
System Reliability and Metrics
of Reliability

Carlo Kopp
Peter Harding & Associates, Pty Ltd

Copyright 1996, PHA Pty Ltd, All rights reserved

http://www.pha.com.au/

What is Reliability?
• Probability of System ‘Survival’ P[S](t)

over time T.

• P[S](t) = R(t) = 1 - Q(t)

• A measure of the likelihood of no fault
occurring.

• Related to system function and
architecture.

• ‘All systems will fail, the only issue is
when, and how frequently.’

System Reliability

• Hardware Reliability.

• Software Reliability.

• Reliability of interaction between hardware
and software.

• Reliability of interaction between the
system and the operator.

Hardware Reliability
• Component, PCB, interconnection reliability, and

failure modes.

• Hard, transient & intermittent failures.

• Random failures - exponentially distributed.

• Wearout failures - normally distributed

• Infant Mortality

Bathtub Curve Diagram

Measures of Hardware
Reliability

• MTBF = Mean Time Between Failures

• MTTR = Mean Time To Repair

• Temperature dependency of lambda -
failure rates always increase at high
operating temperatures.

• Voltage dependency of lambda - failure
rates always increase at higher electrical
stress levels.

• High stress - high lambda !

Lusser's Product Law
• Discovered during A4/V2 missile testing in

WW2

• Superceded dysfunctional ‘weak link’
model

• Describes behaviour of complex series
systems.

• Theoretical basis of Mil-Hdbk-217 and
Mil-Std-756

Serial Systems

• Failure of single element takes out system.

• Use LPL to quantify total lambda and P[S]
for some T.

Parallel Systems

• Failure of single element is survivable, but
P[S] reduced.

• Used in aircraft flight control systems,
Space Shuttle and critical control
applications.

Complex Systems
• Combine parallel and serial models.

• Required detailed analysis to determine R
(t)

• Must analyse for dependencies.

• Must avoid Single Point of Failure (SPoF)
items.

• The higher the complexity of the system,
the higher the component reliability needed
to achieve any given MTBF.

Example RAID Array (1999)

• N x 1 array with single fan and PSU

• Drive redundancy is OK, PSU or fan
failures are SPoF.

• Problem fixed with redundant fans and
PSU.

• No SPoF items - significantly improved
reliability.

Example P-38 Twin Engine Fighter (1944)
• Electrical propeller pitch control, radiator and intercooler

doors, dive flap actuators, turbocharger controls.

• Twin engine aircraft, only one generator on one of the
engines.

• Loss of generator equipped engine - feather propeller, fail
over to battery.

• Once battery flat, prop unfeathers, windmills, turbo
runaway -> aircraft crashes.

• Problem fixed with dual generators, one per engine.

• Significant loss of pilot lives until problem solved.

Lucky
Lady

H MC

79th FS/20th FG, Arthur Heiden, May 1944

Software vs Hardware
Reliability

• Hardware failures can induce software failures.

• Software failures can induce hardware failures.

• Often difficult to separate H/W and S/W failures.

• Cannot apply physical models to software
failures.

• Result is system failure.

Modes of Software Failure

• Transient Failure - incorrect result,
program continues to run.

• Hard Failure - program crashes (stack
overrun, heap overrun, broken thread).

• Cascaded Failure - program crash takes
down other programs.

• Catastrophic Failure - program crash takes
down OS or system -> total failure.

Types of Software Failure

• Numerical Failure - bad result calculated.
• Propagated Numerical Failure - bad result used

in other calculations.
• Control Flow Failure - control flow of thread is

diverted.
• Propagated Control Flow Failure - bad control

flow propagates through code.
• Addressing Failure - bad pointer or array index.
• Synchronisation Failure - two pieces of code

misunderstand each other's state.

Runtime Detection of Software
Failures

• Consistency checks on values.

• Watchdog timers.

• Bounds checking.

Consistency Checking

• Can identify a bad computational result.

• Exploit characteristics of data to identify
problems.

• Protect data structures with checksums.

• Parallel dissimilar computations for result
comparison.

• Recovery strategy required.

Watchdog Timers

• Require hardware support to interrupt tasks
or processes.

• Watchdog timer periodically causes status
check routine to be called.

• Status check routine verifies that code is
doing what it should.

• Can protect against runaway control flow.
• Recovery strategy required.

Bounds Checking

• Compare results of computation with
known bounds to identify bad results.

• Requires apriori knowledge of bounds upon
results.

• Cannot protect against bad results which
have ‘reasonable’ values.

• Recovery strategy required.

Recovery Strategies

• Redundant data structures - overwrite bad data
with clean data.

• Signal operator or log problem cause and then
die.

• Hot Start - restart from known position, do not
reinitialise data structures.

• Cold Start - reinitialise data structures and
restart, or reboot.

• Failover to Standby System in redundant scheme
(eg flight controls).

Case Studies

• Why Case Studies - explore how and why
failures arise.

• Define the nature of the failure.

• Describe the result of the failure.

• Look at possible consequences of the
failure.

• Try not to repeat other peoples' blunders.

Prototype Fighter Testing #1

• Test pilot selects wheels up while on the ground.

• Aircraft retracts undercarriage and falls to the
ground.

• Immediate cause: software failed to scan the
‘undercarriage squat switch’.

• Reason: programmer did not know what a squat
switch was for.

• Possible consequences: destroyed jet, dead pilot.

Prototype Fighter Testing #2

• Radar altimeter and barometric altimeter failed.

• Pilot notices altitude reading at 10 kft, yet
aircraft at different altitude.

• Immediate cause: software default action on
altimeter fail is set constant value.

• Reason: programmer did not understand how
aircraft fly.

• Possible consequences: destroyed jet, dead pilot.

Prototype Fighter Testing #3

• Aircraft crossed equator on autopilot.
• Aircraft attempts to roll itself inverted.
• Immediate cause: navigation software

failed to interpret sign change.
• Reason: unknown, programmer may have

assumed operation only North of equator.
• Possible consequences: midair collision,

destroyed jets, dead pilots.

Naval Cruiser Fire Control

• Late eighties Persian Gulf shootout with
Iran.

• Forward missile launcher engaged to fire
RIM-66 surface to air missile.

• Missile ejected off launcher.
• Missile engine does not ignite.
• Missile worth US$250k falls into ocean

and sinks.

Naval Cruiser Fire Control

• Cause of fault initially unclear .

• Hardware is 100% fault free.

• Software operating normally with no fault
status.

• Possible consequences serious since cruiser
defends a carrier battle group from missile
attacks.

Naval Cruiser Fire Control

• Repeated simulated and real launches on
test ranges fault free.

• Fault eventually replicated when total CPU
load extremely high.

• Conditions for fault extremely infrequent
and difficult to replicate.

• Fault found to be relatively easy to fix once
known.

Naval Cruiser Fire Control

• Cause of fault is use of switch state polling,
rather than interrupts.

• Launcher rail uses position switch to sense when
the missile is about to leave the rail.

• Once missile about to leave rail, ignition signal
sent to ignite engine.

• Under heavy CPU load the frequency of switch
state polling too low.

• Missile left rail before switch state sampled
• Software ‘thought’ the missile was still on the

launch rail.

Ariane 501 Booster Prototype Loss

• New Ariane ‘5’ booster launched with payload
of several satellites.

• Ariane 5 uses digital redundant multiple CPU
flight control system.

• Soon after launch, travelling at about Mach 1,
booster attempts 90 degree turn.

• Acceleration so large that booster breaks up and
fuel explodes.

• Hundreds of millions of dollars worth of
hardware lost.

• Major environmental hazard due to unburned
toxic propellant spill.

Ariane 501 Booster Prototype Loss

• Flight control hardware recovered and found to
be fault free.

• Flight control software cause of disaster.
• Code for new booster developed by reusing code

from Ariane 4 design.
• Different system design caused code to believe

vehicle was 90 degrees off course.
• Code attempts to correct non-existent trajectory

error.
• Aerodynamic forces cause vehicle breakup.

Mariner Venus Probe Loss

• Flight control software failure.

• Expensive satellite and booster lost.

• Fault traced to broken Fortran DO loop.

• Typographical error in source code.

Typical Causes of Software
Failures

• Programmer did not understand the system
design very well.

• Programmer made unrealistic assumptions
about operating conditions.

• Programmer made coding error.
• Programmers and hardware engineers did

not talk to each other.
• Inadequate or inappropriate testing of code.

Dormant Fault Problem

• Statistical models used for hardware are
irrelevant.

• Code may be operational for years with a
fatal bug hidden somewhere.

• A set of conditions may one day arise
which trigger the fault.

• If major disaster arises it may be
impossible to recreate same conditions.

Complex System Problem

• Extremely complex system will be extremely
difficult to simulate or test.

• Complexity may result in infeasible regression
testing time.

• Components of system may interact in
‘unpredictable’ ways .

• Synchronisation failures may arise.
• Fault may be hidden and symptoms not easily

detectable due complexity.

Coding for Reliability

• Problem must be well understood,
especially conditions which may arise.

• Hardware can NEVER be trusted!

• Operating Systems can NEVER be trusted!

• Libraries can NEVER be trusted!

• Documentation can NEVER be trusted!

• Compilers can NEVER be trusted!

Coding for Reliability

• Design objectives must be understood.
• Each module should check the bounds on

arguments.
• Each module should sanity check its results.
• Datastructures should be redundant or

checksummed.
• Consistency checking should be used generously.
• Each module should be tested thoroughly before

use.
• Recycled code should be tested thoroughly

before use and well understood.

System Design for Reliability

• Design objectives must be understood.
• Redundancy should be used as appropriate.
• Failure modes and consequences should be

understood.
• Each module should be tested thoroughly

before use.
• Recycled modules should be tested

thoroughly before use and understood.

Conclusions

• Deterministic proof of code reliability difficult or
impossible.

• Regression testing may miss dormant faults or
complex system faults.

• Human error by programmers and operators
should be assumed.

• Hardware, operating systems, libraries,
documentation and compilers may have hidden
or unknown problems.

• Complexity introduces unexpected interactions.

Axioms to Memorise

• Murphy's Law applies 99% of the time
(Vonada's Law)

• Simpler solutions are usually easier to
prove correct (Occam's Razor)

• Paranoia Pays Off (Kopp's Axiom)

