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TABLE 6.3
Threshold Density for Electron Capture

Nuc. €(MeV) 2Y,p(glem®)  Nuc. € (MeV) 2Y,p(glem’)

H 0.782 2.44x107 28 4.643 1.97x10°
3He  0.0186 3.94x10* S 3.681 1.05x10°
‘He 20.6 1.37x101 0si 8.539 1.08x10'°
2c 1337 3.89x10% sip 1.491 1.06x10°
BC 1344 3.95x10% 25 1.710 1.47x10°
“N 0.156 1.15x10° g 0.249 2.60x10°
BN 9.772 1.58x101° e 5.38 2.95x10°
0 1042 1.90x10%° »Cl 4.854 2.22x10°
0 8.480 1.06x10'° BA 0.7096 1.99x107
BO  14.06 4.51x10% ICL 0.1675 1.30x10°
sl 4.819 2.18x10° BA 4917 2.30x10°
[®Ne  7.026 6.20x10°| K 0.565 1.24x10’
2ANe  5.686 3.44x10° “Ca 1312 7.85x107
2Ne  10.85 2.13x10° 4K 2492 3.78x10°
BNa  4.374 1.67x10° “Ca 3521 9.34x10°
Mg 5513 3.16x10° “Ca  5.659 3.39x10°
Mg 3.833 1.17x10° “STi 3.990 1.30x10°
BMg  9.325 1.38x10" 2Ccr 3976 1.29x10°
[7Al  2.609 4.25x10°| %Fe  3.695 1.06x10°

David Arnett, Supernovae and Nucleosynthesis
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(mass parabola for isobaric chain)
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Both rates are given by a thermal average over states in the initial nucleus:

Tip 20+ Dajpe B/ D
2i(2J; + e Eil(kT)

Allowed approximation (Gamow-Teller transitions)

In2
/lif = TBif(D(Qif,lle, T)’ K = 6144 S

@ By transition matrix element. Most of the relevant transitions are
experimentally known. Shell-model calculations are possible.

o D(gif,pe, T): “trivial” phase space integral that accounts for the
strong sensitivity of rates to temperature and density.
Implementation in stellar evolution codes requires special care.
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Directly the rates: Requires very fine grids in density and temperature to
achieve accurate interpolations. Particularly relevant at the low
temperatures relevant for ONeMg core evolution.

@ Instead of the rate tabulate an effective matrix element (Fuller, Fowler and
Newmann 1985). For electron capture

In2

A% = ?Beﬁq)ec(qg&ﬂev T)’ g = QgS/(mecz)

Phase space can be expressed via Fermi integrals:

. KIN o (1= Q) ,Q , (He=Q) (QY . (t—0
o @ = {r(f570) 2 (0 () ()
Allows to use approximate expressions for Fermi integrals: fast and
accurate up to 10-20%.

@ An extension to 3~ decay is necessary.
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Rates from Oda et al (1994) tabulation.
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@ Direct interpolation in sparse density grid results in 1-2 orders of
magnitude uncertainty.

@ Interpolation matrix element results in a maximum error of a factor 2.
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In general, all rates relevant for ONeMg core evolution are determined by a few
transitions. It is possible to provide analytical expressions for each individual
rate [GMP+, PRC 89, 045806 (2014)]

1+ 1057

200 11163 s

20 ~(g.5.)=7024.53%
OF Q(g.s

18- Log ft
99.9913 4.9697 2+ 1633.674

<0.001 >10.5 (L3

0.0

@ Low densities (all temperatures): Rate determined by 2+ — 27*
(Q = 5.902 MeV) transition (experimentally known from beta decay).

@ Intermediate densities (7' < 0.9 GK): determined second forbidden
transition 0t — 2% (Q = 7.536 MeV) (only an experimental limit)

@ Higher densities: transition 0t — 1* (Q = 8.592 MeV determines rate
(experimentally known from (p, n) charge exchange).
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Mayor uncertainty is due to second forbidden transition.
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In2
A= %dﬂ“‘*(q, fte.T)

g, 1o, T) = f ) wp(q + wy CW)F(Z, w) fo(w, e, T)dw
q

o C(w) is the shape factor: Linear combination of matrix elements

and energy factors.
@ Relevant matrix elements (Behrens & Biihring 1971)

v 2
Farp ~ [7®Pz’f] tv, Dir=Pi+pp/2

VFx0 ~ r*Yat,
AF 2 Y 2
n ~r Yol i
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sd-shell shell-model calculation using USDB interaction (Idini, Brown,
Langanke, GMP, in preparation)

Harmonic Oscillator Wood-Saxon

VFon 0. 0.0048
VF0 0.8035 1.3353
AF1 0.2423 0.3257

The beta-decay theoretical matrix elementis B = (C(w)) = 1.36 X 1077
usingga = 1.27 (1.11 x 1077 for g4 = 1.0).

The experimental upper limit is 1.94 x 1077,
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9 925 95 975 10
logio(pYe[g cm™3])
Blue dashed: Experimental limit

Red: Wood-Saxon wave functions
Black: Harmonic oscillator wave functions
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The pressence of a degenerate electron background can affect both beta-decays
and electron capture rates:

g - _‘ é’ x‘:ap‘tun"e (‘no‘ sc;'.) ‘ b
@ Correction to nuclear binding —  Fss — © capturo (scr) 1
. = _4l7ss0 - B decay (no scr.) _
energy (DeWitt, Graboske, and v, NN B decay (scr.) .
Cooper 1973; Hix and Thielemann = _8 F Naol R
1996, Bravo and Garcia-Senz 1999, %% ok N ]
Juodagalvis et al. 2010). Q-value = 1ok B
increases by 0.1-0.3 MeV. Y| SN 49 WA .
@ Correction to electron energy -2 7
(Itoh et al. 2002). Chemical T 7
potential reduced by = 5 ]
0.02-0.05 MeV. = 8 7]
&-10f 8
@ Net effect is a reduction of _1ol- AR ]
electron capture rate and an _14L I W

9 92 94 96 98 10

increase of the beta-decay rate. log1o [pY, (g em™)]

Having an analytical scheme allows to consider screening corrections consistent
with the underlying EoS.
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Based on ONeMg cores from Schwab, Quataert, and Bildsten 2015
Convection does not develop in the core.

9.4
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How sensitive is this result to the set of nuclear reactions included?
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Moller, Jones, GMP, in preparation
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Increased to account for possible role of 200(a, n)?*Ne. This rate
dominates over 2’Ne(«, y)**Mg during Neon burning.
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Convection does in fact develops in some of the models.
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Evolution very sensitive to variations of 2°O(a, n)>>Ne rate. It may affect
the density at which oxygen deflagration initiates.



O DEFLAGRATION

MULTI-DIMENSIONAL SIMULATIONS

Joes, Ropke, Pakmor, Seitenzahl, Ohlmann, Edelmann, arXiv:1602.05771 [astro-ph.SR]

LEAFS code (Reinecke+ 1999, Ropke & Hillebrandt
2005, Ropke 2005, 2006)

Isothermal ONe core/WD in HSE with a range of
central (ignition) densities

Centrally-confined ignition: 300 'bubbles' within 50
km sphere, < 5x 10 M_ inside initial flame surface

In laminar regime, flame speeds from Timmes+ (1992);
in turbulent regime, flame speeds from subgrid scale
model of turbulence (Schmidt+ 2006)
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Scale: 400,000 km
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Cowan & Sneden, Nature 440, 1151 (2006)
Al T T T T T T

@ Stars rich in heavy r-process elements (Z > 50)
0 and poor in iron (r-l stars, [Eu/Fe] > 1.0).

@ Robust abundance patter for Z > 50,
consistent with solar r-process abundance.

@ These abundances seem the result of events
that do not produce iron. [Qian & Wasserburg,
Phys. Rept. 442, 237 (2007)]

Relative log &

0 4 s 6 70 80 % @ Possible Astrophysical Scenario: Neutron star
Atomic Number
mergers.
05 T T T
0F ST 7¢ translated pattern of CS 22892- ow Sneden et al. mrm
@ Stars poor in heavy r-process elements but 05
with large abundances of light r-process <
elements (Sr, Y, Zr) @5 :
B
. . 2
@ Production of light and heavy r-process 7
. 2.5
elements is decoupled. i %
-3 HD 122563 (Honda et al. 2006) Fu ?
@ Astrophysical scenario: neutrino-driven EPLo L L L )
winds from core-collapse supernova Atomic Number (Z)

Honda et al, Ap) 643, 1180 (2006)
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Main processes:

Vetnp+e

Ve+tp2n+e® ' SN _\.'

hotneutron star

Neutrino interactions determine the
proton to neutron ratio.

Time ——»

Neutrino cooling and
Neutrino-driven wind

Neutron-rich ejecta:

0°

(Br) = (Bn) > 4y = [ 25 1| [(B5) - 280

@ neutron-rich ejecta: r-process f
@ proton-rich ejecta: vp-process
10 o
We need accurate knowledge of v, and v -

Ve spectra
" oan nmn

M)inMo
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Neutrino mean-free paths at high densities:
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@ v, emission: mainly determined by charged-currentv, +n 2 p + e".
Depends on equation of state properties.

@ ¥, emission: strong sensitivity to the processes considered and equation of
state properties.

GMP, Fischer, Huther, J. Phys. G 41, 044008 (2014)
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@ Energy difference between neutrons and protons is directly related to nuclear
symmetry energy.

@ Symmetry energy enhances v, absorption and suppresses v, absorption.

@ Symmetry energy determines the spectral differences between v, and ¥, and
consequently the nucleosynthesis.

GMP, Fischer, Lohs, Huther, PRL 109, 251104 (2012)
Roberts, Reddy, Shen, PRC 86, 065803 (2012)
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@ Combination nuclear physics experiments and astronomical
observations (Lattimer & Lim 2013)

@ Isobaric Analog States (Danielewicz & Lee 2013)

@ Chiral Effective Field Theory calculations (Drischler+ 2014)

40 T T T T T
o YEFT (NN+3N), Drischler et al 2014 7 E
35 MM Danielewicz & Lee 2013 IAS LA
| E Danielewicz & Lee 2013 IAS + Skins R
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Figure data from Matthias Hempel (Basel)
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1D Boltzmann transport radiation simulations (artificially induced explosion)
for a 11.2 M, progenitor based on the DD2 EoS (Stefan Typel and Matthias
Hempel).
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Y, is moderately neutron-rich at early times and later becomes proton-rich.
GMP, Fischer, Huther, ). Phys. G 41, 044008 (2014).
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@ Elements between Zn and Mo (A ~ 90) are produced
@ Mainly neutron-deficient isotopes are produced

@ Uncertainties: Equation of State, neutrino reactions (mainly ¥,), Neutrino
oscillations(?).
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The neutron-proton energy difference in the medium could be of the order of
several 10s MeV. Neutron decay is important for low energy neutrinos.

Vetpa2xn+e®
Ve+e +p2n

This is part of the direct URCA process in neutron stars [Lattimer et al, (1991)]

Ve
10F T T T T 8
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= 4
g
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Fischer, Lohs, GMP, Qian, in preparation
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Summary

@ Most of the weak interaction rates relevant for ONeMg cores
evolution are well constrained by experimental data.

@ Challenge: accurate and fast implementation of rates in stellar
evolutionary codes.

o Core evolution sensitive to weak rates and thermonuclear rates.

@ Final outcome sensitive to density of oxygen ignition. 3D
simulations by Jones et al

@ Electron capture supernova constitute an ideal test ground to
explore the impact of neutrino opacities on heavy element
nucleosynthesis.

@ lItisimportant to improve the description of v, opacities in
transport codes.
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