
An Introduction to
Artificial Neural

Networks

Copyrighted imagery used in the preparation of these lecture notes
remains the property of the credited owners and is included here for
educational purposes only. It has been sourced where possible from
publicity material or from material placed within the public domain.

FIT3094 AI, A-Life and Virtual Environments
Alan Dorin

Learning Objectives

To understand the basics components of biological neurons

To understand how feed-forward artificial neural networks are constructed

To be aware of the training methods available for artificial neural networks

To be aware of the problems of over and under fitting in artificial neural networks.

To know suitable applications for artificial neural networks

axon, conducts
impulses away
from soma

soma (cell body)

The Biological Neuron

nucleus

dendrite, conducts
impulses towards
soma

myelin
sheath

axon
terminal
button

Image derived from one © John Wiley and Sons Inc. 2000

direction of
impulse travel

Animal brains are made of many cells called neurons. Humans have ~100 billion.
Dendrites and axons conduct electrical impulses to and from the cell.
Dendrites receive impulses from other cells’ axons across a synapse.

Neuron Behaviour (in a nutshell)

As a cell receives impulses from its dendrites, its charge builds up
When a threshold is reached, the charge in the cell is reset and a signal is sent out via the axon.

Synapse

Connections between neurons form pathways through the various parts of the brain.
Some neurons are connected to cells in the sensory organs.
Some neurons conduct signals to the motor systems and other organs of the body.

The Biological Neuron

Repeated firing of neurons causes biological changes within them,
allowing them to fire more easily in the future.

A lack of firing in particular neurons causes biological changes
that inhibit them from firing very easily in the future.

Together, these changes permit the brain/body system to learn.

A neuron is said to inhibit others if it acts to reduce the likelihood of them firing.
!
A neuron that increases the likelihood of other neurons from firing is excitatory.

The Biological Neuron

Although modern computer CPUs are much faster
than biological brains, brains are massively
parallel and they have proven quite effective!

Human Brain 
American Medical Association 

http://www.medem.com/medlib/article/ZZZ0ZFP46JC 

http://www.medem.com/medlib/article/ZZZ0ZFP46JC

theory of computation

propositional logic

physiology of human neurons

McCulloch and Pitts threw some ideas together and came up
with the idea of an artificial neural network (1943)

Hebb later demonstrated an updating rule for the weights
between neurons that allowed the neural network to learn (1949)

Minsky and Edmonds built the first neural
network computer (1951)

Pitts

Artificial Neural Networks (ANN)

ANNs

What?!

Non-symbolic, connectionist, non-symbolic,
connectionist, non-symbolic...

Frog drawing by Dolores Avendaño,
www.studynow.com/dolores/

http://www.studynow.com/dolores/

Artificial neuron

W0

W1

Wn

I0

I1

In

IiWi + Bias∑Value =
n

i=0

O

The input lines I to the
neuron correspond to
biological dendrites.

The output line of the
neuron corresponds to
a biological axon.

The bias determines the
artificial neuron’s inhibitory
or excitatory effect.

Output neurons can emit continuous values or binary signals.
!
To obtain smooth changes in output, an activation function is applied
to the output of a neuron. Here are a few examples...

Artificial neuron activation function

A step function can be used to emit one of two values depending
on whether or not a threshold is reached.

A logistic function is similar, however the transition across the
threshold is smooth. This function is very commonly used.

A Gaussian function allows a gradual ramping up and down
around a central input.

An activation function may also be applied to the input of a neuron.
Typically inputs are assumed to have linear activation functions.

Artificial Neural Network
A set of neurons is connected into a neural network.
!
The network must be trained:
!

Test data is fed into the network via its inputs.
!
The network’s responses are read from its outputs.
!
The connection weights are adjusted after each test to
improve the response of the network as desired.

!
After training, real data is fed into the network and its
responses are used to control the behaviour of some system.

i1

i2

i3

o1

o2

input layer output layer

hidden layer (there can be several of these)

connections  
(weights not shown)

neuron (node)

Artificial Neural Network

Each connection between nodes has a direction.
The illustrated network is feed-forward. 

Networks with feedback connections are recurrent.

The illustrated network is fully connected.
!
If some connections are left out, the network is sparsely connected.
!
If a fully connected network is trained properly, it can potentially
adjust a connection weight to zero, making sparse networks
unnecessary.

i1

i2

i3

o1

o2

input layer output layer

hidden layer (there can be several of these)

connections  
(weights not shown)

neuron (node)

Artificial Neural Network sample applications

ANNs are useful for many kinds of pattern recognition, classification,
optimisation, control, function approximation etc.

handwriting e.g. postcodes on envelopes, text entry on touch screens and tablets

voice recognition, retinal scan, facial and fingerprint recognition

Artificial Neural Network sample game application

i1

i2

i3

o1

o2

x

y

p

left degrees

right degrees

v = (x,y)

steer left 20 degrees

u = (p,q)

i4q

ANN hidden layers

direction to planet v

ship heading u

steering
instructions

Mars

Autonomous probe

The neural network acts as a mapping
between a set of inputs and a set of outputs.

E.g., Landing a probe on a planet

Artificial Neural Network sample game application

i1

i2

i3

o1

o2

human player 
sword position

defend (shield height)

attack (swing sword)

i4

ANN hidden layers

human current state

NPC response

human player 
shield position

human player 
crouch level

human player 
movement direction

from Soul Caliber II, Namco

In games, ANNs can be used to control NPCs by:

1. pre-training
2. switching off the learning mechanism
3. using the fixed controller during the game

1. pre-training
2. allowing them to learn the player’s behaviour during the game
3. using the learning controller during the game

Artificial Neural Network game applications

ANN, more game applications

Steering Control

Behaviour determination

Human prediction

obstacles, road or path direction, available exits, location and velocity of neighbours
tank track control; car steering wheel, accelerator and brake; rocket thrusters.

In:
Out:

health, strength, hunger, stimuli (visual, aural...), resource availability
eat, run, turn, swing sword, jump, smile, swim, shoot, collect treasure, build wall etc.

human player position, velocity (perceptible current state variables), state history (last few).
human player predicted next state or behaviour.

In:
Out:

In:
Out:

opponent ground forces, aerial forces, force activity, positions and movements
move own forces, reinforce defensive lines, mount pre-emptive strike

In:
Out:

Using Artificial Neural Networks

Determine:
!

structure
!
learning mechanism
!
training data

Determining Structure

Feed-forward or recurrent network?
How many inputs?
How many hidden layers?
How many nodes in the hidden layer?
How many outputs?

Feed-forward.
As few as possible, only relevant input.
Usually one is enough.
It depends! Try 2 x no. inputs? Experiment!
How many controls do you need?

Frequent answer for game app’sQuestion

Determining the Learning Mechanism

Supervised learning

A set of training data is required: a series of pre-constructed input/output pairs.
After each data pair is presented, the error the network produces guides the adjustment of its weights.
Training continues until the error falls within an acceptable tolerance.

Learning involves adjusting the weights of the neural network so that the
desired mapping between inputs and outputs is achieved.

Unsupervised learning

The network attempts the automatic discovery of patterns or features in a set of training
data, it may try to optimise some function e.g. its success is gauged by how well it
classifies or clusters the input data.

Reinforcement learning
The network is presented with a set of training data typically generated from its interactions
in a “real world” / environment. Neurons that respond appropriately (allowing the neural
network to approach some long-term goal for instance) are rewarded, whilst neurons that
do not are penalised.

?

ANN Pong controller training

?

ball x position

ball y position

ball heading angle

paddle x position

paddle speed

paddle direction

over fitted  
neural network output

training data

game data

under fitted  
neural network output

well fitted  
neural network output

paddle x

NPC ANN controller training

Where does the training input-data set come from?

Prior game play by developers

Live game play by (an individual or many) human players

Trial and error automated game play by software

Where does the training output-data set come from (if it is required)?

Developers’ hand classification of the success of the output

An objective, analytic measure of success (e.g. distance from target)

Biological neurons are the inspiration for artificial neural networks.
!
ANNs are good at pattern matching and classification.
!
They may be used in games as NPC controllers for behaviour and response to human
player actions.

Summary

ANNs require training and can suffer from under or over fitting, a problem
which must be avoided, especially if they are trained “live” during real game play.

Cells that fire together, wire together.Hebbian learning:

Increase the weights between cells that fire simultaneously.
Decrease the weights between cells that fire out of synchronisation.

Extra

Initialize the weights in the network (often randomly)!
 !

Do for each example e in the training set!
{!

 O = neural-net-output(network, e) ; forward pass!
 T = teacher output for e!
 Calculate error (T - O) at the output units!
 Compute delta_wh for all weights from hidden layer to output layer ; backward pass!
 Compute delta_wi for all weights from input layer to hidden layer ; backward pass continued!
 Update the weights in the network by delta_wh and delta_wi!

}!
Until all examples classified correctly or stopping criterion satisfied!!

Return the network

Back-propagation (supervised learning):

