An |/O and Stream I nter-Process Communications
Library for a Password Capability System

Carng(oBEng

B.E.(hons),

Department of Computer Science
Monash University

Thesis submitted for examination
for the Degree of
M aster of Science

M arch 1996

Contents -2-

Table of Contents

(@ gF=To (= g RN 1 014 0o [1 [o o NSRRI 8

1.1 History and Objectives of the Walnut Kernel Project...........cccooevovies cviees e 8

1.2 The WalnNut ArChiteCLUIE.....c.ccieeiies e st et et e et e e 8

12,1 VIrtual MEMOIY ... et et et srte e saesee s essee s seseesne saeesse seessees sesseens 9

1.2.2 CapabilitieS and ODJECESueteeiien et et st et et st e e eneens 10
L. 2.3IMONEY .t et et et et et sheeeee steeeae £ eee e s £eeae e s £eere e eeennes nreenes 12
L2 4 RIGNES. ... oot et e et et et st sae et e esee s £eaeeaae saeesres nreeneen fenreens 13
1.2.5 Processes and SUDPIOCESSES....ce. cerieeus crreres siesees eeeens seneesee seesses seessees esseens 14
L. 2.5. 0 PrOCESSES ... cuveieet ee ettt cette et caee et e etees sareaaas seeeaes sesteees eeeense sesnrees nraeeans eeennnes 14
1.2.5.2 SUDPIOCESSES.......tcveeie st et en et srte s saesiee s eesee s seseesee saeesaes seesseen sesneens 17
1. 2.6 IMBSSAgES ...t et et et et et e tes sheeeaee sbeeaas £ ereen £eeae e s £eenees eeenne nreenes 18
1.2.7 SYStEM CallS... .ot e st et e et et s et e snes re e e nneen 19
1.3 The NameServer MOGEo s s et et e e e e 22
Chapter 2 SUrvey and CritiQUE.......ooeoreert cereeiee seeries e ceie e see e sresaees sesneens 24
Y225 R 1 014 0o (¥ Tox 1 o o OSSPSR 24
2.2 An Overview of I/O Libraries and Stream Inter Process Communications.......... 24
2.2 L 1O LIDIaAIES. .. cociuie e sttt ettt ettt e etee e e et eesaee s seeetes sreesans sreense seneeans 24
2.2.2 Stream Inter Process COmMMUNICALIONS....coo.vieerie sueeries veerieen cereeens sreesnes seeeneas 26
2.3The ATE&T UNIX MOUEooois et et e et et et sree s sreenae sereeens 27
24 TheBSD UNIX MOEL........ oot it ettt et et e et sree s sreenns eeneeens 30
2.5 TheMaCh MOUEooui e e e e e e e e e e sae eereeens 34
2.6 The AllOC Stream MOGELooe e e et e e et e e e 35
2.7 Other Operating SYSLEIMS...oie courres ceerties erteert sereesee sreesees seesrees cesseeas srsesnes sresnes 39
Chapter 3 The Stream IPC and File AcCessModelcco ot ciiiies v e 40
G50 1 01 0o [0 Tox 1 o o OSSPSR 40
3.2Walnut [/O Library DESION.ccecourres ceeriie erieent sereesee sueesies seestees cesseens seesnes seesneas 43
3.2. 1 REQUITEIMENTS.. .ouei et ceierie sttt seesiees cesteess s ereesee saeestes eesees sesseens sbesnes seesneas 43
3.2.2 DeSigN CONSIAEIATIONScovue ceeries cerriees erieest sereesee sreestes eetees cesreens srsesnes seesneas 45

3.2.3 DeSIgN RALONAIE......cc.eoit it st et ettt et st et es eesee e sreesres seeneeas 46

Contents -3-

3.2.3.1 Buffer and Stream Structure DESIGNcc.ceevveeeiie seeries et et s e 47
3.2.3.2 File Object Opening and Object Creation...........cc voeevesceerieen e s e 54
3.2.3.3 Stream Open Programming INtErface ... voeeie seeies e e s e 55
3.2.3.4 Process Environment INitialiSationccoo.voeeie veenies e e s e 55
3.3 Stream/File ODJECt SIIUCIUIESocue e et e e e et e e 57
A FIIE SLIUCLU®...... e et ettt ettt et ettt s ere et saeeste eete s £esbeens sbesnes saeeneas 59
Chapter 4 Library Implementationcco. oo vieeies e e s e e 62
v R g (oo LH o o o PSR 62
4.2 Walnut Library FUNCHIONScociie cieries s et e sree st eesiees e seeens sneeenes 62
4.2.1 The opencap FUNCLION..... ..o o e e et e st e e sree e s eeeenes 62
4.2.2 The filleiNit FUNCHION. ..ot e e e et e e e e s 65
4.2.3 The makestreamobj FUNCHION oo v et e e e e e 66
4.2.4 The COPEN FUNCLION.c it et st et et e see sree st seesbees eeseeens sereenes 66
4.2.5 The remMOVEC FUNCLIONccoitieieiie s et et et st eesie s e seeens s nreenes 67
4.2.6 The cmap and cunmap FUNCLIONS....c.ceciiie et e e e e e 67
4.2.7 The setmyname and clrmyname FUNCLIONS..........cco. voeeie veeries e e e 68
4.2.8 The Kerror FUNCHION......... oot et e e et et st e b e see s s eeeenes 68
4.2.9 The Client Server Protocol FUNCLIONS..........ccooiiint e s e e e 68
4.2.9.1 ProtOCOl DEfINITION........oiiiiit e e e et e et e e e e s eeeenes 69
4.2.9.2 Programming Interface and Implementation.cccoce voeeves ceenieeseveene s 72
4.2.10 The aCCEPt FUNCLION.......ccciit e e e et et et i e sreene s eeeenes 72
4.3 ANSI stdio Library FUNCLIONS....c.coeies ceeiie et e et e e seeee s neeenes 73
4.3.1 Stream Operation FUNCHIONS....coc cories v et e st e e ee s reeenes 73
4.3.1.1 The fopen FUNCLION.........ccuit e e e et e st b e sre e s nee s 73
4.3.1.2 The fClOSE FUNCLION.ot e s e et st st et e e es 74
4.3.1.3 The filush FUNCHIONoooit et e e e e st e e e 74
4.3.1.4 The rename FUNCLIONcc.cooiie cieies e et e st et e see e s neeenes 75
4.3.1.5 The remove FUNCHION ..o ot e e et e et e e e e s eeeenes 75
4.3.1.6 Thetmpfile FUNCLION.......coc. ot e e et e e e e e 75
4.3.1.7 The tMPNam FUNCLION..cooiie e e et et seee i eesrees e seeens s seeenes 76
4.3.1.8 The freopen FUNCHIONo ot e e et e et et e s 76
4.3.1.9 The setvbuf and setbuf FUNCLIONS.c.oooe i e e e e e 76
4.3.2 CharaCter 1/O FUNCLIONS.cooieiie s st et et sree st seesbees e seeens sseeenes 76

4.3.2.1 Thefgetc and fPULC FUNCLIONS...... ..c.ooee i et e e e e e 76

Contents -4-

4.3.2.2 The UNGELC FUNCLIONcccoit e e e ettt et st b e see e s neeenes 77
4.3.2.3 Thefgets and fPUtS FUNCLIONS....... ..c.ooes i et e e e e e 77
4.3.3 DIreCt 1/O FUNCHIONSc.veiiit et sttt st et s eaee e sreesees seesbees eeseeens seseenes 78
4.3.3.1 The fread and fWrite FUNCLIONS.....cce cviie et e s e e e 78
4.3.4 Formatted 1/O FUNCLIONS.coueiee s et et et et eesiees e seeens s eeeenes 78
4.3.4.1 Thefprintf and printf FUNCLIONSccc i e e e e e 78
4.3.4.2 The fscanf and scanf FUNCLIONS.... ... cvieesonient e s e e e 78
4.3.5 File PoSItIONING FUNCLIONS....... ..ccoie v e et e st e e seeens s eeeenes 79
4.3.5.1 Thefseek and ftell FUNCLIONS..........coooereeriie et e e e e s 79
4.3.5.2 The fgetpos and fSetpos FUNCLIONS........ c.cooe et e s e et e 79
4.3.6 Error Handling FUNCLIONS........ oot coiiiis s et e et e e seeens s eeeenes 79
Chapter 5 DISCUSSIONcocuiiue ciieies seesiees cesieens sereesee sreetes seeeees sebesas ssesses seesnees sesseens 81
o300 N | 911 0o [FTox 1 o o O SRR 81
5.2 Programming INtEITACE ..ot coiiis e et e et e e s e 81
5.3 Throughput PErfOrMEaNCEccoiies e et e et e et sree e saeeaeas 82
I o 7o | L Y/ SO 85
5.4.1 Application Development and POrting..... ..o voveeie seenies ceerieen e s s 86
5.5 RODUSINESS ...t et ettt st et ettt s ere e saeesbe eebe s £esbeens sbesnes sreeneas 87
5.5 L PEISISIENCE ... e et et ettt et ettt s eae et saee b et s e rre s sre e sreeneas 89
5.6 SECUNLY ..t sttt ettt ettt sttt seestees e steas s ebe et saeebes eebees £enseens sbesnes sreeneas 89
5.7 FULUIE DITECHIONS ... veiiiiet et sttt et e stee s s etee st saeestes eetees eesseens sbesnes sresneas 90
Chapter 6 CONCIUSION......c.oie i e et e e et et e sresaees sesneens 92
REFEI BNCES.....c. et et e e et et et et et es setesae seesre seesaees feeneen 95
AppPendiXx A REEASENOLES.... ...c.co et et st et et e e e srees s ereenes 99
Appendix B Source Code (fputc, TQetC, UNQELC)cocerr veerrie s e et e 116
Appendix C Source Code (rm, head)ccoveries et et s e e e 130

Appendix D Validation TESt SUITE.......c.coeriee e et e e e e e 135

Summary -5-

Summary

This thesis presents an 1/0 library and stream Inter-Process Communications (1PC)
mechanism for the Walnut password capability system, developed in the Computer
Science Department at Monash University. This library provides a C language pro-
gramming interface, mostly conforming to the ANSI stdio model, to functions which
provide stream 1/O services to the virtua memory system, processes and 1/0O
devices.

Chapter one introduces the architecture of the Walnut kernel. The Walnut
virtual memory system, capabilities and objects, money, access rights, process and
subprocess structures, message mechanism and system calls are examined.

Chapter two is a survey of design strategies used in the provision of 1/0
library and stream IPC services. This chapter examines the problems inherent in pro-
viding such services, and reviews the System V Unix model, the 4BSD Unix model,
the Mach model and the Alloc Stream model. This is done to provide an understand-
ing of aternative solutions to the problem of providing a common programming
interface to 1/0 services and stream | PC.

Chapter three discusses the design of the file access and stream |PC mech-
anisms. The Walnut 1/0 model is reviewed, design requirements and considerations
are examined, and the design rationale for the stream IPC mechanism, file object
access mechanism, stream communications programming interface and process
environment initialisation is explained. The data structures used in the provision of
these services are examined in detail.

Chapter four reviews the implementation of the library design. Functions
specific to the Walnut are examined, and the ANSI stdio stream operation, character
I/O, direct 1/O, formatted 1/O, file positioning and error handling functions are
examined in detail.

Chapter five discusses the library design and implementation from the per-
spectives of programming interface, throughput performance, portability, robustness
and security. Specific advantages which accrue from the design strategy used are
examined, performance testing results reviewed, and a range of further
improvementsto the library are proposed.

Chapter six summarises the major issues examined in this thesis.

Acknowledgements

In 1990 | set out to do a Masters degree in Computer Science, seeing a
bright future in this fascinating discipline. After a promising start to my project,
external circumstances conspired to impede my progress, and | was unable to return
to my research until early 1994. Thisthesisis largely the product of effort expended
in the last two years.

Throughout this protracted and often difficult period my supervisor, Pro-
fessor Chris Wallace, provided me with the guidance, motivation and critical insight
which are so vital to the successful completion of such projects. Without his
patience and ability as a scientist and as a teacher, it is unlikely that | would have
succeeded in resurrecting my project. My sincerest thanks.

| am also indebted to Maurice Castro, for his advice on the Walnut kernel
and constructive critique of the library design, to Glen Pringle, who developed
numerous components of the Walnut system and was always ready to assist, and to
Dr Ronald Posg, for hisinsightful advice and critique.

Declar ation

| declare that the thesis contains no material which has been accepted for the award
of any degree or diplomain any university and that, to the best of my knowledge, the
thesis contains no material previously published or written by another person other
than where due reference has been made in the text.

Signed:

Carlo Kopp

Department of Computer Science,
Monash University,

Melbourne, Australia, 3168
March 1996

Chapter 1

-8- The Walnut Kernel

Chapter 1 Introduction

1.1 History and Objectives of the Walnut Kernel Project

In 1985 Anderson, Pose and Wallace at Monash University com-
pleted a tightly coupled multiprocessor system, and implemented an operating
system to provide virtual memory support for this system. The purpose of this
project was to demonstrate a tightly coupled multiprocessor [POSE89] which
employed a password capability based virtual memory system [ANDER-
SON87]. The work built upon earlier Monash research in capability based
addressing schemes [ABRAMSON82], [GEHRINGERS?2].

In 1990, the development group, then comprising Castro, Kopp and
Wallace, commenced a port of this operating system to the Intel 386 architec-
ture [INTEL84], [CRAWFORDS87]. The intention was to exploit the combined
segmented and paged memory management hardware embedded in the Intel
chip, to produce a smplified derivative of the multiprocessor password capabil-
ity operating system, capable of running on reliable low cost hardware. This
port was also seen as an opportunity to improve the design, building on the
experience gained with the multiprocessor project.

Analysis of the source code of the multiprocessor operating system
indicated a large number of dependencies upon the NS32032 architecture
[NS85] and custom designed memory management hardware used in the multi-
processor design. It was subsequently decided that a completely new imple-
mentation was preferable to a port. The new implementation, written by Castro
and Wallace, was subsequently designated the Walnut.

The Walnut implementation is at this time hosted on a Personal Com-
puter, using an Intel 486 processor and a set of generic I/O boards. As such this
implementation only demonstrates single processor operation.

1.2 The Walnut Architecture
The Walnut architecture is directly derived from the architecture of

password capability multiprocessor kernel. It shares many fundamental design
features with its predecessor. These features are the virtual memory system, the

Chapter 1

-9- The Walnut Kernel

capability mechanism, the money mechanism, substantial parts of the process
structure and a capability access rights scheme. Unlike the multiprocessor sys-
tem, the Walnut system also has a name serving function. The name serving
function is implemented as a library, and is not embedded in the Walnut kernel.

This discussion will focus on those aspects of the Walnut architecture
which are relevant from the perspective of implementing an 1/0 library. A more
detailed treatment of the kernel is contained in [CASTRO95].

1.2.1 Virtual Memory

The virtual memory scheme used in Walnut kernel is based upon the
multiprocessor password capability model [APW86], [POSES89]. In this model,
the virtual address space is divided into a number of volumes, each of which
contains a number of objects. Each volume has a permanent and unique 32-bit
identifier, termed a volume number.

The volume number is permanently associated, in both existing
implementations, with a specific fixed or removable storage device. The volume
number is assigned when a device is configured for operation, and is fixed for
the life of the volume. A volume number can only ever be reused if the volume
originally assigned the volume number is destroyed.

The existing implementation uses an arbitrary number. A production
implementation is intended to use a number unigue to the physical device used,
such as the trailing digits of a physical device production serial number.

While the volume is an essentially permanent construct, the objects
contained within the volume are not. Objects may be created or destroyed, and
can only ever exist within the address space of a given volume. Objects cannot
be split across multiple volumes.

Objects are identified with a 32-bit serial number. The combination of
the 32-bit volume identifier and the 32-bit serial nhumber uniquely identifies
each object. A serial number can only be assigned to one object on any given
volume, and is a fixed value throughout the life of this object. Two different
volumes may each possess an object with a common serial number, because the
volume identifiers are unique. Within the address space of all uniquely num-
bered volumes in existence, each object is thus uniquely identified. Serial num-
bers may be reused.

The choice of a 32-bit volume identifier and a 32-bit serial number

Chapter 1

-10- The Walnut Kernel

was a compromise between providing a suitably sized object address space, and
compactness of storage. To date this size has proven to be acceptable.

1.2.2 Capabilitiesand Objects

The Walnut kernel, as well as the earlier multiprocessor and its asso-
ciated operating system, employ a password capability based scheme for
accessing objects [APW86]. Each capability is defined by a 128-hit value. This
128-hit value is composed of a 64-bit object identifier field, and a 64-bit pass-
word field. In this scheme, any object may be accessed through an arbitrary
number of capabilities, differing only in their passwords and constrained by the
available space on the volume.

VOLUME SERIAL PASSWORD 1 PASSWORD 2

32 BITS 32 BITS 32 BITS 32 BITS

Figure 1.1 A 128 Bit Password Capability

Capabilities to access any given object may have differing or identical
access rights. Each capability is however a unique value, regardless of whether
two or more capabilities provide identical access rights.

Capabilities associated with any given object will share identical vol-
ume identifiers and identical serial numbers, but will possess unique 64-bit
password fields. The password is intended to be a number which is unrelated to
the access rights of the capability, therefore no mapping computable by a user
exists between the password field and the access rights mask of the capability,
in either direction. The system holds the mapping from password to rightsin a
protected "capability table" associated with each object and stored on the same
volume as the object.

A capability is said to be created at that time, when it provides access
to an object. It is destroyed at that time, when it can no longer provide access to
an object. The validity of any given number as a capability is determined by its
ability to grant access to an object on a volume. Capabilities are associated
with volumes, and are regarded as part of an object. Should a volume be moved
between systems, all capabilities which exist on the volume retain their validity

Chapter 1

-11- The Walnut Kernel

in relation to that volume.

The use of the 64-bit password cannot provide an absolute guarantee
of security, but does provide a very low probability of the security scheme
being defeated. Even should many capabilities to an object exist, the probability
of the correct password being guessed is of the order of ten to the minus fifteen.

Master
Capability

Derived
Capability

Derived
Capability

Derived
Capability

Derived
Capability

Derived
Capability

Derived
Capability

Derived
Capability

Derived
Capability

Derived
Capability

The rights of a every derived capability are less
than or equal to the rights of its immediate parent

Derived
Capability

Figure 1.2 Master Capability and Derived Capabilities

Were the password derived from the volume and serial numbers, the
system could be more easily defeated, in comparison with the random guessing
of what are essentially sparse valid password values. For this reason the pass-
words are intended to be generated randomly. The present Walnut implementa-
tion uses an simple pseudo-random number generator for this purpose. The

Chapter 1

-12- The Walnut Kernel

final implementation will use the physically random number generator which
was developed for the original multiprocessor design [WALLACE9Q].

The password scheme is further enhanced by the money mechanism
[WP9Q]. As each attempt to guess the password will incur a cost penalty to the
guessing process, systematic attack will be prohibitively expensive to the
attacking party.

A Master Capability is produced whenever an object is created. The
creator of the object will specify its rights, and no other party can ater these. To
derive a capability, we require the value of the parent capability and a desired
set of rights. The new derived capability will have rights which are a subset of
the rights held by the parent capability. Additional rights not held by the parent
capability cannot be added to a derived capability.

A model which can be applied to describe the interdependencies
between the master capability and its derived capabilities is that of an inverted
tree. The root of the tree is the master capability, and every other node in the
tree is a derived capability. The master capability is thus an ancestor of all
derived capabilities in the tree. When a new capability is derived, it is attached
to the tree as a child of the capability from which it was derived. When a capa-
bility is destroyed, all of its descendants are also destroyed. Should the object
be destroyed, then the whole tree of derived capabilities is also destroyed. Any
data held within the object is also destroyed.

There is no concept of ownership in the virtual memory scheme used.
A capability is implicitly tied to the object it is derived from, but may be used
and where appropriate manipulated by any user who knowsiit.

1.2.3 Money

The money mechanism forms the basis for a cash economy scheme
built into the Walnut kernel. While it was created to support resource allocation,
its function in the earlier multiprocessor kernel was expanded to provide a far
more general scheme for providing usage rights to facilities in the system
[WPQO0]. This function was subsequently continued in the later Walnut kernel.

Money in the Walnut kernel is a quantity which may be transfered
between objects, and may be viewed as a transferable right to use system ser-
vices. Its most important attribute is that it is consumed when the service is pro-
vided. Objects in the virtual memory system are charged rent, and if they run

Chapter 1

-13- The Walnut Kernel

out of money, the system destroys them. Processes are charged money each and
every time they invoke a system call. Should they have insufficient money for
the call invoked, the system will refuse to service the request.

A user must have a valid capability and sufficient money to access or
manipulate a capability within the virtual memory system. Possession of a
capability and money does not however subsume the function of the access
rights within the capability. Even should sufficient money be available, should
access rights prohibit an operation, the operation cannot be provided by the sys-
tem.

All objects must contain money. Money is conserved during transfers
between objects, in that transferring money from one object to another will see
the source object’s money decreased by the transfered amount, and the receiv-
ing object’s money increased by the same amount. Manipulating the money
held in an object requires a capability with appropriate access rights. The sys-
tem may charge rent for objects held on avolume.

1.2.4 Rights

The Walnut kernel provides a range of system and user rights to a
capability. Rights restrict what operations may be carried out upon a capability.
A derived capability may have a set of rights which isidentical to or a subset of
the set of rights held by the parent capability. Some of the rights are specific to
process objects.

The rights in the Walnut kernel are divided into system rights and
user rights. System rights determine what operations may be carried out on a
capability by any entity on the system. User rights determine what operations
may be carried out by user processes and are not interpreted by the kernel.

System rights may be grouped into categories, according to how they
provide access or enable operations by the capability.

System rights which alow the creation and destruction of capabilities are:

* SRDERIVE - theright to derive further capabilities

* SRSUICIDE - theright of a capability to destroy itself

Chapter 1

-14- The Walnut Kernel

System rights which allow manipulation of money are:

* SRDEPOSIT - theright to deposit money into a capability

* SRWITHDRAW - the right to withdraw money from a capability

System rights which provide a view of the capability are:

* SRREAD - theright to read the capability

* SRWRITE - theright to write to the capability

* SRMULTILOAD - the right to load the capability in the address space of a
process

* SRUSER - theright of user processes to use the capability
System rights related to processes are:
* SREXECUTE - the right to execute the process
* SRPEEK - theright to query the state of the process
* SRSEND - the right to send messages to the process
1.2.5 Processes and Subprocesses

The Walnut process structure introduced a number of additional func-
tional features not used in the multiprocessor operating system [ANDER-
SON87], [CASTRO95]. These are a subprocess mechanism, and a more com-
plex set of process states.

1.2.5.1 Processes

A process extant in the Walnut environment is defined as a sequence
of executed instructions and system calls, which are performed above the level

Chapter 1

-15- The Walnut Kernel

of the virtual memory interface. Functions required to support the virtual mem-
ory interface, such as swapping, storage management and scheduling, are per-
formed within the Walnut kernel and are not implemented as processes.

A process in the Walnut environment is represented by a process
object. The process object contains all of the state information required for the
execution of the process. A process must contain at least the following items:

« Parameter Page

* Sub-process Table

» Message Slots (i.e. mailbox)

* Table of Loaded Capabilities

* Money

e L ock Words

* AddressMap

» User Defined Code and Data

A user process may only reach certain parts of the process object.
These are the Parameter Block, the read-only Address Map and the User
Defined Code/Data, if the latter exists. All other components of the process
object may only be accessed by the kernel.

The Parameter Page is used by the process to communicate with the
kernel. It comprises a Parameter Block, and a Message Area. The Parameter
Block is the means via which parameters associated with system calls are
passed between the process and the kernel. The Message Area is the means via
which messages are received and sent to other processes.

The process object also contains a startup code area and a private data
table. The startup code area will contain, by convention, a small sequence of
instructions used during the startup of a process. The private data pointer table
is indexed by the capability index of the executing code, and is used to locate

Chapter 1

-16- The Walnut Kernel

private data used by the executing code.

0x1400000

DEFAULT STACK

\

DATA OBJECT

0x101%000

0x5400000
0x1016000

0x1012000

0x1011000

0x1010000

0x100F000

/

0x1000000

0x1400000

0x1000000

THE WALL

0x000C000

Fig 1.3 Walnut Process Virtual Address Map

The intent of this design isto allow multiple instances of a process to
be created by sharing code objects and copying multiple instances of data
objects. Each process will therefore possess private process objects, data
objects and share a code object. By convention, initialised data is located at the
beginning of the data object to simplify copying.

Chapter 1

-17- The Walnut Kernel

In addition to the process, code and data objects mapped into the pro-
cess address space, each process aso has a read only page designated the Wall
mapped into its address space. The Wall contains public information about the
system, such as real time counters and capabilities to public utilities.

1.2.5.2 Subprocesses

The process in the Walnut environment supports a subprocess mecha-
nism. Subprocesses are threads of execution which share a common address
space. No protection mechanism exists to prevent subprocesses from accessing
structures belonging to their peers, therefore a programmer must ensure that a
subprocess does not impair the operation of another subprocess by overwriting
state information.

At process creation time, a fixed number of subprocess slots is allo-
cated in a subprocess table. This table stores state information for each subpro-
cess. When a subprocess is created, its scheduling priority, starting address and
stack pointer address are specified.

Messages directed to a process must specify which subprocess they
are intended for. Subprocess zero has a specia purpose. It is used for control-
ling the state of the process. Operations performed by subprocesses other than
subprocess zero are executed by code within the process address space. Opera-
tion performed by subprocess zero are executed by the Walnut kernel.

The subprocess zero mechanism allows a process to control the state
of itself, or another process, if it possesses a valid capability to send a message
to the subprocess zero of the recipient. Messages to and operations upon sub-
process zero are the highest priority functions of a process.

Subprocess zero operations support the following functions:

* freeze - afrozen process is removed from the scheduler queue

* thaw - receiving a thaw message, a frozen processis placed into the scheduler
gueue and it becomes runnable

» wakeup - wakeup messages set the wakeup time of a process, which com-
mences execution at that time

Chapter 1

-18- The Walnut Kernel

* cooee - the cooee message is a status enquiry through a message, rather than a
system call against the capability of the process

* protected freeze - a process is frozen with a magic number used to prevent
thawing by parties not holding this number

* protected thaw - a complementary call to protected freeze, protected thaw
allows thawing of a process by a party holding avalid magic number

For a process to perform useful work it must execute a sequence of
instructions, and typically access some data as operands. Executable code is
mapped into the process address space as a code object. Data is mapped into
the address space as a data object. In addition to code and data objects, the pro-
cess object also provides optional space for a default stack and a default heap.
These facilities will therefore support most conventional compilers. Up to 250
objects may appear at any time in the address space of a process.

Subprocesses may be created and destroyed by appropriate system
calls. The scheduling mechanism will execute subprocesses which are runnable.
The subprocess with the highest nominal priority is scheduled first, subpro-
cesses of equal nominal priority are scheduled in the order of their position in
the process subprocess table. Prior to scheduling subprocesses, the Walnut ker-
nel will examine the process mailboxes for messages sent to all subprocesses. A
subprocess which has received mail becomes runnable, and will be scheduled
accordingly.

1.2.6 M essages

The message mechanism employed in the Walnut kernel is more
powerful than that used in the multiprocessor kernel. Enhancements were pro-
vided in severa areas. Thefirst isin the support of the subprocess mechanism,
the second is the provision of external send and receive cals, and the third the
provision of an additional mailbox state management call.

In the Walnut kernel, messages are addressed to specific subpro-
cesses. This is achieved by means of a system call parameter specifying the
subprocess number, or by using a derived capability which alows access only
to a specific subprocess.

Chapter 1

-19- The Walnut Kernel

The contents of a message to be sent are held in the Message Area
[Section 1.2.5, Fig. 1.3], which is restricted in size to sixteen words. Should a
larger message need to be sent, this can be accomplished indirectly by sending
acapability to alarger buffer.

The Walnut kernel will filter messages directed to a process on the
basis of two message parameters. These are a message prefix and a subprocess
number. If these parameters are acceptable, and an empty mailbox is available,
then the message can be sent. If not, an error is returned to the sending process.
The use of the message prefix string allows a subprocess to retrieve messagesin
a specified order, by reading only those with a matching prefix string.

A mailbox may be open or closed. The Walnut kernel provides sys-
tem calls to open a mailbox, close a mailbox and to receive a message and then
close a mailbox.

1.2.7 System Calls

The Walnut kernel provides at this time thirtyone system calls. The
procedure for executing a system call is very smple. It requires that the opera-
tion code for the call be placed into the Parameter Block reserved field, the
parameters for the call written into the Parameter Block, and the execution of
system call. When the Walnut kernel returns from the call, the Parameter Block
error field is ingpected to verify whether the call has been successful or not. If
the error code is zero, the call was successful, and the Parameter Block will
contain the return values from the call. System call functions are summarised as
follows:

* K_MAKEOBJ - creates an object. Parameters which may be specified are the
volume and size, system and user rights, object type, object limits and initial
money.

* K_MAKECAP - derives a capability from a specified capability. Parameters
which may be specified are the rights and the size of the view, the latter con-

straining what part of the parent capability may be accessed.

* K_DEL - deletes the specified capability and all of its derivatives.

Chapter 1

-20- The Walnut Kernel

* K_DELDER - deletes all derivatives of the specified capability

* K_RESIZE - resizes the specified object.

* K_SHRINK - shrinks an object to the size of its current contents

* K_WAIT - puts a subprocess to sleep until the specified wakeup time has
been reached, or until a message arrives.

* K_ LOADCAP - loads a view of a capability into the process address space.
Specified parameters allow loading of large and small windows sizes, specified
sizes at arbitrary or specified offsets in the address space.

* K_UNLOADCAP - unloads a capability from a process address space

* K_CAPID - returns information about the specified capability. The capability
may be specified by an index into the table of loaded capabilities, offset in
address space or capability.

* K_ MAKEPROC - creates aprocess by creating a process object and initialis-
ing its state information, and then loading the created process object into the
address space of the calling process.

* K_SEND - sends a message to a process loaded within the address space of
the calling process. The message includes a non-negative amount of money.

* K_RECYV - recovers a message from a subprocess message queue. The only
parameter is the size of the match string used to filter messages.

« K EXTSEND - sends a message to a specified process. The message
includes a non-negative amount of money.

* K_EXTREAD - reads a specified number of bytes at a specified offset within
a specified capability. This call is not intended for use in future versions of the
kernel, asit isinefficient.

Chapter 1

-21- The Walnut Kernel

* K EXTWRITE - writes a specified number of bytes from the process mes-
sage area at a specified offset within a specified capability. This call is not
intended for use in future versions of the kernel, asit isinefficient.

* K_BANK - transfers a specified amount of money from the calling process to
the specified capability, or vice-versa.

« K_RESTRICT - reduces the rights of a specified capability, using masks for
both urights and srights.

 K_CAPSTAT - returns status information about the specified capability and
its associated object.

* K_RENAME - changes the password values of the specified capability and
invalidates all derivatives of the specified capability.

* K_MAKESUBP - creates a new subprocess within the calling process. Speci-
fied parameters are the number, wakeup time and priority of the created subpro-
cess.

» K_DEL SUBP - destroys the specified subprocess.

* K_LOADRESG - loads subprocess context information from the process mes-
sage area into the subpn table entry of the specified subprocess. Required for
subprocess restart.

* K_SAVEREG - copies subprocess context information from the subpn table
entry of the specified subprocess into the process message area. Required for
subprocess restart.

« K_SETTRAP - directs traps generated by a specified subprocess to a speci-
fied subprocess.

* K_RECV_CLOSE - recovers a message from a subprocess message queue
and closes the subprocess mailbox.

Chapter 1

-22- The Walnut Kernel

* K_ACCEPT_MAIL - opens amailbox for a specified subprocess, and sets a
match string for filtering incoming messages.

* K_CLOSE_BOX - closes specified mailboxes

»« K_COPYOBJ - creates a copy of a specified view of an object. Cannot be
used to duplicate processes.

« K_PEEK_ PROC - returnsthe state and wakeup time of the specified process.

« K_SET_HEIR - specifies the heir of the calling process. The heir process
will receive the remaining money and a death message upon the destruction of
the calling process.

1.3 The Nameserver M odel

The Nameserver library [PRINGLE95] provides facilities which
allow an ASCII format string to be bound to a capability. Bindings between
strings and capabilities are held within an object termed a database.

The nameserver library provides a set based mechanism for grouping
bindings. This mechanism is recursive, and alows sets to contain other sets.
Bindings may be associated with a set or a capability. A database may contain
sets and bindings to capabilities. A set may contain other sets. These are then
termed included sets. When the nameserver searches a set for a binding, it will
also search all included sets.

Nameserver sets may be arbitrarily organised either as sets connected
in agraph, or as adirectory hierarchy. The latter paradigm (which is a subset of
the former) allows users to organise their bindings in a fashion analogous to
established operating systems such as Unix.

The nameserver library provides a number of useful functions which
may be exploited in the design of a stdio library. These functions are:

» namec() - searches a specified database for a specified binding. It returns a
structure which describes the binding and its associated capability.

» setCapName() - binds a string to a specified capability in a specified database

Chapter 1

-23- The Walnut Kernel

* deleteBinding - deletes a specified binding from a database.

All nameserver functions require that a nameserver database capabil-
ity be provided. Any operations carried out on bindings and sets are only done
in relation to the database specified by that capability. However, the database
may include bindings to setsin other databases.

Chapter 2

-24- Survey and Critique

Chapter 2 Survey and Critique

2.1 Introduction

The design of stream 1/O services, stream |PC services and the imple-
mentation of libraries to provide these services have along and interesting his-
tory. A range of important technical issues must be addressed in both design
and implementation. These will be examined in the context of a number of his-
torically important designs.

For the purpose of this discussion a stream is defined as a connection
which reliably transfers bytes of data in sequential order. Data is written and
read from a stream in a first-in first-out (FIFO) fashion. A stream is unidirec-
tional, unless specified otherwise. Buffering of data is provided by the stream
mechanism, and is not visible to the programmer.

2.2 An Overview of I/O Libraries and Stream Inter Process Communica-
tions

2.2.11/0 Libraries

The function performed by an I/O library is that of providing a pro-
grammer with an abstracted interface to a computer system’'s physical 1/0
devices. The interface seen by the programmer should hide as many of the
idiosyncrasies of the hardware as is possible. This is necessary to minimise the
effort required in moving programs between different types of computer sys-
tem. Should 1/O library programming interfaces for a given language differ
across systems, moving a program between systems will incur a significant
overhead in time and effort required to both change the program, and if neces-
sary to debug the changes.

The evolution of portable 1/0 librariesin FORTRAN provides a good
example [PLAUGER92]. Early implementations, such as FORTRAN I,
required explicit specification of an output or input device, such as a tape drive
or card reader. Later implementations, such as FORTRAN |V, provided Logical
Unit Numbers (LUN) rather than explicit physical device identifiers. A

Chapter 2

-25- Survey and Critique

programmer could therefore write programs which produced 1/O operations
against logical devices, rather than physical devices. 1/O libraries linked in at
run time provided the mapping between logical and physical I/O devices.

The development of Unix and the C Language during the 1970s
[RITCHIES3] produced a important set of improvements to 1/O programming
interfaces. The most notable improvement was the adoption of an 1/O program-
ming model in which /O devices were abstracted as files. Program 1/O to stor-
age devices and display and entry devices employed the same type of program-
ming interface. The specific routines which handle device dependent 1/0O were
embedded in the Unix kernel, and thus hidden from the programmer.

To support such a paradigm, Unix required a standard format for 1/0
transfer to and from an 1/O library. This format is a transparent binary stream.
Text format data (eg ASCII) is treated as lines which are separated by newline
characters. The mapping between a text stream and the format required by the
I/O deviceistypically performed by the Unix operating system.

The C language interface to all 1/0 devices utilised a FILE structure.
Each process used a table of such structures, and the index to the table was des-
ignated a file descriptor. A programmer accessing 1/O devices of any type in
Unix uses acommon set of system calls for open, close, read, write and other C
specific functions, al of which operate on the FILE descriptor. The stdio library
[RITCHIESS], developed to provide a portable I/0O package, further extended
this model to use a pointer to a FILE structure.

The Unix stdio programming paradigm treats all 1/0O interfaces as
stream communication channels (the Unix ioctl interface is intended for device
status operations). Implementations of Unix will provide type specific support
for various types of buffering, all implementations however share the attribute
of largely concealing the buffering mechanism from the programmer.

The migration of the C language from Unix to other operating sys-
tems led to the adoption of the ANSI X3.159-1989 C language standard
[ANSI89], produced by the ANSI X3J11 committee. The X3.159-1989 stan-
dard was designed to provide a portable 1/0 interface for systems which did not
provide the Unix 1/0O model. The FILE pointer paradigm was retained in the
ANS| standard, but provisions were included to alow implementors to support
I/0O models specific to other operating systems. The transparent binary stream
I/O model was not retained, and the ANSI model distinguishes between binary
streams and text streams. This measure was required to support systems in

Chapter 2

which text streams are treated differently from binary streams. The low level
I/O functions such as open, close, read, write and Iseek were not included in the
ANSI standard, because some of their functionality was considered by the
ANSI committee to be too closely tied to Unix. These functions have been

Survey and Critique

included in the |EEE 1003.1-1990 POSIX standard [IEEE90].

open()
close()
read()
write()
getc()

putc()

1seek()

Figure 2.1 System V Release 4 Unix I/O Programming Model

2.2.2 Stream Inter Process Communications

FILE STRUCTURE
struct file_t

struct file *f_next
struct file *f_prev
ushort f_flag

cnt_t f count

struct vnode *f_vnode
off tf offset

struct cred *f_cred

struct file*f_next
struct file *f_prev
ushort f_flag

cnt_tf count

struct vnode *f_vnode
off_tf offset

struct cred *f_cred

VNODE STRUCTURE

struct vnode t

struct file *f_next
struct file*f_prev
ushort f_flag

cnt_t f_count

struct vnode *f_vnode
off_tf offset

struct cred *f_cred

ushort v_flag

ushort v_count

struct vfs * vfsmountedhere
struct vnodeops *v_op
struct vis*v_vfsp

struct stdata *v_stream
struct page *v_pages
enum vtype v_type
dev_tv rdev
caddr_tv_data

struct filock *v_filocks

Stream IPC facilities allow two processes to exchange information
over a stream channel. This style of IPC is well suited to tasks such as piping
the output from one program to the input of another. Programs such as text fil-
ters may be used in cascades, each filter in the cascade connected by a stream.

Chapter 2

-27- Survey and Critique

If a stream interface is used for 1/0 as well as IPC, the input to a cascade of
processes may be an input device or file, and the output of the cascade may be
directed to afile or an output device such as aterminal or printer.

Two areas are of principa interest in the implementation of a stream
IPC mechanism. The programming interface is of interest because it will deter-
mine the amount of effort required to use the facility, and impose constraints
upon how the facility may be used. The transport mechanism is of interest
because it constrains the functionality, achievable throughput performance and
the robustness of the stream facility.

2.3TheAT&T Unix Modd

The evolution of AT&T Unix since the 1970s has seen the progres-
sive refinement of the operating system’s stream support for 1/0 devices and
IPC. The current version of this product, System V Release 4 (SVR4), iswidely
licenced and used as the basis for Silicon Graphics Irix 5 and 6, Sun Microsys-
tems Solaris 2, Hewlett Packard HP/UX 10, Novelle UnixWare and Santa Cruz
Operation (SCO) Unix. All of these derivatives share the basic stream model of
the origina AT&T Unix System Laboratories SVR4. System V Unix was
released in 1983, and the current System V Release 4 was released in 1988.

System V Unix employs the layered STREAMS interface [GOOD-
HEART94] for supporting stream mode IPC and provision of an interface to
stream oriented character devices, such as dumb terminals. In the STREAMS
model , a single programming interface termed a stream head is used. A queue
of linear buffers containing data and control messages is written to and read
from the stream head. To accommodate filters and protocol modules, the
STREAMS model employs a stack of stream modules. Each module will oper-
ate on a buffer, and then pass that buffer to the next stream module. In this fash-
ion, the channel between a stream head and device driver may employ multiple
stream modules to manipulate the contents of the data stream in the desired
manner. An example would be the cooking of terminal 1/O traffic.

SVR4 employs a virtua filesystem model. In this model the FILE
(file_t) structure points to a virtual inode or vnode structure, which contains
parameters specific to the stream interface used. Each process maintains atable
of file_t structures, which are managed as a linked list of entries, using the
f next and f_prev pointers. The f_flag parameter is a bitmask of flags which

Chapter 2

-28- Survey and Critique

describe the modes with which the interface was opened.

____—| BUFFERPOOL [

Fig.2.2 STREAMS Transport - Conceptual Model

STREAMS MODULES
STREAMS MODULES

The f_count parameter is a reference count which indicates the num-
ber of FILE pointers pointing to thefile_t structure. This scheme is employed to
prevent closure and deallocation of the file table entry by any other than the last
close operation against the entry. The f_offset parameter is the character count

Chapter 2

-29- Survey and Critique

offset into the file, and is adjusted by operations which read, write or seek on a
file. Thef_cred parameter contains the security credentials of the process which
has opened thefile.

The vnode structure is designed to accommodate a wide range of
interfaces, such as physical storage devices with arange of installed filesystem
types, symbolic links, block and character mode devices. STREAMS devices
may also be accessed.

The v_flag parameter contains a bitmask which indicates the type of
file opened, including pipes which are implemented as STREAMS devices. The
v_count parameter is a reference count which provides a similar function to the
f_count parameter. This parameter ensures that only the last process to close a
file will deallocate the vnode. The vfs_mountedhere parameter is used only with
directories which are mount points to a filesystem. The v_op points to a struc-
ture which contains an array of pointers to filesystem type specific operations.
When the vnode is created upon opening a file or a pipe, the pointers are ini-
tialised to point at functions which are specific to the type of device to be used.

The v_vfsp pointer points to a structure which describes the filesys-
tem type used. If the 1/O is to a stream, then the v_stream pointer points to the
STREAMS device used. The v_pages pointer pointsto a page list for the vnode.
The v_type parameter specifies the type of device, for instance aregular file or
pipe. The v_rdev parameter stores the major and minor device number for spe-
cial files. The v_data filed points to the filesystem specific structure associated
with the file, such as an inode used with a regular file. The v_filocks pointer
pointsto alist of filock structures, used to implement file and record locking.

The v_ops pointer mechanism accommodates 37 filesystem specific
operations, many of which are supported only for Unix file systems. These
operations include reading, writing, opening, closing, fetching and setting of
attributes, flushing (Unix sync) of buffers, and the locking and unlocking of
files.

The intention of the designers of the SVR4 file_t/vnode model was to
significantly simplify the implementation of 1/0 libraries installed on the oper-
ating system. A Unix 1/O system call operating on a file or a stream will be
pointed, via the vnode/v_ops pointer mechanism, to the specific function
required. The addition of further filesystem types to the operating system can
be readily accommodated by addition of instances of vnodeops, vfs, vtype and
v_data.

Chapter 2

-30- Survey and Critique

The SVR4 Unix model provides both mandatory and advisory file
locking mechanisms. Both mechanisms will alow the locking of records within
the file, or the locking of the whole file. Process ID numbers are used to iden-
tify the processes which have placed the locks.

The buffering strategy used is device dependent. In al instances, a
pool of linear buffersis used.

The STREAMS mechanism is used to implement pipes, named pipes
(which appear in the filesystem) and stream IPC across networks. Where the
SVR4 implementation provides a BSD socket |PC compatibility library, thisis
typically implemented in STREAMS.

2.4 TheBSD Unix Mode€

The most important derivative of AT& T Unix is BSD Unix, developed by the
University of California at Berkeley. The first Berkeley Unix, designated 1BSD,
was derived in 1977 from AT&T Unix Sixth Edition. This release was fol-
lowed by 2BSD in 1978, and 3BSD in 1979. The most important release of
Berkeley Unix was 4BSD, derived in 1979 from AT& T Unix Seventh Edition.

The 4BSD operating system became the basis for Sun Microsystems
SunOS, which dominated the Unix workstation market during the 1980s. At the
time of writing, versions of 4.2 and 4.3BSD are still widely used. The subse-
guent 4.4BSD, completed in 1993, is the basis for the commercial BSD/OS and
the public domain FreeBSD 2.0. It is therefore reasonable to expect that BSD
Unix will be used for some time yet, and thus its design is of more than histori-
cal interest.

The most recent release of 4BSD, 4.4BSD, employs a file table and
vnode model analogous to that in SVR4 Unix. The implementation is however
quite different.

The 4.4BSD system manages file structures by maintaining a list of
pointers to individual file structures. The file structures exist on the process
heap. Whenever afile is opened, address space is allocated on the heap and the
file structure is initialised. On closing the file, the space is freed, and the list
amended. The f_filef pointer points to the list entry for the file, and the f_fileb
pointer points to the head of the list. A global variable is maintained for the
number of open files[BSD44].

The f_flag field is a bitmask which contains the flags with which the

Chapter 2

file was opened. The f_type field describes the file type. The f_count field is the
reference count which isidentical in function to that in SVR4. The f_msgcount
field is used in managing the state of socket connections. The f_ucred pointer
points to a structure containing process credentials, and is analogous to that in

Survey and Critique

SVRA4. Thef_data field is the address of the vnode structure used.

open()
close()
read()
write()
getc()

putc()

I seek()

FILE STRUCTURE
struct file

struct file *f_filef

struct file **f_fileb

short f_flag

short f_type

short f_count

short f_msgcount

struct ucred *f_cred

struct fileops {
int (*fo_read)
int (*fo_write)
int (*fo_ioctl)
int (*fo_select)
int (*fo_close)

} *f_ops

coff_tf_offset

caddr_tf data

VNODE STRUCTURE

struct vnode

struct file *f_filef

struct file**f_fileb

short f_flag

short f_type

short f_count

short f_msgcount

struct ucred *f_cred

struct fileops {
int (*fo_read)
int (*fo_write)
int (*fo_ioctl)
int (*fo_select)
int (*fo_close)

} *f_ops

coff_t f_offset

caddr_tf data

struct file *f_filef

struct file **f_fileb

short f_flag

short f_type

short f_count

short f_msgcount

struct ucred *f_cred

struct fileops {
int (*fo_read)
int (*fo_write)
int (*fo_ioctl)
int (*fo_select)
int (*fo_close)

} *f_ops

coff_tf offset

caddr_tf_data

u_long v_flag

short v_usecount

short v_writecount

long v_holdcnt

daddr_t viastr

u_longv_id

struct mount *v_mount

int (**v_op)()

TAILQ_ENTRY (vnode) v_freelist

LIST_ENTRY (vnode) v_mntvnodes

struct buflists v_cleanblkhd

struct buflists v_dirtyblkhd

long v_numoutput

enum vtype v_type

uniorf
struct mount *vu_mountedhere
struct socket *vu_socket
struct specinfo *vu_specinfo
struct fifoinfo *vu_fifoinfo

}v_unm;

struct nglease *v_lease

daddr_tv_lastw

daddr_t v_cstart
daddr_tv_lasta

int v _clen

int v_ralen
daddr_tv_maxra
caddr_t v_vmdata
enum vtagtype v_tag
void *v_data

Figure 2.3 4.4BSD Unix I/O Programming Model

Thef_offset field is the file position pointer. Placement of the position
pointer in the file structure allows multiple processes to operate upon the file

Chapter 2 -32- Survey and Critique

pointer while not interfering with one another.

The most significant difference in the 4BSD file structure against the
SVRA4 design, is the inclusion of the f_ops field, which points to an array of
pointers to file operation functions.

BUFFER (MBUF) POOL

Fig 2.4 BSD Socket Transport - Conceptual Model

Chapter 2

-33- Survey and Critique

The intention of the 4BSD designers [LMKQ89] was to provide an
object-oriented file structure. The f_ops structure is initialised at open time with
type specific instances of read, write, ioctl, select and close functions. This
design feature significantly ssimplifies the implementation of library functions
which operate on the file structure [BSD44], [MCKUSICK 94].

The vnode structure employed in 4.4BSD is significantly more com-
plex than its equivalent in SVR4. Thisis largely due to the design requirement
in 4.4BSD, to support additional filesystem types. As4.4BSD was used initialy
as a research platform, changes were incorporated to accommodate the Log
Structured Filesystem and the NQNFS protocol.

The fields which are common in purpose to the SVR4 design are the
v_flag field, the v_usecount field, the v_type field, the v_mount structure, the
Vv_ops pointer, and the v_data pointer. The v_un field is a pointer which isini-
tialised to type specific pointers to state variable structures. The types included
inthev_un field are regular files, sockets, special files and fifos.

Stream IPC in 4.4BSD Unix is implemented using the BSD socket
mechanism [LFILMP]. BSD releases prior to 4.2BSD implemented pipesin the
filesystem, all subsequent releases implement pipes using the socket mecha-
nism.

The socket mechanism was designed to provide transparent stream
and datagram oriented IPC between processes running both locally and
remotely over a network. The intent of the designers was to provide a program-
ming interface which was independent of the underlying communications chan-
nel, and common to both local and remote operations.

The programming interface used was intentionally different from the
interface for filesystem objects. The designers chose not to overload the estab-
lished open system call with additional functionality to support the socket
scheme. This was intended to improve the portability of programs [LMKQ89].
Opening a socket connection requires the creation of the socket with a socket
system call, binding a socket address to the socket with a bind call and initiat-
ing the connection with a connect call. The socket call returns an index into the
process file table, termed a file descriptor in Unix. Once the connection is open,
the programmer may use both socket specific calls or the established Unix read
and write system calls. The 4.4BSD pipe system call implementation will open
aread socket and awrite socket to provide a bidirectional channel [BSD44].

The socket transport mechanism is layered over the network protocol

Chapter 2

-34- Survey and Critique

drivers. Traffic to remote processes must be handled by the drivers. Traffic local
to the host bypasses the network protocol stacks. Management of the pool of
mbuf linear buffers is performed by the networking software. This approach
was employed to simplify the design by constraining the function of the socket
to that of providing the programming interface alone.

THREAD A THREAD B
STREAM STREAM
INTERFACE INTERFACE

ROCESS ADDRESS SPAC

MESSAGE PORT MESSAGE PORT

Fig 2.5 Mach 3.0 Stream Communications - Conceptual Model

2.5 The Mach Model

The Mach operating system was developed by Carnegie Mellon Uni-
versity as a research platform for the purpose of investigating issues in micro-
kernel design. The Open Software Foundation OSF/1 operating system utilises
the Mach 2.5 kernel and is the Unix system supplied by Digital Equipment Cor-
poration with their Alpha architecture systems. The Mach 3.0 kernel was
released in 1989, and provided some improvements to the IPC facilities used in

Chapter 2

-35- Survey and Critique

the earlier Mach 2.5 kernel [DRAVES91]. Mach is of interest in the context of
stream oriented |PC because it implements a stream mechanism which is lay-
ered over a message passing mechanism.

The Mach 3.0 kernel IPC facility is based upon a message passing
model, in which access to message communication ports is provided by capa-
bilities. The interface to the message passing mechanism is designed to support
Remote Procedure Calls, object-oriented client server operations, and stream
communications between processes.

The central element in the Mach message mechanism is the port,
which is implemented as a message queue in the address space of the kernel
[OSF93]. The kernel enforces security of the port by allowing messages to be
passed only if the sending party has the capability for the connection. Messages
received by a thread within a process are copied into the address space of the
process. The size of the message passed through a port is arbitrary, and may be
as large as the address space of the process.

In the Mach 3.0 stream implementation, messages from any given
thread are delivered in order, which satisfies one of the basic requirements for
stream communication. Flow control of stream traffic is implemented by limit-
ing permissible queue lengths. Threads which require different amounts of
buffering can alter the queue length associated with a port. Operations which
block due to a full or empty queue can be set to restart when the queue is able
to accept or provide further messages. If non-blocking behaviour is required,
the kernel can notify the communicating thread with a message indicating that
the queue is ready again.

The OSF/1 operating system provides access to the Mach messaging
mechanism, but implements stream IPC with BSD style sockets. A separate
socket implementation is used.

2.6 The Alloc Stream M odel

The Alloc Stream Facility (ASF) was developed in the early 1990s by
researchers at the University of Toronto [KSU94] as a means of improving the
performance of Unix 1/O libraries. The ASF model is of interest as it demon-
strates how appropriate use of memory mapping techniques and buffering strat-
egy can be employed to improve throughput performance at the library inter-
face to the operating system.

Chapter 2

-36- Survey and Critique

The starting point in any discussion of the ASF facility is the
behaviour of established Unix 1/O libraries. A typical Unix C language stdio
library implementation will map 1/O library calls such as fopen, fclose, fread,
fwrite and fseek into the corresponding Unix systems calls, open, close, read,
write and Iseek. This mapping will typically involve the substitution and addi-
tion where necessary of arguments, and in read or write operations, the buffer-
ing of datawithin the library.

PROCESS ADDRESS SPACE

APPLICATION
fwrite fread
v /O LIBRARY
LIBRARY LIBRARY
BUFFER BUFFER
A

write read
SYSTEM SYSTEM
BUFFER BUFFER

KERNEL ADDRESS SPACE

Fig 2.6 Generic Unix stdio Library Implementation

Chapter 2 -37- Survey and Critique

Because the stdio library is interfaced to the Unix kernel through sys-
tem calls, all transfers of data between the library and kernel incur an overhead
in copying data, and an overhead in executing the system call. Both of these

overheads can be significant in amodern Unix system, which typically employs
a RISC architecture processor.

PROCESS ADDRESS SPACE

APPLICATION

fwrite fread

I/O LIBRARY

MEMORY MAPPING OF BUFFERS

SYSTEM SYSTEM
BUFFER BUFFER
KERNEL ADDRESS SPACE

Fig 2.7 Unix stdio Library Implementation Using ASF Model

System calls require a context switch which will result in the saving
of the process state. This can be an expensive operation where a large set of

Chapter 2

-38- Survey and Critique

registers must be saved. This problem is exacerbated where the application
executes frequent read and write operations containing small amounts of data,
asthe overhead isincurred for each operation.

The performance loss due repeated copy operations can be signifi-
cant. In the conventional Unix model, each operation will result in two copy
operations, as the data is first copied from an application into a buffer in the
library, and then copied from the library to akernel buffer.

PROCESS ADDRESS SPACE

APPLICATION

MEMORY MAPPING OF BUFFERS

SYSTEM SYSTEM
BUFFER BUFFER

KERNEL ADDRESS SPACE

Fig 2.7 Application I/O Using the ASF ASI Interface

Chapter 2

-39- Survey and Critique

The ASF model is built on the idea of using the platform’s virtual
memory system to map the kernel buffersinto the address space of the user pro-
cess. The library or application then need only copy the data once, to or from
the memory mapped kernel buffer.

The ASF design provides a user level interface, termed the Alloc
Stream Interface (ASI). This interface may be used directly by an application
programmer, or by alibrary implementor. Buffer allocation and mapping by the
ASl is performed by an salloc call, buffer deallocation and unmapping by the
sfree call. These calls are analogous to malloc and free operations.

The ASF may be exploited in two ways. The first is the reimplemen-
tation of existing 1/0 libraries. The reimplemented library interfaces to the ker-
nel buffers using the ASl interface. The overhead incurred is that of the single
copy between the application and the buffer in the library. This strategy allows
existing application program code to be retained without modification.

The second method is for the application programmer to rewrite the
application, replacing the previous stdio library calls with memcpy calls
directly to and from the mapped kernel buffers. While this method incurs a soft-
ware development time overhead, it removes the execution time overhead of the
library call.

The authors of the ASF design report useful improvements to the per-
formance of standard Unix applications linked to a reimplemented stdio library,
and significantly improved performance to Unix applications reimplemented to
use the ASl interface.

2.7 Other Operating Systems

The Multics system [ORGANICK] is not discussed in detail as it
does not employ a stream IPC mechanism, and historically precedes the emer-
gence of Unix and the C language. The I/O interface employed in Multics pro-
vided a mechanism for binding device names to physical devices.

The CHORUS system [ROZIER91] is also not discussed in detail, as
stream oriented communications are not provided in its kernel. In the CHORUS
system IPC is implemented via a message passing mechanism which is similar
to that in Mach.

Chapter 3

-40- Stream |PC

Chapter 3 The Stream IPC and File Access M odel

3.1 Introduction

The design of the stream IPC and file access mechanism is central to
the function of the Walnut 1/O library. This mechanism is used to provide a pro-
grammer with a transparent byte oriented communications channel between a
pair of processes, or with a stream interface to afile object.

A stream IPC channel may be used for piping the output of one pro-
gram into another, as well as to provide a clean interface to a process which
provides a common service, such as support for a hardware device.

The Walnut architecture provides a user process with two types of
programming interface to an I/O device. Disk storage devices are accessed
directly through the virtual memory mechanism. Devices not accessed through
the virtual memory mechanism, such as floppy disk drives, tape drives or
stream oriented devices such as dumb terminals or printers, use a different
access model.

Two mechanisms may be used for accessing such a device. One
mechanism is that of mapping a page containing device control and status reg-
isters into the address space of a process. A process which knows the capability
to this page can then sense and manipulate the state of the device by reading
and writing device registers respectively. This mechanism is applicable to inter-
rupt and non-interrupt driven devices.

Interrupt driven devices must employ a further mechanism. This
mechanism is an interrupt service routine which is linked with, but otherwise
largely independent of the kernel. The interrupt service routine will directly
access device registers. Communication between an interrupt service routine
and process is accomplished by sharing a page at afixed physical addressin the
address space of the interrupt service. A process which knows the capability to
this page can then interact with the interrupt service routine.

This model therefore allows a process to first initialise a device, and
then read and write data through a shared buffer and interrupt service. While
any process knowing capabilities to a device can access that device, in practice
the only process to do so will be a device manager or server process.

Chapter 3

-41- Stream |PC

Thisis analogous to the Unix paradigm in that a driver is split into an
"upper part” and a "lower part”, the latter being the interrupt services
[LMKQ89]. Unlike Unix, where the "upper part" of the driver is embedded in
the kernel, the "upper part" of a Walnut device driver typicaly runs as part of a
device manager process.

A user process may access the device manager process through a
shared page, a message, or a stream connection. Access may occur only if it has
the capability to access the shared page, send a message to or to make a stream
connection to the device manager process.

USER PROCESS DEVICE SERVER PROCESSES
INTERRUPT SERVICES
A
DEVICE HARDWARE
1
STREAM CONNECTIONS SHARED PAGES

Figure 3.1 Walnut Library 1/O Interface Model

The device manager process is typically the only entity within the
system which has direct access to the stream device. This design strategy pro-
vides a uniform interface to al devices, and a measure of security in accessing
the devices as a valid capability to connect to the device manager process must
be known.

The implementation of device driver functions in processes rather

Chapter 3

-42- Stream |PC

than inside the kernel provides a number of advantages.

* the design of the kernel is simplified

* robustness is improved, as a problem in the lower part of the device driver or
hardware will not impair the operation of the kernel. A problem in the upper
part of the device driver can impair only the operation of the device, or those
processes using the device through the device manager process.

* device drivers may be added, removed or atered without changing the design
of the kernel

* user processes may be provided with a uniform programming interface to
device manager processes.

* in multiprocessing systems, dedicated |1/O processors share a common type of
user programming interface with ssimpler directly accessed devices

The Walhut GLui console manager is implemented using this model.
GLui isavirtual terminal manager for a PC frame buffer console and keyboard,
and emulates a number of dumb terminals. The Walnut floppy drive manager
also employs the device manager model, although the existing implementation
uses a shared page rather than a stream connection to transfer data to and from
auser process.

Because the stream IPC mechanism becomes the means of supporting
much of the I/O as well as piping between processes, throughput performance
and robustness are important issues.

To produce a ssmple and robust design for the stream IPC and file
access mechanism, careful consideration had to be given to the data structures
used, to alow these same data structures to be used for stream IPC and library
I/O operations against file objects.

The need to provide a substantial degree of compliance with the
ANS| C standard dictated that some established conventions be retained, and
these are detailed more closely in 3.2.1

Whilst some consideration was given to including the POSIX 1003.1
standard into the design constraints, this was subsequently rejected as too many

Chapter 3

-43- Stream |PC

aspects of the POSIX model were implicitly tied to Unix and thus irrelevant in
the provision of stdio functions. Should a port of Unix to the Wanut be
intended, analogous to that in Mach or Chorus, then the development of a
POSIX library would be justified [POSE93]. The same argument may be
applied to a BSD socket programming interface.

3.2Walnut I/O Library Design

3.2.1 Requirements

A number of basic design constraints were set, to provide both com-
pliance with the language environment used, as well as to provide objective cri-
teria for assessing the usefulness of various design alternatives. An important
aspect of this process was to determine which attributes of the established
ANSI programming interface model were relevant for the Walnut environment,
and which were not.

The process of defining requirements was iterative. Starting from a
series of basic requirements, these were repeatedly refined by comparing con-
straints implicit in both the ANSI standard and the Walnut kernel. This strategy
was adopted to ensure that the final set of design requirements provided the best
possible fit.

Importantly, as development of the software proceeded, further con-
straints and technical issues became evident, and these in turn were added into
the final functional requirement set for the library. Some care was taken to
ensure that the design was clearly separated from the implementation. This was
to ensure that the library can be ported with a minimum of effort, when the
Walnut kernel is ported to different machine architectures.

Theinitial set of design requirements were defined as:

* the mechanism employed would exploit the Walnut kernel’s ability to map an
object into the address space of a process.

* the stream transport mechanism would be implemented with a circular buffer
scheme.

Chapter 3

-44- Stream |PC

» afile structure would be used to preserve the ANSI C programming interface
structure and syntax.

» within a file object, the offset pointer can be moved to an arbitrary byte
address within the capability.

* operations must be available to open and close file and stream objects.

» the syntax for open, close, seek, read and write calls should be compliant with
the ANSI C programming interface.

» support would be provided for the Walhut nameserver library, to allow the use
of name and path based object addressing syntax as is used in the ANSI stan-
dard.

» support would be provided for both blocking and non-blocking behaviour
when reading and writing both file and stream objects.

» a set of additional function calls would be added, where appropriate, to pro-
vide functionality unique to the Walnut. These would where possible retain the
style of programming interface used in the ANSI C standard and the POSIX
1003.1 standard.

» ANSI compliance would be mandatory, where such compliance did not incur
a significant devel opment time overhead.

The requirement to preserve the ANSI and POSIX 1003.1 style of
programming interface has some important implications. Both of these models
are derived from the Unix paradigm, in which the FILE structures associated
with open files are managed as atable [Sections 2.3, 2.4]. Indeed, the argument
used to identify an open file in the POSIX environment is an integer index into
this table. As a consequence of this, the Walnut FILE structure would aso have
to be managed as atable to ensure that the same behaviour is provided.

An important and implicit objective, as is evident from the initial
requirements, was to provide a programmer familiar with the ANSI C and
POSIX 1003.1 environments with a comfortable programming environment.

Chapter 3

-45- Stream |PC

This would minimise the effort required to port existing software from other
platforms to the Walnut, as well as enabling a programmer to become proficient
in the use of the library as quickly as possible.

3.2.2 Design Consider ations

Whilst a number of design constraints were defined, these did not
encompass all considerations which would be relevant to the implementation.
As such, design considerations are discussed separately. Many of the design
considerations were apparent from the outset. Some became apparent during
the implementation of the library.

* locking vs lock free buffer management - the stdio library is intended for
use with single processor as well as future multiprocessor implementations of
the Walnut kernel [CP94]. Robustness in a multiprocessor environment is
important, and the use of locking mechanisms will increase complexity should
robustness be required.

* the use of common vs unique structure types for file objects and stream
objects - because file objects and stream objects have different functional
requirements, a library implementation may use either a common data structure
type for the object, or unique data structure types. Whilst the use of different
data structure types would simplify the data structures, it would increase the
complexity of anumber of the library functions.

» distinguishing file objects from stream objects - two strategies were consid-
ered for this purpose. The first strategy is to define separate object types in the
kernel, using the parameter block type field. The second strategy is to use a
magic number at the beginning of the object.

» programming interface for opening and closing streams - two approaches
were considered, these being the use of unique library calls for file and stream
open operations, or the overloading of a single function call for both purposes.

» mapping ANSI file behaviour on to an object - a memory mapped object
has a number of properties which differ from those of an opened file object, as

Chapter 3

-46- Stream |PC

defined in the ANSI C standard. While memory mapping is a more powerful
approach than treating the object as a sequentially accessed file, compliance
with the standard dictated usage of the latter. Important issues were how much
of the object isto be mapped in, and how the state of the object and the position
of the file pointer are managed.

* process environment - the Walnut kernel provides a process with an address
space which contains a number of defined variables. The use of the library how-
ever required the addition of a number of additional variables and structures, to
support its function. The foremost of these was a table of FILE structs. In addi-
tion, it was found that other functionality such as error handling was required.

« file structure strategies - the design of the FILE structure required reconcili-
ation of a number of ANSI standard related constraints, as well as the func-
tional requirements of the stream and file object handling.

* nameserver issues - the nameserver library provided a means of binding
names to capabilities. The stream |PC mechanism would need to exploit where
appropriate, nameserver functions, to provide a good fit with the ANSI pro-
gramming interface model.

» performance issues - the transport used in the stream |PC mechanism was to
be designed to minimise the computational overhead of transmitting data
through the channel, thus maximising throughput performance. While the use
of acircular buffer scheme in a shared object was a design requirement, the jus-
tification of this requirement lies in a performance advantage. Furthermore,
other library operations were to use the minimal number of system calls
required.

* security issues - the stream IPC mechanism should not degrade the security
of access inherent in the Walnut kernel. The two processes communicating
through the stream IPC channel should not be given access to each other’'s
address space, other than to buffer related structures shared for purposes of data
transmission.

3.2.3 Design Rationale

Chapter 3 -47- Stream IPC

The requirement to fit the ANSI programming interface to the Walnut
paradigm suggested a simple two tier model. A file structure analogous to that
in ANSI and Unix implementations would provide the entry point into the
mechanism. A stream structure would contain pointers into the view of the
stream buffer object or into the view of the file object.

FILE STRUCTURE
File (FILE)

fopen()
fclose() [
fread()
fwrite() Stream
fgetc()
fputc()
fseek()
ftell()

STREAM STRUCTURE

CAPABILITY VIEW

IPC BUFFER OR
FILE OBJECT

Figure 3.2 Walnut Library I/O Programming Model

3.2.3.1 Buffer and Stream Structure Design

Several options were considered for the design of the Stream struc-
ture and buffer format. Initially, an arrangement with three separate objects was
proposed. The first object contained the circular data buffer. The second object

Chapter 3

-48- Stream |PC

contained buffer parameters, the in-index (write index) and out of band (OOB)
message passing parameters, which were to be a capability and state flags. The
third object contained the out-index (read index) and out of band (OOB) mes-
sage passing parameters, which were also to be a capability and state flags.

"WRITER’ 'READER’
Process A |:> |:> Process B

DATA BUFFER
| LOADED CAPL
! READ ONLY
LOADED CAPL |
READ/WRITE '
(.
b LOADED CAPL
P READ ONLY
LOADED CAPL L ‘
READ/WRITE P |
|
N ! LOADED CAPL
e READ/WRITE
LOADED CAPL AN |
READ ONLY | | NSTREAM STRUCT #1 /|
[|
' 11| MSG CAPLTOA |
'V '| ooBFLAGS |
[|
-T IN-INDEX w
| |
'\ -1 BUFFER BASE w
| |
t-\-| BUFFER SIZE |
DATA OBJECT | DATA OBJECT
|
|
|
|
TREAM STRUCT #2/ !
MSG CAPL TO B |
|
OOB FLAGS |
CODE OBJECT OUT-INDEX . CODE OBJECT
PROCESS OBJECT PROCESS OBJECT
THE WALL THE WALL

Figure 3.3 Walnut Stream Design - Initial Proposal

To provide protection from ill behaved subprocesses which could cor-
rupt the contents of the objects, the reading process would map in the buffer
and second object in read only mode. The writing process would map in the
third object in read only mode.

This arrangement evolved. The first major change was the decision to
collapse the three objects into one, as the overheads of managing three objects
for a single stream connection could not be justified unless the protection issue

Chapter 3

-49- Stream |PC

was to be a significant problem.

The capabilities and the OOB message flag fields would provide for
not only conventional blocking and non-blocking modes of operation, but also
for a "wakeup" mode of operation. In such a mode of operation, a process
which would otherwise block due to a buffer full or empty condition, would
sleep until "woken" by a message from its peer in the connection.

"WRITER’ 'READER’
Process A |:> |:> Process B
DATA BUFFER
LOADED CAPL ﬂ
READ/WRITE
LOADED CAPL
READ/WRITE

MSG CAPL TO A

OOB FLAGS
IN-INDEX
r BUFFER BASE
BUFFER SIZE
DATA OBJECT DATA OBJECT
MSG CAPL TO B
OOB FLAGS
OUT-INDEX
CODE OBJECT CODE OBJECT
PROCESS OBJECT PROCESS OBJECT
THE WALL THE WALL

Figure 3.4 Walnut Stream Design - Single Capability Model

The circular stream data buffer was designed for simplicity and to
provide the best achievable throughput performance. A scheme was devised,
whereby the reading and writing processes need only access their respective
index values into the buffer, and atripwire value.

Chapter 3 -50- Stream IPC

Start
— > Set ~RDOK Flag

myindex == inindex_?

Return STUFFED

Tripped ?

outindex OK ?

v No
Put the Data
Update Index

Block Flag ACTIVE
Return Data

Top of Buffer ?

File ream
File or Stream ? Strea
* No

Put the Data Put the Data

Update Mode Update Trip Update Trip
& Ifilelimit 2 Update Index Update Index

Block Flag ACTIVE Block Flag ACTIVE
Return Data Return Data
L—| Set Trip to filelimit ‘ Return EOF

Stream CLOSE?2

Yes
Return CLOSED %

Yes
Return FULL

Reader

Wake Reader SLEEPMODE &
SLEEPING?

Writer
SLEEPMODE ?

No

- Back to Start BLOCK

Figure 3.5 Walnut Stream Design - Simplified fputc Algorithm

Chapter 3

-51- Stream |PC

Start
S w Set ~WROK Flag
No
pushback OK ? >~
Tripped ? Yes &
ppea No
{uyindex==outindex 7 Return STUFFED
No
Get the Data
Update Index No
Block Flag ACTIVE inindex OK ? —
Return Data
No
Buffer Empty ?
File Stream
File or Stream? >—————
y No
Get the Data
Update Trip
Set EOF Flag Update Index
Return EOF Block Flag ACTIVE
Return Data

Return CLOSED

Yes
Stream CLOSE?

Return FULL

Writer
Wake Writer SLEEPMODE &
SLEEPING?

Reader

Yes
Set Flags SLEEPMODE ?

Sleep for 10 s

< Back to Start |

No

- Back to Start

BLOCK

Figure 3.6 Walnut Stream Design - Simplified fgetc Algorithm

The tripwire value is used to detect specia conditions in the buffer,
such as full and empty states, or either index reaching the top to the buffer (des-
ignated the wrap condition). Because the trip condition is unique to each of the

Chapter 3

-52-

Stream |PC

processes operating on the stream buffer, it was placed into the file structure.
To achieve high performance, the algorithm used in both fputc and
fgetc was designed to minimise the number of operations performed in a regu-

lar access to the buffer (i.e. non-trip condition).

This was accomplished by having fputc and fgetc first set the status
flag and test the trip condition, and then proceed to write or read the character,
or if tripped, interpret the state of the buffer and proceed further (Figure 3.5).

PROCESS A

FILE OBJ VIEW

STREAM OBJ VIEW

DATA OBJECT

THE WALL

0x5400000

0x1400000
0x1000000

— 0x000C000

Figure 3.7 Walnut Library I1/0O Implementation Model

PROCESS B

FILE OBJECT

Stream Structure

STREAM BUFFER
OBJECT

STREAM OBJ VIEW

Stream Structure

DATA OBJECT

CODE OBJECT

PROCESS OBJECT

THE WALL

0x5400000

0x1400000
0x1000000

— 0x000C000

To implement the ungetc function, facilities for pushback of

Chapter 3

-53- Stream |PC

characters had to be provided. The mechanism adopted uses a compile time
parameter (NPUSHBACK) which is used to offset the trip point for the condi-
tion where the write index is "catching up" with the read index. If the trip point
in the buffer were not offset by the limit to the number of characters pushed
back on to the stream, these characters could be overwritten by the writing pro-
cess. The number of characters pushed back is held in the Stream structure.

The NPUSHBACK value could also be held in a field within the
Stream structure, to be initialised at the time the structure is created. Thiswould
allow stream connections to have arbitrary values of NPUSHBACK, providing
that these values are reasonable in relation to the buffer size. It is intended that
afuture version of the library include this facility.

The file structure was initially designed to operate with an IPC
stream, and subsequently modified to operate with afile object. To improve per-
formance, the file structure contains pointers to all of the fields in the Sream
structure which are required for operations on the buffer. These are initialised
when the file structure is initialised. A copy of the read or write index is
included to allow integrity checking of the Stream structure on every operation.
A field of flags was included to enable ANSI functionality to be implemented.

The unified Sream structure for both file objects and stream buffer
objects was chosen to simplify the design. Since both stream buffer objects and
file objects would be manipulated only by stdio library functions, there was no
apparent advantage to the use of file objects comprising only data. The imple-
mentation adopted therefore uses the same Stream struct and data area format
for both stream buffer objects and file objects.

Stream buffer objects and file objects are identified by the use of a
magic number, rather than using the type code of the capability. Whilst no
advantage was found to either technique for open operations, the use of the
magic number technique was cheaper for operations on objects aready mapped
into the process address space. This is because the overhead of aK_CAPSTAT
system call was not incurred.

The mapping of ANSI standard open modes for files on to Walnut
access rights required some thought. For the creation of file objects, read and
write modes would map directly, and the update mode would provide both read
and write modes. If the modes specified in an open call would not match the
access rights to an existing capability, the operation would fail. Because thereis
no distinction in the Walnut between binary and text streams, the optional

Chapter 3

-54- Stream |PC

ANSI mode flag for binary streams, "b", is not used.

Because the Walnut stream is unidirectional, the update mode is not
supported for operations on stream buffers. Because a stream buffer object must
be destroyed on the closing of the connection, and must be loaded by at |east
two processes, the default access rights mask for a Sream buffer object is
SRSUICIDE | SRREAD | SRWRITE | SRUSER | SRMULTILOAD.

The file structures are managed as a linked list. While the alternative
method of allocating heap storage for every file structure to be used was consid-
ered, a file table managed as a linked list was adopted as this smplified the
debugging of the design. Allocation of structures on the heap is more efficient
in usage of address space.

Thefiletableislocated at afixed address in the process object, and is
typically initialised after process creation. Adoption of this mechanism allows
the library to provide both the ANSI and POSIX programming interface con-
ventions. The latter was not implemented.

3.2.3.2 File Object Opening and Object Creation

The availability of the nameserver function library allowed the use of
a name based syntax which preserved the ANSI programming interface. Using
the interface requires that a binding to a valid capability exists. If the capability
does not exist, the open operation must fail. If a binding does not exist, the
default ANSI behaviour is to assume that the intent is to create afile.

Because the ANSI fopen call does not include parameters for default
file opening, two aternatives were available for setting parameters for the file
object to be created. One alternative is to define a default value in the library
with a global variable, the other is to exploit the ANSI standard [ANSI89] and
add an additional set of open mode flags unique to the Walnut. Expediency dic-
tated the adoption of the former approach using the setvol macro to set the vol-
ume number, although a good case can be made for the latter. The form of the
latter could be a st of fopen parameters such as
"wa,vol=0x8888,limit=1000,send=0,money=10000", where the volume param-
eter specifies the volume to create the object on, the limit parameter sets the
value of the argument for K_MAKEOBJ, the send flag prevents the capability
from being distributed to other processes, and the money parameter sets the
money to be put into the object. It is intended that this be implemented in a

Chapter 3

-55- Stream |PC

future version of the library.

The default behaviour for fopen is for an object to be created with
INITIALCASH money, and a large limit size, on the volume number set with
setvol. Alternatively, a user may create the object with a K_MAKEOBJ call,
bind it to a name with a nameserver library call and then call fopen to open the
file object.

3.2.3.3 Stream Open Programming I nterface

The programming interface for opening stream connections was
implemented by overloading the programming interface for file objects with
additional qualifiers. This approach was considered preferable to designing a
separate interface, as the interface is ssmpler and thus more easily debugged. At
this phase in the project, the use of name bindings to processes was considered
apossibility, but not planned for implementation.

During the development of the library, stream open operations were
executed using the opencap call, which operates directly on a capability to send
a message to a process. This proved to be cumbersome during debugging. The
advantages of a scheme where name bindings were attached to processes
became very apparent. Not only was the design of client processes simplified,
but operations from the Walnut shell command line were simplified. An errant
process identifiable by name is much easier to delete. An rm utility designed for
destroying file objects could be used to destroy a no longer required process.

The fopen call was therefore modified, and additional utilities imple-
mented which allow a process to "name" itself once it begins execution, and to
"unname” itself when it destroys itself. The bindings are held in the process
default database.

3.2.3.4 Process Environment I nitialisation

The basic process environment provided by the Walnut kernel does
not provide facilities for the stdio library. A process which is intended to call
functions from the library requiresinitialisation of a number of library variables
and structures. This is performed by the initenv function which must be run
before any other library function.

Chapter 3

-56-

The initenv function will perform the following operations:

* save the argument list if the process was created by a shell.

* set default values for stream object size and blocking mode.

Stream |PC

* save process specific information held initialy in the parameter block (i.e.
process capability, maximum number of mailboxes, subprocesses and |oadable

capabilities).

* initialise the debugging monitor screen.

PROCESS A

STREAM OBJ VIEW

DATA OBJECT

CODE OBJECT

PROCESS OBJECT

THE WALL

Y

PROCESS B

- STREAM OBJ VIEW

STREAM OBJ VIEW

DATA OBJECT

THE WALL

STREAM BUFFER
OBJECT

Stream Structure

Figure 3.8 Walnut Library Pipe Implementation Model

Y

PROCESS C

.), STREAM OBJ VIEW

STREAM OBJ VIEW

DATA OBJECT

CODE OBJECT

PROCESS OBJECT

THE WALL

T

STREAM BUFFER
OBJECT

Stream Structure

Y

)» STREAM OBJ VIEW

PROCESS D

DATA OBJECT

CODE OBJECT

PROCESS OBJECT

THE WALL

T

STREAM BUFFER
OBJECT

Stream Structure

» make and load the object used by the stream opening protocol for the purpose

of passing arguments.

Chapter 3

-57- Stream |PC

* enable the receipt of messages.

* create atable of mailbox states for all subprocesses.

« initialise the default name server database.

e initialise thefile table.

» open file table entries for the stdin and stdout streams.

* initialise global variables used for debugging and error reporting.

The open stdin and stdout file table entries are an ANS| standard
requirement. The library assumes that valid capabilities to suitable stream
objects have already been copied into the file table entries for stdin and stdout.
These will have been created by a shell or other program which has created the
process. The ANSI stderr file table entry is aliased to stdout at compile time, as
the ANSI model of directing stdout to buffered output and stderr to unbuffered
output has no meaning in the Walnut context.

The ANSI style of file table initialisation and POSIX 1003.1 style of
argument passing allows a shell to provide command line piping between pro-
grams, similar to that in Unix.

3.3 Stream/File Object Structures
The final configuration of the Stream structure provides the required

common interface to file objects and stream IPC connections. The structure def-
inition is asfollows:

[* the fundamental types are defined as:

*

* Uw unsigned 32 bit
* Sw signed 32 bit

* Uh unsigned 16 bit
* S signed 16 bit

* Uq unsigned 8 bit
* 0| signed 8 bit

Chapter 3

-58- Stream |PC

typedef unsigned long Uw;
typedef signed long Sw;
typedef unsigned short Uh;
typedef signed short Sh;
typedef unsigned char Ug;
typedef signed char &g

/~k
* Sandard structure at front of File and Stream objects
*/

typedef struct Streamst {
Swv magic; [* magic number deter mines object type */
Sw type; [* Basically, streamor file */
Swstrmsz, /* Szein charsof data area or fileobj size */
Sw basg; [* Offset of data area from start of Sream struct */
Swinindex; /* Indexrel to base where NEXT char isto be put */
Sw filelimit; /* file object size limit */
Uq lock; [* Semafore */
Uq readersblock;/* Flagsindicating if reader is blocking */
Uq writersblock;/* Flagsindicating if writer is blocking */

Uqg dum3;

/~k

e The rest needed only for inter-process stream ------
*/

Swoutindex; /* Index whence next char will beread */

Capl reader; /* Message capl toreader */

Sw rfdti; /* Reader’sfile descriptor table index */

Sw rmode; /* Read mode flag */

Capl writer; /* Message capl towriter */

Sw widti; [* Writer’sfile descriptor table index */

Swv wmode; [* Write mode flag */

Sw pushback; /* pushback counter, inc’ed by ungetc, dec’d by getc */
} Stream;

The magic number, magic, determines the type of capability the
Stream is associated with. Two valid types are defined at this time. The
FILEMAGIC type is associated with ordinary files, which may be text
(ASCII) or binary. Code and data objects when accessed by the library are
treated as ordinary files. The STREAMMAGIC type is associated only with
stream buffer objects.

The type field may be a FILECHAR or a FILESTREAM, and was
used during the early development of the stream |PC implementation. To retain
compatibility with other items of code produced prior to the introduction of the
magic field, this field has been retained.

The strmsz field is overloaded with two usages. In afile object it con-
tains the exact size of the file, which is less than or equal to the size of the

Chapter 3

-59- Stream |PC

object. In a stream buffer object, it contains the size of the stream buffer within
the object.

The base field contains the size of the offset from the beginning of
the object to the beginning of the file data or stream buffer.

The inindex field is overloaded with two usages. In a file object
opened in write mode, it contains the file index value. In a stream buffer object,
it contains the value of the write index.

The filelimit field is used only in file objects, and contains the abso-
lute limit to the file size. The lock field is not currently used, but isintended as a
semaphore in a multiprocessing environment.

The readersblock and writersblock fields are used to indicate the
blocking state of the file object or stream buffer object, in the read and write
directions respectively. These fields are used to indicate whether the operation
is ACTIVE, BLOCKED, SLEEPING or WOKEN, in the respective modes
of blocking.

The outindex field is overloaded with two usages. In a file object
opened in read mode, it contains the file index value. In a stream buffer object,
it contains the value of the read index.

The reader and writer fields are used in stream buffers only, and con-
tain the capabilities to message the reading process and writing process respec-
tively. When a stream connection is running in wakeup mode, these capabilities
are used by a process to send a wakeup message to the other process using the
connection.

The rfdti and wfdti fields are indices into the file tables of the reading
and writing processes, respectively. These have been retained for compatibility
with earlier developed code and may be removed in a future version of the
library.

The rmode and wmode fields are used to indicate the intended block-
ing mode of the file object or stream buffer object, in the read and write direc-
tions respectively. It is aso overloaded with the closing state flag, used during
the closing of stream connections.

The pushback field contains the count of characters pushed back on
to the file object or stream buffer object by the ungetc operation.

3.4 File Structure

Chapter 3

-60- Stream |PC

The final configuration of the File (FILE) structure provides the
required interface to a file table entry. Like the Stream structure, it overloads
some fields with usages for stream communications and file objects. The struc-
ture definition is as follows:

/*
* File (FILE) Pointer - File descriptor table entry
*/

typedef struct Filest {
Capl filecap;
Swwindowsize; /* Szein chars of loaded window onto buffer/file */
Sream*obj; /* Ptr to start of buffer or file object */
Swvstrmsz, /* Szeof infoareain chars */
uq *strm; [* Logical ptr to start of information characters*/
/~k
* in- and out- indexes are indexes rel to strm
* inptr, outptr point to these values
*/
Sw*inptr; /* ptr toin-index */
Sw *outptr; /* ptr to out-index */
Sw *pushback; /* ptr to pushback counter */
Switripwire; /*
* A critical index value at which special actionis
* needed
*/
Swvmyindex; /* Nextindexvaluetouse */
Uqg mode;
Uq type; [* FILECHAR = file object, FILESTREAM = stream */
Uqdir; [* 1=read, 2= write, 3= read/write */
Sw next; /* index to next free File */
Sw flags; [* eof, err flags*/
Swfileindex; /* file object posn pointer */
} File;

The filecap field is the capability to the file object or stream object to
be opened, or open. It is used during the opening operation.

The windowsize field contains the size of the view of a file object
mapped in. The existing version of the library does not utilise it, it is intended
to be used in situations where the view mapped into the process address space
is much smaller than the size of the object.

The obj field is a pointer to the beginning of the mapping of the file
object or stream buffer object, where the Sream structure resides.

The strmsz field is overloaded with two usages. In afile object it is
the size of the file, in a stream buffer object the size of the data buffer. Both

Chapter 3

-61- Stream |PC

values are in bytes (8-bit characters).

The strm field is a pointer which is overloaded with two usages. In a
file object it points to the beginning of the data within the object (i.e. the first
byte), in a stream buffer object it points to the beginning of the data buffer.

The inptr and outptr fields point to the inindex and outindex fields of
the Stream structure respectively. The tripwire field is used to manage the state
of the indices into the data buffer of a stream buffer object, or the index into a
file object. The myindex field is a copy of the last value of the index written by
the process accessing the file structure.

The type field is used to identify whether the file structure is associ-
ated with afile object or a stream buffer object. Valid values are FILECHAR
and FILESTREAM.

The dir field identifies the direction in which the stream may be oper-
ated upon. It may assume the values of READ, WRITE and UPDATE.

The next field is used in managing the file table linked list, and points
to the next free entry in the table.

The flags field is a 32-bit bitmask used in managing the state of the
stream. A number of flags are defined:

O _EOF - end of file condition encountered

O _ERR - error condition encountered

o _TIMEOUT - timeout error condition encountered
O _APPEND - file open in append mode

o _UPDATE - file open in update mode

O _RDOK - read operations are permissible

0 _WROK - write operations are permissible

O _CAP - capability has no name binding

O _TMP - object isatmpfile

o _FULL - full condition encountered

The fileindex field is used only with file objects and stores the value
of the index (pointer) into the file. If greater than the strmsz of a file object, its
valueis copied to strmsz on a flush or close operation.

Chapter 4

-62- Library Implementation

Chapter 4 Library Implementation

4.1 Introduction

The implementation of the stdio library reflects the constraints and
rationale defined in Chapter 3. The library can be functionally divided into
ANSI C library functions and Walnut specific functions. Additional debugging
tools are detailed in the Appendices to this document.

4.2 Walnut Library Functions

A C programmer can directly manipulate file objects and | PC streams
using the Walnut library functions. These library functions are also used by the
ANSI stdio functions for lower level manipulation of capabilities, and provision
of services such as the opening of stream connections.

4.2.1 The opencap Function

The opencap function is similar in operation to the Unix and POSIX
1003.1 open functions, providing the low level programming interface for file
and stream object operations. Because the Walnut kernel operates directly on
capabilities, the programming interface for opencap provides arguments neces-
sary for this purpose.

The function call for opencap and its arguments are defined as follows:

FILE * opencap(Capl * capability, Uw flags, Uw vol, Uw money, Uw limit);

» Capl *capability, is a pointer to afile object or target process object capabil-
ity. The process opening afile object or IPC stream must have a valid capability

and access rights to the file object or process to be opened, if it exists.

» Uw flags, isa 32 hit bitmask of flags which are to be used when opening afile
object or a stream IPC connection. These flags will define modes and defaults

Chapter 4

-63- Library Implementation

should afile object need to be created.

0 READ - flag to open the capability for reading

o0 WRITE - flag to open the capability for writing

o APPEND - flag to open the capability for writing, and advance the pointer to
EOF

o UPDATE - flag to open the capability for update (i.e. read and write), valid
only for file objects.

O CREATE - flag to specify the creation of a file object, if the object to be
opened does not exist.

0 BLOCK - flag to set stream 1/0O mode to blocking.

0 NOBLOCK - flag to set stream I/O mode to non-blocking.

0 WAKEUP - flag to set stream 1/0O mode to sleep on empty or full.

o SMALLWINDOW - flag to specify an object created with 4 kbyte size,
overriding the limit argument

o0 LARGEWINDOW - flag to specify an object created with 4 Mbyte size,
overriding the limit argument

O FILECAP - flag to specify that the capability to be opened is to a file object.

» Uw vol, this argument specifies the volume for file object creation.

» Uw money, this argument specifies the amount of money to be placed into a
file object when created.

» Uw limit, specifies the limit value to be used during object creation.

Chapter 4

-64- Library Implementation

The opencap function will first check the value of the capability argu-
ment to determine whether it isavalid capability value, or anull capability. If it
is a null capability and the CREATE and FILECAP flags are not set, then
opencap will return with an error.

Once the capability value has been checked, the opencap function
will then decode the flags argument to set values for access modes and blocking
modes.

The opencap function will then execute a K_CAPSTAT system call
to verify the existence of the capability. If the capability does not exist, and cre-
ation has not been specified, opencap returns with an error. If the capability
exists, opencap saves the parameter block containing the details of the capabil-
ity.

Once the details of the capability have been found, opencap tests the
type field to determine whether the capability is to a file object or a process
object. The flag bits for window sizes are tested to set the limit value to be used
in creating afile object or a stream object.

If afile object is to be created, opencap executes a K_ MAKEOBJ
system call to create the file object, and saves its details. The object is then
loaded into the address space of the process, and initialised with avalid Stream
struct. During initialisation the magic number and type fields are set, the limit
is set and the blocking modes are set. Theinitialised object is then unloaded.

If opencap is operating on a file object, the objects rights are then
compared with the flags argument. A mismatch in open flags and rights will
cause opencap to return with an error.

If opencap is opening a stream connection, it will open the process
mailbox to enable the receipt of messages. Once this is done, opencap will
execute a K_PEEKPROC call via the pingtarget function, to determine the
state of the target process. If the target process doesn’t exist, does not provide
the right to peek, isfrozen, in probate or dead, then opencap returns an error.

If the target process is alive and thus assumed to be capable of pro-
ducing a stream connection, opencap will employ the sendrequest protocol
module to send an open stream request message. If a valid response message is
received from the target process, opencap will decode the message. If the mes-
sage indicates that the request has been serviced, the stream object returned is
checked. The opencap function will execute a K_CAPSTAT call to verify the
existence of the object.

Chapter 4

-65- Library Implementation

At this point opencap will possess a capability to a file or a stream
object which is known to exist. It may now proceed to complete the opening of
the object.

A file table entry is now reserved for the object, and the file table
linked list amended to reflect this. The file table entry is then initialised with the
capability to the object, and the fileinit function called to complete the open. If
fileinit does not return an error, opencap returns the file pointer, and the open is
completed.

4.2.2 Thefileinit Function

The fileinit (formerly open2) function is used in the final phase of
opening a stream. Its purpose is to properly initialise the File and Stream struc-
tures associated with the open stream, and load the object into the address space
of the calling process. The function call and its arguments are:

Sw open2(Uw fdindex, Uw *offset, Uw * cindex, Uw block, Uw direction);
* fdindex - index into the file table
» offset - specifies capability offset and returns offset value
* cindex - specifies capability cindex and returns cindex value
* block - specifies blocking mode
« direction - specifiesread or write direction for stream or file objects

The fileinit function will first test the file table index for avalid value.
If the value is valid, it then tests the capability held in the file table entry for
validity. A K_CAPSTAT system call is then used to test for the existence of the
capability. If the capability exists, it is then loaded into the process address
gpace. The existence test is debugging code which was retained.

Once the stream or file object capability is loaded, fileinit will test the

magic number and if valid, initialise the pointers and pushback counters held in
the File structure. If the capability is a stream object, the index values and size

Chapter 4

-66- Library Implementation

are tested for validity.

The fileinit function will then initialise the common file structure
fields for direction, stream base, stream or file size, type, flags and for a stream,
tripwire. Stream or file object specific parameters are then initialised. These are
the capability of the calling process, the file table index and the blocking mode.
In file objects, the flags for file state are initialised.

4.2.3 The makestreamobj Function
The makestreamobj function is used to create a valid stream object. It
istypically employed by a server process which is responding to arequest for a
stream connection.
Sw makestreamobj (Capl *obj, Uw *size, Uw money);
* 0bj - apointer to the capability of the created stream object
* size - specifies the size of the stream buffer object to be created
» money - specifies the money value to be placed into the stream buffer object
The agorithm for setting the object size will take the size argument,
add the size of the Stream structure and set the object size to be the minimum
number of pages required to contain the structure and specified buffer size. An
object is then made, loaded and initialised. The magic number, type, base, size
and default blocking modes are set. The object is then unloaded and the func-
tion returns.
4.2.4 The copen Function
The copen function is analogous to the ANSI fopen function, but
operates on a pointer to a capability rather than a pointer to a string. It was
included in the library to alow a programmer to open capabilities which do not

have name bindings.

FILE *copen(Capl * cap, const Uq * mode);

Chapter 4

-67- Library Implementation

The mode argument is identical to that in fopen, and the copen func-
tion differs from fopen only in that it does not need to operate on the name-
server binding to determine the value of the capability.

4.2.5 Theremovec Function
Sw removec(Capl * capability);

The removec function is analogous to the ANSI remove function, but
operates on a pointer to a capability rather than a pointer to a string. The capa-
bility is destroyed by this function.

4.2.6 The cmap and cunmap Functions

The cmap and cunmap functions are analogous to the Unix and
POSIX mmap and munmap system calls. Unlike the Unix calls, cmap and cun-
map operate on a specified capability rather than a file pointer. The function is
included to simplify porting of applications and is not used in the library imple-
mentation. The functions will load or unload a capability into or from the
address space of the calling process, respectively.
void *cmap(void * addr, Uw len, Uw prot, Uw flags, Capl *cap, Uw offset);

* addr - address at which the capability isto be loaded
* len - specifies the length of the view to be |loaded

* prot - unused in Walnut

* flags - unused in Walnut

* cap - pointer to capability to be loaded

« offset - offset to base of view to be loaded

void cunmap(void *addr, Uw len);

Chapter 4

-68- Library Implementation

* addr - address of the mapping to be unloaded

¢ len - unused in Walnut

The cmap and cunmap function implementation is not compliant with
the POSIX function. A compliant cmap implementation would need to create a
derived capability with parameters defined by the flags argument, and load this

capability.
4.2.7 The setmyname and clrmyname Functions

Sw setmyname(char * myname);
Sw clrmyname(char * myname);

These functions are used to create or delete a name binding to the
calling process. The sole argument is a pointer to a string. A typical use is to
simplify the design of client processes, which may locate a server by using a
name rather than a capability value. The default nameserver database is used.

4.2.8 Thekerror Function

The kerror function is used to report kernel errors returned by a sys-
tem call which has failed. The function is analogous to the ANSI perror func-
tion, in that it will take a pointer to a string as an argument and write the string
and its error message to the stderr file. Where kerror differs from the ANSI
perror is in its ability to provide verbose reporting of kernel errors. A global
library variable, debug, is employed to set the level of error reporting.

void kerror(const char *s);

A debug level of 2 provides terse reporting, which writes the kernel
error code to stdout. A debug level of 3 provides verbose reporting, which
decodes the kernel error code and writes a description of the error to stdout.

Error reporting is detailed in [Appendix Al.

4.2.9 The Client Server Protocol Functions

Chapter 4

-69-

Library Implementation

The Walnut stdio library implements a simple client server protocol.
This protocol was designed to support process to process requests for stream
opening, as well as to provide the basic functionality for the later implementa-
tion of aremote procedure call mechanism. The latter is not implemented, as it
fell outside the scope of the library design and implementation.

Client Process

PAYLOAD VIEW

DATA OBJECT

=

CODE OBJECT

MSG TYPE
PRIORITY
FLAGS
SOURCE
PAYLOAD
STATEOBJ

P

0X1400000

PROCESS OBJECT

0x1000000

THE WALL

— 0x000C000

4.2.9.1 Protocol Definition

MSG TYPE
PRIORITY
FLAGS
SOURCE
PAYLOAD

STATEOBJ

Server Process

PAYLOAD VIEW

DATA OBJECT

CODE OBJECT

PROCESS OBJECT

THE WALL

0x5400000

0x1400000
0x1000000

— 0x000C000

UNUSED IN STREAM PROTOCOL

CUSTOMER
SPECIFIC
STATE OF PROVIDER

Fig.4.1 Client Server (RPC) Protocol Structures

The protocol is a simple request and response scheme. The client will

Chapter 4

-70- Library Implementation

send a request message to the server. The server will validate the request, and if
appropriate, will supply a response. In the instance of stream opening, the
response will contain the capability to a stream buffer object, which is created
upon validation of the request.

Because the permitted message size in the Walnut kernel is small, a
protocol which must pass arguments back and forth would require careful
design of the message format to fit all the necessary fields into the available
gpace. Should the protocol need to support Remote Procedure Calling (RPC),
then the space in the message is ssimply too small for general use. The protocol
design created therefore passes a capability to a argument buffer between the
client and server. By using a capability to an argument buffer, the basic design
becomes readily extensible. As a result, the effort required to provide an RPC
service is minimised by exploiting the existing protocol modules used for
stream opening.

The protocol message structure has the following format:

typedef struct {
Uw type [* protocol message type */
Uw money, /* money sent or returned */

Uw priority; [* priority of service */

Uw flags; [* flags field */

Capl src; [* originator of message */

Capl payload, [* arguments passed/returned */

Capl persistent; /* persistent values passed/returned */
} SERVICE_REQUEST:

The message format is symmetrical, in that both requests and
responses use the same structure. The values in the fields determine whether the
message is arequest for a service or aresponse. Valid message types are:

* REQUEST_SVC - request for RPC service

* RESPOND_SVC - response to RPC service request

* REJECT_SVC - rgected RPC service request

* REQUEST_STRM - request for stream |PC connection

* RESPOND_STRM - response to arequest for stream |PC connection
* REJECT_STRM - rgection of arequest for stream |PC connection

A request message is sent by a client to a server, a

Chapter 4

-71- Library Implementation

REQUEST _STRM message asks for a stream connection with defined param-
eters. A response message is sent by a server to a client, acknowledging the
provision of the requested service. A rgect message is sent by a server to a
client, to notify of the rejection of the request.

The client server protocol exploits the money mechanism. A server
expects payment for the provision of a service. The money field is a redundant
copy of the value of the money sent with the message, and was employed for
debugging purposes. Should insufficient money be provided, the request is
rejected.

The priority field is a facility intended to smplify the relative
scheduling of service requests from multiple clients to a single server. A queue
of received requests may be scheduled in the order of requested priority.

The flags field allows the transmission of status information. Valid
flags are:

* CPERSISTENT - return persistent state information

* CUSEPRIORITY - usethe priority field

* PLOWMONEY - request rejected due insufficient money

* PNOSUCHSVCE - request rgjected as service not available
* PBADMODES - request rejected due incorrect modes

* PBADPRIORITY - request rejected due invalid priority value

The client process provides the server process with the capability to
to send it a message in the src field. The payload field is the capability to a
buffer of arguments. It is used for stream requests and is intended for use with
RPC requests. The persistent field is intended for use with RPC requests. State
information pertaining to a request from a specific client can be returned to the
client, without read or write access. A subsequent RPC service request can then
restore the state information before execution. This facility is not currently
used.

When requesting a stream connection, the payload capability will
contain the parameters of the requested stream. These are loaded in the follow-
ing format:
typedef struct {

Uw size [* stream object size - customer/provider */

Uw blockmode; /* stream blocking mode - customer/provider */
Capl streamobj; /* capability to stream object - provider */

Chapter 4

-72- Library Implementation

} STREAM_PARAMS;

The size field is the requested size, the blockmode field the requested
blocking mode for the requesting party and the streamobyj field is the returned
capability to the stream object.

4.2.9.2 Programming I nter face and I mplementation

Three functions are implemented for the purpose of protocol handling
and decoding. These are sendrequest and getrequest, to which the sendresponse
and getresponse functions are aliased at compile time, and decoderequest.

Sw sendrequest(Uw type, Uw money, Uw priority, Uw flags, Capl *target,
Capl *payload, Capl * persistent, Uw subpn);

Sw getrequest(Uw *type, Uw *money, Uw * priority, Uw *flags, Capl * source,
Capl *payload, Capl * persistent);

Sw decoderequest(Uw type, Uw money, Uw priority, Uw flags, Capl * source,
Capl *payload, Capl * persistent);

The sendrequest function copies the argument list into the message
area, in a format defined by the SERVICE_REQUEST structure, and then
calls K_EXTSEND to send the message to the intended recipient. The getre-
guest function is called by the receiving process to retrieve the message. This
function will take the type field from the argument list and copy it into the mes-
sage area, to ensure that only messages of the specified type are received. The
getrequest function will then attempt to retrieve a message. If no message has
been received, the function makes a K_WAIT call and slegps until a message
has arrived, upon which it repeat the previous step.

If a message of the proper type is received, getrequest will then load
the contents of the message area into the corresponding variables pointed to by
the argument list. The decoderequest function is then used to validate the con-
tents of the message. This function will return an operation code which the
server will act upon.

4.2.10 The accept Function

Chapter 4

-73- Library Implementation

The accept function is analogous to the 4BSD accept function used
with the socket interface. The Walnut accept function will wait for the arrival of
avalid request for a stream IPC connection, and then return a pointer to the file
structure associated with the open connection.

File* accept(Uw dirn, Uw maxsize, Uw myblockmode);

The dirn argument specifies the direction of the stream as seen by the
calling process. A request for a stream with the same direction specified will
fail. The maxsize argument imposes a limit on the size of the stream object to
be provided. The myblockmode argument specifies the blocking mode required
by the calling process.

The accept function will upon receipt and decoding of a valid stream
connection request, load the payload capability and extract the parameters of
the stream connection. It will then create the stream object using
makestreamobyj, return a valid response to the requesting process, and then load
the stream object, initialise the file table entry with fileinit, and return a file
pointer. The server process may then use the stream connection.

4.3 ANSI stdio Library Functions

4.3.1 Stream Oper ation Functions

The ANSI stream operation functions manipulate the state of afile or
stream connection.

4.3.1.1 Thefopen Function

FILE *fopen(char *filename, const Uq * mode);

The fopen function is substantially compliant with the ANSI model.
The most significant difference in the programming interface is that the func-
tion will open both file capabilities and stream IPC connections to named pro-
cesses. The overloading of the function call with both stream IPC and file oper-
ations was advantageous. The use of the Walnut nameserver library to bind
names to processes allows retention of the same syntax as used with file access,

Chapter 4

-74- Library Implementation

thus avoiding the need for either a separate programming interface, or a non
compliant version of the ANSI interface.

The mode argument fully conforms to the ANSI standard, supporting
read, write, append and update modes in file object access. Stream access is
constrained to write or read access, as the append and update (read and write)
modes are not defined for stream connections in the Walnut environment.

The Walnut fopen function will first decode the open mode to gener-
ate flag values for opencap. It will then call the namec function to find the capa-
bility which is bound to the filename argument. If no such capability exists, it
will assume that the intent is to create and open a file object, and appropriate
default values will be set.

If the name is bound to a capability, fopen will extract the parameters
contained in the binding to determine whether the capability isto afile or apro-
cess. If the binding is to another capability type, fopen returns with an error.
Defaults specific to a file or a process are set if the binding is to one of these
two types. The opencap function is then called to open the file object or stream
connection.

If the binding did not exist, and a file object has been created, fopen
will then bind the string pointed to by the filename argument to the capability
for the created object.

4.3.1.2 Thefclose Function

Sw fclose(FILE * stream);

The fclose function conforms to the ANSI standard. This function
will first call fflush to update the file pointer, or flush a stream connection. If a
stream connection is being closed, fclose will set the mode flags for closure to
notify the other process that the connection is being closed.

The capability is then unloaded, and if it was atmpfileit is destroyed.
If the capability is to a stream object, and fclose has been called as aresult of a
closure condition detected in the flags, fclose will destroy the object. The file
table entry is then released and fclose returns.

4.3.1.3 The fflush Function

Chapter 4

-75- Library Implementation

Sw fflush(FILE * stream);

The fflush function conforms to the ANSI standard. For file objects,
fflush will update the file size to the value of the current write pointer, and
update the trip value, and set the_ RDOK flag for files in update mode. The lat-
ter is an ANSI requirement which specifies that when in update mode, a write
operation must be followed by a flushing operation before awrite can be done.

For stream objects where the other process is in wakeup mode, fflush
will send a wakeup message to expedite the flushing of the buffer. The fflush
function will then poll the buffer until it is emptied. During each poll, fflush
relinquishes its time dlice. Once the buffer is empty, or file operations complete,
fflush returns.

4.3.1.4 Therename Function

Sw rename(const char *oldname, const char * newname);

The rename function is not implemented. An implementation would
first locate the binding associated with the oldname argument, test it for valid-
ity, check the status of the capability, and if valid, then create a new binding to
newname and delete the binding for oldname. This would provide behaviour
which conformsto the ANSI standard.

4.3.1.5 Theremove Function

Sw remove(const char *filename);

The remove function is an extension of the ANSI programming inter-
face. It provides the ANSI operation on file objects, but can also remove a pro-
cessif sufficient rights are provided to the process.

The remove function will first locate the binding associated with the
name argument, and if it is associated with afile, code, data or process object, it
will extract the capability. The binding is then deleted and the capability
destroyed.

4.3.1.6 Thetmpfile Function

Chapter 4

-76- Library Implementation

FILE *tmpfile(void);

The tmpfile function conforms to the ANSI standard. It will set up default val-
ues for file creation, call opencap and then set the _TMP flag in the file table
entry so that the object is destroyed on closing. A name binding is not pro-
duced.

4.3.1.7 Thetmpnam Function

char *tmpnam(char *s);

The tmpnam function is not implemented. An implementation would
generate a unique name string for the nameserver database in use and save the
binding in the database.
4.3.1.8 Thefreopen Function
FILE *freopen(char *filename, const char *mode, FILE * stream);

The freopen function nominally conforms to the ANSI standard, but
is untested. This function will close the file capability associated with the
stream argument, open the capability bound to the filename argument in the
specified mode, and then return a pointer to the file table entry.

4.3.1.9 The setvbuf and setbuf Functions

Sw setvbuf(char *file, char *buf, Sv mode, Uw size);
Sw setbuf(char *file, char * buf);

The Walnut stdio library does not support additional buffering in the
library. The setvbuf and setbuf functions are provided for ease of porting, and
do not perform any function.

4.3.2 Character 1/0 Functions

4.3.2.1 Thefgetc and fputc Functions

Chapter 4

-77- Library Implementation

Sw fgetc(FILE * stream);

Sw fputc(Sw ¢, FILE * stream);
Sw getc(FILE * stream);

Sw putc(Sw ¢, FILE * stream);
Sw getchar();

Sw putchar (Sw c);

The fgetc and fputc functions are supersets of ANSI functions. Both
functions operate directly on the File structure and Stream structure, using the
scheme described in Chapter 3. ANSI character 1/0 functions will return EOF
if the end of file is encountered, or an error condition is encountered. The Wal-
nut library functions will provide the same behaviour for end-of-file conditions,
but will return specific negative error codes for other conditions. Unique error
codes are provided to identify empty, full, closed or invalid buffer conditions.

The getc, putc and getchar, putchar functions are implemented as
aliases. This was done to minimise coding effort, as no additional functionality
is provided by these functions. The getc and putc functions when implemented
as macros offer a performance advantage as the function call overhead is not
incurred.

4.3.2.2 The ungetc Function
Sw ungetc(Sw ¢, FILE *stream);

The ungetc function is a superset of the ANSI model. This function
will allow the programmer to push back up to NPUSHBACK characters. The
NPUSHBACK parameter is set at library compile time and is thus fixed. If the
programmer attempts to push back more than NPUSHBACK characters, an
EOF isreturned.

4.3.2.3 Thefgets and fputs Functions

char *fgets(char *buf, Sw BUFS Z, FILE * stream);
Sw fputs(char *buf, FILE * stream);

The fgets and fputs functions both conform to the ANSI standard.

Chapter 4

-78- Library Implementation

Both functions will repeatedly call fgetc or fputc, respectively, and will test the
returned values for error conditions.

4.3.3 Direct 1/0 Functions

4.3.3.1 Thefread and fwrite Functions

size t fread(void *array, size t elementsize, size t count, FILE * stream);
size t fwrite(void *array, size t elementsize, size t count, FILE * stream);

The fread and fwrite functions conform to the ANSI standard pro-
gramming interface. When operating on file objects, these functions will use
memcpy operations to efficiently copy data between the Sream buffer and the
buffer specified in the array argument. When operating on an |PC stream, these
functions employ the fgetc and fputc functions respectively to emulate the
behaviour defined in the ANSI standard.

4.3.4 Formatted 1/0 Functions

4.3.4.1 Thefprintf and printf Functions

Sw fprintf(FILE * stream, const char* fmt, ...);
Sw printf(FILE *stream, const char* fmt, ...);

The fprintf function does not fully conform to the ANSI standard.
The function was ported from the Walnut kernel printf function. It will accept
arguments only in the %d, %X, %c and % s formats, and cannot handle float-
ing point arguments. The printf function calls fprintf with the stream argument
set to stdout. The ANSI vfprintf and vprintf functions are not implemented.

4.3.4.2 Thefscanf and scanf Functions

Sw fscanf(FILE * stream, char* fmt, ...);
Sw scanf(FILE * stream, char* fmt, ...);

The fscanf function does not fully conform to the ANSI standard, and

Chapter 4

-79- Library Implementation

will provide functionality typical of Unix hosted implementations which pre-
date the ANSI standard. The function was ported from the 4.3BSD stdio library
fscanf function. The scanf function calls fscanf with the stream argument set to
stdin. The ANSI vfscanf and vscanf functions are not implemented.

4.3.5 File Positioning Functions

4.3.5.1 Thefseek and ftell Functions

Sw fseek(FILE *stream, Sw offset, Sw |astoffset);
Sw ftell(FILE * stream);
Sw rewind(FILE * stream);

The fseek and ftell functions conform to the ANSI standard where the
view of file object is equal to the size of the object. Where the view is smaller
than the object, the EOF indication provided by these functions indicates that
the end of the view has been reached. Operations are defined only for file
objects. The rewind function calls the fseek function with an offset argument of
zero and alastoffset argument of SEEK _SET, as per the ANSI standard.

4.3.5.2 Thefgetpos and fsetpos Functions

Sw fgetpos(FILE * stream, Uw * pos);
Sw fsetpos(FILE * stream, Uw * pos);

The fsetpos and fgetpos functions conform to the ANS| standard.
These functions call fseek and ftell respectively.

4.3.6 Error Handling Functions
Sw feof(FILE * stream);

Sw ferror (FILE * stream);

Sw clearerr(FILE * stream);

void perror(const char *s);

The error handling functions conform to the ANSI standard. The feof

Chapter 4

-80- Library Implementation

function will test the EOF flag in the file table entry. The ferror function will
test the _ERR flag in the file table entry. The clearerr function will clear the
_EOF and _ERR flagsin the file table entry. The perror function will print the
string pointed to by its argument, followed by an error message. Defined error

messages are :

* bad filetable index

* null capability

* bad magic number

* bad stream direction

* object load failed

* bad buffer object

* bad capability

» make object failed

* rights masksinappropriate
* bad buffer index

« filetablefull

» message send timed out

* inconsistent argumentsto open
* name server error

e capl doesn’t exist

* no such process

* noright to peek

* processisfrozen

* processin probate

* processis dead

* insufficient money in request
* non-existent service

* requested illegal modes

* request hasinvalid priority

Chapter 5

-81- Discussion

Chapter 5 Discussion

5.1 Introduction

This chapter discusses how well the Walnut stdio library meets its
design objectives, in terms of programming interface, throughput performance,
portability, robustness and security. A number of improvements to the design
are proposed.

5.2 Programming I nterface

The Walnut stdio library provides a programming interface which
substantially conforms to the ANSI C standard. Whilst a number of less fre-
guently used ANSI functions have not been implemented, their absence has to
date not caused any difficulty.

The principal difference between the Walnut library and the ANSI
standard lies in the handling of file objects and the extension of the fopen and
fclose interfaces to support stream connections [Section 3.2]. Neither of these
differences compromise the initial requirement of providing ANSI compliance
where it did not incur significant overheads in devel opment time.

The adoption of a unified programming interface for file objects and
streams has provided a simple and elegant solution to the problem of stream
opening. The integration of the name server function with stream opening cre-
ates interesting possibilities in shell design, as server processes may be easily
accessed from the command line. An example would be:

testfile | filterl | filter2 | magtape

In this command line, testfile is a file object, filterl and filter2 pro-
grams which manipulate a data stream, and magtape a device manager for a
tape drive. A single command line from the shell has allowed the user to
manipulate datain afile and write it to tape.

The stdio library programming interface meets its design objectives,
and provides atool for further research on the Walnut system.

Chapter 5

-82- Discussion
SOURCE PROCESS SINK PROCESS
timing code
fputc |=> fgetc
/ STREAM OBJ VIEW
STREAM BUFFER
STREAM OBJ VIEW OBJECT
Stream Structure
DATA OBJECT DATA OBJECT
CODE OBJECT CODE OBJECT
PROCESS OBJECT PROCESS OBJECT
THE WALL THE WALL

Figure 5.1 Stream Throughput Testing Model

5.3 Throughput Performance

The throughput performance of a stream IPC scheme is an important
measure of quality in design and implementation. In a system such as the Wal-
nut, where the stream IPC mechanism is employed for purposes of piping
between processes, and 1/0 operations to stream oriented devices, poor stream
IPC performance will significantly affect the performance of the whole

Chapter 5

-83- Discussion

operating system. Poor response times will force the use of faster hardware to
achieve a desired user response time. Faster hardware can impose significant
cost penalties upon the owner of the system. Throughput performance was
therefore an important consideration in the design and implementation of the
stream |PC mechanism [Section 3.2.3.1].

Fig 5.2 Stream Throughput Performance (Process to Process)

120000
"wakeup+-wakeup"; -+
SR aREEE SRR LR "block-block"; -+~
g "wakeup-block": -&:-
/ P £
100000 -
% B
% 80000 e o
Q Fa
‘; /
@,
5
2
S 60000
o
=
=
€ .
g s
£ 40000 RSl
7] Fi
20000 i
<
0
100 1000 10000 100000 1e+06

Stream Buffer Size [Bytes]

To determine how successfully the design and implementation
addressed this requirement, it was necessary to measure the achieved perfor-
mance. To accomplish this, test programs were produced. The model for the
testing, depicted in Fig 5.1, is that of a client process writing test data to a
server process. The client process uses the timer registers in the Wall to mea-
sure the time from the beginning to the end of the transmission of a buffer of
test data. The server process reads the test data from the stream and discards it.
Each test run copied test data buffer sizes of 64k, 128k, 256k, 512k, 1024k and
2048Kk. This was done to ensure that measured performance was consistent for
various durations of transfer. The test platform was a 40 MHz Intel 486 Per-
sonal Computer.

Each test run was conducted for a different stream buffer size and
blocking mode. Stream buffer sizes of 256, 512, 1024, 2048, 4096, 8192,
16384, 65536, 128k and 256k bytes were used as test points. Tests were

Chapter 5

-84- Discussion

conducted on processes which were paired in blocking mode and wakeup
mode, as well as a test with a writing process in wakeup mode and a reading
process in blocking mode. The test programs used the fwrite and fread func-
tions, which currently employ the fputc and fgetc functions respectively.

The performance measurements indicate that operation of a stream
with both ends in blocking mode always performs better than a stream with one
or both ends in wakeup mode. In blocking mode, both processes will aways be
runnable. Each and every time a blocked process is scheduled to run, it will test
the condition of the stream buffer to see whether it can continue. In wakeup
mode, a process which is unable to continue will sleep until woken by its peer.
This will save the CPU time which would have otherwise been required to poll
the state of the buffer, but incurs a time delay between the sending of the
wakeup message and the commencement of reading or writing by the process
peer. The use of wakeup mode therefore offers an economy in machine cycles
executed at a cost of about 5 to 15 kbytes/sin performance.

The dependency of throughput performance upon stream buffer size
exhibits, as we would expect, an improvement in throughput performance with
increasing buffer size, for small buffer sizes. At buffer sizes beyond 8192 bytes
there is no measurable improvement in performance. The best performance
achieved with the existing implementations of fwrite, fread, fgetc and fputc is
about 112 kbytes/s. The default stream buffer size was set to 4096 -
sizeof(Stream), which is a convenient value because it results in a page sized
stream object. The throughput performance is about 85% of the maximum mea-
sured.

For purposes of comparison, the performance measurement test code
was ported to 4.3BSD, using the Walnut fwrite (fputc based) algorithm. The
port included compensation for Walnut debugging code delays. This code was
then tested on a hardware platform identical to the Walnut testbed. Repeated
measurements yielded performance between 172 and 176 kbytes/s, which is
about 50% faster than the Walnut system. The test processes consumed about
80% of total system CPU time during the test.

While this test suggests that the Walnut design does not perform as
well as the 4.3BSD socket based pipe, it makes no alowance for the perfor-
mance of the operating system and the effect of the scheduling policy. The
4.3BSD system is a mature production system which uses a complex priority
based scheduler, whereas the Walnut is a prototype using a ssmple round robin

Chapter 5

-85- Discussion

scheduler. A more accurate comparison could be achieved by porting the whole
Walnut stream mechanism to Unix, and testing the complete mechanism. This
would remove the effects of context switching performance and scheduling pol-
icy, and is an areafor future study.

The throughput can be improved upon by a number of changes to the
implementation of the library. The performance of fwrite and fread can be
improved by replacing the prototype implementation with a true block mode
implementation [Section 4.3.3.1], using memcpy operations to and from the
stream buffer. This would remove the time overhead incurred by the function
call required for each and every character transferred, as well as the time over-
head incurred by updating buffer index values for each and every character
transferred.

The performance of the fgetc and fputc implementations could be
improved by two changes. The first change would be to implement getc and
putc as C language macros, which is the convention in Unix and ANSI C. This
would remove the time overhead incurred by the function call required for each
and every character transferred. The second change would be to recode the
algorithms into assembly code macros, which would further improve perfor-
mance. The use of assembly code macros would however be at the expense of
portability.

5.4 Portability

The long term intention of the Walnut project is to port the operating
system to a second generation multiprocessor system. This multiprocessor is
intended to use a RISC instruction set processor and system specific memory
management, bussing and 1/O interfaces. For this reason, portability of the
library design isimportant.

The existing Walnut stdio library design and implementation contain
no features or facilities which are specific to the Intel architecture used in the
Walnut testbed system. All macros are written in C and no Intel assembly code
isused.

The library is compiled on a Unix system (FreeBSD 1.1.5) using a
GNU (gcc 2.4.5) compiler, and a standard Unix make. The library test suite
[Section 5.5] allows compilation for running under Unix and well as the Walnut
testbed. Running the test suite under Unix allows initial detection of possible

Chapter 5

-86- Discussion

compiler dependencies during porting, while also simplifying the task of
debugging where required.

The use of generic Unix development tools, the absence of architec-
ture dependencies in the design and implementation of the library, and the use
of the test suite has resulted in alibrary which will be ssmple to port.

5.4.1 Application Development and Porting

The proof of portability lies in successfully porting programs to the
intended system. In the instance of the Walnut stdio library, the obvious target
are the standard Unix utilities. However, analysis of 4.4BSD source code sug-
gests that only more recent utilities exploit the stdio library, historicaly older
utilities are written around the Unix / POSIX 1003.1 system call interface.

For the purposes of demonstration, two Unix-like utilities were cre-
ated, and two 4.4BSD utilities were ported.

A Unix-like rm utility was written. Whilst this utility does not sup-
port the Unix command line options, it does have the ability to remove both
processes and file objects, should suitable access rights be known [Section
3.2.3.3]. This utility was found to be very useful during the latter phases of
library testing, as it subsumes the functions of the Unix rmand kill (-9) utilities.

A Unix-like cat utility was also written. Again, this utility does not
support the Unix command line options, but is written to accept its input stream
from either afile or a pipe. Usein the latter mode will require a shell capable of
setting up pipes between command line argument specified processes.

The first 4.4BSD utility to be ported was head, chosen for ease of
conversion. This tool was soon followed by uniq, selected also for ease of port-
ing. An attempt to port hexdump was abandoned due time constraints, as this
tool is substantially more complex than the preceding two. Source code for rm
and head is included in Appendix C, to provide examples of application devel-
opment and porting, respectively.

The porting procedure requires that include files be replaced, ANSI C
prototypes produced, function argument lists converted to ANSI format, Unix
specific types be converted to their Walnut equivalents, and finally, setmyname
and clrmyname calls added in at the beginning and end of the program respec-
tively.

The inclusion of setmyname and clrmyname calls is a convention

Chapter 5

-87- Discussion

which should be retained. Any program or utility run from the shell will create
a name binding in the format "myname-running”, when it commences execu-
tion, and delete this binding once it has completed. A program which failsin a
loop can be quickly identified and killed off by its user from a command line,
using the rm utility.

5.5 Robustness

Robustness is a measure of how well a design and implementation
handle error conditions and variations in input data. In a stream IPC design and
implementation, robustness will be determined by the ability to provide error
free transmission of data regardless of the frequency and size of reads and
writes, and by the ability to handle error conditions arising from corrupted data
structures and ill-behaved peer processes in a connection.

Integrity of data transmission through pipes and 1/0O devices is essen-
tial. Data must be transferred free of errors and in order. The stringency of this
requirement was addressed by comprehensive testing, in severa phases. The
test algorithm, devised by Wallace, writes and reads bursts of data with pseudo-
random sizes into and from the stream connection. This strategy ensures that
the stream buffer logic is forced to handle repeated full and empty conditions
for a wide range of buffer index positions. This test method successfully
detected a number of defectsin the earlier implementations of the algorithm.

The first phase of testing was carried out on a Unix system, with a
single process writing and reading to and from a Stream structure within its
address space. Once a sufficient number of error free operations was accumu-
lated (in excess of 24 hours of operation), the design was moved to the Walnut
testbed system.

The second phase of testing was carried out on the Walnut testbed,
using aclient server pair of processes. The client process executed the test algo-
rithm, while the server provided a simple transparent |oopback.

The third phase of testing was an extension of the second phase. The
ungetc algorithm was testing by inserting an ungetc and fgetc operation into the
existing test code. This testing phase was then extended to accumulate two
weeks of uninterrupted error free operation.

Robustness in the library implementation was achieved by severd
means. The algorithms used in library functions were designed with very

Chapter 5

-88- Discussion

frequent integrity checks on the capabilities operated upon, and the Stream
structures contained therein.

A suite of validation tests was written to test most library functions.
This suite, designated validate, may be compiled and run under Unix, or com-
piled as a program which may be run on the Walnut testbed. The validate test
suite was incrementally extended as additional library functions were produced.
Each function was tested under Unix and the Walnut testbed to ensure that it
was error free. In addition, a convention adopted during development was that
any change to a function or addition of a function would not be considered
complete until the validation suite was shown to work error free for all func-
tions in both environments. This proved to be a wise strategy, as changes to a
number of the low level library functions late in the project did indeed intro-
duce bugs which would not have been found without the comprehensive test
method adopted. The validate suite contains the following twentysix tests,
which are described in [Appendix D]:

0. perror integrity test

1. opencap create object test
2. fprintf/putc write object test
3. writeexclusion test

4. ferror test

5. clearerr test

6. file close test

7. opencap read mode test
8. fileread test

9. feof test

10. fseek/ftell test

11. fsetpos/fgetpostest

12. file append test

13. file update test

14. removec/kerror test

15. copen create test

16. copen writetest

17. copen update test

18. tmpfile test

19. stream fflush test

Chapter 5

-89- Discussion

20. fopen createtest

21. fopen read test

22. fopen update test

23. remove test

24. ungetc pushback test
25. fscanf test

26. makestreamobj test

The adoption of rigourous testing techniques has therefore yielded a
robust library design and implementation.

5.5.1 Persistence

Any discussion of robustness in the Walnut context must include the
subject of persistence. One of the properties of the Walnut kernel is that al
objects are persistent. If a Walnut system is shut down, upon a restart all pro-
cesses active at the time of shutdown will resume execution. Because any
object in the system’s memory is an image of the object on disk, all processes
may be cleanly restarted. Providing that all changes to the object are flushed to
disk during a shutdown or crash, arestart should be transparent to a user.

A useful side effect of this property is that the Walnut stream IPC
mechanism is aso persistent, and may be restarted. This is because al state
information pertaining to a stream is held within the process object, the process
data object, and the stream object itself. If these objects are successfully flushed
to disk during a shutdown or crash, all state information is saved. This charac-
teristic is not shared by established operating systems such as Unix, where
stream state information is perishable and lost during a shutdown or a crash.

The persistence property was successfully demonstrated during the
testing and debugging of the Walnut stdio library. A client server process pair
running a stream test restarted after a shutdown.

5.6 Security
The Walnut kernel virtual memory system provides a secure environ-

ment for a process. The address space of the processis protected from access to
third parties not holding a capability to access the process.

Chapter 5

-90- Discussion

The stream |PC mechanism employed in the Walhut does not com-
promise the inherent security afforded by the kernel. The only area of the pro-
cess address space which may be accessed by another process is the stream
buffer, which is only accessible to a peer process using the same connection.
Because the stream buffer object is unloaded and destroyed upon the closing of
the connection, a third party cannot use it to gain access to the address space of
either process.

5.7 Future Directions

There exist a number of areas in which the Walnut stdio library
design and implementation can be improved and extended.

The fgetc, fputc, fwrite and fread implementations can be made to run
more efficiently [Section 5.4]. The utility of the ungetc function can be
improved by making the NPUSHBACK parameter dynamically configurable
during stream opening [Section 4.3.2.2]. The formatted character 1/0 functions
fprintf and fscanf can be extended to provide full conformity with the ANSI
standard, and the ANSI v- and vf- versions of these functions implemented. A
number of infrequently used ANSI functions which are partially implemented
or untested can be completed.

The fopen programming interface can be extended to provide flexible
parameters for file object or stream opening [Section 3.2.3.2]. The Client
Server protocol modules used in stream opening could benefit from more flexi-
ble decision logic for decoding requests.

While the existing Client Server protocol has provisions to enable its
use for RPC operations, an RPC programming interface is neither defined nor
implemented. Given the availability of source code for the ONC RPC protocol
[SMI], it would be an obvious candidate for porting and integration with the
Walnut design.

A project derived from the first multiprocessor design was a port of
the 4.3BSD system call interface to the password capability kernel. Should a
similar port be intended for the Walnut, it could benefit significantly from the
existing Walnut stdio library. A library conforming to the POSIX 1003.1 or
SVID interface definitions could be implemented quite efficiently by using
existing low level functions in the stdio library, and deriving many other func-
tions from their ANSI equivalents. A Unix or Unix like interface library would

Chapter 5

-91- Discussion

not be complete without a BSD socket library. A socket library could be easily
implemented using components of the existing stdio library.

A case can be made for porting the Walhut stream mechanism to
Unix, exploiting the mmap interface, to provide fast and simple user level pipes.
This could aso provide a good comparison of achievable throughput perfor-
mance between the two mechanisms [Section 5.3].

The presence of low level functions to support RPC operations pro-
vides the foundation for building a more complex object oriented client-server
programming interface, as is characterised by OMG CORBA [OMG91]. The
implementation of such an interface is however a substantial undertaking within
itself.

The existing Client Server protocol could also be exploited to provide
for a unified command and status programming interface to device manager
processes. This interface could emulate the POSIX 1003.1 ioctl call, which is
used by a processto alter the configuration of adevice or a stream. The existing
programming interface between a user process and a device manager process
uses either a device specific programming interface, or the fopen/opencap inter-
face which has no provisions for altering device configuration once the stream
isopen.

Finally, the presence of a working name based stream opening proto-
col will allow improvements to the existing implementation of the GLui con-
sole manager, the Walnut Shell and the floppy disk manager. All of these pro-
grams use very little if any part of the Walnut stdio library and could benefit
from arewrite to take advantage of the library’s features.

Chapter 6 -92- Discussion

Chapter 6 Conclusion

The Walnut kernel provides a virtual memory system in which
objects are accessed through capabilities. The kernel does not provide a pro-
gramming interface for 1/0 devices and stream IPC.

An 1/0O library and stream |PC mechanism for the Walnut system has
been designed and implemented. This library provides a programming interface
through which users can access the virtual memory system, 1/0O devices and
other processes through a stream connection.

The programming interface mostly conforms to the ANSI C language
standard. File objects may be manipulated in the same fashion asfilesin operat-
ing systems such as Unix. Stream connections to other processes may be
opened using the ANSI fopen syntax. Processes are identified by names, thus
providing a simple and elegant programming interface, common to files and
streams.

The stream IPC mechanism uses a circular buffer, which residesin a
stream object. The stream object is mapped into the address space of both pro-
cesses in the connection, and is destroyed upon the closing of the connection.
The design allows a user to push back multiple characters on to the stream.

A common set of library routines and data structures is used for both
file objects and stream connections. Differences between files and streams are
accommodated by overloading members in data structures, and by the use of
aternate logic in the algorithms used.

The library is implemented in two layers. The lower layer comprises
functions which operate directly upon capabilities, and provides a number of
simple utility and debugging functions. The upper layer provides the ANSI
standard programming interface, and utilises, where appropriate, lower level
functions.

The protocol for opening stream connections between processes has
been designed to accommodate stream connections and RPC requests.

The performance of the stream IPC mechanism has been measured,
and the library implementation tested with a suite of validation programs. A
number of Unix-like utilities were written, and a number of 4.4BSD utilities
ported using the library.

Chapter 6

-93- Discussion

We have proposed that the library be extended to provide a program-
ming interface for POSIX functions and BSD sockets, and that the name based
stream opening syntax be further exploited in the design of shells and client
server applications.

The Walnut stdio library design has provided the means of demon-
strating a number of programming interface and functional features which are
not commonly used in established operating systems.

The shared use of names for accessing files and processes is the fore-
most such feature. At the programming interface level, this significantly simpli-
fies the programming interface to device manager processes handling 1/O, to
server processes providing user specific or system wide services, and to any
future RPC or object management mechanism. Moreover, at the command line
interface level, this mechanism alows a user to monitor and if necessary
manipulate the activity of running processes by simply listing the bindings in
the current working set or directory. Attempts to provide similar functionality
in Unix are demonstrably cumbersome.

Because a server process providing either a user specific or system
wide service can be identified and accessed from a command line, this feature
can be further exploited in the design of new shells, built around a client-server
model. Such shells can provide a rich set of features without the performance
penalties associated with running individual commands as separate processes.
Thisisan areafor future research.

The name based access model for file and stream opening can be
extended further. An area worth further study isthat of using the fopen interface
to create processes. The existing model does not exploit the Walnut type identi-
fier in a capability, and treats code objects identically to file objects. An fopen
on a code object could therefore be made to result in the creation of a process
running this code object. Thisis yet another area for future research.

The Walnut IPC mechanism exploits the persistence properties inher-
ent in the Walnut virtual memory system. Streamsretain al state information in
objects which are persistent. As a result of this, a stream connection may be
cleanly stopped and restarted through a Walnut shutdown and boot. This is a
characteristic which is not available in conventional systems.

The properties inherent in the Walnut IPC mechanism also enable the
redirection of running streams. Redirection of streams would be particularly
useful for command line operations by a user, who can then interrupt the

Chapter 6

-94- Discussion

operation of a program to redirect its input or output to another source or sink.
A shell design which can exploit this behaviour is another area for future
research.

The provision of an ANSI standard programming interface to a pass-
word capability virtual memory system provides a programmer with a well
known interface to an unconventional kernel. The library design maps the
behaviour of the Walnut kernel into ANSI calls without compromising the
properties of the Walnut virtual memory system. Programs may thus be devel-
oped for the Walnut with a minimum of effort expended, as the complexities of
the Walnut system call interface are effectively hidden from the programmer.
This will make the Walnut a more attractive target for researchers, as it com-
bines ease of use with a powerful virtual memory architecture.

The Walnut stdio library and its embedded IPC mechanism provide
the means for further productive research into the area of password capability
systems.

References

ABRAMSONB82

ANSI89

ANDERSONS87

APWS85

APW86

BSD44

CASTRO9

CATHROS8

CP94

-05-

References

Abramson D.A., Computer Hardware to Support Capability
Based Addressing in a Large Virtual Memory, PhD Thesis,
Department of Computer Science, Monash University,
1982

ANSI XJ311 Committee, Rationale for American National
Standard for Information System - Programming Language
- C, ANSI, 1989.

Anderson, M., A Password Capability System, PhD Thesis,
Department of Computer Science, Monash University, Jan-
uary 1987

Anderson M., Pose R.D., Wallace C.S., A Password Capa-
bility System, Technical Report No0.52, Department of
Computer Science, Monash University, March 1985

Anderson M., Pose R.D., Walace C.S.,, A Password-
Capability System, The Computer Journal, Vol. 29, No. 1,
1986.

4.4BSD Lite Source Code Tree, University of California,
Berkeley, published as FreeBSD 2.0.5 Release, Walnut
Creek CDROM, Walnut Creek, 1995.

Castro M., The Walhut Kernel: User Level Programmer’s
Guide, Technical Report N0.95/222, May 1995

Cathro, D., An 1/O Subsystem for a Multiprocessor, MSc
Thesis, Department of Computer Science, Monash Univer-
sity, January 1988

References

-96-

Castro M., Pose R.D., The Monash Secure RISC Multipro-
cessor: Multiple Processors without a Global Clock, Aus-
tralian Computer Science Communications, Vol. 16, No. 1,
1994, pp. 453-459.

CRAWFORDS87
Crawford JH., Gelsinger PP, Programming the 80386,
Sybex, 1987

DRAVES91
Draves R., A Revised IPC Interface, Working Paper, Mach
Project Group, CMU Dept of Computer Science, 1991.

GEHRINGERS2
Gehringer E.F., MONADS: A Computer Architecture to
Support Software Engineering, MONADS Report No.12,
Department of Computer Science, Monash University, Jan-
uary 1982

GOODHEART9%4
Goodheart B. and Cox, J., The Magic Garden Explained -
The Internals of Unix System V Release 4, Prentice-Hall,
1994.

|EEEQ0
|[EEE, Information Technology Portable Operating System
Interface (POSIX) Part 1. System Application Program
Interface (API) [C Language], |IEEE Standard 1003.1-1990.

INTEL 84
IAPX386 High Performance 32-Bit Microprocessor Prod-
uct Preview, Intel Corporation, Santa Clara, 1984

KSU%4
Krieger O., Stumm M., Unrau R., The Alloc Stream Facil-
ity - A Redesign of Application Level 1/0, |IEEE Computer,
March 1994. Also Technical Report by same authors, Com-
puter Systems Research Institute, University of Toronto,
1994.

LMKQ89
Leffler S.J., McKusick M .K., Karels M.J., Quarterman J.S.,

References

LFILMP

MCKUSICK 94

NS85

OMG91

ORGANICK

OSF93

PLAUGER92

POSES89

-97-

The Design and Implementation of the 4.3BSD UNIX
Operating System, Addison-Wesley, 1989.

Leffler S.J., et a, An Advanced 4.3BSD Interprocess Com-
munication Tutorial, Computer Systems Research Group,
Dept of EE and CS, University of California, Berkeley.

McKusick M.K., UNIX Kernel Internals. Data Structures,
Algorithms, and Performance Tuning, Course Notes, Aus-
tralian UNIX Users Group, Summer, 1994.

National Semiconductor Corporation, Series 32000 Data-
book, National Semiconductor Corporation, Santa Clara,
June 1985

Object Management Group, The Common Object Request
Broker: Architecture and Specification, OMG Document
Number 91.12.1, Revision 1.1, Draft 10 December, 1991.

Organick, E.I., The Multics System: An Examination of its
Structure, The MIT Press, Massachusetts, 1972.

Open Software Foundation, Design of the OSF/1 Operating
System, P T R Prentice-Hall, New Jersey, 1993.

Plauger PJ., The Standard C Library, Prentice Hall, New
Jersey, 1992.

Pose R.D., Capability Based Tightly Coupled

References

POSE93

PRINGLE95

RITCHIES3

ROZIER91

SMI

WALLACE90

WP90

-08-

Multiprocessor Hardware to Support a Persistent Global
Virtua Memory, Proceedings of the 22nd Hawaian Interna
tiona Conference on System Sciences, Vol. 2, pp. 1-10.,
1989.

Pose R.D., Porting Unix to the Password-Capability Sys-
tem, submitted to the First International Workshop on
Architectural and Operating Support for Persistence, 1993.

Pringle G., Walnut User System Documentation, Draft
Technical Report , Department of Computer Science,
Monash University, December 6, 1995

Ritchie D.M., The Development of the C Language, Pro-
ceedings of the Second History of Programming Languages
conference, ACM, Cambridge, Mass., 1993.

Rozier M., et a, Overview of the CHORUS Distributed
Operating Systems, Technica Report CS-TR-90-25, Cho-
rus systemes, 1991.

Sun Microsystems, Inc, RPC Programming, Network File
System: Version 2 Protocol Specification

Wallace C.S., Physically Random Generator, Computer
Systems Science and Engineering 5, 2, 82-8, 1990.

Wallace C.S,, Pose R.D., Charging in a Secure Environ-
ment, Proceedings of the International Workshop on Com-
puter Architectures to Support Security and Persistence of
Information, Bremen, FRG. 1990., pp. 24-1..24-11.

Appendix A

-99- Release Notes

Appendix A Release Notes

The Walnut stdio Library
RELEASE NOTESV1.1
Carlo Kopp

carlo@cs.monash.edu.au
20th March, 1996

Appendix A -100- Release Notes

1. Introduction

The Walnut kernel stdio library provides standard C language stdio library
functions and an environment for user processes running on the Walnut micro-
kernel. The library provides most ANSI standard stdio functions, although
some functions are not fully featured. The ANSI specific v- and vf- versions of
the formatted print and scan functions are not implemented, as are the linear
buffer management functions.

The design philosophy of the library was to provide ANSI compliance, where
such compliance did not incur substantial additional development effort over a
K&R Clibrary.

Central features of the stdio library are the provision of preloaded and ini-
tialised stdin and stdout 1/0 streams for user processes, the provision of a
stream communication mechanism for Inter Process Communications, unified
stream and file object structures, afamily of ANSI-C and POSIX like functions
for capability operations, and support for the Walnut kernel nameserver library.
The library includes embedded debug message reporting, accessible by an
application programmer.

Appendix A -101- Release Notes

2. Process Environment

The Walnut kernel provides a simple process environment which does not pro-
vide explicit support for stdio functions, or stream communications. These
functions are provided by the stdio initialisation module, initenv(). The
initenv() cal sets up the environment for the stdio library within the process
address space.

The process environment provides the following facilities:

* file pointer (descriptor) table

* global environment variables used by the library at runtime

* adebug environment variable

* support for screen debug messaging

* nameserver library initialisation

e initialised stdin and stdout file pointers

The initenv() module must always be linked in with the stdio library, as without
it the library will be unable to function. The module is called with a conven-
tional C-language argument list:

initenv(int argc, char **argv, char **envp);

These arguments provide the parent process with the means of passing specific
arguments down to the child process. This alows programs such as shells to
execute commands out of process, by creating child processes which execute
programs with specified argument lists.

2.1 TheFILE Table and the Initialisation of stdin, stdout Descriptors
Thefile table is an array of FILE (File) structs. Each struct contains the facili-
ties which allow a stdio stream 1/O function to read and write a shared stream
object or afile object. Each opened file object or stream object requiresaFILE
struct and is accessed by passing a pointer to the FILE struct as the stream
argument of the function call.

When the process is created the file table is also created at a fixed addressin the
process address space, and the stream object capabilities for stdin and stdout
are preloaded into the appropriate fields. The stream objects for stdin and stdout
areinitialised by the parent process.

The initenv() module completes the initialisation of the file table, by perform-
ing the following tasks:

* setting up the linked list pointers used during fopen() and fclose() to maintain
thefile table free list

 removing fdt[0], stdin, and fdt[1], stdout, from the freelist

Appendix A -102- Release Notes

* executing a low level fileinit call on stdin and stdout to complete the stream
opening process, thus enabling their use for 1/0

2.2 Global Environment Variables

The stdio library employs a number of global environment variables. These are
private to the process and cannot be read by other processes unless the process
makes them readable to another party. These variables are initialised by the
initenv() module, and may be accessed by programs executing in the stdio pro-
cess environment. The variables are described as follows:

* Uw errno, ANSI global error flag used by library calls

» Uw iomode, specifier for default I/O blocking mode

* Uw max_ld_cap, maximum number of loaded capabilities

* Uw max_mail_box, maximum number of mailboxes

* Uw max_subp, maximum number of subprocesses

» Uw max_auto_|d_cap, maximum number of auto loaded capabilities

» nameser ver DB mydb, name server database object to be loaded

* Capl nullcap ={ 0, 0, 0, 0}, constant null capability

» Capl mycap, process capability id

» Param mypb, process parameter block

» char *screen, pointer to debug buffer

» Uw debug, debug level, used to enable verbose error reporting

* int argc, the number of command line arguments

e char **argv, array of pointers to command line argument strings

* char **envp, array of pointersto environment variables for process

These variables should not need to be used in the course of application pro-
gramming, but may be useful for system programming tasks, and for custom
extensions to the stdio library.

2.3 Nameserver Library Initialisation

The default nameserver database capability is loaded into the process address
Space at creation time, by the parent process. The initenv() module will ini-

tialise the nameserver library, with a initDB(& mydb, envp) call, using the
default database and the process' preloaded environment variables.

Appendix A -103- Release Notes

Should the user require the use of a different nameserver database, the initDB()
must be repeated with the appropriate arguments.

Appendix A -104- Release Notes

3. ANSI C stdio Functions

The Walnut kernel stdio library implements a substantial subset of the
ANSI/ISO X3.159-1989 (X3J11) C language stdio library. As the original C
standard 1/O library was written around the Unix operating system, many
aspects of the ANSI library reflect its origins, such as the stream operations
functions. In the Walnut kernel implementation, most of the behaviour specified
inthe ANSI standard is replicated, although some differences do exist.

As the ANSI standard functions are comprehensively documented both in hard
copy and the BSD manual pages, this document will concentrate on known dif-
ferences between the Walnut kernel library and ANSI standard.

The most substantial differences at a functional level arise from the fundamen-
tal differences between the Walnut kernel’s memory mapped object scheme,
and the traditional Unix 1/O mechanism. The conventional Unix filesystem
object scheme provides access to objects via stream operations which are
embedded in the monoalithic kernel, and the kernel buffers accessed blocks in
memory as required. In the Walnut kernel stream 1/0O functions are provided
within the library, and objects are accessed by loading them into a process
address space.

In the Walnut process environment the stdio library implementation thus sub-
sumes a number of functions which users may be accustomed to finding in tra-
ditional monolithic kernels.

3.1 Stream Operation Functions

FILE *fopen(char *filename, const Ug *mode);

Sw fclose(FILE *stream);

Sw fflush(FIL E *stream);

Sw rename(const char *oldname, const char * newname);

Sw remove(const char *filename);

FILE *tmpfile(void);

char *tmpnam(char *s);

FILE *freopen(char *filename, const char *mode, FILE *stream);
Sw setvbuf(char *file, char *buf, Sw mode, Uw size);

Sw setbuf(char *file, char *buf);

The fopen() call is a compliant implementation of the ANSI standard function
call, and will open either afile object or an /O stream in read, write or with file
objects, also update mode, subject to flag usage. The update mode is not
defined for 1/O stream objects, and thus can only be used for file objects.

The current implementation of the library supports only unbuffered binary
streams, as defined by the ANSI standard. This provides transparent transport
for both binary and text streams, with no intervening buffering between the
object and the calling function (a future implementation may support line
buffering of text 1/0 streams on receive).

The fopen() call recognises the following flag types:

Appendix A -105- Release Notes

* r - read only flag, the stream can only ever be read
* w - write only flag, the stream can only ever be written

» W - append flag, write mode with the file pointer positioned to the end of file
position

* + - update flag, the file object can be read or written. A file positioning func-
tion or fflush() call must be interposed between consecutive read and write, or
write and read operations

When handling 1/0 streams, the fopen() call is given a name which maps into
the capability to message a process. If the process does not respond to or rejects
the request to open the stream, the call will return a null pointer and set the
global error code. The use of perror() is recommended, when using fopen().
The value of the default volume for object creation is set using the setvol
macro. The fclose() call is ANSI compliant.

The fflush() function differs in its behaviour from the ANSI standard, which
assumes the use of linear buffers. The fflush() function exhibits the following
behaviour:

» file objects - in write, append or update mode the file size value of the object
is updated to the current value of the file pointer

* stream objects - in write mode, the fflush() call will wait until the buffer is
emptied by the reading process, and then return.

The remaining file management functions are ANSI compliant, the buffer man-
agement functions are dummy functionsincluded for compatibility.

3.2 Character 1/0 Functions

Sw fgetc(FILE *stream);

Sw fputc(Sw ¢, FILE *stream);

Sw ungetc(Sw ¢, FILE *stream);

char *fgets(char *buf, Sw BUFSIZ, FILE *stream);
Sw fputs(char *buf, FILE *stream);

The character mode /O functions are designed to provide ANSI compliant
behaviour for stream and file object types. At this time, the getc() and putc()
calls, traditionally implemented as macros, are implemented as aliases to the
fgetc() and fputc() function calls, and thus will not exhibit a performance
advantage as with conventional implementations.

The ungetc() function is substantially enhanced against the minimal require-
ments of the ANSI standard, and provides guaranteed pushback of up to
NPUSHBACK characters, where NPUSHBACK is a compile time parameter
defined in the filedefs.h includefile.

3.3 Direct 1/0 Functions

size t fread(void *array, size t elementsize, size t count, FILE *stream);

Appendix A -106- Release Notes

size t fwrite(void *array, size t elementsize, size t count, FILE *stream);

The direct /O functions emulate the behaviour of the ANSI standard, although
the current implementation uses character mode I/O for stream access, and thus
will not exhibit an advantage in transfer rate performance over the character 1/0
functions,

3.4 Formatted I/O Functions

Sw fprintf(FILE *stream, const char* fmt, ...);
Sw fscanf(FILE *stream, char* fmt, ...);

The formatted 1/O functions provide a partial implementation of the ANSI stan-
dard functions. The fprintf() function at this time does not support floating
point arguments, and thus accepts only %d, %X, %c and %s type arguments.
The fscanf() function was ported from BSD 4.3 source, and thus implements
commercia standard K&R functionality.

3.5 FILE Positioning Functions

Sw fseek (FILE *stream, Sw offset, Sw lastoffset);
Sw ftell(FILE *stream);

Sw fgetpos(FILE *stream, Uw *pos);

Sw fsetpos(FIL E *stream, Uw *pos);

The file positioning functions have defined behaviour only for file objects, as
with most stdio library implementations. Due to the memory mapping of
objects into the process address space, these functions will not return a mean-
ingful EOF indication if the mapped window into process memory is smaller
than the object size. Where the mapped size is larger than or equal to the object
size proper, these functions will exhibit nominal ANSI behaviour.

3.6 Error Handling Functions

Sw feof (FILE *stream);

Sw ferror (FILE *stream);
Sw clearerr (FILE *stream);
void perror(const char *s);

The error handling functions all exhibit nominal ANS| standard behaviour. Use
of the perror () function requires the inclusion of the werrno.h file.

Appendix A -107- Release Notes

4. Walnut Capability Functions

The Walnut stdio library contains a number of extensions to the ANSI stdio
library suite. These extensions provide for ANSI like and POSIX (IEEE
1003.1) like functions which operate directly on capabilities, and thus do not
require use of the nameserver library. Where an application program directly
manipulates capabilities, these functions should be used in preference to ANSI
functions, as the capability function library extensions are more efficient.

4.1 The opencap() Function

FILE *opencap(Capl *capability, Uw flags, Uw vol, Uw money, Uw limit);
The opencap() function is directly analogous to the POSI X.1 and Unix open()
system call, but takes a pointer to a capability instead of the file name argu-
ment. The argument list is defined as follows:

* Capl *capability, pointer to file object or target process object capability

» Uw flags, flags for opening, or default object creation

The following flags are defined for opencap():

0 READ - open the capability for reading

O WRITE - open the capability for writing

0 APPEND - open the capability for writing, and advance the pointer to EOF

0 UPDATE - open the capability for update, i.e. read and write (file only)

O CREATE - if capability doesn’'t exist, create on open

0 BLOCK - stream I/O mode is blocking

0 NOBLOCK - stream I1/0O mode is non-blocking

o0 WAKEUP - stream 1/0O mode is wakeup

0 SMALLWINDOW - object created with 4 kbyte size, overrides limit argu-
ment

0 LARGEWINDOW - object created with 4 Mbyte size, overrides limit argu-
ment

» Uw vol, specified volume for object creation

» Uw money, specified money for object creation

» Uw limit, specified limit for object creation

The opencap() cal will first check its arguments, then execute a CAPSTAT

system call to confirm the state of the capability. If the capability doesn’t exist
and the CREATE flag isn't set, opencap() returns a null pointer, else it creates

Appendix A -108- Release Notes

a file object with parameters defined by the argument list, and initialises the
object header. If the capability does exist, and is a file object, then opencap()
tests its access rights against the flags in its argument list, should these be
inconsistent, opencap() returns anull pointer.

If the capability is a process object, opencap() will attempt to open an IPC
stream to the nominated process, with parameters determined by the argument
list. If the stream cannot be opened, opencap() returns a null pointer. The limit
parameter is overloaded to define the requested stream size. Within the range of
object sizes supported, any stream buffer size may be requested.

The opencap() function will then fetch a descriptor from the file table, return-
ing anull pointer if the table is full or in a erroneous state. The descriptor num-
ber is then passed to the low level fileinit() function, which initialises the file
descriptor (pointer) and loads in the object.

The opencap() call returns avalid FILE pointer if successful, or a null pointer
if in error. The error condition may be analysed using perror ().

4.2 The copen() Function

FILE *copen(Capl *cap, const Ug *mode);

The copen() function is analogous to the ANSI standard fopen() function, but
takes a pointer to a capability as a first argument, rather than a pointer to a file-
name string. The mode flags used are identical to those used by fopen(). The
copen() function returns a FILE pointer if successful, or a null pointer if
unsuccessful.

4.3 Theremovec() Function

Sw removec(Capl * capability);

The removec() function is analogous to the ANSI standard remove() function,
but takes a pointer to a capability as its argument. The removec() function
returns O if successful, or -1 if unsuccessful.

4.4 The cmap and cunmap Functions

The cmap and cunmap functions are analogous to the Unix and POSIX mmap
and munmap system calls. Unlike the Unix calls, cmap and cunmap operate on
a specified capability rather than a file pointer. The function isincluded to sim-
plify porting of applications and is not used in the library implementation.

void *cmap(void * addr, Uw len, Uw prot, Uw flags, Capl *cap, Uw offset);
* addr - address at which the capability isto be loaded

* len - specifies the length of the view to be |loaded

* prot - unused in Walnut

* flags - unused in Walnut

Appendix A -109- Release Notes

* cap - pointer to capability to be loaded

» offset - offset to base of view to be loaded
void cunmap(void *addr, Uw len);

* addr - address of the mapping to be unloaded
* len - unused in Walnut

The cmap and cunmap function implementation is not compliant with the
POSIX function.

4.5 The setmyname and clrmyname Functions

Sw setmyname(char * myname);
Sw clrmyname(char * myname);

These functions are used to bind and unbind names to and from the calling pro-
cess. The sole argument is a pointer to a string. A typical use is to simplify the
design of client processes, which may locate a server by using a name rather
than a capability value.

4.6 The setvol macro
setvol(Uw volume);
The setvol macro is used with the ANSI fopen function. It sets the global value

of the default volume for file or stream creation. If setvol is not invoked before
an fopen is called, fopen will falil.

Appendix A -110- Release Notes

5.Error Reporting Facilities

The Walnut kernel stdio library provides comprehensive error reporting facili-
ties for the debugging of applications. In the existing implementation, there are
three levels of debug error reporting.

The first of these is enabled by setting the global variable debug = 1, and
reports library error messages using the ANS| style perror(const char *func-
tion).

The second level of debug reporting provides abbreviated Walnut kernel kernel
error code reporting, and is enabled by setting the global variable debug = 2.

Full Walnut kernel kernel error reporting is then enabled by using the third
debug reporting level, which is enabled by setting debug = 3.

Default operation is at debug = 0 which is effectively a library reporting silent
mode, where the user has the option of independently using the ANSI perror()
reporting function.

An example of using the error reporting follows:

/~k

* enablefull error reporting for the fopen() function, then disable it
*/

debug = 3;

fd = fopen(" blogs","r")
fwrite(buf, 4, 4096, fd);
fclose(fd);

debug = 0;

The debug facilities should be used selectively, as the stdio library functions, in
the course of operation, will often execute kernel calls which fail, such as CAP-
STAT s on non-existent file objects. If used indiscriminately, error reporting will
clutter the user display with irrelevant messages.

5.1 Thekerror() Function
void kerror(const char *s);

The kerror() function provides Walnut kernel kernel error reporting in terse
and verbose modes. Its function is analogous to the ANSI perror () function, in
that it accepts a single string argument to identify the location of the error, and
then prints either a numerical error code, or a numerical error code and one line
listing of the error message. The kerror.h file must be included.

NB: this library call uses the returned value of the parameter block error field
parameter->error to identify the error state. This field cannot be zeroed until
the kerror () call has returned.

5.2 The KERROR() Macro

Appendix A -111- Release Notes

KERROR(function,err)

The KERROR macro provides a packaged invocation of perror and kerror, and
some trivial screen positioning to provide an easily readable error report. Usage
of the KERROR macro is analogous to the concurrent usage of perror() and
kerror(), with function used to identify the name of the calling function (i.e.
location of the failure), and err set to the value of the returned error code. The
kerror.h file must be included.

NB: the error code is not the returned value from a stdio library function, which
is defined by the ANSI standard. KERROR should be used when coding
directly with Walnut kernel system calls. The following internal error codes are
defined in the Walnut kernel stdio library:

EBADFDINDEX - bad file table index
ENULLCAP - null capability
EBADMAGI C - bad magic number
EBADDIRN - bad stream direction
EBADL OAD - object load failed
EBADBUFOBJ - bad buffer object
EBADCAP - bad capability
EBADMAKE - make object failed
EBADRIGHTS - rights masks inappropriate
EBADINDEX - bad index

EFDTFULL - filetablefull
EMSGTMOUT - message send timed out
EBADARGS - open args inconsistent
ENSERROR - name server error
ENOEXIST - capl doesn't exist
EKERNEL - kernel error

Appendix A -112- Release Notes

6. Utility and Debugging Functions

The stdio library provides a number of utility and debugging functions, which
may be productively used for system programming tasks involving the library.
These functions provide for formatted display of file descriptor structs, object
headers and general screen output bypassing the stdin and stdout paths.

6.1 Debug 1/0O Display Functions

void outs(char *string);
void outh(Uw h);

void outi(Sw i);

void newline(void);
void outc(int ¢);

int getx();

int gety();

void gotoxy(int x, int y);
void clrscr();

The debug screen debugging facility allows processes to display messages on a
character mode display, wholly bypassing the stdio stream communication
channel. The debug screen uses a separate frame buffer to the console display.
This can be of use should difficulties be encountered with library operation.
Enabling the screen debug facility requires recompilation of the library with the
-DDEBUG flag.

The outs() function takes a pointer to a string of chars, and prints these to the
debug monitor. This function cannot display a newline character, unlike ANSI
I/O functions.

The outh() function takes an unsigned integer and prints it to the debug moni-
tor.

The outi() function takes an signed integer and printsit to the debug monitor.
The newling() implements a return-newline sequence on the debug monitor.
The outc() function takes a character and printsit to the debug monitor.

The getx() function returns the x location of the cursor on the debug monitor.
The gety() function returns the y location of the cursor on the debug monitor.
The gotoxy() function sets the position of the cursor on the debug monitor.

The clrscr() function clears the debug monitor and moves the cursor to the top
left of the monitor.

6.2 Debug Display Formatted Stream Functions

void printfd(FIL E *fd);

Appendix A -113- Release Notes

void printobj(Stream *obj);

The formatted stream display functions are debugging tools which dump the
formatted contents of a Stream (stream / file object header) and FILE (File
table entry) to the debug monitor. This can be of use when debugging precludes
access to the stdout 1/0O stream. Both functions take pointers as arguments.

6.3 Formatted Structure Display Functions

void fprintpb(Param *pb);

void fprintcap(Capl *cap);

void fprintfd(FIL E *stream);

void fprintobj (Stream * streamaobj);
void fprintncd(struct namecdata *ncd);

The formatted structure display functions provide the formatted display of key
stdio library structures, for debugging purposes. Output from these functionsis
directed to the stdout output stream. All functions take pointers as arguments.

The fprintpb() function displays the contents of the specified Walnut kernel
kernel parameter block. The fprintcap() function displays the contents of the
specified capability. The fprintfd() function displays the contents of the speci-
fied file descriptor. The fprintobj() function displays the contents of the speci-
fied stream or file object header. The fprintncd() function displays the con-
tents of the specified name server database entry.

6.4 Thefileinit() Function

Sw fileinit(Uw fdindex, Uw *offset, Uw *cindex, Uw block, Uw direction);

The fileinit() function provides low level operations used during the fina phase
of opening a stream or afile object. The argument list is defined as follows:

» fdindex - index into the file descriptor table

» offset - specifies capability offset and returns offset value

* cindex - specifies capability cindex and returns cindex value

* block - specifies blocking, nonblocking or wakeup 1/0 mode

« direction - specifies read or write direction for stream or file objects
Thefileinit() call will first check the index provided and the volume number for
anull volume, returning -1 if these are not usable. If they are usable, fileinit()
will execute a CAPSTAT system call to verify the state of the capability, and
then load the capability into the process address space at the specified offset. If
the offset is zero, the argument value is overwritten with the returned offset.

Once the object is loaded, fileinit() will check the magic number for a
FILESTREAM (I/O stream object) or FILECHAR (file object) value, the

Appendix A -114- Release Notes

base size against the header size, the total object size against the mapped in
window size and the object index values, returning -1 if in error. Once the
integrity of the object is confirmed, fileinit() will proceed to initialise the
remaining fields in the object header and the file descriptor (FIL E pointer).

On successful completion, fileinit() returns 0.

Appendix A -115- Release Notes

7. Build Environment

Building executable targets which can be run on the Walnut kernel system
requires a Walnut kernel build environment. This environment comprises the
libstdio.a library, the libnameserv.a and a Makefile derived from the Make-
file.tmpl

The Makefile must be suitably modified to include the modules intended to be
linked with the library. The result of a successful compilation and link will be
code and data object files, myfile.cbn and myfile.dbn respectively, which can be
directly loaded and run on the Walnut kernel.

All files must include the stdio_c.h, filedefs.h and stdfiles.h include files, which
contain essential function prototypes, macros, aliases and defines. Should error
reporting be required, the kerror.h and werrno.h files must also be included.

Appendix B -116- Source Code

Appendix B Source Code (fputc, fgetc, ungetc)

/~k

* wfputc.c - put character system library call

* Monash multi Intel version

* Author: Carlo Kopp

* Created: 31 May, 1994

* Modified: 1st June, 1994 - revised design

* Modified: 4th July, 1994 use CSW file descriptor

* Tested: 6th October, 1994 Carlo/Maurice

* Modified: 19th October, 1994 Chris Wallace (revised trip, new algorithm)
* Modified: 17th March, 1995 Carlo Kopp - pushback buffer added
* Tested: 17th March, 1995 Carlo Kopp

*/

/* $ld: thesis.ms,v 1.1 1996/02/28 01:20:13 walnut Exp walnut $ */

#include <string.h>
#include <funtype.h>
#include <param.h>
#include <stdfiles.n>
#include <filedefs.h>
#include <cap.h>
#include <request.h>

#ifdef UNIX
#include <stdio.h>
#else

#include <stdio_c.h>
#endif

#ifdef UNIX

extern Param localpar;
extern File localfdt[];
exteenUw localmesg[];
#define NPUSHBACK 8
#endif

/: The circular buffer scheme used by the Multi stdio library makes the
: following assumptions about the buffer indices:

: inindex (write) may assume values between 0 and (strmsz - 1)

: outindex (read) may assume values between 0 and (strmsz - 1)

: The buffer-empty state is inindex = outindex

* The buffer-full stateis EITHER
*
* inindex = outindex - 1 - NPUSHBACK

Appendix B -117- Source Code

*

*OR

*

* jnindex = strmsz - 1, outindex = NPUSHBACK
*
* OR

*

* inindex = strmsz - 1 - (NPUSHBACK - outindex)

* NPUSHBACK is acompile time parameter which sets the size of the

* buffer pushback zone. NPUSHBACK < strmsz - 1, and in practiceisthe

* line size for line buffered character mode, as per ANSI C standard

* Typical NPUSHBACK values are << strmsz, examples would be

* strmsz = 4096 ; NPUSHBACK = 256, strmsz = 64k ; NPUSHBACK = 2048
* NB NPUSHBACK is aways adjusted by the value of stream->pushback to

* prevent backward creep of the tripwire with ungetc() calls

*/

/*

* Unix test environment requires NPUSHBACK < 39
*/

#if defined(TESTIO)

#define NPUSHBACK 16

#endif
Sw
wfputc(Sw data, File* stream)
{
Param *par;
Sw inindex, outindex = NPUSHBACK;
#ifndef UNIX
extern Uw lineNumber;
#else
Uw [ineNumber;
#endif
#ifdef BLOGS
#define LN lineNumber=__ LINE___ + 0x30000
#else
#define LN
#endif

extern Uw debug, *the_wall;

/*

* Thisis the common code section executed on every pass. The RDOK
* flag is cleared to protect from afollowing read. The trip test

* determines whether a special case exists, in which event case

* gpecific code is executed. retry and writeok are specific entry

* points used by the special case handlers.

*/

Appendix B -118- Source Code

retry:
stream->flags &= (_RDOK);
LN;

if (étream->myi ndex >= stream->tripwire)

goto tripped;
writeok:
(stream->strm)[stream->myindex] = (UQ) data;
LN; [* put the character */
stream->myindex++;
LN;
*(stream >inptr) = stream->myindex;
LN; [* update inindex */
stream->obj->writersblock = ACTIVE; /* flag not full */
LN;
return (data);
/~k

* Here we test for file or stream, if it's afile we have hit the
* end and we return EOF, €lse continue
*
/
tripped:
if (stream->type == FILESTREAM)
goto stream;
LN;

/*
* we have tripped on afile object write ...

* NB: update mode requires that tripwire is reset to limit, and char is
* put
*/
if ((stream->flags & _UPDATE) &&
(stream->tripwire < stream->obj->filelimit)) {
stream->tripwire = stream->obj->filelimit;
goto writeok;
} else
return (EOF);

/*
* We have a stream. Test for full and also for top-of-buffer.
*/
Stream:
/*
* Lets be paranoid and test to see if anyone has stuffed up
*/
inindex = stream->myindex;
LN;
if (inindex != *(stream->inptr))
goto stuffed;
LN;
outindex = * (stream->outptr);
LN;
if ((outindex < 0) || (outindex >= stream->strmsz))

Appendix B -119- Source Code

goto stuffed;
LN;
/*
* The stream object seems OK for top of buffer
*/
if (inindex == (stream->strmsz - 1)) {
/*
* Have reached top of buffer. If outindex = NPUSHBACK,
* the buffer isfull.
*/
if (outindex == NPUSHBACK)
goto full;
/*
* Buffer is not full. Can place data and reset inindex
*/
(stream->strm)[inindex] = data;
o
* Next trip condition must be catching up with outindex
*/
stream->tripwire = outindex - 1 - NPUSHBACK;
LN;
stream->myindex = 0;
LN;

* (stream->inptr) = 0;

stream->obj->writersblock = ACTIVE; /* flag not full */
LN;
return (data);

s,

* Not at top of buffer. Buffer may be full, so test

*/

if (inindex == (outindex - 1 - NPUSHBACK))
goto full;

if (inindex == (stream->strmsz - 1 - NPUSHBACK + outindex))
goto full;

LN;

(stream->strm)[inindex] = data;

o

* What trip will we hit next? If inindex < outindex, will hit it

* pbefore (or same time as) hitting top of buffer.

*/

if (inindex < (outindex - NPUSHBACK)) {
stream->tripwire = outindex - 1 - NPUSHBACK;
LN;

} eseif ((inindex >= outindex) & & (outindex > NPUSHBACK)){
stream->tripwire = stream->strmsz - 1;
LN;

} elseif ((outindex <= inindex) & & (outindex <= NPUSHBACK)){
stream->tripwire = stream->strmsz - 1 - NPUSHBACK + outindex;
LN;

} else

Appendix B

full:

-120- Source Code

return (STUFFED);
LN;
stream->myindex = inindex + 1;
LN;
*(stream->inptr) = inindex + 1;
return (data;
/~k

* First we test for a stream closed by the other party, then we test
* for nonblocking mode, from which we return, else we block (ie
* wait and retry until a char iswritten)

*/

if (stream->0bj->rmode == STREAMMODECLOSING)
return (CLOSED);

LN;

if (stream->0bj->wmode == STREAMMODENONBL OCKING)
return (FULL);

LN;

par = (Param *) PARAMADDRESS;
the_wall = (Uw *) Oxc000;
LN:

#ifdef NOWAK EMODE

stream->obj->writersblock = BLOCKED; LN;/* flag full */
release(par); LN; /* give up dlice */

H#else

/*
* NB: writer wakes reader if reader’s mode is STREAMMODESLEEPONEMPTY
* regardless of state of writer
*/
if ((stream->0bj->rmode & STREAMMODESL EEPONEMPTY)
& & (stream->o0bj->readersblock & SLEEPING)
& & !(stream->0bj->readersblock & WOKEN)) {
wakereader(par,stream->0bj); LN;

}

/*

* NB: writer putsitself to sleep if its mode is STREAMMODESL EEPONFUL L

* regardless of state of reader

*/

if (stream->obj->wmode & STREAMMODESLEEPONFULL){
stream->obj->writersblock |= SLEEPING; LN;/* flag asleep */
sleepten(par); LN;
flushmsg(par); LN;
stream->obj->writersblock = ACTIVE; LN;/* flag active again */

goto retry;
s,
* Herewe block ... STREAMMODEBLOCKING default
*/

stream->obj->writersblock = BLOCKED; LN;/* flag full */
release(par); LN; /* giveup dlice*/

#endif

goto retry;

Appendix B -121-

/*
* Buffer object corrupted
*/
stuffed:
return (STUFFED);

} [* end wfputc() */

Source Code

Appendix B -122- Source Code

/~k

* wfgetc.c - get character system library call

* Monash multi Intel version

* Author: Carlo Kopp

* Created: 31 May, 1994

* Modified: 1st June, 1994 - revised design

* Modified: 4th July, 1994 use CSW file descriptor

* Tested (OK): 6th October, 1994 Carlo/Maurice

* Modified: 19th October, 1994 Chris Wallace (revised trip, new algorithm)
*/

[* $ld: thesis.ms,v 1.1 1996/02/28 01:20:13 walnut Exp walnut $ */

#include <string.h>
#include <funtype.h>
#include <param.h>
#include <cap.h>
#include <request.h>
#include <stdfiles.n>
#include <filedefs.h>

#ifdef UNIX
#include <stdio.h>
#else

#include <stdio_c.h>
#endif

#ifdef UNIX

extern Param localpar;
extern File localfdt[];
exteenUw localmesg[];
#define NPUSHBACK 8
#endif

/~k

* The circular buffer scheme used by the Multi stdio library makes the
* following assumptions about the buffer indices:

* inindex (write) may assume values between 0 and (strmsz - 1)

* outindex (read) may assume values between 0 and (strmsz-1)

* The buffer-empty state isinindex = outindex The buffer-full stateis EITHER
* inindex = outindex-1 OR inindex = strmsz-1, outindex =0

*/
Sw
wigetc(File * stream)
{
Param
* par;
Sw
inindex,

outindex;

Appendix B -123- Source Code

Uq
data;
#ifndef UNIX
extern Uw lineNumber;
#else
Uw l[ineNumber;
#endif

#ifdef BLOGS

#define LN lineNumber=__ LINE__ + 0x20000
#else

#define LN

#endif

extern Uw debug, *the_wall;

/*

* Thisisthe common code section executed on every pass. The . WROK
* flag is cleared to protect from afollowing write. Thetrip test

* determines whether a special case exists, in which event case

* gpecific code is executed. retry and readok are specific entry

* points used by the special case handlers.

*/

retry:
stream->flags & = (*_WROK);
LN;

if (étream->myi ndex >= stream->tripwire)
goto tripped;

* ’

* readok:

*/
data = (stream->strm)[stream->myindex];
LN; [* get the character */
stream->myindex++;
LN;
if (*(stream->pushback) > 0) * (stream->pushback) -= 1,
LN;

* (stream->outptr) = stream->myindex;
LN; [* update outindex */
stream->obj->readersblock = ACTIVE;
LN; * flag not empty */
return (data);

/*
* Here we test for file or stream, if it's afile we have hit the
* end and we return EOF, €lse continue
*
/

tripped:

if (stream->type == FILESTREAM)
goto stream;
LN;

Appendix B

-124- Source Code

/*

* read and update mode on file set the EOF flag and return EOF
*/

stream->flags |= _EOF;

LN;

return (EOF);

LN;

/*

* We have a stream. Test for empty and also for top-of-buffer.
*/

stream:

/*
* Lets be paranoid and test to see if anyone has stuffed up
*/

if (*(stream->pushback) > NPUSHBACK)

goto stuffed;
LN;
outindex = stream->myindex;
LN;
if (outindex !=*(stream->outptr))
goto stuffed;
LN;
inindex = * (stream->inptr);
LN;
if ((inindex < 0) || (inindex >= stream->strmsz))
goto stuffed;
LN;
/*
* The stream object seems OK
*/
if (inindex == outindex)
goto empty;
-
* Buffer is not empty. Can read a character
*/
data = (stream->strm)[outindex];
LN;
stream->obj->readersblock = ACTIVE; /* flag not empty */
LN; [* get the character */
outindex++;
LN;
if (outindex == stream->strmsz) {
/*
* Have reached top of buffer. Reset outindex to 0. Next
* trip condition must be catching up with inindex
*/
stream->tripwire = inindex;
LN;
stream->myindex = 0;
LN;

if (*(stream->pushback) > 0) * (stream->pushback) -= 1,

Appendix B -125- Source Code

* (stream->outptr) = 0;
return (datay;

/*
* Not at top of buffer. Outindex has been stepped on. What trip
* condition can we hit next? If outindex <= inindex, will hit it
* pbefore (or same time as) hitting top of buffer.
*/
if (outindex <= inindex) {
stream->tripwire = inindex;
LN;
} else{
stream->tripwire = stream->strmsz - 1,
LN;

stream->myindex = outindex;

LN;

if (*(stream->pushback) > 0) (* stream->pushback) -= 1;
LN;

* (sfream—>outptr) = outindex;
return (data;

/*

* First we test for a stream closed by the other party, then we test

* for nonblocking mode, from which we return, else we block (ie

* wait and retry until achar is read)

*/

empty:

if (stream->0bj->wmode == STREAMMODECLOSING)
return (CLOSED);

LN;

if (stream->0bj->rmode == STREAMMODENONBLOCKING)
return (EMPTY);

LN;

par = (Param *) PARAMADDRESS,

the_wall = (Uw *) Oxc000;

LN;

#ifdef NOWAKEMODE
stream->obj->readersblock = BLOCKED; I* flag empty */
release(par); LN; /* giveup dlice*/
#else
/*
* NB: reader wakes writer if writer’'s mode is STREAMMODESL EEPONFULL
* regardless of state of reader
*/
if ((stream->0bj->wmode & STREAMMODESL EEPONFULL)
& & (stream->obj->writersblock & SLEEPING)
& & !(stream->obj->writersblock & WOKEN)) {
wakewriter(par,stream->0bj); LN;

/*
* NB: reader putsitself to sleep if its mode is STREAMMODESL EEPONEMPTY

Appendix B -126- Source Code

* regardless of state of writer

*/

if (stream->0bj->rmode & STREAMMODESLEEPONEMPTY)}{
stream->obj->readersblock |= SLEEPING; LN;/* flag asleep */
sleepten(par); LN;
flushmsg(par); LN;
stream->obj->readersblock = ACTIVE; LN;/* flag active again */

goto retry;
s,
* Here we block ... STREAMMODEBLOCKING default
*/

stream->obj->readersblock = BLOCKED; I* flag empty */
release(par); LN; /* giveup dlice*/

#endif
goto retry;

/*
* Buffer object corrupted
*/
stuffed:
return (STUFFED);

} [* end wfgetc() */

Appendix B -127- Source Code

/~k

* ungetc.c - unget character system library call
* Monash multi Intel version

* Author: Carlo Kopp

* Created: 17th March, 1995

*/

/* $ld: thesis.ms,v 1.1 1996/02/28 01:20:13 walnut Exp walnut $ */

#include <funtype.h>
#include <param.h>

#include <stdfiles.h>
#include <filedefs.n>

#ifdef UNIX
#include <stdio.h>
#else

#include <stdio_c.h>
#endif

#ifdef UNIX

extern Param |ocalparam;
extern File localstreamt[];
exteenUw localmesg[];
#define NPUSHBACK 8
#endif

/~k
* The circular buffer scheme used by the Multi stdio library makes the
* following assumptions about the buffer indices:

* inindex (write) may assume values between 0 and (strmsz - 1)
* outindex (read) may assume values between 0 and (strmsz-1)

* The buffer-empty state isinindex = outindex The buffer-full stateis EITHER
* inindex = outindex-1 OR inindex = strmsz-1, outindex =0

* NB: the pushback buffer zone size is set by NPUSHBACK, pushback isthe
* pushback counter which is used by putc

*/

Sw wungetc(Sw ¢, File * stream)
{

Sw inindex, outindex;
#ifndef UNIX

extern Uw lineNumber;
#else

Uw [ineNumber;
#endif

#define LN lineNumber=__ LINE__ + 0x20000

/~k
* beartrap for bad data such as error codes

Appendix B -128- Source Code
*/
if (c<0)return(c);
/~k
* Thisis code executed on every pass - if myindex is 0, we wrap around
*/
stream->flags &= ("_WROK));
LN;
if (stream->myindex <= 0)
goto tripped;
N;
* (stream->pushback) += 1;
LN;
if (* (stream->pushback) > NPUSHBACK)return (EOF);/* overran pushback */
LN;
stream->myindex--;
LN;
(stream >strm)[stream->myindex] = ¢;
LN; [* push the character */
* (stream->outptr) = stream->myindex;
LN; [* update outindex */
return (c);
/*
* Here we test for file or stream, if it’'s afile we have hit the
* pottom and we return EOF, else continue
*/
tripped:
if (stream->type == FILESTREAM)
goto stream;
LN;
/*
* read and update mode on file set the EOF flag and return EOF
*/
stream->flags |= _EOF;
return (EOF);
/*
* We have a stream. We wrap around to the top
*/
Stream:
/*
* Lets be paranoid and test to see if anyone has stuffed up
*/
if (*(stream->pushback) < 0)
goto stuffed;
LN;
outindex = stream->myindex;
LN;
if (outindex !=*(stream->outptr))
goto stuffed;

LN:

Appendix B -129- Source Code

inindex = *(stream->inptr);

LN;

if ((inindex < 0) || (inindex >= stream->strmsz))
goto stuffed;

LN;

/*

* The stream object seems OK

*/

/*

* Here we wrap around

*/

* (stream->pushback) += 1;

LN;

if (* (stream->pushback) > NPUSHBACK)return (EOF);/* overran pushback */

/*

: hereiswhereit al happens

LI/\I;

(stream->strm)[stream->strmsz - 1] = ¢; /* XXX */
stréam->myindex = stream->strmsz - 1;

’I*_ (I\Isfream->outptr) = stream->strmsz - 1,

return (c);

stuffed:
return (STUFFED);

} /* end wungetc() */

Appendix C -130- Source Code

Appendix C Source Code (rm, head)

/~k
* rm - Walnut user level rm program

*

* Authors: Carlo Kopp

*

* revision history:

*

* Date Author Change

*

* 26/10/95 CarloKopp created from filetest.c tests

*$ld: $
*/

#include <funtype.h>
#include <werrno.h>
#include <param.h>
#include <stdfiles.h>
#include <screen.h>
#include <filedefs.nh>
#include <namec.h>
#include <nameserver.h>
#include <procenv.h>
#include <request.h>

#include <stdio_c.h>
#define main init

/~k
* line number for gcc debug
*/

Uw lineENumber = 0;
#define LN lineNumber=__ LINE___ + 0x30000
/~k

* code starts here

*/

void
main(int argc, char **argv, char **envp)
extern Uw
errno,
debug;

i=0;

int

setmyname("'rm-running");

Appendix C -131- Source Code

debug = 3;

for (i = 1; i <= argc; i++) errno = wremove(argv[i]);
clrmyname("rm-running");
vx();

Appendix C -132- Source Code

/~k

* Copyright (c) 1980, 1987, 1992, 1993

* The Regents of the University of California. All rights reserved.

* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions

* are met:

* 1. Redistributions of source code must retain the above copyright

* notice, thislist of conditions and the following disclaimer.

* 2. Redistributions in binary form must reproduce the above copyright
* notice, thislist of conditions and the following disclaimer in the

* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:

* This product includes software devel oped by the University of

* Cadlifornia, Berkeley and its contributors.

* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.

*/

#include <stdlib.n>
#include <string.h>
#include <ctype.h>

#include <funtype.h>
#include <werrno.h>
#include <param.h>
#include <stdfiles.h>
#include <screen.h>
#include <filedefs.h>
#include <namec.h>
#include <nameserver.h>
#include <request.h>
#include <stdio_c.h>

/~k
* head - give thefirst few lines of a stream or of each of a set of files

* Bill Joy UCB August 24, 1977
* Walnut port Carlo Kopp February, 1996

*/

Uw lineNumber = 0;
#define LN lineNumber=__ LINE___ + 0x60000

#define main init

int eval;
extern Uw errno;

Appendix C -133- Source Code

void
head(File *fp, register int cnt)
{

register int ch;

while (cnt--)
while ((ch = getc(fp)) '= EOF) {
if (putchar(ch) == EOF)
err(1, "stdout: %s", strerror(errno));
if (ch=="0)
break;

}

void
?bsol ete(char *argv[])

char *ap;

while (ap = *++argv) {

[* Returnif "--" or not "-[0-9]*". */

if (ap[O] !="-" || ap[1] =="-" | lisdigit(ap[1]))
return;

if ((ap = maloc(strlen(*argv) + 2)) == NULL)
err(1, "%s', strerror(errno));

ap[0] ="',

ap[1] ='n";

(void)strepy(ap + 2, *argv + 1);

*argv = ap;

}

void
?%ge()

(vc()i)d)fpri ntf(stderr, "usage: head [-n lines] [file ...]0);
vX();

#include <stdarg.h>

void
err(int fatal, const char *fmt, ...)

va list ap;
va_start(ap, fmt);
(void)fprintf(stderr, "head: ");
(void)vfprintf(stderr, fmt, ap);
va_end(ap);
(void)fprintf(stderr, "0);
if (fatal)

VX();
eval =1,

Appendix C -134-

int
main(int argc, char *argv[])

register int ch;
File*fp;

int first, linecnt;
char *ep;

setmyname(" head-running");
obsolete(argv);
linecnt = 10;
while ((ch = getopt(argc, argv, "n:")) != EOF)
switch(ch) {
case’'n’:
linecnt = strtol (optarg, & ep, 10);
if (*ep || linecnt <= 0)
err(1, "illegal line count -- %s", optarg);
break;
case’?:
default:
usage();

argc -= optind,;
argv += optind,

if (*argv)
for (first = 1; *argv; ++argv) {
if ((fp =fopen(*argv, "r")) == NULL) {
err(0, "%s: %s', *argv, strerror(errno));
continue;

}
if (arge > 1) {
(void)printf("%s==> %s <==0,
first 2"" : "0, *argv);
first =0;

}
head(fp, linecnt);
(void)fclose(fp);
}
else
head(stdin, linecnt);
clrmyname(* head-running");
vx();

Source Code

Appendix D -135- Validation Tests
Appendix D Validation Test Suite

0. perror integrity test

The perror integrity test sets the errno value, and then invokes the
perror function. Thisis done for all defined error codes.

1. opencap create object test
The opencap create object test creates a file object in write mode.
2. fprintf/putc write object test

The fprintf/putc write object test writes a string into the object cre-
ated in the previous test.

3. writeexclusion test

The write exclusion test verifies that a write mode file cannot be read.
It tests the exclusion flags which should be set in the FILE structure.

4. ferror test
The ferror test verifies that the feof function correctly tests the flags.
5. clearerr test

The clearerr test verifies that the clearerr function has cleared the
_ERR and _EOF flagsin the FILE structure.

6. file close test
The file close test verifies that afile can be closed.
7. opencap read mode test

The read mode opencap test verifies that a file can be opened in read
mode. It operates on the file object created by test 2.

8. fileread test

The file read test verifies that afile can be read. It operates on the file
object created by test 2.

9. feof test

The feof test verifies that the feof function tests the EOF flag cor-
rectly.

10. fseek/ftell test

The fseek/ftell test contains four sub-tests, each of which verifies that
an fseek operation has produced the required change to the file index position.

Appendix D -136- Validation Tests

11. fsetpos/fgetpostest

The fsetpos/fgetpos test repeats test 10, using the fsetpos and fgetpos
functions.

12. file append test

This test opens the previously created file object in append mode,
writes to it, closes it, opensit in read mode and confirms that the append mode
write has been successful.
13. fileupdate test

This test opens a file in update mode, writes to it, rewinds the file
index, and reads back the contents.

14. removec/kerror test

This test destroys the file object used in the preceding test, and then
attempts to open the non-existent file object to confirm the operation of the ker-
nel error reporting function.
15. copen create test
16. copen writetest
17. copen update test

These three tests repeat the operations carried out previougly in the
opencap function tests, using the copen function.

18. tmpfile test
Thistest verifies that atmpfile can be created.
19. stream fflush test
Thistest executes the fflush function.
20. fopen create test
21. fopen read test
22. fopen update test

These three tests repeat the operations carried out previoudly in the
copen function tests, using the fopen function.

23. remove test

This test confirms that a previously created file object can be
removed.

24. ungetc pushback test
This test creates a file object, writes a string to it, reads back the

string, pushes NPUSHBACK characters back to file, and then verifies that the
characters pushed back are identical to the charactersinitially read.

Appendix D -137- Validation Tests

25. fscanf test

This test verifies that the fscanf function can correctly decode argu-
mentsin the %d, %X, % c and %s formats.

26. makestreamobj test

The makestreamobj test uses the fileinit function to verify that a
stream object created by the makestreamobj function is error free.

