20.

Şahin, E., Girgin, S., Bayindir, L. and Turgut, A. E. (2008). Swarm robotics, in G. Rozen-
berg, T. Bäck, J. N. Kok, H. P. Spaink, A. E. Eiben, C. Blum and D. Merkle (eds),
Swarm Intelligence, Natural Computing Series, Springer Berlin Heidelberg, pp. 87–100.

Schmickl, T. and Crailsheim, K. (2007). A navigation algorithm for swarm robotics in-
spired by slime mold aggregation, in E. Sahin, W. Spears and A. Winfield (eds), Swarm
Robotics, Vol. 4433 of Lecture Notes in Computer Science, Springer Berlin / Heidelberg,
pp. 1–13.

Schweitzer, F., Lao, K. and Family, F. (1997). Active random walkers simulate trunk trail
formation by ants, BioSystems 41(3): 153–166.

The Network Simulator - ns-2 (2010). [Accessed June 16, 2010].
URL: http://nsnam.isi.edu/nsnam/index.php/

Witten, T. A. and Meakin, P. (1983). Diffusion-limited aggregation at multiple growth
sites, Phys. Rev. B 28(10): 5632–5642.

