
The Evolution of ONe White Dwarfs
towards Accretion-Induced Collapse

with L. Bildsten, E. Quataert & others

Josiah Schwab

01 February 2016



Accretion-induced collapse (AIC) occurs

when an O/Ne WD reaches a critical mass.
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No direct observations of AIC have yet been made.

◮ Models of the collapse of a massive WD to form

a neutron star (NS) produce a weak explosion

and ∼ 10
−3 M⊙ of Ni-rich ejecta.

Woosley & Baron (1992); Dessart et al. (2006);



No direct observations of AIC have yet been made.

◮ Models of the collapse of a massive WD to form

a neutron star (NS) produce a weak explosion

and ∼ 10
−3 M⊙ of Ni-rich ejecta.

Woosley & Baron (1992); Dessart et al. (2006);

◮ Other radio, optical, and X-ray signatures have

been predicted, but depend on whether

◮ the progenitor systems have surrounding material

◮ other aspects of the evolution synthesize Ni-56

◮ the newly formed NS is a magnetar

Piro & Kulkarni (2013); Metzger & Bower (2014)



Our goal is to comprehensively re-address AIC

in order to develop a modern understanding of

progenitor systems, which will provide much-

needed initial models for predictions of the

lightcurves and spectra.
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The WD is a cold, electron-degenerate plasma;

the electron Fermi energy is ∼ MeV and rising.
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At some particular densities the plasma is cooled

by emission of Urca-process neutrinos.
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At some particular densities the plasma is heated

by emission of gamma-rays.
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Initially, the temperature is set by a balance

between compression and neutrino cooling.
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Substantial Urca-process cooling occurs

associated with the A = 23 and A = 25 isotopes.
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This shuts off neutrino cooling

and the material evolves along an adiabat.
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Substantial heating also occurs

associated with the A = 24 isotopes.
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Urca-process cooling will set the temperature

at the onset of captures on 20Ne.
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Electron captures on 20Ne are exothermic;

this heating will ignite oxygen fusion.
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A thermal runaway develops in the core;

but convection is not triggered in the core.
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This will lead to the formation

of an outgoing oxygen deflagration wave.



◮ MESA now includes suitable versions of the

key weak reaction rates.
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accretion-induced collapse.



◮ MESA now includes suitable versions of the

key weak reaction rates.

◮ This work provides an analytic understanding of

the evolution of ONe WDs evolving towards

accretion-induced collapse.

◮ We demonstrated the presence of a thermal

runaway in the core, which will trigger an

oxygen deflagration at a density such that

collapse to a neutron star is likely.
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Thermal timescale mass transfer gives Ṁ values

in the regime for stable He burning.

HeWD

Work led by Jared Brooks; Fig. by Jared Brooks



We evolve both stars plus their orbit;

there is stable He burning, plus carbon flashes.

Work led by Jared Brooks; Fig. by Jared Brooks
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Double white dwarf mergers evolve towards

a thermally-supported, spherical state.

WD + WD

=

WD
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A convectively-bounded carbon deflagration forms

and propagates inward, reaching the center.



Then the remnant undergoes a phase

of Kelvin-Helmholtz contraction.



A convectively-bounded neon deflagration forms

and propagates inward.



The outcome depends on the central composition;

does the off-center burning reach the center?
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The outcome depends on the central composition;

does the off-center burning reach the center?

Fe

Core-collapse

Schwab+ (in prep)

O/Ne

Electron-capture

Schwab+ (2015)

C/O

Hybrid Ia

Denissenkov+ (2013)
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◮ We’ve evolved single and double degenerate

progenitors beginning from "early" phases up to

the beginning of collapse.



◮ We’ve evolved single and double degenerate

progenitors beginning from "early" phases up to

the beginning of collapse.

◮ For super-Chandrasekhar WD mergers, the

likely fate is collapse to a neutron star, though

the collapse may not occur via an O/Ne core.
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We have been performing simulations relevant to

mixing in convectively-bounded deflagrations.

◮ Cartesian box

◮ Boussinesq

approximation

◮ spectral method

(Dedalus code)

Work led by Daniel Lecoanet



Movie 1: Buoyancy Field

Simulation by Daniel Lecoanet



Movie 2: Diffusion model

Simulation by Daniel Lecoanet



Simulation Summary

◮ A model which treats the mixing as diffusive

appears to be able to reproduce the results of

the 3D calculation.

◮ The diffusion coefficient already begins to fall

within the convection zone and has declined

sharply by the location of neutral buoyancy;

we see little mixing across the flame.


