1403.5054v1 [astro-ph.SR] 20 Mar 2014

arXiv

Mon. Not. R. Astron. Soc. 000, 000-000 (0000)

Printed 21 March 2014 (MN IATEX style file v2.2)

Super and massive AGB stars - III. Nucleosynthesis in
metal-poor and very metal-poor stars - Z=0.001 and 0.0001

Carolyn L. Doherty'*, Pilar Gil-Pons?, Herbert H.B. Lau®, John C. Lattanzio',
Lionel Siess* and Simon W. Campbell!

L Monash Centre for Astrophysics (MoCA), School of Mathematical Sciences, Monash University, Victoria 8800, Australia
2 Department of Applied Physics, Polytechnical University of Catalonia, 08860 Barcelona, Spain

3 Argelander Institute for Astronomy, University of Bonn, Auf dem Huegel 71, D-58121 Bonn, Germany

4 Institute dAstronomie et dAstrophysique, Universit Libre de Bruzelles, CP 226, B-1050 Brussels, Belgium

21 March 2014

1 INTRODUCTION

ABSTRACT

We present a new grid of stellar models and nucleosynthetic yields for super-AGB
stars with metallicities Z=0.001 and 0.0001, applicable for use within galactic chemical
evolution models. Contrary to more metal rich stars where hot bottom burning is the
main driver of the surface composition, in these lower metallicity models the effect
of third dredge-up and corrosive second dredge-up also have a strong impact on the
yields. These metal-poor and very metal-poor super-AGB stars create large amounts
of *He, 3C and *N, as well as the heavy magnesium isotopes 2°Mg and 2Mg. There
is a transition in yield trends at metallicity Z=a0.001, below which we find positive
yields of '2C, 160, N, 27Al and 28Si, which is not the case for higher metallicities.
We explore the large uncertainties derived from wind prescriptions in super-AGB
stars, finding ~ 2 orders of magnitude difference in yields of ??Ne, 23Na, 24:25:26Mg,
27 Al and our s-process proxy isotope g. We find inclusion of variable composition low
temperature molecular opacities is only critical for super-AGB stars of metallicities
below Z=0.001. We analyze our results, and those in the literature, to address the
question: Are super-AGB stars the polluters responsible for extreme population in the
globular cluster NGC 28087 Our results, as well as those from previous studies, seem
unable to satisfactorily match the extreme population in this globular cluster.

Key words: nuclear reactions, nucleosynthesis, abundances — stars: AGB and post-
AGB — ISM: abundances, globular clusters: individual: NGC 2808

While nucleosynthesis in intermediate-mass and mas-
Sivi eﬂ metal-poor and very metal-poor AGB stars has been

Super-AGB stars are characterised by off-centre carbon ig-
nition and at the low metallicities studied in this work have
initial masses between ~ 6.5 and 9.0 M. They undergo
from tens to thousands of thermal pulses and associated
third dredge-up (3DU) episodes which enrich their envelopes
with the products of nuclear burning. They also have rela-
tively extreme nucleosynthetic conditions with temperatures
at the base of the convective envelope reaching over 130MK
which leads to efficient hot bottom burning (HBB). Be-
cause of their short lifetimes (30-50 Myrs), metal-poor and
very metal-poor (Z=0.001 and 0.0001) super-AGB stars are
some of the first AGB stars to have enriched the interstellar
medium.

* E-mail:carolyn.doherty@monash.edu

explored in considerable detail (e.g. [Ventura et al J um
Denissenkov & Herwig [2003; [Herwig 12004; [Fenner et all
uﬂﬂ] Ventura & D’Antona uﬂﬂ Méngg & Armggﬂ um
Ventura & D’Antona uﬂlg, Karakad uuj, Lugaro et al
[2012; [D’Orazi et all 1211];‘1)7 to date, at these metallicities
there have only been a few nucleosynthesis studies along the
entire super-AGB phase (lSjﬁ uuj Ventura & D’Antona
[2010; [Ventura et a .HZQlﬁ*i)7 with a notable absence of third
dredge-up in these works.

At moderate metallicities ([Fe/H] 2 —0.6), mas-
sive AGB star models can be directly compared to ob-
servations to constrain the occurrence and relative im-

1 We define massive AGB stars as those with initial masses >
5Mg but not massive enough to ignite carbon.
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pact of HBB and 3DU on the nucleosynthesis (e.g.
Ventura et_all 2000; McSaveney et all 2007; van Raai et all
[M, Qamla—ngnandg et all 2 [ﬂ) At the lower metal-
licities considered here however, super-AGB and massive
AGB stars will have died long ago, making direct compar-
ison impossible. Nevertheless there is the possibility to de-
rive some constraints on the evolution and nucleosynthesis
of low-metallicity super-AGB and massive AGB star evolu-
tion indirectly via galactic chemical evolution models. For
example super-AGB and massive AGB stars may have con-
tributed to the rise of heavy magnesium isotopes in the
Galaxy (Fenner et al] IM) and may be an extra source of
3C and N in the early stages of the Galaxy’s formation.
Super-AGB stars may also play a role as polluters
within globular clusters. The “abundance anomaly prob-
lem” in globular clusters (GCs) has been one of the most
thoroughly researched subjects in modern astrophysics (e.g.
[Kraft [1979, [1994; |Gratton et all 2012). A substantial frac-
tion of stars within GCs are found to have unusual compo-
sitions (not seen in field stars), characterised by the results
of hot hydrogen burning dDemienmL&_Demienmu&&d
These stars show variations in a number of light elements
such as C, N, O, F Na, Mg, Al and Si. However, the anoma-

lous and normal stars typically have the same FeiH , to-
tal number abundance of C+N+O (e.g ;

[1999), lithium ([MLML&LM&IdeZQLd and s-
process element abundances (e.g. [Yong et all 2006, [20_08)

These shared traits place strong constraints on the source
of the anomalous material.

One of the main theories to explain these abundance
anomalies is that GCs are made of multiple generations of
stars, with the anomalous stars being formed from the en-
riched material of a first generation of stars (for a review see
Gratton et all[2012). Stars within GCs are also further di-
vided into three main populations based on their O and Na
abundances; primordial (P) which comprises of first gener-
ation stars and intermediate (I) and extreme (E) which be-
long to the second generation. Generally only the most mas-
sive CGs harbour an extreme population
) showing the largest abundance anomalies, with sub-
stantial depletion of C, O, Mg and large enhancement of He,
N, Na and Al

Although the source of gas from which the sus-
pected second generation of stars formed is still uncer-
tain, proposed candidates include: intermediate-mass (and

super-)AGB stars (Cottrell & Da Costal1981;[Ventura et all
[m; D’Ercole et al] M), winds from fast rotating mas-
sive stars Nerié [M; Decressin et al] IM), massive
star binaries (de Mink et all[2009) and super-massive stars
(Denissenkov & Harl;wigﬁ [M) to name a few. While each
of these classes of polluter has their associated problems
matching certain observed features (Gratton et all 2012)
here we focus on the super-AGB and massive AGB star
scenario. [D’Ercole et al] ([m, [M) have suggested the
extreme population within GCs are formed directly from
pristine super-AGB ejecta, with the intermediate popula-

2 The constancy of total CNO abundance between anomalous
and normal stars within GCs is debated, for example in NGC
1851 where it is found to vary by a factor of 2 )
or not at all (Villanova et all ).

tion formed via some dilution of polluted material with pris-
tine gas (e.g. Bekki et all [2007; [D’Antona. & Ventura [2007;
D’Ercole et all 2008, 2010; |Gratton et al|[2010).

This paper is the third in this series dedicated to the
study of super-AGB stars and is organized as follows: Sec-
tion[Zsummarizes our numerical program and input physics,
in Section [B] we explore the nucleosynthesis of these low
metallicity models, in Section ] we discuss the stellar yields,
and a range of uncertainties. Comparisons to the past works
on super-AGB nucleosynthesis are made in Section [B] and
then we apply these yield results to the extreme population
in the globular cluster NGC 2808. In Section[G]l we summarize
and conclude.

2 STELLAR EVOLUTION AND
NUCLEOSYNTHESIS PROGRAMS

The Monash University stellar evolution program

(MONSTAR; for details see |Campbell & Lattanzid IA)DS;
[Doherty et all 2010) was used to calculate the structural
evolution models. Whilst this present work focuses on
nucleosynthesis, these evolutionary models will be discussed
in more detail in Paper IV (Doherty et al., in preparation)
in this series. We briefly describe the relevant input physics.
The ) mass-loss rate with n=1.0 is used
prior to the carbon burning phase where we switch to the
mass-loss rate from [Vassiliadis & Wood (1993). For the
mixing-length parameter we use amit=1.75, calibrated to
the standard solar model. We employ the search for convec-
tive neutrality as described in M) to determine
the convective boundaries. High temperature opacities are
from the OPAL compilation dlgl:ﬁMBQggrﬂ []_Q%) whilst
low temperature opacities are from [Ferguson et al 1l (2 ([M

In some specific test models, we also used the variable C,
?ﬁmpomtwn molecular opacities from ILfgigr_erﬁ_Annggﬂ

).

Nucleosynthesis calculations were performed using the
Monash University stellar nucleosynthesis post-processing
program MONSOON which solves simultaneously chemical
transport and nuclear burning (for details see;
ILugaro et all 2004; [Doherty et all 2014). The nuclear net-
work comprises 77 species up to sulfur (including both
ground and metastable states of 2°Al) and includes the iron
group elements, using the double sink approach as origi-
nally proposed by lJorissen & Arnould (@) To terminate
the network and simulate neutron capture reactions beyond
nickel, we use a sink particle defined as g, as our s-process
proxy. The initial abundances were taken from the compila-
tion of [Grevesse et all (1996) with scaled solar composition.

We calculate nucleosynthetic yields and provide online
tables as in Paper II (Doherty et al] [M) We present stel-
lar yields for super-AGB stars of 6.5, 7.0 and 7.5 My for
7Z=0.001 and 0.0001.

3 NUCLEOSYNTHESIS RESULTS
3.1 Second Dredge-Up

Due to rapid ignition of core helium burning, low metal-
licity, intermediate-mass stars do not reach the first giant
branch nor undergo a first dredge-up event
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Figure 1. Surface abundances (in mass fraction for H and He otherwise in mole fraction Y) of selected isotopes as a function of time
for the 7.0 Mg Z=0.001 (top) and 7.5 Mg Z=0.0001 (bottom) models. Panels show a) H and He, b) CNO isotopes ¢) Ne-Na isotopes,
"Li and g d) Mg-Al and Si isotopes. The time axis has been offset with the zero at the time of the first thermal pulse. In the top panel
the results using the mass-loss rate of VW93 are shown with solid lines and the B95 mass-loss rate models are shown with dotted lines.
In the bottom panel we show results for the VW93 model again with solid lines whilst the models with VW93 and variable composition
Low-T molecular opacities are shown with dotted lines. The dashed vertical lines represent the truncated duration of the TP-(S)AGB
phase for the B95 mass-loss rate, whilst the dot-dashed line shows the end of the evolution in the variable composition low-T opacity
model. The Z=0.0001 B95 model is not shown for clarity, however, it does follow the VW93 abundance patterns closely. The onset of
the C2DU and CO2DU events are also labeled.
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M) Therefore the first time the surface is enriched in
nuclear processed material is the second dredge-up event
(2DU). Traditionally, a 2DU event brings products that have
undergone CNO cycling to the surface (primarily “*N). As
the CNO cycle is generally a catalytic process with mini-
mal leakage through to 'F or *°Ne, a standard 2DU re-
sults in a change in the relative proportions of C, N and
O at the surface but no net increase in C+N+O. How-
ever, in our more massive super-AGB star models, during
the 2DU the inward moving convective envelope penetrates
deep and into the top of the helium burning shell. The re-
sultant nucleosynthesis from this corrosive second dredge-
up (C2DU) leads to a large increase in the surface abun-
dances of the products of partial or complete helium burn-
ing, namely '>C and 'O, as well as '®*0 and ??Ne synthe-
sised via " N(a,7) 8 F(87v) ¥ 0(a,v)**Ne. We subdivide cor-
rosive 2DU into two types (which correlate with increasing
core mass), either C2DU with only carbon enhancement or
CO2DU with increases in both C and O.

Fig.Millustrates the evolution of the surface abundances
prior to the first thermal pulse during the C2DU of the
7.0 Mg Z=0.001 model and the CO2DU event in the 7.5 Mg
7Z=0.0001 model. The amount of He burning processed ma-
terial dredged to the surface during one of these events is
quite significant, with the number ratio of total C4+N+O
to initial C+N-+O increasing to ~ 1.2, 3.5 for the 7.0 Mg,
7.5 Mg Z=0.001 models and 4, 25 for the 7.0 Mg, 7.5 Mg
7Z=0.0001 models, respectively. Although we expect C2DU
events at all metallicities, they have a stronger signature
at lower metallicity, as they enrich the surface with similar
amounts of material, but into an initially lower metallicity
environment. Fig.[Tlalso shows the large helium contribution
from 2DU, with enhancement from the initial mass fraction
of 0.248 to ~ 0.35.

In comparison to a standard 2DU event which depletes
2C,190 and ?2Ne, corrosive 2DUs result in large surface
enrichments of '2C, and in some cases °0, %0 and **Ne.
If the model is very metal poor this dredge-up of *2C may
lead to the C/O ratio exceeding unity and therefore to the
formation of a carbon star. In both standard and corrosive
2DU events **Na is significantly enhanced.

The initial and 2DU/C2DU/CO2DU surface abun-
dances (in mass fraction) can be found in Table [ATlin Ap-
pendix A.

3.2 Thermally Pulsing Super-AGB phase

During the thermally pulsing phase the surface composition
is altered by both HBB and 3DU. Table [ highlights impor-
tant quantities for this phase of evolution.

The very high temperatures achieved at the base of the
convective envelope result in HBB with activation of the
CNO, Ne-Na, Mg-Al and Si proton capture reaction path-
ways (Fig. B)). Generally, models of lower metallicity and/or
higher mass, i.e. those having at a given mass a more mas-
sive core, attain higher temperatures at the base of the con-
vective envelope and undergo more advanced nucleosynthe-
sis. With our preferred mass-loss rate (Vassiliadis & Wood
) we typically find that lower metallicity super-AGB
stars of a given initial mass have a longer super-AGB phase
and undergo more thermal pulses with associated 3DU

events than their higher metallicity counterparts (see Ta-
ble ).

The nucleosynthesis that takes place within a thermal
pulse convective zone consists of the creation of 2C, 10,
22Ne, Mg, Mg and to a lesser extent ?*Mg, °Ne, 2Na
and ?'Ne. This material is subsequently dredged to the sur-
face via 3DU. We find third dredge-up efﬁciencyﬁ for this
mass and metallicity range is quite high with A~0.7-0.8.
The total mass dredged-up due to 3DU (M[T)?gdge) in any of
these super-AGB stars is at most ~ 0.3 Mg (of which & 30
per cent by mass is '>C and ~ 2 per cent '°0), with an ap-
proximate halving of dredged up material for every 0.5 Mg
increase in initial mass (Table [I)). Although this is quite a
small amount, at these low metallicities the third dredge-
up can lead to an increase of over an order of magnitude
in the surface abundance of metal-rich material. It must be
noted when considering the importance of 3DU to the over-
all stellar yield that earlier the C2DU also contributed to a
significant envelope enrichment in metal.

As illustrated in Fig.[I] the surface abundance of helium
increases along the TP-(S)AGB phase from a combination
of HBB and 3DU, with the majority of this increase, about
70 per cent, due to HBB. The stars become lithium rich for
a short time (& 20,000 years) at the start, or just prior to
the TP-(S)AGB phase before Li is efficiently destroyed once
the *He supply has been fully depleted.

The behaviour of the C, N and O isotopes is dictated
mainly by CNO cycling during HBB. The '?C is initially
depleted and converted into *C then N. The addition of
fresh '>C from 3DU episodes results in increasingly higher
1N abundances due to this CNO cycling. Both nitrogen iso-
topes "N and '®N increase steadily whilst all three oxygen
isotopes 160, 170, O see substantial destruction during
the TP-(S)AGB phase. The '2C/*3C ratio reaches its equi-
librium value as do '7O/'°O and 'N/™N.

Very hot HBB via the Ne-Na cycle (Fig. 2)) will result
in destruction of >*Ne, ??Ne and ?*Na to the benefit of 2°Ne
while the 3DU contributes to the envelope enrichment of
22Ne and to a lower extent ?*Na and 2°Ne.

If temperatures at the base of the convective envelope
are sufficiently high (Tsce > 80MK), which is the case in all
our computed models, the Mg-Al chain (Fig.[2) is activated.
The **Mg(p,7)*> Al(87)*Mg reaction proceeds rapidly and
converts the majority of the initially most abundant magne-
sium isotope 2*Mg to 2*Mg. The 2°Mg subsequently depletes
via 2°Mg(p,v)?% Al(p,7)?"Si(57)?7 Al with a large increase in
2TAlL All three magnesium isotopes are synthesized within
the helium burning intershell region and are brought back
into the envelope by 3DU events. The *Mg is created pri-
marily via the 2ONe(oz,’y) channel, and only when the enve-
lope abundance has been sufficiently depleted via HBB that
this small production will be seen as a noticeable increase
at the surface (Fig. ). The *°Mg is created via both the
22Ne(a,y) and 2*Mg(n,y) channels. The silicon isotope *Si
shows a small increase in the later phases of evolution from

*TAl(p,y)?®Si (see also (Siess & Arnould [2008).

Third dredge-up events also increase the surface abun-

3 A=A Maredge/D My, where A My is the increase in the core
mass during the interpulse phase and A Mgredge is the mass of
dredged-up material.



Table 1. Selected model characteristics where: M;j,; is the initial
mass, Té%‘;:‘ is the maximum temperature at the base of the con-
vective envelope; Mg(r);dge is the total mass of material dredged
to the surface due to 3DU; Mspy is the post 2DU core mass;
Mg is the final computed core mass; ML is the final envelope
mass, (M) is the average mass-loss rate during the TP-(S)AGB
phase; Nrp is the number of thermal pulses and 7(gyagp is the
duration of the thermally pulsing (S)AGB phase. The B indi-
cates models produced using the B95 mass-loss rate, « indicates
the model with an increased mixing-length « value of 2.1, whilst
models indicated with O are those using variable composition

low-T molecular opacities. Note that n(m) = n x 10™.

My THE MERt e M2pu ME M, (M) Nrp 7(s)aGB
Mp) (MK) (Me) (Mg) (Me) Me) (Me/yr) (yrs)

7=0.001

6.5 116 8.32(-2) 1.05 1.07 0.58 2.84(-5) 118 1.69(5)
6.5B 108 2.01(-2) 1.05 1.06 0.62 9.82(-5) 38 4.78(4)
7.0 120 3.97(-2) 1.13 1.14 0.56 6.67(-5) 126 7.83(4)
7.0B 118 1.07(-2) 1.13 1.14 0.38 2.11(-4) 47 2.45(4)
7.0Ba 119 4.37(-3) 1.13 1.14 0.09 4.17(-4) 28 1.23(4)
7.5 122 2.64(-2) 1.20 1.21 0.73 1.03(-4) 171 5.22(4)

(-3) (-4) (4)

7.5B 120 5.81(- 1.20 1.21 0.47 3.56(- 56 1.43(4

7=0.0001

6.5 120 2.72(-
6.50 119 1.28(-

1.06 1.10 0.24 1.02(-
1.06 1.08 0.77 1.81(-
6.5B 119 1.46(- 1.06 1.06 0.24 1.39(- 35 3.68(4
7.0 128 1.23(- 1.14 1.17 0.47 2.37(- 459 2.24(5

(-1) (-5) 439 5.00(5)
(-1) (-5) ()
(-2) (-4) (4)
(-1) (-5) ()
7.00 129 6.30(-2) 1.14 1.17 0.76 4.00(-5) 269 1.26(5)
(-3) (-4) (4)
(-2) (-5) (5)
(-2) (-5) (4)
(-3) (-4) ®3)

214 2.55(5

7.0B 126 5.88(- 1.14 1.15 0.19 3.29(- 38 1.58(4
7.5 127 5.41(- 1.21 1.23 0.43 5.48(- 445 1.06(5
7.50 127 3.03(- 1.21 1.22 0.70 8.83(- 248 6.23(4
7.5B 122 2.30(- 1.21 1.21 0.47 6.93(- 35 6.82(3

dance of our s-process proxy isotope g, with the longer lived
and/or lower-mass models being enhanced by a factor of
over 100 from their initial value.

4 YIELDS

We calculate nucleosynthetic (net) yields (in M) using the
following expression

M; = /T (X (i) — Xini ()] M (t)dt, (1)

where X (i) and Xini(7) are the current and initial mass
fractions of species i respectively, 7 is the stellar lifetime and
M (t) is the mass-loss rate.

Another useful nucleosynthetic quantity is (X (7)), the
average mass fraction of species i expelled into the wind,
calculated as (X (7)) = M;/AM + Xini(i), where AM is the
total mass ejected in the stellar wind.

We have produced two sets of nucleosynthetic yields
with differing mass-loss rates during the super-AGB phase.
In our standard set we use the VW93 rate and in the sec-
ond set we use the more rapid mass-loss rate of
(1997) with n=0.02 (see Section EII] for details). We have
also calculated additional yields for three test cases to ex-
plore the uncertainties associated with (1) an increased

Low metallicity super-AGB star yields 5

mixing-length parameter cmit, (2) the inclusion of the low
temperature variable composition molecular opacities from
Lederer & Aringer (2009) and (3) the use of updated nuclear
reaction rates. The analysis of these simulations is presented
in Section 11

The nucleosynthetic results from all these mod-
els are presented as isotopic production factors
logo[(X (7)) /Xini(z)] in Fig. Bl and as elemental yields,
defined as the average composition of the ejecta (X(i))
expressed via [X/Feﬂgin Table 2 with the latter quantity
allowing for more direct comparison to observations.

Near the end of the evolution, instabilities in the convec-
tive envelope (Wood & Faulkner [1986; [Lau et all[2012) pre-
vent convergence and halt calculations. Because this phase of
evolution is uncertain, and with the non-negligible amount
of envelope mass left at that time (see Table [I), we pro-
vide two subsets of yields for the modelsﬁ In the first subset
of yields (our standard) we assume the remaining envelope
is expelled with the same composition as that of the last
computed model, whilst in the second subset of yields we
include extrapolated thermal pulses (as described in Paper
IT in our series) to account for possible nucleosynthesis in
the case that evolution had continued past the convergence
difficulties. We discuss these differences in Section

We find many similarities with our more metal rich
super-AGB star yields (Paper II), so here we mainly high-
light the features which are pertinent and/or only occur at
the low metallicities studied here.

Helium is produced in large quantities, with the bulk
coming from 2DU, and further increases primarily from ef-
ficient HBB, although there is some 3DU contribution. The
yields of “Li are strongly dependent on the rate of mass loss,
with only the 7.5 My Z=0.001 model producing a positive
yield. In contrast to the more metal rich models, all of our
standard low metallicity models have positive >C yield ei-
ther due to a larger number of 3DU events or because of the
stronger impact of corrosive 2DU events. There are large en-
hancements of *C and *N due to HBB. With high Tsck
the N created via the CN cycle reaches equilibrium with
YN and results in a positive yield.

The elemental yield of oxygen is negative for the 6.5 Mg
and 7.0 My Z=0.001 models, with destruction of all three
main oxygen isotopes °0, 'O and '®0O from HBB. Con-
versely, at Z=0.0001 the 6.5 Mg and 7.0 M models have
positive elemental oxygen yields due to the surface enrich-
ment of '°0 from 3DU events. Although the intershell is
composed of only 1-3 percent *°O, due to the contrast with
the very low initial abundance, this enrichment is enough
to overpower the effect of HBB. The contribution from the
CO2DU results in a positive yield for the 7.5 M models of
both metallicities.

In such a hot environment '°F is efficiently destroyed,
however, in some models the efficient 3DU at the end of the
evolution after cessation of HBB can lead to slight positive
yields. The elemental Ne yield is positive from the increase
of *Ne and ??Ne although ?'Ne is effectively destroyed via
proton capture in HBB. The elemental Mg yields are all pos-

4 where [A/B]=logio(n(A)/n(B))«-logio(n(A)/n(B))e
5 In Table[A2]of Appendix A we give a sample format of the yield
tables.



6  C.L. Doherty, P.Gil-Pons, H.H.B Lau, J.C Lattanzio, L. Siess, S.W. Campbell

1 | 1

(2] B N

T
\\
|

log (rate)
&
e

|
=
(=)
T

- Ne-Na
. Reaction rates

50 100
Temperature (MK)

Ne-Na Cycle

|
=
N
T
s
\

L ()

Ao 4F s

log (rate)

\

Mg-Al
Reaction rates
L L L L

50 100
Temperature (MK)

=
(o2
o

Figure 2. Schematic (with atomic mass number on the x-axis and proton number on the y-axis) for the Ne-Na cycle and Mg-Al chains
with reaction rates in the temperature range 30-150MK. Solid circles denote stable isotopes whilst dashed squares show unstable isotopes.
Reactions indicated by a coloured arrow have their rate plotted in the same colour. The terrestrial half-life of radioactive decays are 2! Na
~ 22.5sec, 22Na ~ 2.60yrs, 2°Al ~ 7.25sec, 26Al ~ 0.717 Myrs and 27Si ~4.16sec. The reaction rates used in the Ne-Na cycle for this
study are: 2Ne(p,y)?'Na from NACRE, 2! Ne(p,7)??>Na from (@), 22Ne(p,7)?3Na from ), 23Na(p,7)?*Mg

and 23Na(p,a)?°Ne from

itive due to the increase of 2> Mg from efficient HBB and 3DU
and Mg almost solely from 3DU. A minor contribution to
the 2°Mg yield comes from the decay of 2°Al.

The radioactive isotope 2°Al is created in large quan-
tities ~ 0.1-3x10"° M, similar to the values found by
Siess & Arnould GM) With the high Tscr and long du-
ration of the TP-(S)AGB phase, the 2°Al(p,)?"Si(87)*" Al
channel opens which bypasses the 2*Mg. Aluminium yields
are always positive, with the main contribution to 27 Al from
HBB nucleosynthesis.

Silicon is produced in all models from a combination
of both 3DU and HBB. The contribution from 3DU to 28Si
production drops from about 80 per cent in the lowest mass
model to about 20 per cent in the most massive model.
Whilst 2®Si production is only marginal at Z=0.001, it in-
creases with decreasing metallicity, which results in large
enhancements at Z=0.0001. The amount of heavier silicon
isotopes, 29Si and ®°Si, is also greatly increased due to pro-
ton captures, and via neutron captures in the intershell re-
gion during a thermal pulse. Although there is a substantial
production of Si in our models, the overall contribution to
the interstellar medium, compared to that from more mas-
sive star (supernova) yields is quite small[d The production
of alpha-elements O, Ne and Mg is also relatively minimal

6 The massive star contribution to interstellar abundance of Si
for these low metallicity models is more than 4 orders of magni-
tude greater than from super-AGB stars, assuming the yields are

), while all the reaction rates in the Mg-Al chain are from ).

in super-AGB stars of these metallicities compared to their
higher mass counterparts.

The main production channel of 3P is via the reaction
2" Al(,y) within the thermal pulse, with this material sub-
sequently mixed to the surface through 3DU events. Phos-
phorus production, is minimal at Z=0.001, similar to the
silicon isotopes, but becomes quite large in the lower mass
7=0.0001 models, with increases by up to 1.7 dex in the
6.5 M model.

Our s-process proxy species g increases with decreasing
metallicity and shows up to 2 dex increase in the Z=0.0001
models. We explore this s-process production in super-AGB
stars in a forthcoming work.

4.1 Uncertainties

Super-AGB star modelling is subject to a large range of un-
certainties. We have performed a series of tests to gauge the
sensitivity of our yield results to various physical assump-
tions.

4.1.1 Mass-loss rate

The mass-loss rate for low-metallicity massive AGB stars
has always been highly contentious and is generally con-

weighted via a standard Kroupa IMF - and

using the massive star yields from
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Figure 3. Production Factor logio[(X(i))/Xini(i)] of selected species. g is used as a proxy for elements heavier than iron. The models
presented in this figure with symbols are our standard VW93 mass-loss rate set. The extent of the cyan shaded regions represents the
yields from the B95 mass-loss rate 6.5 M models. The error bars on the 7.5 M Z=0.0001 symbols show the production factor for the
variable composition molecular opacity test case (most are too small to be seen).

sidered to be a decreasing function of metallicity. How-
ever, a growing collection of work, both theoretical (e.g.

M n 1 m; Wachter et al“ﬂﬁ) and observational
(e.g. |IGroenewegen et all m; Lagadec & Zijlsgrd M)
suggest this may not always be the case, due to factors such
as differences in dust production, higher luminosities and
the importance of carbon in low metallicity stellar environ-
ments. Another relevant point when considering mass-loss
is the surface composition during the AGB phase. Corrosive
2DU, dredge-out or 3DU events in lower metallicity models
can considerably enrich the surface composition to metallic-
ities comparable to/or even greater than solar composition

(Gil-Pons et al!2013). We use these as our justifications for

using “normal” mass-loss rates in this work.

Our standard mass-loss rate is an empirical prescription
derived by [Vassiliadis & Wood (1993) from CO microwave
observations of both carbon-rich and oxygen-rich AGB stars
in the Galaxy and Large Magellanic Cloud. We have also
chosen to test the effect of using the ) mass-
loss rate. This rate is popular amongst low-metallicity AGB
star modellers (e.g. ngwié m; Ventura, et al M) and
is based on the prescription of [Reimers M% modified to
take into account the 2D hydrodynamic models of low-mass

Mira variables ) The free parameter in the B95

rates is calibrated to various observable quantities, and we

use the value 7=0.02 derived by [Ventura et all (2000) based
on Li-rich giants in the Large Magellanic Cloud[]

Table [ highlights the greatly reduced duration of the
TP-(S)AGB phase when the B95 mass-loss rate is used com-
pared to the VW93 mass-loss rate.

These mass-loss rates diverge with decreasing metallic-
ity with over a factor of 10 difference in the duration of the
TP-(S)AGB phase for the Z=0.0001 models. The B95 mod-
els of metallicity Z=0.001 experience a factor of three times
fewer thermal pulses, whilst the Z=0.0001 models have more
than 10 times fewer thermal pulses. This greater difference
is related to the different dependencies on stellar parame-
ters within the mass-loss prescriptions; with the B95 having
a large luminosity exponent, whilst the VW93 rate is more
radius dependent. We note here, that low metallicity stars
are more compact and have a higher luminosity.

In Fig. 0 (upper four panels) the B95 mass-loss rate
results are plotted over the standard VW93 case for the
7.0Mg Z=0.001 model. The surface abundance evolution

7 This 5 calibration was derived using models with the more ef-
ficient full spectrum turbulence convective approach, meaning a
larger n value would be required in our models to match these Li
observations. However, at these lower metallicities the choice of n
is unconstrained.
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Table 2. Nucleosynthetic quantities: the average mass fraction of helium in the wind (Y), (logioe(7Li)) where loge(7Li) = log (n[Li]/n[H])
+ 12 and the elemental yields via [X/Fe]. The B in the initial mass column indicates models run with the B95 mass-loss rate with n=0.02,
whilst O refers to the inclusion of low temperature variable composition molecular opacities. Rono is the ratio of the average number
fraction of C+N+O ejected in the wind to the initial C+N+O. Initial helium mass fractions are Y= 0.2492 and 0.248 for Z=0.001 and
0.0001 respectively. Initial log1pe(7Li) is set at the Spite plateau’s value ~ 2.36. a represents modified mixing-length value from 1.75 to

2.1. RR refers to use of the reaction rate network JINA V2.0.

Mini (Y) (logioe("Li)) [C/Fe] [N/Fe] [O/Fe] Rcno [F/Fe] [Ne/Fe] [Na/Fe] [Mg/Fe] [Al/Fe] [Si/Fe] [g/Fe]
7Z=0.001
6.5 0.359 0.46 0.60 1.98 -0.43 8.32 -0.42 0.15 -0.27 0.34 0.47 0.04 1.53
6.5B 0.350 1.81 0.05 1.49 -0.34 2.87 -0.76 0.03 -0.16 0.02 0.17 0.01 0.69
7.0 0.354 0.92 0.41 1.69 -0.47 4.49 -0.89 0.06 -0.62 0.14 0.32 0.04 1.19
7.0RR 0.354 0.99 0.41 1.69 -0.48 4.54 -1.56 0.06 -0.43 0.12 0.44 0.03 1.41
7.0B 0.350 2.45 -0.01 1.31 -0.31 2.07 -1.07 0.02 -0.24 0 0.17 0.01 0.53
7.0Ba 0.350 2.36 -0.07 1.23 -0.30 1.78 -1.03 0.02 -0.19 -0.01 0.16 0.01 0.41
7.5 0.354 3.25 0.37 1.76 0.05 5.53 -1.04 0.07 -0.01 0.18 0.18 0.02 1.64
7.5B 0.353 3.70 0.21 1.55 0.10 3.77 -0.78 0.03 0.35 0.02 0.11 0.01 0.71
7Z=0.0001
6.5 0.402 0.75 1.63 3.52 0.89 249.52 0.19 1.41 1.48 2.09 2.16 0.82 2.47
6.50 0.370 0.37 1.58 3.15 0.55 114.74 0.35 0.89 0.89 1.40 1.37 0.33 2.05
6.5B 0.351 1.31 0.75 2.22 -0.34 13.99 -0.67 0.10 -0.48 0.03 0.41 0.05 0.77
7.0 0.377 0.58 1.41 3.17 0.61 116.82 -0.21 0.75 0.65 1.44 1.60 0.52 2.13
7.00 0.362 0.60 1.37 2.87 0.32 61.17 -0.44 0.44 0.29 0.94 0.98 0.30 1.78
7.0B 0.351 2.11 0.64 1.97 -0.39 8.36 -0.93 0.04 -0.47 -0.01 0.26 0.05 0.54
7.5 0.363 1.76 1.37 2.95 0.62 74.5 -0.50 0.47 0.29 1.08 1.14 0.25 1.99
7.50 0.356 2.26 1.41 2.81 0.70 57.72 0.06 0.33 0.16 0.88 0.74 0.10 1.58
7.5B 0.352 3.68 0.99 2.46 0.89 28.43 -0.76 0.04 0.38 0.04 0.08 0.01 0.42

of both models is strikingly similar for the majority of the
evolution. The more prominent upturn of *2C near the end
of evolution in the B95 case simply reflects a dilution effect
of the 3DU in the smaller remaining envelope mass.

In Fig. @ we plot the temperature at the base of the con-
vective envelope as a function of total mass for the VW93
and B95 mass-loss rate models for the 7.0 Mg Z=0.001 (top
panel) and 7.5 Mg Z=0.0001 (bottom panel) models. In this
last panel when the B95 prescription is used the stellar wind
had already stripped over 1 Mg of envelope prior to the first
thermal pulses. This highlights the very rapid ~ 7 x10~*
Mo yr~ ! mass-loss rate, which results in an extremely short
TP-(S)AGB phase of just under 7000 years (Table[I]). Apart
from the early AGB phase the subsequent evolution of Tscr
for models with different mass-loss rates shows striking sim-
ilarities.

The largest variation in yields is found in models most
affected by 3DU enrichment, these being the least mas-
sive and/or more metal poor models where the amount of
dredged material Mpot. is greater (Table[). In Fig. Bl the
extent of the shaded regions represents the yields from the
B95 mass-loss rate 6.5 Mg models for both Z=0.001 and
0.0001. Clearly seen is the larger discrepancy in yield predic-
tion results with differing mass-loss rates as the metallicity
decreases. Due to the reduced duration of the TP-(S)AGB
phase with the B95 prescription, fewer 3DU episodes take
place and less time is available to nuclearly process the en-
velope via HBB. The impact of this truncated thermally
pulsing phase mostly affects the surface abundances of *>Ne,
2Na, 242260\ [g and 2" Al, with an ~ 2 orders of magnitude
decrease in their yields. In the Z=0.0001 models, variations
of over 1 order of magnitude in the yields results of **N, 6O

and the s-process proxy isotope g between mass-loss rates
are found. Although lithium yields are highly dependent on
the mass-loss rate, even with the rapid B95 mass-loss pre-
scription, the 6.5 Mg models still have negative "Li yields.
We also note a substantial reduction of the helium yield for
the 6.5 M Z=0.0001 model when the B95 rate is used from
(Y) = 0.402 to 0.351.

4.1.2  Mizing-length parameter

The thermodynamic conditions at the base of the convec-
tive envelope are affected by the choice of convective mix-
ing approach. In this work we use the mixing-length the-
ory (MLT) with a solar calibrated amit value of 1.75. Some
studies have used other convective theories in AGB models
such as full spectrum turbulence (FST;|Canuto & Mazzitelli
ML or modified mixing-length theory M
). These prescriptions correspond to more efficient mix-
ing (larger values of auit) than in the standard MLT case.
Although simply increasing auy,i¢ is not a direct analogue for
implementing these more sophisticated (albeit not necessar-
ily more accurate) convective approaches, it can however,
mimic the trends/results from these works. To test the sen-
sitivity of our results to convective modelling, the 7.0 Mg
7=0.001 model with B95 mass-loss rate was recomputed
with an increased a..;: value of 2.1. This combination of
increased mass-loss and ., was chosen for its similarity to
the works by [Ventura & D’Antona (2005) and [Ventura et all

). An increase in amit leads to higher luminosities and
higher temperatures at the base of the convective envelope.
When oy is increased and combined with the high mass-
loss rate the duration of the TP-(S)AGB phase is halved (Ta-
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Figure 4. Temperature at the base of the convective envelope
as a function of total stellar mass for the 7.0 Mg Z=0.001 (top
panel) and 7.5 Mg Z=0.0001 (bottom panel) models with VW93
(red) and B95 (black) mass-loss rates.

ble ). The nucleosynthesis yields however, are only slightly
altered, mainly with a small decrease in N, Rcno (the ratio
of the average number fraction of C+N+O ejected in the
wind to the initial C+N+O) and g (Table [2)). The cause of
this similarity in results is twofold. First, due to the rapid
unifying of the surface composition due to HBB once the star
reaches the TP-(S)AGB phase the slight difference in Tscr
does not greatly affect the nucleosynthesis. Moreover, at this
large core mass, the contribution to surface enrichment from
each individual third dredge-up event is very modest, so the
change in number of pulses makes little difference.

4.1.3  Nuclear reaction rates

Another major source of uncertainty in super-AGB star nu-
cleosynthesis modelling is the nuclear reaction rates, with
the most important reactions in this regard being: the Ne-Na

cycle and Mg-Al chain during HBB (e.g. [Arnould et alll1999;
Izzard et all m; van Raai et all m; Siess & Arnould
m) and the **Ne+« reactions within the thermal pulse
convective zone (Karakas et all2006; Longland et all[2012).

The nucleosynthesis for the 7.0 Mg Z=0.001 model was
recomputed in MONSOON to test the effects of using the
updated reaction rate network from JINA V2.0 compared
to V1.0 (Cyburt et al] M) The main modifications con-
cern the Ne-Na, Mg-Al proton capture rates updated to the
[iadis et all (2010) set, as well as the **Ne(a,n)**Mg and
22Ne(a,7)*Mg from [Karakas et all (2006) also updated to
Iiadis et all (2010). The yields of the main elements (e.g.
He, Li, C, N, O) show remarkable agreement between the
updated and standard results (Table 2]). The differences are
isolated to a small selection of isotopes; with +0.2 dex in g,
23Na and 27Al, —0.1 dex in Mg, with the largest change
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being —0.7 dex in °F. These changes are expected, with
the faster *Ne(a,n)**Mg reaction rate from Iliadis lead-
ing to larger production of the neutron-rich isotopes g and
#Na. The updated **Mg(p,7)*" Al rate is also faster and
has resulted in greater production of 27Al to the deficit of
26Mg. Finally, the reduction in °F yield in this model is due
to the more rapid destruction channel 19F(p,’y)zONe from
|Caughlan & Fowler (1988) compared to NACRE. We would
expect similar (small) changes to the yields across this mass
and metallicity range.

4.1.4  Variable low temperature opacities

The use of molecular opacities allowing for variations in the
C and N content at low temperature are crucial to cor-
rectly model stellar envelopes, especially when the carbon
to oxygen number ratio exceeds unity (e.g. m m;
[Ventura & Marigd [2Qld) When the star becomes C-rich,
and the effective temperature is sufficiently low (Tegq < 4000
K), the molecular chemistry changes dramatically, with for-
mation of carbon bearing molecules producing a substantial
increase in the opacity. This leads to an expansion of the
stellar envelope and enhanced mass-loss rate resulting in a
shorter TP-(S)AGB phase.

Since the majority of super-AGB stars of near solar
or moderately low metallicity either spend the entirety of
their lives oxygen rich due to HBB or only become car-
bon rich due to 3DU late in their evolution when already
in the superwind phase, one may expect that the inclusion
of CN variable opacities would have minimal effect. This is
not the case however, for some very metal-poor super-AGB
stars which can become carbon stars either by undergoing a
C2DU event, repeated 3DU enrichment or from HBB very
efficiently depleting oxygen.

Our representative 7.5 M Z=0.0001 VW93 model was
recomputed using the variable C, N low temperature opac-
ities of [Lederer & Aringerl (2009). The resultant evolution-
ary and nucleosynthetic information is provided in Tables [Tl
and [2 with these models denoted by an O. As with previous
studies focusing on low-mass AGB stars (e.g.
2009; [Lugaro et all [2012), the duration of the TP-SAGB
phase Tsagp is significantly reduced, in this case by ap-
proximately 50 per cent. The evolution of the surface abun-
dances and mass-loss rate are shown in Fig. [l (lower four
panels) and Fig. [l respectively. The initial composition is
scaled solar, whilst it is known that stars of such metallici-
ties generally have a (mostly oxygen) enhancements. If this
effect had been taken into account, the C/O ratio may have
remained below one and the effects of varying opacity re-
duced. The early peak in M at t ~ 0 in the low-T variable
composition opacity test model corresponds to the first oc-
currence of C/O > 1. Later, although the C/O ratio dips
below unity (Fig. [dl), the mass-loss rate has already entered
the superwind regime. Apart from the initially faster rise
the subsequent evolution of the mass-loss rate is quite simi-
lar, with a pronounced maximum followed by a decline with
decreasing luminosity and HBB efficiency as the envelope is
removed. The production factors for this model are shown
as error bars in Fig.

The almost halving of the duration of the TP-(S)AGB
phase results in a lower yield of some 3DU (**Mg, 2%Mg)
and HBB (*He, 2"Al) products. One would expect this
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model, with a TP-(S)AGB duration intermediate between
the VW93 and B95 fixed composition opacities models, to
also have yields lying between these results. This is mainly
true but for a few exceptions mainly the yields of C, Na and
F which we explain below.

As seen in Fig. [0 the temperature at the base of the
convective envelope in the variable low-T molecular opacity
model decreases near the end of the evolution when the enve-
lope mass is higher compared to the fixed low-T molecular
opacity model. This leads to two important consequences.
First, the TP-SAGB phase terminates earlier in the variable
opacity model because the instability which causes conver-
gence issues is generally encountered only when HBB has
ceased or is greatly reduced in efficiency. Secondly, the ef-
fect of this earlier cessation of HBB results in a higher yield
of the 3DU products which are highly fragile to H burning
namely '?C and '°F. The effect on the yield of **Na how-
ever, is more complicated, with the variable low-T molecular
opacity model case lying below both the fixed composition
low-T opacity VW93 and B95 models. This is due to the
28Na having been depleted from HBB rapidly, then the ma-
jority of mass being lost at times of low abundance, with the
larger *Na near the end of the evolution not being able to
overcome this previous release of Na poor material.

Because of the significant disparity between yield re-
sults obtained with/without variable composition molecu-
lar opacities the 6.5 Mg and 7.0 Mg Z=0.0001 VW93 mass-
loss rate models were also recalculated using these updated
opacities. A similarly large decrease in the duration of the
TP-(S)AGB phase and number of thermal pulses was found
(Table[d). The yield results for these models also echoed the
trends of the 7.5 My Z=0.0001 model, with less 3DU enrich-
ment and more moderate HBB nucleosynthesis. In these two
lower mass models, the 2*Na yields lie between the previous
fixed composition VW93 and B95 models. This highlights
the significant interplay between the competing effects of
mass-loss and third dredge-up near the end of the evolution
that make yield calculation, especially of this isotope, quite
sensitive.

We note that although low-T variable composition
molecular opacities are an important and appropriate piece
of input physics to be used in stellar models, the factor of two
decrease in duration of the TP-(S)AGB with their inclusion
in this work has far less of an effect than the factor of 10 dif-
ference seen from using different commonly used mass-loss
rate prescriptions. This impact on the yields is highlighted
in the bottom panel of Fig.

As seen in the previous section, the nucleosynthesis for
super-AGB models of different mass-loss rates is similar until
near the end of the evolution. This weak dependence on
the mass-loss rate is due to the very efficient hot bottom
burning which is relatively constant for the majority of the
TP-(S)AGB phase. For this reason, our initial, fixed low
temperature opacity models have been left in this work as
a complementary set to highlight /mimic the behaviour of a
slower (non VW93) mass-loss rate.

Mass-loss formalisms that are highly dependent on lu-
minosity, e.g. B95, are far less affected by inclusion of
variable composition opacities than prescriptions, such as
VW93, which have a large dependence on stellar radius

(Ventura & Marigd 2010). For this reason we decided not to

recompute the B95 mass-loss rate models with low-T vari-
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Figure 5. Mass-loss rate as a function of time for the 7.5Mg

Z=0.0001 with low-T fixed (red) and low-T variable (black) com-
position molecular opacities.
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Figure 6. Temperature at the base of the convective envelope as
a function of total stellar mass for the 7.5 M Z=0.0001 models
with VW93 mass-loss rate with fixed (red) and variable (black)
molecular low temperature opacities.

able composition molecular opacities. Comparing the yields
of the variable composition opacities VW93 models with the
B95 models, we find closer agreement than with the fixed
opacity case, but significant differences still remain. Instead
of the ~ 2 orders of magnitude variations in yields of ?’Ne,
23Na, 242526Mg and 27Al, these have been slightly reduced
to factors of 10 — 60 variations in yields of the above listed
species.

The 7.0 My Z=0.001 model was recomputed using the
updated opacities, with the evolution found to be reason-
ably comparable, with an approximately 20 per cent de-
crease in the number of thermal pulses and duration of the
TP-(S)AGB phase. With such a modest change we have de-
cided not to recompute the yield results for the Z=0.001
models.



4.1.5  Extrapolated thermal pulses

Lastly we briefly discuss the effect of extrapolated thermal
pulses at the end the evolution on the computation of yields.
These extrapolations were performed to account for possible
further evolution after convergence difficulties cease calcula-
tions. For the B95 mass-loss rates cases there are at most 2
further extrapolated pulses, whilst for VW93 mass-loss rate
there are between 5-30 further thermal pulses (see Table [A3]
in Appendix for extrapolated thermal pulse characteristics).
As with our more metal rich models (Paper 1) the isotopes
most affected by extrapolated thermal pulses are the 3DU
products 12C, 19F, 2'Ne, Mg and g. Quite large variations
are seen in °F (0.4 dex) and *'Ne (0.8 dex) and more mod-
est changes of up to ~ 0.3 dex in '?C, 0.16 dex in Mg
and 0.08 dex in g. At Z=0.0001 **Mg and **Na are also
noticeably modified by these extrapolations, with up to 0.3
dex and 0.1 dex increase, respectively. However, since these
extrapolated thermal pulses make up only a small fraction
of the overall number of thermal pulses the nucleosynthetic
effects from their inclusion are minimal for the majority of
species (see columns 5-7 in online tables) and thus represent
a small uncertainty compared to other effects, such as the
mass-loss rate.

4.2 Comparison to other studies: Z=0.0001

Unlike solar metallicity models where super-AGB yield re-
sults in the literature show close agreement due to the unify-
ing behaviour of HBB (e.g. see figure 15 in Paper II) this is
not the case at lower metallicities. We compare the yield re-
sults of our representative 7.5 My Z=0.0001 (variable com-
position opacities) model with those of (2010, here-
after S10). Even though both studies use the same mass-
loss rate (VW93), the number of TPs and duration of the
TP-(S)AGB phase vary considerably with 2776 TPs and
T(s)AGB:3.56><105 years in S10, compared to 248 TPs and
T(s)AGB:6.23><104 years in this work. These evolutionary
differences are related to the feedback from 3DU events to
the stellar structure as well as differences in core mass and
its associated higher luminosity, with these factors helping
drive more rapid mass loss. The difference in core mass is
a result of different convective boundary treatment during
core He burning. The S10 models were also calculated using
the fixed composition opacities of [Ferguson et all (2005). As
the core mass is an important factor in evolution and nucle-
osynthesis, we also compare to the 8.5 Mg Z=0.0001 model
from S10 which at the beginning of the TP-SAGB phase
has a more similar core mass to the 7.5 Mg Z=0.0001 model
from this study. The structural properties for these models
are presented in Table [Bl While the differences in duration
of the thermally pulsing phase between our model and those
from S10 are approximately a factor of 3 — 5, the number of
TPs varies by approximately a factor of 10. These differences
are caused primarily by the lengthening of the interpulse
period in models which undergo deep 3DU (e.g
), and hence our models have fewer TPs compared to
those from S10 for the same thermally pulsing duration.

In Fig. [[l we provide the nucleosynthetic results as pro-
duction factors for the three above-mentioned models. The
shaded region represents the extent of the difference between
the 7.5 Mg and 8.5 Mg Z=0.0001 models from S10, with
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Table 3. Comparison of selected model characteristics for 7.5 Mg
Z=0.0001 from this study and Siess (2010). Variables as described
in Table [Tl

Mini Thex Mg?gdgc Mypu ME Nrp Ts)acs
M) (MK) (Mg) Me) (Mg) (yrs)

This Study 7.5 127 3.02(-2) 1.21 122 248 6.23(4)
Siess (2010) 7.5 155 0 1.07 1.28 2776 3.56(5)
Siess (2010) 85 151 0 120 1.30 2409 1.64(5)

the results from these models showing very close agreement.
The yield divergences between our model and those from
S10 are mainly due to the occurrence of 3DU in this cur-
rent work, the large disparity in temperatures at the base
of the convective envelope, and differences in the nuclear re-
action rates. In particular, if the 23Na,(p;y)MMg reaction is
much faster than the **Na(p,a)?°Ne then the Ne-Na cycle
forms a chain and these isotopes flow through into the Mg-
Al chain. Contrary to this work, the faster (p,y) rate used
in S10 (NACRE) leads to a substantial production of 2%Si. In
the S10 models, the 3DU products *2C, 0, 242525Mg are
not replenished during the TP-(S)AGB phase. This makes
the envelope abundances quite different and the contrast is
exacerbated by the action of HBB. The variation in yields
between these studies is considerable, with many major el-
emental yields even varying from positive to negative. For
example C, O, F, Ne, Na, Mg are all produced in our calcu-
lations whilst destroyed in the models of S10.

We have not made comparison to the synthetic yield
calculations in S10 which artificially model 3DU because
they do not take into account the considerable feedback of
these events on the structure which affects the resultant nu-
cleosynthesis.

Comparison of results between different studies for
7Z=0.001 models can be found in the next section, as they
are connected to the study of globular cluster abundance
anomalies.

5 GLOBULAR CLUSTER EXTREME
POPULATION : NGC 2808

As mentioned in the introduction, one of the main hypothe-
ses to explain the extreme stellar population within globular
clusters involves the stars being formed directly from pris-
tine super-AGB ejecta (D’Ercole et al] m, M) If this
scenario holds, then the chemically anomalous patterns ob-
served in the extreme population should therefore directly
echo the super-AGB nucleosynthetic yields. Using our com-
puted yields of metallicity Z=0.001, as well as previous re-
sults from the literature, we aim to test the validity of this
scenario by comparison with observational data from NGC
2808, one of the most thoroughly studied mono-metallic
globular clusters which hosts an extreme population.

NGC 2808 is a massive cluster with metallicity [Fe/H]~
—1.1 , 2010 edition). A large helium enhance-
ment between the primordial and intermediate or extreme
populations is inferred from features such as the hori-

zontal branch (HB) morphology (D’Antona & Caloi QM;
[Lee et all

) and the triple main sequence splitting
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Figure 7. Production factor for the 7.5 M Z=0.0001 model from this study compared to that from ) The strong disparity
between results is due mainly to different nuclear reaction rate networks, the large difference in temperature at the base of the convective
envelope and the occurrence of 3DU in this work. The extent of the black shaded regions represents the yields from the 8.5 M Z=0.0001

model from S10.

. To match these features, the cluster is
thought to harbour at least thred] distinct populations, with
helium contents (Y) of ~ 0.245, ~ 0.30-0.33 and ~ 0.38-41
(D’Antona et al Jum Lee et al Jum D’Antona & Ventura
12007; [Piotto et all 2007; [Bragaglia et all [2010). The differ-
ence in helium abundance between populations AY has been
observationally estimated as 0.09 (Marino et al] M) and
0.17 dﬂmmmlﬁqﬂ_] [ZQLI]) for the I-P and E-P populations
respectively.

Apart from the helium enhancement, this cluster
also shows very extended C-N, O-Na, Mg-Al and Mg-Si

Schwarzschild criterion to delineate convective boundaries,
have a smaller core mass at the beginning of the TP-(S)AGB
phase for the same initial mass, and as a result the super-
AGB star mass range is translated upwards by ~ 1 Mg. As
the core mass is the key driver of further evolution we make
our comparisons as a function of core mass Mc instead of
initial mass Min;.

The efficiency of 3DU varies widely in computational
studies of low metallicity super-AGB stars, with either no

3DU (A = 0) in V13 and S10, moderate 3DU (A~0.7-0.8 -
this study) or very efficient 3DU (A < 1) in

anti-correlations (Carretta et alﬂmg, Carretta et al] m,
Bragaglia et all[2010).

In Fig. B we draw together our nucleosynthetic yield
results and compare them to the main observable (and in-
ferred) abundances within the extreme population of NGC
2808; we focus on *He and the anti-correlations C-N, O-Na
and Mg-Al. In Fig. @l we also highlight the yield of "Li and
Rcno, noting that observations of these quantities are cur-
rently not available for NGC 2808.

From a theoretical perspective we also add to these fig-
ures yield results from S10 and (2013, here-
after V13). The main input physics used in these studies can
be briefly summarised as follows. The S10 models are char-
acterised by convective mixing using MLT with amrr=1.75,
moderate mass-loss (VW93) and scaled solar composition.
The models of V13 have efficient convective mixing using
the FST prescription, rapid mass-loss (B95 1n=0.02) and
« enhanced composition with +0.4 in [O/Fe], [Mg/Fe] and
[Si/Fe].

In this study, and that of V13, some form of overshoot
was used during the core He burning phase which results
in a similar range of initial masses for super-AGB stars (~
6.5 — 8.0 M@ﬁ. The S10 models, with their use of a strict

8 (2011)) have recently shown that NGC 2808 is

made up of more than three separate populations, with the in-
termediate population further split into two.

9 The MONSTAR evolution code uses the search for convective
neutrality approach of ) to determine convective
boundaries. In the ATON program convective overshooting was

QZQ]_ﬂE In low-mass AGB star computations the efficiency
of 3DU increases with decreasing metallicity (e.g.

[1981); [Straniero et all lZQ_Oﬂ) For super-AGB stars models
however, we find that 3DU efficiency is practically indepen-
dent of initial metallicity (at least for 0.02 < Z < 0.0001)
and correlated primarily with core mass (Paper V - Doherty
et al., in preparation).

The nucleosynthesis of super-AGB stars is affected by
the duration of the TP-(S)AGB phase, and number of ther-
mal pulses, with these quantities varying considerably be-
tween studies, ranging from ~ 5800-16000 years (28-32 TPs)
in V13, ~ 88000-117000 years (394-1237 TPs) in S10, and
~ 14300-169000 years (28-171 TPs) in the current work.

The observational data for NGC 2808 were taken from
a selection of studies; Mg and Al abundances from red gi-
ant branch (RGB) stars using high resolution UVES spectra
(Carretta et al“m, hereafter C09b), O and Na results also
for RGB stars taken with GIRAFFE (Carretta et all m,
hereafter C09a) whilst m (2010, hereafter B10)
using X-SHOOTER observed a selection of elements C, N,
Na, Mg and Al in two main sequence (MS) stars, one from

employed during both core H and He burning using a exponen-
tial decay of convective velocities starting from convective bound-
aries, with the e-folding distance given by (Hp with ¢ =0.02

(Ventura et all

10 The ) models are of slightly lower metal-
licity than discussed here (Z = 0.0006), with the study focusing
on the early TP-(S)AGB, so unfortunately we cannot compare
stellar yield predictions.
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with the symbols with arrows representing upper O limits from ), the large filled star symbol in panels b) and d)

represents the blue MS star from m ).

the blue (suspected extreme population) MS and the other
from the red (suspected primordial population) MS. Here
we make comparison to a small subset of these observational
results, focusing on those stars which lie in the extreme pop-
ulation.

5.1 Light elements : He and Li

Fig. Bk shows the average mass fraction of helium in the
wind (Y) as a function of final core mass for all model re-
sults. The shaded region (Y) ~ 0.38-0.41 corresponds to the
inferred /suspected 4He content of the extreme population
stars within NGC 2808. As we have explained in Section [3]
the contribution from 3DU and HBB to “He production is

not a major factor compared to 2DU in this mass and metal-
licity range. The S10 models show the greatest enrichment,
primarily due to the use of strict Schwarzschild criterion for
convective boundaries which leads to a smaller core during
central helium burning and a thicker He-rich layer, which
the base of the convective envelope can penetrate during
2DU. Although all models show considerable enrichment of
helium from 2DU, we agree with previous studies that the
extreme population helium contents cannot be reached with
current super-AGB star theoretical predictions.

The behaviour of the lithium yield as a function of fi-
nal core mass can be seen in Fig. [Oh. Whilst there are large
variations between model results, the trend is for increas-
ing yield with increasing initial mass and/or mass-loss rate,
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Figure 9. Theoretical predictions of a) Lithium yield as (logioe(7Li)) and b) Rcno both plotted against final core mass. Symbols and
lines as in Fig. [8l The dotted horizontal lines in each panel represents the initial value of the respective quantity.

due to the more rapid expulsion of the envelope during the
lithium-rich phase early on the AGB. As yet no "Li abun-
dances have been measured in NGC 2808 stars, however, if
super-AGB stars (in particular the most massive super-AGB
stars) are indeed the source of the extreme population mate-
rial then a testable consequence should be that 7Li is signifi-
cantly enhanced in the extreme population

2012).

5.2 CN and C+N+4O

Fig.[@b shows the Rcno versus final core mass for the selec-
tion of theoretical yield predictions.

Prior to the TP-(S)AGB phase there are two processes
whereby the total surface Recno can be increased. The first,
corrosive 2DU which was explored in detail in Section [3.Ilre-

sults in the addition of primary *2C (and *°O : to the surface.

The second process, a dredge-out event ;
), occurs in the most massive super-AGB stars
near the end of the carbon burning phase. These events are
characterised by the formation of a convective helium burn-
ing region which then merges with the incoming convective
envelope. A substantial amount of helium processed material
(primarily carbon) is dredged to the surface. We find that,
irrespective of the occurrence or not of 3DU, due to C2DU
or dredge-out events our models with core masses Mc >
1.18 M show a substantial (greater than a factor or two) in-
crease in Reno. This amount of C+N+O surface enrichment
is similar in magnitude to the results obtained in rotating
intermediate-mass star models by [Decressin et all (2009).
Pumo et all (2008) suggested that all super-AGB stars that
experience a dredge-out event must then go through an elec-
tron capture supernova event to rid the cluster of this highly
CNO enriched material. The slow mass-loss rate required
to access the supernova channel however, is at odds with
the premise that rapid mass-loss rates are required for the
slightly less massive (S)AGB models to provide the extreme
population material. Since the carbon content, as well as the
total metallicity, drive structural changes within AGB stars,

the level of enrichment from C2DU /dredge-out is important
to the subsequent evolution. These phenomena and the fac-
tors that affect them are currently under investigation.

We note here that the most massive V13 models show
either a slight decrease or only minimal increase in Rcno
which suggests these models do not undergo a C2DU or a
dredge-out event.

Unfortunately the C+N+O abundance of the stellar
populations has not been measured in NGC 2808, but if
the expected constancy between populations is observation-
ally confirmed, and if the polluters were indeed super-AGB
stars, this would require them to have no or inefficient 3DU,
and/or a very rapid mass-loss as well as undergo no corrosive
2DU or dredge-out events.

Fig.[8b shows the theoretical yield predictions of [C/Fe]
and [N/Fe] as well as the observational data for the extreme
population blue MS star from the B10 study. All super-AGB
star model results show a large N enhancement with [N/Fe]
values of between 1-2 from CNO cycling during HBB, with
the CN reaching its equilibrium value. Since the S10/V13
models lack 3DU this translates to a lower N and C abun-
dance. There is a substantial spread in results using different
mass-loss rates as well as when compared to the previous
studies. All our standard models show a C-N correlation,
with the large increase of C from the contributions of cor-
rosive 2DU and/or 3DU. The blue MS B10 star shows a
particularly high N and low C value, which is not matched
by any of the model predictions.

5.3 O-Na

The O-Na anti-correlation is a ubiquitous feature of globular
clusters to various extents (Carretta et al] M) However,
it is a well-established result that O and Na abundances be-
come correlated as a result of very hot hydrogen burning
Denissenkov & Herwi M) and this is confirmed in all
super-AGB models. Fig. Bk shows [O/Fe| vs [Na/Fe], with
the observational results of C09a and the (arbitrary) divid-




ing line between I and E populations which corresponds to
[O/Na] > —0.9 (C09a)

Lower mass models have the lowest [O/Fe] values, due
to more ON cycling during the longer TP-(S)AGB phase.
Our most massive model of each mass-loss rate has posi-
tive oxygen yields due to the introduction of primary oxy-
gen from CO2DU. The vast depletion of oxygen required
to match the extreme population is achieved in the low-
est mass model of S10, although with large sodium destruc-
tion. Taking into account an enhanced initial O abundance
([O/Fe]=0.4), the lowest mass V13 model has depleted at
most ~ 0.7 in [O/Fe]. Clearly this amount of depletion is
not enough to match the extreme population. To further

decrease O it has been suggested (e.g. [D’Antona & Ventura
m; D’Antona. et al m; D’Ercole et al“M) that some
unknown extra-mixing must (1) only take place within the
extreme population of stars (2) only operate during the RGB
phase and (3) work to deplete O but without affecting the
Na content. We note that the magnitude of O depletion re-
quired to match the extreme population in NGC 2808 would
have to be quite significant, of the order ~ 0.7—1.0 in [O/Fe].
Unfortunately, there are no O observational determinations
from an extreme population MS star in NGC 2808. If a large
depletion of O is found to be already present within stars
at this early evolutionary stage it would clearly rule out the
extra-mixing scenario.

In super-AGB stars 2*Na is primarily a 2DU prod-
uct, which is then subsequently depleted via HBB. To
achieve the largest **Na production, the mass-loss rate
has be very rapid and the *?Ne(p,y)**Na reaction must
out-compete the destruction channels 23ijl,(p7(34)20Nez and
Na(p,y)**Mg (Fig. B). A larger initial *°Ne abundance
(D’Ercole et all 2010) or increased 2°Ne(p,y)*'Na reaction
rates (D’Ercole et all[2010) also have some, albeit not sub-

stantial, effect on larger ?*Na yields.

5.4 Mg-Al, Si

The most obvious feature in Fig. Bd, which shows [Mg/Fe]
vs. [Al/Fe], is the great disparity between the model results
and the observations. No theoretical super-AGB star predic-
tions are able to reproduce the simultaneous large Al pro-
duction and Mg destruction for the 3 RGB stars from C09b.
We note here that even if any form of mixing had taken place
prior to or during the RGB phase, the Mg and Al would
not have been altered, because the quite large temperatures
necessary to modify these elements are not achieved within
these relatively low mass stars (Denissenkov et al] M)

When considering only HBB nucleosynthesis, higher
temperatures at the base of the convective envelope as
well as a longer TP-(S)AGB lifetime (i.e. lower mass-loss
rates) both result in more Mg depletion and Al produc-
tion. The largest Mg depletion and Al production require
that ®Mg, which is mostly produced after proton capture
on Mg, is efficiently depleted by 2°Mg(p,y)?°Al followed
by 26Al(p,7)*"Si(8T)? Al to bypass the Mg production
(Fig ). However, when Tpcg exceeds ~ 120-130 MK leak-
age from the Mg-Al chain via 2" Al(p,7)?5Si starts depleting
Al (Fig. ).

The models of S10 and V13 show a similar behaviour
of increasing Al production and Mg destruction with de-
creasing initial mass. The depletion of magnesium in the
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V13 models is slight, at about 0.11-0.17 from the original
value of [Mg/Fe]= 0.4. The S10 models show quite a sim-
ilar depletion of [Mg/Fe]~0.1-0.2 mainly attributed to the
longer TP-(S)AGB duration in these models. The large Al
production in V13 is due to their use of the upper NACRE
limit for 2Mg(p,y). In [Ventura et all (2011) a test using a
massive AGB model (6.0 M) was performed whereby the
2E’Mg(p;y)%Al reaction rate was doubled ] to maximize Mg
depletion to try to match the three Mg-poor stars in the
C09a study. In this model they found modest [Mg/Fe] de-
pletion to 0.13 and [Al/Fe] value of 1.18 which does a good
job of reproducing the B10 star. However, there is still a
need for an additional depletion of [Mg/Fe] by 0.4 to reach
the C09b observations. Our VW93 models show an increase
in [Mg/Fe] due to efficient 3DU of **Mg and 2°Mg. The
B95 models with their shorter duration show very little Al
production and due to smaller 3DU contribution maintain
[Mg/Fe] values close to the origin.

In|Carretta. et all (2009) a slight Al-Si correlation, with
slope of 0.08 was uncovered within NGC 2808. The amount
of silicon production in S10, V13 and this current study are
modest, slightly less than required to match this correlation.

6 SUMMARY AND CONCLUSIONS

We have computed a grid of metal-poor and very metal-poor
super-AGB stars to explore element production. These stars
create large amounts of *He, 13C, 1*N and 70, as well as the
heavy magnesium isotopes 2°Mg and ?*Mg. In addition, and
contrary to higher metallicity models, we also find positive
yields of 12C, 1°N, 160, and the heavier proton chain species
*"Al and **Si.

The occurrence of third dredge-up in our models is a key
difference compared to previous low metallicity super-AGB
yield studies. Whilst there is evidence for third dredge-up
in intermediate-mass/massive AGB stars of higher metallic-
ities (e.g. Rb observations - rcia-Herndndez 1 M,
, very luminous C-stars - [van Loon et al] M, large N
overabundance - [McSaveney et. all 2007), at the metallici-
ties considered here, the efficiency, or even the occurrence of
3DU is unknown.

Contrary to the higher metallicity models where the
surface composition is driven almost purely by HBB, the
pollution from dredge-up events plays an important role in
our metal-poor and very metal-poor models. The dominant
dredge-up process to affect the surface enrichment changes
from 3DU at ~ 6.5 Mg, to about equal contribution from
C2DU and 3DU at ~ 7.0 M whilst the abundances in the
more massive models are mainly dictated by the large enrich-
ment prior to the TP-(S)AGB phase from CO2DU /dredge-
out. The envelope enrichment in carbon from either corro-
sive 2DU or a dredge-out event prior to the TP-(S)AGB
phase can have a large impact on the further evolution,
primarily though enhanced mass loss driven via enhanced
opacity.

We have explored a selection of uncertainties within

11 The recent measurements of the 2°Mg(p,v)?6 Al (ground state
and meta stable) reactions by ) do confirm
that the current best estimate of this rate is close to that proposed
by [Ventura et all (2011)
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our super-AGB star models. The mass-loss rate has the
greatest impact with up to a factor of 10 difference in TP-
(S)AGB lifetime of very metal-poor stars when two com-
monly used mass-loss rate prescriptions are used. The yields
of isotopes most affected by changes to the mass-loss pre-
scriptions are 2?Ne, *Na and 2%2>26Mg and 27Al and g.
The appropriate treatment of low temperature molecular
opacities is crucial to super-AGB star evolution for metal-
licities below Z~0.001, where they truncate the evolution by
approximately 50 per cent. However, the inclusion of these
updated opacities has a less dramatic effect than changes to
the mass-loss rate prescription. A modest increase in it
teamed with a rapid mass-loss rate was found to have only a
small impact on super-AGB star nucleosynthesis. Extrapo-
lated thermal pulses at the end of the evolution, to account
for possible nucleosynthesis after convergence issues cease
calculations, have negligible effect on the yields of most iso-
topes.

With the yields showing such large variations both
within, and between, different research groups, which ob-
servable nucleosynthetic signature of low metallicity super-
AGB stars can be considered robust? As the CNO elemental
yields are dependent on 3DU efficiency and mass-loss pre-
scription they show no consistency between code results.
Lithium is notoriously temperamental, and is highly depen-
dent on the mass-loss rate and the treatment of convective
mixing. The Ne-Na cycle and Mg-Al chain isotope yields
vary widely due to uncertainties in reaction rates, mass-loss
prescriptions and occurrence of 3DU. Also with large vari-
ation in 3DU efficiency between calculations (0 < A < 1),
all elements heavier than iron will vary considerable between
calculations. This leaves the large helium enhancement from
2DU, as well as certain isotopic ratios, such as 12C/IP’C and
N /!N which reach their equilibrium values as the only
consistent result between different studies. However, these
model independent characteristics are not unique to super-
AGB stars but are also found in intermediate-mass and mas-
sive AGB stars.

Whilst super-AGB are thought of as one of the most
likely candidate polluters of the extreme population within
NGC 2808, Fig. 8 shows that the observational data for this
cluster and theoretical super-AGB yield predictions are not
compatible. For the super-AGB pollution scenario to be sal-
vaged extra-mixing within the extreme population needs to
be invoked, and some observational results would have to
be questioned. However, given the large quantitative uncer-
tainties in both the theoretical and observational results we
cannot completely rule out super-AGB stars.
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APPENDIX A: SUPPLEMENTARY TABLES
APPENDIX B: ONLINE MATERIAL

We include supplementary electronic online tables as follows
Table 1. Stellar Yields for Z=0.001 and 0.0001 with VW93
mass-loss rate.

Table 2. Stellar Yields for Z=0.001 and 0.0001 with B95
mass-loss rate.

Table 3. Stellar Yields for Z=0.0001 with updated opaci-
ties.

Table 4. Initial Composition in mass fraction for Z=0.001
and 0.0001.
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Table A1l. Initial and (corrosive) second dredge-up surface abundances of selected isotopes for our standard VW93 models for metallicities
Z=0.001 and 0.0001. Where n(m) =n x 10™.

Mini Phase 1H 4HC 120 130 14N 15N 160 170 180 21NC 22NC 23Na 25Mg 26Mg

Z=0.001

- Initial 0.7498 0.2492 1.82(-4) 2.05(-6) 5.58(-5) 2.07(-7) 5.06(-4) 1.94(-7) 1.08(-6) 2.31(-7) 7.27(-6) 1.99(-6) 3.85(-6) 4.40(-6)

6.5 2DU 0.6501 0.3487 1.37(-4) 4.69(-6) 2.40(-4) 6.43(-8) 4.21(-4) 2.60(-6) 1.72(-6) 2.69(-7) 7.10(-6) 8.85(-6) 3.23(-6) 4.40(-6)

7.0 C2DU 0.6488 0.3500 1.95(-4) 6.18(-6) 2.44(-4) 3.82(-8) 4.20(-4) 2.56(-6) 1.87(-6) 2.81(-7) 8.14(-6) 8.90(-6) 3.20(-6) 4.37(-6)

7.5 CO2DU 0.6449 0.3525 1.20(-3) 5.38(-5) 3.07(-4) 3.98(-8) 7.05(-4) 2.42(-6) 1.44(-6) 2.90(-7) 1.33(-5) 9.06(-6) 3.20(-6) 4.37(-6)
7=0.0001

- Initial 0.7519 0.2480 1.82(-5) 2.05(-7) 5.58(-6) 2.07(-8) 5.06(-5) 1.94(-8) 1.08(-7) 2.31(-8) 7.27(-7) 1.99(-7) 3.85(-7) 4.40(-7)

6.5  C2DU 0.6505 0.3493 6.52(-5) 4.07(-7) 2.89(-5) 4.96(-9) 3.95(-5) 4.90(-7) 1.63(-7) 3.35(-8) 6.58(-7) 9.32(-7) 3.13(-7) 3.97(-7)

7.0 C2DU 0.6492 0.3506 1.65(-4) 1.62(-6) 2.99(-5) 2.68(-9) 4.14(-5) 4.53(-7) 1.73(-7) 3.30(-8) 7.95(-7) 9.26(-7) 3.09(-7) 3.99(-7)

7.5 CO2DU 0.6461 0.3520 1.29(-3) 3.40(-5) 4.96(-5) 3.49(-9) 4.20(-4) 4.61(-7) 1.46(-7) 3.61(-8) 1.24(-6) 9.49(-7) 3.14(-7) 4.01(-7)

Table A2. Sample first few lines of yield table. The production factor is zero for species whose initial composition is also zero (e.g.
26 A1).

Min; = 6.5Mg Z = 0.001
Extrapolated TPs
Species i Net yield (Mo) M¥4(3) (Mg) logyo[(X(2))/Xini(i)] Net yield (Mo) M ™) (Mo) Togro [(X(0)/ X (0]

H -6.253E-01 3.450E4-00 -7.236E-02 -6.297E-01 3.446E4-00 -7.292E-02
3He 1.767E-07 1.767E-07 0.000E+00 1.767E-07 1.767E-07 0.000E+00
4He 5.970E-01 1.951E+00 1.586E-01 5.991E-01 1.954E+00 1.590E-01
"Li -5.638E-09 6.944E-11 -1.915E+00 -5.638E-09 6.944E-11 -1.915E+00

Table A3. Seclected model characteristics for the thermal pulsing (S)AGB phase including extrapolated thermal pulses. Here LMax ig
the maximum quiescent luminosity during the TP-(S)AGB phase, C/Ospy and C/Og are the number ratios at the completion of 2DU
and at the end of the evolution respectively, and (7c/7M) is the ratio of carbon rich to oxygen rich duration of the TP-(S)AGB phase.
Models denoted with * are those in which no extrapolated TPs were required, however, we have synthetically modelled the resultant
3DU from the last computed TP which ceased to converge prior to completion of 3DU.

Extrapolated TPs
Mini  C/Oapy  LM> MY, - Nrp 7sjags C/Or 7c/ma M. Nrp 7sjags C/Or 7c/mu

Mo) (Lo) Mo) (yrs) Mo) (yrs)

Z = 0.001
6.5 0.44 820E+04 8.32E-02 118 1.69E+05 12.00 0.63 8.92E-02 123 1.79E+05 21.47 0.65
6.5B 044  6.64E+04 2.01E-02 38 4.78E+04 3.83 0.17 2.11E-02 *38 4.78E+04 6.34 0.17
7.0 0.63  9.50E+04 3.97E-02 126 7.83E+04 9.69 049 4.43E-02 138 8.79E+04 19.39  0.58

7.0B 0.65 8.42E4+04 1.07E-02 47 245E4+04 4.03 0.16 1.11E-02 *47 2.45E+04 5.53  0.16
7.0Ba 0.66 9.89E+04 4.37E-03 28 1.23E404 4.56 0.16 4.63E-03 *28 1.23E+04 8.46  0.16
7.5 2.35 1.10E+05 2.64E-02 171 5.22E+04 3.61 0.21 3.25E-02 197 6.38E404 13.05 0.36
7.5B 2.51 1.04E+05 5.81E-03 56 1.43E4+04 1.78 0.06 6.17E-03 57 1.50E+04 2.64  0.10

7 = 0.0001

6.5 2.18 1.14E405 2.72E-01 439 5.00E+05 2.82 0.96 2.74E-01 441 5.03E405 9.54  0.96
6.50 2.27  9.86E4+04 1.28E-01 214 2.55E405 9.07 0.93 1.33E-01 221 2.64E4+05 17.55 0.94
6.5B 2.26 7.78E+04 1.46E-02 35 3.68E4+04 10.28 1.00 1.54E-02 *35 3.68E+05 21.64 1.00
7.0 5.29 1.29E+05 1.23E-01 459 2.24E+05 3.64 0.97 1.27E-01 470 2.31E405 11.42 0.97
7.00 5.31 1.17E405 6.30E-02 269 1.26E4+05 8.23 0.90 6.74E-02 283 1.35E405 16.02 0.90
7.0B 5.33 9.76E404 5.88E-03 38 1.58E4+04 12.87 0.82 6.20E-03 *38 1.58E+04 18.75 0.82
7.5 4.19 1.47E4+05 5.41E-02 445 1.06E4+05 6.36 0.71 5.73E-02 464 1.12E405 12.73 0.73
7.50 4.40 1.32E+05 3.03E-02 248 6.23E+04 6.76  0.52 3.49E-02 279 7.32E404 13.76  0.59
7.5B 4.52 1.23E+05 2.30E-03 35 6.82E4+03 0.39  0.68 2.53E-03 36 7.14E+03 2.38  0.65
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