= o L F
l‘,‘ '
11 b P E
- T

1

System Reliability and Metrics
of Reliability

Carlo Kopp

Peter Harding & Associates, Pty Ltd

Copyright 1996, PHA Pty Ltd, All rights reserved
http://www.pha.com.au/

What 1s Reliability?

Probability of System ‘Survival’ P[S](t)
over time T.

P[S]() = R(t) = 1 - Q(t)

A measure of the likelihood of no fault
occurring.

Related to system function and
architecture.

‘All systems will fail, the only issue 1s
when, and how frequently.’

= ol L F
l‘,‘ '
11 b P E
- T

1

System Reliability

Hardware Reliability.
Software Reliability.

Reliability of interaction between hardware
and software.

Reliability of interaction between the
system and the operator.

= o L F
l‘,‘ '
11 b P E
- T

1

Hardware Reliability
Component, PCB, mterconnection reliability, and
failure modes.

Hard, transient & intermittent failures.
Random failures - exponentially distributed.
R(t) = exp(- At)

Wearout failures - normally distributed

Ru(t) = 1 /exp—lz%u*z)

C\2T

Infant Mortality

Bathtub Curve Diagram

Useful Life Wearout Failures
Random Failures Only Random Failures

Infant Mortality Failures

tune

Measures of Hardware
Reliability

MTBF = Mean Time Between Failures

MTBFE=1/ & A= 1/ MTBF

MTTR = Mean Time To Repair

Temperature dependency of lambda -
failure rates always increase at high
operating temperatures.

Voltage dependency of lambda - failure
rates always increase at higher electrical
stress levels.

High stress - high lambda !

= ol L F
l‘,‘ '
11 b P E
- T

1

[Lusser's Product Law

Discovered during A4/V2 missile testing in
WW2

Superceded dysfunctional ‘weak link’
model

Describes behaviour of complex series
systems.

Theoretical basis of Mil-Hdbk-217 and

Mil-Std-756 .
R=1II R,

= o L F
l‘,‘ '
11 b P E
- T

1

Serial Systems

» Failure of single element takes out system.

» Use LPL to quantify total lambda and P[S]
for some T.

[
Ri= I Ry =expl — X kt)
S q=1 i i=1

= ol L F
l‘,‘ '
11 b P E
- T

1

Parallel Systems

» Failure of single element 1s survivable, but
P[S] reduced.

» Used in aircraft flight control systems,
Space Shuttle and critical control
applications.

= ol L F
l‘,‘ '
11 b P E
- T

1

Complex Systems

Combine parallel and serial models.

Required detailed analysis to determine R
(t)
Must analyse for dependencies.

Must avoid Single Point of Failure (SPoF)
items.

The higher the complexity of the system,
the higher the component reliability needed
to achieve any given MTBF.

W= T Y
il9 '
11 b P E
- 4

1

Example RAID Array (1999)

N x 1 array with single fan and PSU

Drive redundancy 1s OK, PSU or fan
failures are SPoF.

Problem fixed with redundant fans and
PSU.

No SPoF items - significantly improved
reliability.

|

” Example P-38 Twin Engine Fighter (1944)

Electrical propeller pitch control, radiator and intercooler
doors, dive flap actuators, turbocharger controls.

Twin engine aircraft, only one generator on one of the
engines.

Loss of generator equipped engine - feather propeller, fail
over to battery.

Once battery flat, prop unfeathers, windmills, turbo
runaway -> aircraft crashes.

Problem fixed with dual generators, one per engine.

Significant loss of pilot lives until problem solved. .

T | =
" TSI FG ArthrHeden, ey 194

W= T Y
..li '
11'!(.*
-4

Software vs Hardware
Reliability
Hardware failures can induce software failures.
Software failures can induce hardware failures.

Often difficult to separate H/'W and S/W failures.

Cannot apply physical models to software
failures.

Result 1s system failure.

= o L F
l‘,‘ '
11 b P E
- T

Modes of Software Failure

Transient Failure - incorrect result,
program continues to run.

Hard Fail
overrun, .

ure - program crashes (stack
neap overrun, broken thread).

Cascaded
down oth

| Failure - program crash takes
er programes.

Catastrophic Failure - program crash takes

down OS

or system -> total failure.

W= T Y
..li '
11'!(.*
-4

Types of Software Failure

Numerical Failure - bad result calculated.

Propagated Numerical Failure - bad result used
in other calculations.

Control Flow Failure - control flow of thread is
diverted.

Propagated Control Flow Failure - bad control
flow propagates through code.

Addressing Failure - bad pointer or array index.

Synchronisation Failure - two pieces of code
misunderstand each other's state.

v Runtime Detection of Software
Failures

* Consistency checks on values.
 Watchdog timers.

* Bounds checking.

= o L F
l‘,‘ '
11 b P E
- T

1

Consistency Checking

Can 1dentify a bad computational result.

Exploit characteristics of data to identify

problems.

Protect data structures with checksums.

Parallel dissimilar computations for result
comparison.

Recovery strategy required.

W= T Y
il9 '
11 b P E
- 4

1

Watchdog Timers

Require hardware support to interrupt tasks
O Processes.

Watchdog timer periodically causes status
check routine to be called.

Status check routine verifies that code 1s
doing what it should.

Can protect against runaway control flow.
Recovery strategy required.

= ol L F
g '
11"!#’.*
- 3

1

Bounds Checking

Compare results of computation with
known bounds to 1dentify bad results.

Requires apriori knowledge of bounds upon
results.

Cannot protect against bad results which
have ‘reasonable’ values.

Recovery strategy required.

'.'lli '
11'!(.*

Recovery Strategies

Redundant data structures - overwrite bad data
with clean data.

Signal operator or log problem cause and then
die.

Hot Start - restart from known position, do not
reinitialise data structures.

Cold Start - reinitialise data structures and
restart, or reboot.

Failover to Standby System 1n redundant scheme
(eg flight controls).

= ol L F
l‘,‘ '
11 b P E
- T

1

Case Studies

Why Case Studies - explore how and why
failures arise.

Detfine the nature of the failure.
Describe the result of the failure.

Look at possible consequences of the
failure.

Try not to repeat other peoples' blunders.

W= T Y
..li '
11'!(.*
-4

1

Prototype Fighter Testing #1

Test pilot selects wheels up while on the ground.

Aircraft retracts undercarriage and falls to the
ground.

Immediate cause: software failed to scan the
“undercarriage squat switch’.

Reason: programmer did not know what a squat
switch was for.

Possible consequences: destroyed jet, dead pilot.

W= T Y
il9 '
11 b P E
- 4

1

Prototype Fighter Testing #2

Radar altimeter and barometric altimeter failed.

Pilot notices altitude reading at 10 kft, yet
aircraft at different altitude.

Immediate cause: software default action on
altimeter fail 1s set constant value.

Reason: programmer did not understand how
aircraft fly.

Possible consequences: destroyed jet, dead pilot.

W= T Y
il9 '
11 b P E
- 4

1

Prototype Fighter Testing #3

Aircraft crossed equator on autopilot.
Aircraft attempts to roll itself inverted.

Immediate cause: navigation software
failed to interpret sign change.

Reason: unknown, programmer may have
assumed operation only North of equator.

Possible consequences: midair collision,
destroyed jets, dead pilots.

W= T Y
il9 '
11 b P E
- 4

1

Naval Cruiser Fire Control

Late eighties Persian Gulf shootout with

Iran.

Forward missile launcher engaged to fire
RIM-66 surface to air missile.

Missi)
Missi]

e e¢jected off launcher.
e engine does not 1gnite.

Missi.

e worth US$250k falls into ocean

and sinks.

= ol L F
g '
11"!#’.*
- 3

1

Naval Cruiser Fire Control

Cause of fault mnitially unclear .
Hardware 1s 100% fault free.

Software operating normally with no fault
status.

Possible consequences serious since cruiser
defends a carrier battle group from missile
attacks.

= ol L F
l‘,‘ '
11 b P E
- T

1

Naval Cruiser Fire Control

Repeated simulated and real launches on
test ranges fault free.

Fault eventually replicated when total CPU
load extremely high.

Conditions for fault extremely infrequent
and difficult to replicate.

Fault found to be relatively easy to fix once
known.

il A
11'!(.*

Naval Cruiser Fire Control

Cause of fault 1s use of switch state polling,
rather than interrupts.

Launcher rail uses position switch to sense when
the missile 1s about to leave the rail.

Once missile about to leave rail, 1ignition signal
sent to 1gnite engine.

Under heavy CPU load the frequency of switch
state polling too low.

Maissile left rail before switch state sampled

Software ‘thought’ the missile was still on the
launch rail.

= ol L F
i
T
QU

. |
1

" Ariane 501 Booster Prototype Loss

New Ariane ‘5’ booster launched with payload
of several satellites.

Ariane 5 uses digital redundant multiple CPU
flight control system.

Soon after launch, travelling at about Mach 1,
booster attempts 90 degree turn.

Acceleration so large that booster breaks up and
fuel explodes.

Hundreds of millions of dollars worth of
hardware lost.

Major environmental hazard due to unburned
toxic propellant spill.

{1 "
" Arnane 501 Booster Prototype Loss

* Flight control hardware recovered and found to
be fault free.

* Flight control software cause of disaster.

* Code for new booster developed by reusing code
from Ariane 4 design.

» Different system design caused code to believe
vehicle was 90 degrees off course.

* Code attempts to correct non-existent trajectory
€ITOT.

« Aerodynamic forces cause vehicle breakup.

W= T Y
iy '
,1 P
-3

|

Mariner Venus Probe Loss

Flight control software failure.

Expensive satellite and booster lost.
Fault traced to broken Fortran DO loop.
Typographical error in source code.

W= T Y
il9 '
11 b P E
- 4

Typical Causes of Software

Failures
Programmer did not understand the system
design very well.

Programmer made unrealistic assumptions
about operating conditions.

Programmer made coding error.

Programmers and hardware engineers did
not talk to each other.

Inadequate or mappropriate testing of code.

= o L F
l‘,‘ '
11 b P E
- T

1

Dormant Fault Problem

Statistical models used for hardware are
irrelevant.

Code may be operational for years with a
fatal bug hidden somewhere.

A set of conditions may one day arise
which trigger the fault.

If major disaster arises 1t may be
impossible to recreate same conditions.

W= T Y
..li '
11'!(.*
-4

1

Complex System Problem

Extremely complex system will be extremely
difficult to simulate or test.

Complexity may result in infeasible regression
testing time.

Components of system may interact in
‘“unpredictable’ ways .

Synchronisation failures may arise.

Fault may be hidden and symptoms not easily
detectable due complexity.

= o L F
l‘,‘ '
11 b P E
- T

1

Coding for Reliability

Problem must be well understood,
especially conditions which may arise.

Hardware can NEVER be trusted!
Operating Systems can NEVER be trusted!
Libraries can NEVER be trusted!
Documentation can NEVER be trusted!
Compilers can NEVER be trusted!

W= T Y
il9 '
11 b P E
- 4

1

Coding for Reliability

Design objectives must be understood.

Each module should check the bounds on
arguments.

Each module should sanity check its results.

Datastructures should be redundant or
checksummed.

Consistency checking should be used generously.

Each module should be tested thoroughly before
use.

Recycled code should be tested thoroughly
before use and well understood.

= ol L F
l‘,‘ '
11 b P E
- T

1

System Design for Reliability

Design objectives must be understood.

Redundancy should be used as appropriate.

Fai

unc

ure modes and consequences should be

erstood.

Each module should be tested thoroughly
before use.

Recycled modules should be tested
thoroughly before use and understood.

'.'lli '
11'!(.*

Conclusions

Deterministic proof of code reliability difficult or
impossible.

Regression testing may miss dormant faults or
complex system faults.

Human error by programmers and operators
should be assumed.

Hardware, operating systems, libraries,
documentation and compilers may have hidden
or unknown problems.

Complexity introduces unexpected interactions.

= o L F
l‘,‘ '
11 b P E
- T

Axioms to Memorise

* Murphy's Law applies 99% of the time
(Vonada's Law)

» Simpler solutions are usually easier to
prove correct (Occam's Razor)

» Paranoia Pays Off (Kopp's Axiom)

