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What is Reliability?
• Probability of System ‘Survival’ P[S](t) 

over time T.

• P[S](t) = R(t) = 1 - Q(t)

• A measure of the likelihood of no fault 
occurring.

• Related to system function and 
architecture.

• ‘All systems will fail, the only issue is 
when, and how frequently.’



System Reliability

• Hardware Reliability.

• Software Reliability.

• Reliability of interaction between hardware 
and software.

• Reliability of interaction between the 
system and the operator.



Hardware Reliability
• Component, PCB, interconnection reliability, and 

failure modes.

• Hard, transient & intermittent failures.

• Random failures - exponentially distributed.

• Wearout failures - normally distributed

• Infant Mortality



Bathtub Curve Diagram



Measures of Hardware 
Reliability

• MTBF = Mean Time Between Failures

• MTTR = Mean Time To Repair

• Temperature dependency of lambda - 
failure rates always increase at high 
operating temperatures.

• Voltage dependency of lambda - failure 
rates always increase at higher electrical 
stress levels.

• High stress - high lambda !



Lusser's Product Law
• Discovered during A4/V2 missile testing in 

WW2

• Superceded dysfunctional ‘weak link’ 
model

• Describes behaviour of complex series 
systems.

• Theoretical basis of Mil-Hdbk-217 and 
Mil-Std-756



Serial Systems

• Failure of single element takes out system.

• Use LPL to quantify total lambda and P[S] 
for some T.



Parallel Systems

• Failure of single element is survivable, but 
P[S] reduced.

• Used in aircraft flight control systems, 
Space Shuttle and critical control 
applications.



Complex Systems
• Combine parallel and serial models.

• Required detailed analysis to determine R
(t)

• Must analyse for dependencies.

• Must avoid Single Point of Failure (SPoF) 
items.

• The higher the complexity of the system, 
the higher the component reliability needed 
to achieve any given MTBF.



Example RAID Array (1999)

• N x 1 array with single fan and PSU

• Drive redundancy is OK, PSU or fan 
failures are SPoF.

• Problem fixed with redundant fans and 
PSU.

• No SPoF items - significantly improved 
reliability.



Example P-38 Twin Engine Fighter (1944)
• Electrical propeller pitch control, radiator and intercooler 

doors, dive flap actuators, turbocharger controls.

• Twin engine aircraft, only one generator on one of the 
engines.

• Loss of generator equipped engine - feather propeller, fail 
over to battery.

• Once battery flat, prop unfeathers, windmills, turbo 
runaway -> aircraft crashes.

• Problem fixed with dual generators, one per engine.

• Significant loss of pilot lives until problem solved.

Lucky
Lady

H MC

79th FS/20th FG, Arthur Heiden, May 1944



Software vs Hardware 
Reliability

• Hardware failures can induce software failures.

• Software failures can induce hardware failures.

• Often difficult to separate H/W and S/W failures.

• Cannot apply physical models to software 
failures.

• Result is system failure.



Modes of Software Failure

• Transient Failure - incorrect result, 
program continues to run.

• Hard Failure - program crashes (stack 
overrun, heap overrun, broken thread).

• Cascaded Failure - program crash takes 
down other programs.

• Catastrophic Failure - program crash takes 
down OS or system -> total failure.



Types of Software Failure

• Numerical Failure - bad result calculated.
• Propagated Numerical Failure - bad result used 

in other calculations.
• Control Flow Failure - control flow of thread is 

diverted.
• Propagated Control Flow Failure - bad control 

flow propagates through code.
• Addressing Failure - bad pointer or array index.
• Synchronisation Failure - two pieces of code 

misunderstand each other's state.



Runtime Detection of Software 
Failures

• Consistency checks on values.

• Watchdog timers.

• Bounds checking.



Consistency Checking

• Can identify a bad computational result.

• Exploit characteristics of data to identify 
problems.

• Protect data structures with checksums.

• Parallel dissimilar computations for result 
comparison.

• Recovery strategy required.



Watchdog Timers

• Require hardware support to interrupt tasks 
or processes.

• Watchdog timer periodically causes status 
check routine to be called.

• Status check routine verifies that code is 
doing what it should.

• Can protect against runaway control flow.
• Recovery strategy required.



Bounds Checking

• Compare results of computation with 
known bounds to identify bad results.

• Requires apriori knowledge of bounds upon 
results.

• Cannot protect against bad results which 
have ‘reasonable’ values.

• Recovery strategy required.



Recovery Strategies

• Redundant data structures - overwrite bad data 
with clean data.

• Signal operator or log problem cause and then 
die.

• Hot Start - restart from known position, do not 
reinitialise data structures.

• Cold Start - reinitialise data structures and 
restart, or reboot.

• Failover to Standby System in redundant scheme 
(eg flight controls).



Case Studies

• Why Case Studies - explore how and why 
failures arise.

• Define the nature of the failure.

• Describe the result of the failure.

• Look at possible consequences of the 
failure.

• Try not to repeat other peoples' blunders.



Prototype Fighter Testing #1

• Test pilot selects wheels up while on the ground.

• Aircraft retracts undercarriage and falls to the 
ground.

• Immediate cause: software failed to scan the 
‘undercarriage squat switch’.

• Reason: programmer did not know what a squat 
switch was for.

• Possible consequences: destroyed jet, dead pilot.



Prototype Fighter Testing #2

• Radar altimeter and barometric altimeter failed.

• Pilot notices altitude reading at 10 kft, yet 
aircraft at different altitude.

• Immediate cause: software default action on 
altimeter fail is set constant value.

• Reason: programmer did not understand how 
aircraft fly.

• Possible consequences: destroyed jet, dead pilot.



Prototype Fighter Testing #3

• Aircraft crossed equator on autopilot.
• Aircraft attempts to roll itself inverted.
• Immediate cause: navigation software 

failed to interpret sign change.
• Reason: unknown, programmer may have 

assumed operation only North of equator.
• Possible consequences: midair collision, 

destroyed jets, dead pilots.



Naval Cruiser Fire Control

• Late eighties Persian Gulf shootout with 
Iran.

• Forward missile launcher engaged to fire 
RIM-66 surface to air missile.

• Missile ejected off launcher.
• Missile engine does not ignite.
• Missile worth US$250k falls into ocean 

and sinks.



Naval Cruiser Fire Control

• Cause of fault initially unclear .

• Hardware is 100% fault free.

• Software operating normally with no fault 
status.

• Possible consequences serious since cruiser 
defends a carrier battle group from missile 
attacks.



Naval Cruiser Fire Control

• Repeated simulated and real launches on 
test ranges fault free.

• Fault eventually replicated when total CPU 
load extremely high.

• Conditions for fault extremely infrequent 
and difficult to replicate.

• Fault found to be relatively easy to fix once 
known.



Naval Cruiser Fire Control

• Cause of fault is use of switch state polling, 
rather than interrupts.

• Launcher rail uses position switch to sense when 
the missile is about to leave the rail.

• Once missile about to leave rail, ignition signal 
sent to ignite engine.

• Under heavy CPU load the frequency of switch 
state polling too low.

• Missile left rail before switch state sampled
• Software ‘thought’ the missile was still on the  

launch rail.



Ariane 501 Booster Prototype Loss

• New Ariane ‘5’ booster launched with payload 
of several satellites.

• Ariane 5 uses digital redundant multiple CPU 
flight control system.

• Soon after launch, travelling at about Mach 1, 
booster attempts 90 degree turn.

• Acceleration so large that booster breaks up and 
fuel explodes.

• Hundreds of millions of dollars worth of 
hardware lost.

• Major environmental hazard due to unburned 
toxic propellant spill.



Ariane 501 Booster Prototype Loss

• Flight control hardware recovered and found to 
be fault free.

• Flight control software cause of disaster.
• Code for new booster developed by reusing code 

from Ariane 4 design.
• Different system design caused code to believe 

vehicle was 90 degrees off course.
• Code attempts to correct non-existent trajectory 

error.
• Aerodynamic forces cause vehicle breakup.



Mariner Venus Probe Loss

• Flight control software failure.

• Expensive satellite and booster lost.

• Fault traced to broken Fortran DO loop.

• Typographical error in source code.



Typical Causes of Software 
Failures

• Programmer did not understand the system 
design very well.

• Programmer made unrealistic assumptions 
about operating conditions.

• Programmer made coding error.
• Programmers and hardware engineers did 

not talk to each other.
• Inadequate or inappropriate testing of code.



Dormant Fault Problem

• Statistical models used for hardware are 
irrelevant.

• Code may be operational for years with a 
fatal bug hidden somewhere.

• A set of conditions may one day arise 
which trigger the fault.

• If major disaster arises it may be 
impossible to recreate same conditions.



Complex System Problem

• Extremely complex system will be extremely 
difficult to simulate or test.

• Complexity may result in infeasible regression 
testing time.

• Components of system may interact in 
‘unpredictable’ ways .

• Synchronisation failures may arise.
• Fault may be hidden and symptoms not easily 

detectable due complexity.



Coding for Reliability

• Problem must be well understood, 
especially conditions which may arise.

• Hardware can NEVER be trusted!

• Operating Systems can NEVER be trusted!

• Libraries can NEVER be trusted!

• Documentation can NEVER be trusted!

• Compilers can NEVER be trusted!



Coding for Reliability

• Design objectives must be understood.
• Each module should check the bounds on 

arguments.
• Each module should sanity check its results.
• Datastructures should be redundant or 

checksummed.
• Consistency checking should be used generously.
• Each module should be tested thoroughly before 

use.
• Recycled code should be tested thoroughly 

before use and well understood.



System Design for Reliability

• Design objectives must be understood.
• Redundancy should be used as appropriate.
• Failure modes and consequences should be 

understood.
• Each module should be tested thoroughly 

before use.
• Recycled modules should be tested 

thoroughly before use and understood.



Conclusions

• Deterministic proof of code reliability difficult or 
impossible.

• Regression testing may miss dormant faults or 
complex system faults.

• Human error by programmers and operators 
should be assumed.

• Hardware, operating systems, libraries, 
documentation and compilers may have hidden 
or unknown problems.

• Complexity introduces unexpected interactions.



Axioms to Memorise

• Murphy's Law applies 99% of the time 
(Vonada's Law)

• Simpler solutions are usually easier to 
prove correct (Occam's Razor)

• Paranoia Pays Off (Kopp's Axiom)


