
An I/O and Stream Inter-Process Communications
Library for a Password Capability System

By
Carlo Kopp

B.E.(hons), PEng

Department of Computer Science
Monash University

Thesis submitted for examination
for the Degree of
Master of Science

March 1996

Contents -2-

Table of Contents

Chapter 1 Introduction8

1.1 History and Objectives of the Walnut Kernel Project..8

1.2 The Walnut Architecture....8

1.2.1 Virtual Memory9

1.2.2 Capabilities and Objects10

1.2.3 Money12

1.2.4 Rights13

1.2.5 Processes and Subprocesses14

1.2.5.1 Processes14

1.2.5.2 Subprocesses........17

1.2.6 Messages.........18

1.2.7 System Calls...19

1.3 The Nameserver Model......22

Chapter 2 Survey and Critique24

2.1 Introduction24

2.2 An Overview of I/O Libraries and Stream Inter Process Communications..24

2.2.1 I/O Libraries24

2.2.2 Stream Inter Process Communications26

2.3 The AT&T Unix Model27

2.4 The BSD Unix Model.........30

2.5 The Mach Model34

2.6 The Alloc Stream Model....35

2.7 Other Operating Systems39

Chapter 3 The Stream IPC and File Access Model40

3.1 Introduction40

3.2 Walnut I/O Library Design.........43

3.2.1 Requirements..43

3.2.2 Design Considerations45

3.2.3 Design Rationale.....46

Contents -3-

3.2.3.1 Buffer and Stream Structure Design47

3.2.3.2 File Object Opening and Object Creation54

3.2.3.3 Stream Open Programming Interface55

3.2.3.4 Process Environment Initialisation55

3.3 Stream/File Object Structures57

3.4 File Structure59

Chapter 4 Library Implementation62

4.1 Introduction62

4.2 Walnut Library Functions62

4.2.1 The opencap Function.....62

4.2.2 The fileinit Function........65

4.2.3 The makestreamobj Function66

4.2.4 The copen Function.........66

4.2.5 The removec Function67

4.2.6 The cmap and cunmap Functions67

4.2.7 The setmyname and clrmyname Functions......68

4.2.8 The kerror Function.........68

4.2.9 The Client Server Protocol Functions......68

4.2.9.1 Protocol Definition.......69

4.2.9.2 Programming Interface and Implementation.........72

4.2.10 The accept Function......72

4.3 ANSI stdio Library Functions73

4.3.1 Stream Operation Functions....73

4.3.1.1 The fopen Function73

4.3.1.2 The fclose Function......74

4.3.1.3 The fflush Function74

4.3.1.4 The rename Function75

4.3.1.5 The remove Function75

4.3.1.6 The tmpfile Function....75

4.3.1.7 The tmpnam Function76

4.3.1.8 The freopen Function...76

4.3.1.9 The setvbuf and setbuf Functions76

4.3.2 Character I/O Functions..76

4.3.2.1 The fgetc and fputc Functions76

Contents -4-

4.3.2.2 The ungetc Function77

4.3.2.3 The fgets and fputs Functions.......77

4.3.3 Direct I/O Functions78

4.3.3.1 The fread and fwrite Functions.....78

4.3.4 Formatted I/O Functions78

4.3.4.1 The fprintf and printf Functions78

4.3.4.2 The fscanf and scanf Functions78

4.3.5 File Positioning Functions.......79

4.3.5.1 The fseek and ftell Functions........79

4.3.5.2 The fgetpos and fsetpos Functions........79

4.3.6 Error Handling Functions........79

Chapter 5 Discussion81

5.1 Introduction81

5.2 Programming Interface81

5.3 Throughput Performance82

5.4 Portability85

5.4.1 Application Development and Porting.....86

5.5 Robustness87

5.5.1 Persistence89

5.6 Security89

5.7 Future Directions90

Chapter 6 Conclusion92

References95

Appendix A Release Notes....99

Appendix B Source Code (fputc, fgetc, ungetc)116

Appendix C Source Code (rm, head)130

Appendix D Validation Test Suite.........135

Summary -5-

Summary

This thesis presents an I/O library and stream Inter-Process Communications (IPC)

mechanism for the Walnut password capability system, developed in the Computer

Science Department at Monash University. This library provides a C language pro-

gramming interface, mostly conforming to the ANSI stdio model, to functions which

provide stream I/O services to the virtual memory system, processes and I/O

devices.

Chapter one introduces the architecture of the Walnut kernel. The Walnut

virtual memory system, capabilities and objects, money, access rights, process and

subprocess structures, message mechanism and system calls are examined.

Chapter two is a survey of design strategies used in the provision of I/O

library and stream IPC services. This chapter examines the problems inherent in pro-

viding such services, and reviews the System V Unix model, the 4BSD Unix model,

the Mach model and the Alloc Stream model. This is done to provide an understand-

ing of alternative solutions to the problem of providing a common programming

interface to I/O services and stream IPC.

Chapter three discusses the design of the file access and stream IPC mech-

anisms. The Walnut I/O model is reviewed, design requirements and considerations

are examined, and the design rationale for the stream IPC mechanism, file object

access mechanism, stream communications programming interface and process

environment initialisation is explained. The data structures used in the provision of

these services are examined in detail.

Chapter four reviews the implementation of the library design. Functions

specific to the Walnut are examined, and the ANSI stdio stream operation, character

I/O, direct I/O, formatted I/O, file positioning and error handling functions are

examined in detail.

Chapter five discusses the library design and implementation from the per-

spectives of programming interface, throughput performance, portability, robustness

and security. Specific advantages which accrue from the design strategy used are

examined, performance testing results reviewed, and a range of further

improvements to the library are proposed.

Chapter six summarises the major issues examined in this thesis.

-6-

Acknowledgements

In 1990 I set out to do a Masters degree in Computer Science, seeing a

bright future in this fascinating discipline. After a promising start to my project,

external circumstances conspired to impede my progress, and I was unable to return

to my research until early 1994. This thesis is largely the product of effort expended

in the last two years.

Throughout this protracted and often difficult period my supervisor, Pro-

fessor Chris Wallace, provided me with the guidance, motivation and critical insight

which are so vital to the successful completion of such projects. Without his

patience and ability as a scientist and as a teacher, it is unlikely that I would have

succeeded in resurrecting my project. My sincerest thanks.

I am also indebted to Maurice Castro, for his advice on the Walnut kernel

and constructive critique of the library design, to Glen Pringle, who developed

numerous components of the Walnut system and was always ready to assist, and to

Dr Ronald Pose, for his insightful advice and critique.

-7-

Declaration

I declare that the thesis contains no material which has been accepted for the award

of any degree or diploma in any university and that, to the best of my knowledge, the

thesis contains no material previously published or written by another person other

than where due reference has been made in the text.

Signed:

Carlo Kopp

Department of Computer Science,

Monash University,

Melbourne, Australia, 3168

March 1996

Chapter 1 -8- The Walnut Kernel

Chapter 1 Introduction

1.1 History and Objectives of the Walnut Kernel Project

In 1985 Anderson, Pose and Wallace at Monash University com-

pleted a tightly coupled multiprocessor system, and implemented an operating

system to provide virtual memory support for this system. The purpose of this

project was to demonstrate a tightly coupled multiprocessor [POSE89] which

employed a password capability based virtual memory system [ANDER-

SON87]. The work built upon earlier Monash research in capability based

addressing schemes [ABRAMSON82], [GEHRINGER82].

In 1990, the development group, then comprising Castro, Kopp and

Wallace, commenced a port of this operating system to the Intel 386 architec-

ture [INTEL84], [CRAWFORD87]. The intention was to exploit the combined

segmented and paged memory management hardware embedded in the Intel

chip, to produce a simplified derivative of the multiprocessor password capabil-

ity operating system, capable of running on reliable low cost hardware. This

port was also seen as an opportunity to improve the design, building on the

experience gained with the multiprocessor project.

Analysis of the source code of the multiprocessor operating system

indicated a large number of dependencies upon the NS32032 architecture

[NS85] and custom designed memory management hardware used in the multi-

processor design. It was subsequently decided that a completely new imple-

mentation was preferable to a port. The new implementation, written by Castro

and Wallace, was subsequently designated the Walnut.

The Walnut implementation is at this time hosted on a Personal Com-

puter, using an Intel 486 processor and a set of generic I/O boards. As such this

implementation only demonstrates single processor operation.

1.2 The Walnut Architecture

The Walnut architecture is directly derived from the architecture of

password capability multiprocessor kernel. It shares many fundamental design

features with its predecessor. These features are the virtual memory system, the

Chapter 1 -9- The Walnut Kernel

capability mechanism, the money mechanism, substantial parts of the process

structure and a capability access rights scheme. Unlike the multiprocessor sys-

tem, the Walnut system also has a name serving function. The name serving

function is implemented as a library, and is not embedded in the Walnut kernel.

This discussion will focus on those aspects of the Walnut architecture

which are relevant from the perspective of implementing an I/O library. A more

detailed treatment of the kernel is contained in [CASTRO95].

1.2.1 Virtual Memory

The virtual memory scheme used in Walnut kernel is based upon the

multiprocessor password capability model [APW86], [POSE89]. In this model,

the virtual address space is divided into a number of volumes, each of which

contains a number of objects. Each volume has a permanent and unique 32-bit

identifier, termed a volume number.

The volume number is permanently associated, in both existing

implementations, with a specific fixed or removable storage device. The volume

number is assigned when a device is configured for operation, and is fixed for

the life of the volume. A volume number can only ever be reused if the volume

originally assigned the volume number is destroyed.

The existing implementation uses an arbitrary number. A production

implementation is intended to use a number unique to the physical device used,

such as the trailing digits of a physical device production serial number.

While the volume is an essentially permanent construct, the objects

contained within the volume are not. Objects may be created or destroyed, and

can only ever exist within the address space of a given volume. Objects cannot

be split across multiple volumes.

Objects are identified with a 32-bit serial number. The combination of

the 32-bit volume identifier and the 32-bit serial number uniquely identifies

each object. A serial number can only be assigned to one object on any giv en

volume, and is a fixed value throughout the life of this object. Two different

volumes may each possess an object with a common serial number, because the

volume identifiers are unique. Within the address space of all uniquely num-

bered volumes in existence, each object is thus uniquely identified. Serial num-

bers may be reused.

The choice of a 32-bit volume identifier and a 32-bit serial number

Chapter 1 -10- The Walnut Kernel

was a compromise between providing a suitably sized object address space, and

compactness of storage. To date this size has proven to be acceptable.

1.2.2 Capabilities and Objects

The Walnut kernel, as well as the earlier multiprocessor and its asso-

ciated operating system, employ a password capability based scheme for

accessing objects [APW86]. Each capability is defined by a 128-bit value. This

128-bit value is composed of a 64-bit object identifier field, and a 64-bit pass-

word field. In this scheme, any object may be accessed through an arbitrary

number of capabilities, differing only in their passwords and constrained by the

available space on the volume.

Figure 1.1 A 128 Bit Password Capability

VOLUME SERIAL PASSWORD 1 PASSWORD 2

32 BITS 32 BITS 32 BITS 32 BITS

Capabilities to access any giv en object may have differing or identical

access rights. Each capability is however a unique value, regardless of whether

two or more capabilities provide identical access rights.

Capabilities associated with any giv en object will share identical vol-

ume identifiers and identical serial numbers, but will possess unique 64-bit

password fields. The password is intended to be a number which is unrelated to

the access rights of the capability, therefore no mapping computable by a user

exists between the password field and the access rights mask of the capability,

in either direction. The system holds the mapping from password to rights in a

protected "capability table" associated with each object and stored on the same

volume as the object.

A capability is said to be created at that time, when it provides access

to an object. It is destroyed at that time, when it can no longer provide access to

an object. The validity of any giv en number as a capability is determined by its

ability to grant access to an object on a volume. Capabilities are associated

with volumes, and are regarded as part of an object. Should a volume be moved

between systems, all capabilities which exist on the volume retain their validity

Chapter 1 -11- The Walnut Kernel

in relation to that volume.

The use of the 64-bit password cannot provide an absolute guarantee

of security, but does provide a very low probability of the security scheme

being defeated. Even should many capabilities to an object exist, the probability

of the correct password being guessed is of the order of ten to the minus fifteen.

The rights of a every derived capability are less

Master

Capability

Capability

Derived
Capability

Derived
Capability

Derived

Capability

Derived
Capability

Derived

Capability

Derived

Capability

Derived

Capability

Derived

Capability

Derived

Capability

Derived

Figure 1.2 Master Capability and Derived Capabilities

than or equal to the rights of its immediate parent

Were the password derived from the volume and serial numbers, the

system could be more easily defeated, in comparison with the random guessing

of what are essentially sparse valid password values. For this reason the pass-

words are intended to be generated randomly. The present Walnut implementa-

tion uses an simple pseudo-random number generator for this purpose. The

Chapter 1 -12- The Walnut Kernel

final implementation will use the physically random number generator which

was dev eloped for the original multiprocessor design [WALLACE90].

The password scheme is further enhanced by the money mechanism

[WP90]. As each attempt to guess the password will incur a cost penalty to the

guessing process, systematic attack will be prohibitively expensive to the

attacking party.

A Master Capability is produced whenever an object is created. The

creator of the object will specify its rights, and no other party can alter these. To

derive a capability, we require the value of the parent capability and a desired

set of rights. The new derived capability will have rights which are a subset of

the rights held by the parent capability. Additional rights not held by the parent

capability cannot be added to a derived capability.

A model which can be applied to describe the interdependencies

between the master capability and its derived capabilities is that of an inverted

tree. The root of the tree is the master capability, and every other node in the

tree is a derived capability. The master capability is thus an ancestor of all

derived capabilities in the tree. When a new capability is derived, it is attached

to the tree as a child of the capability from which it was derived. When a capa-

bility is destroyed, all of its descendants are also destroyed. Should the object

be destroyed, then the whole tree of derived capabilities is also destroyed. Any

data held within the object is also destroyed.

There is no concept of ownership in the virtual memory scheme used.

A capability is implicitly tied to the object it is derived from, but may be used

and where appropriate manipulated by any user who knows it.

1.2.3 Money

The money mechanism forms the basis for a cash economy scheme

built into the Walnut kernel. While it was created to support resource allocation,

its function in the earlier multiprocessor kernel was expanded to provide a far

more general scheme for providing usage rights to facilities in the system

[WP90]. This function was subsequently continued in the later Walnut kernel.

Money in the Walnut kernel is a quantity which may be transfered

between objects, and may be viewed as a transferable right to use system ser-

vices. Its most important attribute is that it is consumed when the service is pro-

vided. Objects in the virtual memory system are charged rent, and if they run

Chapter 1 -13- The Walnut Kernel

out of money, the system destroys them. Processes are charged money each and

ev ery time they inv oke a system call. Should they hav e insufficient money for

the call invoked, the system will refuse to service the request.

A user must have a valid capability and sufficient money to access or

manipulate a capability within the virtual memory system. Possession of a

capability and money does not however subsume the function of the access

rights within the capability. Even should sufficient money be available, should

access rights prohibit an operation, the operation cannot be provided by the sys-

tem.

All objects must contain money. Money is conserved during transfers

between objects, in that transferring money from one object to another will see

the source object’s money decreased by the transfered amount, and the receiv-

ing object’s money increased by the same amount. Manipulating the money

held in an object requires a capability with appropriate access rights. The sys-

tem may charge rent for objects held on a volume.

1.2.4 Rights

The Walnut kernel provides a range of system and user rights to a

capability. Rights restrict what operations may be carried out upon a capability.

A derived capability may have a set of rights which is identical to or a subset of

the set of rights held by the parent capability. Some of the rights are specific to

process objects.

The rights in the Walnut kernel are divided into system rights and

user rights. System rights determine what operations may be carried out on a

capability by any entity on the system. User rights determine what operations

may be carried out by user processes and are not interpreted by the kernel.

System rights may be grouped into categories, according to how they

provide access or enable operations by the capability.

System rights which allow the creation and destruction of capabilities are:

• SRDERIVE - the right to derive further capabilities

• SRSUICIDE - the right of a capability to destroy itself

Chapter 1 -14- The Walnut Kernel

System rights which allow manipulation of money are:

• SRDEPOSIT - the right to deposit money into a capability

• SRWITHDRAW - the right to withdraw money from a capability

System rights which provide a view of the capability are:

• SRREAD - the right to read the capability

• SRWRITE - the right to write to the capability

• SRMULTILOAD - the right to load the capability in the address space of a

process

• SRUSER - the right of user processes to use the capability

System rights related to processes are:

• SREXECUTE - the right to execute the process

• SRPEEK - the right to query the state of the process

• SRSEND - the right to send messages to the process

1.2.5 Processes and Subprocesses

The Walnut process structure introduced a number of additional func-

tional features not used in the multiprocessor operating system [ANDER-

SON87], [CASTRO95]. These are a subprocess mechanism, and a more com-

plex set of process states.

1.2.5.1 Processes

A process extant in the Walnut environment is defined as a sequence

of executed instructions and system calls, which are performed above the level

Chapter 1 -15- The Walnut Kernel

of the virtual memory interface. Functions required to support the virtual mem-

ory interface, such as swapping, storage management and scheduling, are per-

formed within the Walnut kernel and are not implemented as processes.

A process in the Walnut environment is represented by a process

object. The process object contains all of the state information required for the

execution of the process. A process must contain at least the following items:

• Parameter Page

• Sub-process Table

• Message Slots (i.e. mailbox)

• Table of Loaded Capabilities

• Money

• Lock Words

• Address Map

• User Defined Code and Data

A user process may only reach certain parts of the process object.

These are the Parameter Block, the read-only Address Map and the User

Defined Code/Data, if the latter exists. All other components of the process

object may only be accessed by the kernel.

The Parameter Page is used by the process to communicate with the

kernel. It comprises a Parameter Block, and a Message Area. The Parameter

Block is the means via which parameters associated with system calls are

passed between the process and the kernel. The Message Area is the means via

which messages are received and sent to other processes.

The process object also contains a startup code area and a private data

table. The startup code area will contain, by convention, a small sequence of

instructions used during the startup of a process. The private data pointer table

is indexed by the capability index of the executing code, and is used to locate

Chapter 1 -16- The Walnut Kernel

private data used by the executing code.

Fig 1.3 Walnut Process Virtual Address Map

0x5400000

0x000C000

0x1000000

0x1400000

DATA OBJECT

CODE OBJECT

THE WALL

PROCESS OBJECT

FILE DESCRIPTOR

DEFAULT HEAP

STARTUP CODE AREA

PROCESS ADDRESS MAP

PARAMETER PAGE

0x100F000

0x1010000

0x1011000

0x1012000

0x1000000

PRIVATE DATA POINTERS
0x1016000

0x1017000

DEFAULT STACK

0x1400000

The intent of this design is to allow multiple instances of a process to

be created by sharing code objects and copying multiple instances of data

objects. Each process will therefore possess private process objects, data

objects and share a code object. By convention, initialised data is located at the

beginning of the data object to simplify copying.

Chapter 1 -17- The Walnut Kernel

In addition to the process, code and data objects mapped into the pro-

cess address space, each process also has a read only page designated the Wall

mapped into its address space. The Wall contains public information about the

system, such as real time counters and capabilities to public utilities.

1.2.5.2 Subprocesses

The process in the Walnut environment supports a subprocess mecha-

nism. Subprocesses are threads of execution which share a common address

space. No protection mechanism exists to prevent subprocesses from accessing

structures belonging to their peers, therefore a programmer must ensure that a

subprocess does not impair the operation of another subprocess by overwriting

state information.

At process creation time, a fixed number of subprocess slots is allo-

cated in a subprocess table. This table stores state information for each subpro-

cess. When a subprocess is created, its scheduling priority, starting address and

stack pointer address are specified.

Messages directed to a process must specify which subprocess they

are intended for. Subprocess zero has a special purpose. It is used for control-

ling the state of the process. Operations performed by subprocesses other than

subprocess zero are executed by code within the process address space. Opera-

tion performed by subprocess zero are executed by the Walnut kernel.

The subprocess zero mechanism allows a process to control the state

of itself, or another process, if it possesses a valid capability to send a message

to the subprocess zero of the recipient. Messages to and operations upon sub-

process zero are the highest priority functions of a process.

Subprocess zero operations support the following functions:

• freeze - a frozen process is removed from the scheduler queue

• thaw - receiving a thaw message, a frozen process is placed into the scheduler

queue and it becomes runnable

• wakeup - wakeup messages set the wakeup time of a process, which com-

mences execution at that time

Chapter 1 -18- The Walnut Kernel

• cooee - the cooee message is a status enquiry through a message, rather than a

system call against the capability of the process

• protected freeze - a process is frozen with a magic number used to prevent

thawing by parties not holding this number

• protected thaw - a complementary call to protected freeze, protected thaw

allows thawing of a process by a party holding a valid magic number

For a process to perform useful work it must execute a sequence of

instructions, and typically access some data as operands. Executable code is

mapped into the process address space as a code object. Data is mapped into

the address space as a data object. In addition to code and data objects, the pro-

cess object also provides optional space for a default stack and a default heap.

These facilities will therefore support most conventional compilers. Up to 250

objects may appear at any time in the address space of a process.

Subprocesses may be created and destroyed by appropriate system

calls. The scheduling mechanism will execute subprocesses which are runnable.

The subprocess with the highest nominal priority is scheduled first, subpro-

cesses of equal nominal priority are scheduled in the order of their position in

the process subprocess table. Prior to scheduling subprocesses, the Walnut ker-

nel will examine the process mailboxes for messages sent to all subprocesses. A

subprocess which has received mail becomes runnable, and will be scheduled

accordingly.

1.2.6 Messages

The message mechanism employed in the Walnut kernel is more

powerful than that used in the multiprocessor kernel. Enhancements were pro-

vided in several areas. The first is in the support of the subprocess mechanism,

the second is the provision of external send and receive calls, and the third the

provision of an additional mailbox state management call.

In the Walnut kernel, messages are addressed to specific subpro-

cesses. This is achieved by means of a system call parameter specifying the

subprocess number, or by using a derived capability which allows access only

to a specific subprocess.

Chapter 1 -19- The Walnut Kernel

The contents of a message to be sent are held in the Message Area

[Section 1.2.5, Fig. 1.3], which is restricted in size to sixteen words. Should a

larger message need to be sent, this can be accomplished indirectly by sending

a capability to a larger buffer.

The Walnut kernel will filter messages directed to a process on the

basis of two message parameters. These are a message prefix and a subprocess

number. If these parameters are acceptable, and an empty mailbox is available,

then the message can be sent. If not, an error is returned to the sending process.

The use of the message prefix string allows a subprocess to retrieve messages in

a specified order, by reading only those with a matching prefix string.

A mailbox may be open or closed. The Walnut kernel provides sys-

tem calls to open a mailbox, close a mailbox and to receive a message and then

close a mailbox.

1.2.7 System Calls

The Walnut kernel provides at this time thirtyone system calls. The

procedure for executing a system call is very simple. It requires that the opera-

tion code for the call be placed into the Parameter Block reserved field, the

parameters for the call written into the Parameter Block, and the execution of

system_call. When the Walnut kernel returns from the call, the Parameter Block

error field is inspected to verify whether the call has been successful or not. If

the error code is zero, the call was successful, and the Parameter Block will

contain the return values from the call. System call functions are summarised as

follows:

• K_MAKEOBJ - creates an object. Parameters which may be specified are the

volume and size, system and user rights, object type, object limits and initial

money.

• K_MAKECAP - derives a capability from a specified capability. Parameters

which may be specified are the rights and the size of the view, the latter con-

straining what part of the parent capability may be accessed.

• K_DEL - deletes the specified capability and all of its derivatives.

Chapter 1 -20- The Walnut Kernel

• K_DELDER - deletes all derivatives of the specified capability

• K_RESIZE - resizes the specified object.

• K_SHRINK - shrinks an object to the size of its current contents

• K_WAIT - puts a subprocess to sleep until the specified wakeup time has

been reached, or until a message arrives.

• K_LOADCAP - loads a view of a capability into the process address space.

Specified parameters allow loading of large and small windows sizes, specified

sizes at arbitrary or specified offsets in the address space.

• K_UNLOADCAP - unloads a capability from a process address space

• K_CAPID - returns information about the specified capability. The capability

may be specified by an index into the table of loaded capabilities, offset in

address space or capability.

• K_MAKEPROC - creates a process by creating a process object and initialis-

ing its state information, and then loading the created process object into the

address space of the calling process.

• K_SEND - sends a message to a process loaded within the address space of

the calling process. The message includes a non-negative amount of money.

• K_RECV - recovers a message from a subprocess message queue. The only

parameter is the size of the match string used to filter messages.

• K_EXTSEND - sends a message to a specified process. The message

includes a non-negative amount of money.

• K_EXTREAD - reads a specified number of bytes at a specified offset within

a specified capability. This call is not intended for use in future versions of the

kernel, as it is inefficient.

Chapter 1 -21- The Walnut Kernel

• K_EXTWRITE - writes a specified number of bytes from the process mes-

sage area at a specified offset within a specified capability. This call is not

intended for use in future versions of the kernel, as it is inefficient.

• K_BANK - transfers a specified amount of money from the calling process to

the specified capability, or vice-versa.

• K_RESTRICT - reduces the rights of a specified capability, using masks for

both urights and srights.

• K_CAPSTAT - returns status information about the specified capability and

its associated object.

• K_RENAME - changes the password values of the specified capability and

invalidates all derivatives of the specified capability.

• K_MAKESUBP - creates a new subprocess within the calling process. Speci-

fied parameters are the number, wakeup time and priority of the created subpro-

cess.

• K_DELSUBP - destroys the specified subprocess.

• K_LOADREG - loads subprocess context information from the process mes-

sage area into the subpn table entry of the specified subprocess. Required for

subprocess restart.

• K_SAVEREG - copies subprocess context information from the subpn table

entry of the specified subprocess into the process message area. Required for

subprocess restart.

• K_SETTRAP - directs traps generated by a specified subprocess to a speci-

fied subprocess.

• K_RECV_CLOSE - recovers a message from a subprocess message queue

and closes the subprocess mailbox.

Chapter 1 -22- The Walnut Kernel

• K_ACCEPT_MAIL - opens a mailbox for a specified subprocess, and sets a

match string for filtering incoming messages.

• K_CLOSE_BOX - closes specified mailboxes

• K_COPYOBJ - creates a copy of a specified view of an object. Cannot be

used to duplicate processes.

• K_PEEK_PROC - returns the state and wakeup time of the specified process.

• K_SET_HEIR - specifies the heir of the calling process. The heir process

will receive the remaining money and a death message upon the destruction of

the calling process.

1.3 The Nameserver Model

The Nameserver library [PRINGLE95] provides facilities which

allow an ASCII format string to be bound to a capability. Bindings between

strings and capabilities are held within an object termed a database.

The nameserver library provides a set based mechanism for grouping

bindings. This mechanism is recursive, and allows sets to contain other sets.

Bindings may be associated with a set or a capability. A database may contain

sets and bindings to capabilities. A set may contain other sets. These are then

termed included sets. When the nameserver searches a set for a binding, it will

also search all included sets.

Nameserver sets may be arbitrarily organised either as sets connected

in a graph, or as a directory hierarchy. The latter paradigm (which is a subset of

the former) allows users to organise their bindings in a fashion analogous to

established operating systems such as Unix.

The nameserver library provides a number of useful functions which

may be exploited in the design of a stdio library. These functions are :

• namec() - searches a specified database for a specified binding. It returns a

structure which describes the binding and its associated capability.

• setCapName() - binds a string to a specified capability in a specified database

Chapter 1 -23- The Walnut Kernel

• deleteBinding - deletes a specified binding from a database.

All nameserver functions require that a nameserver database capabil-

ity be provided. Any operations carried out on bindings and sets are only done

in relation to the database specified by that capability. Howev er, the database

may include bindings to sets in other databases.

Chapter 2 -24- Survey and Critique

Chapter 2 Survey and Critique

2.1 Introduction

The design of stream I/O services, stream IPC services and the imple-

mentation of libraries to provide these services have a long and interesting his-

tory. A range of important technical issues must be addressed in both design

and implementation. These will be examined in the context of a number of his-

torically important designs.

For the purpose of this discussion a stream is defined as a connection

which reliably transfers bytes of data in sequential order. Data is written and

read from a stream in a first-in first-out (FIFO) fashion. A stream is unidirec-

tional, unless specified otherwise. Buffering of data is provided by the stream

mechanism, and is not visible to the programmer.

2.2 An Overview of I/O Libraries and Stream Inter Process Communica-

tions

2.2.1 I/O Libraries

The function performed by an I/O library is that of providing a pro-

grammer with an abstracted interface to a computer system’s physical I/O

devices. The interface seen by the programmer should hide as many of the

idiosyncrasies of the hardware as is possible. This is necessary to minimise the

effort required in moving programs between different types of computer sys-

tem. Should I/O library programming interfaces for a given language differ

across systems, moving a program between systems will incur a significant

overhead in time and effort required to both change the program, and if neces-

sary to debug the changes.

The evolution of portable I/O libraries in FORTRAN provides a good

example [PLAUGER92]. Early implementations, such as FORTRAN II,

required explicit specification of an output or input device, such as a tape drive

or card reader. Later implementations, such as FORTRAN IV, provided Logical

Unit Numbers (LUN) rather than explicit physical device identifiers. A

Chapter 2 -25- Survey and Critique

programmer could therefore write programs which produced I/O operations

against logical devices, rather than physical devices. I/O libraries linked in at

run time provided the mapping between logical and physical I/O devices.

The development of Unix and the C Language during the 1970s

[RITCHIE93] produced a important set of improvements to I/O programming

interfaces. The most notable improvement was the adoption of an I/O program-

ming model in which I/O devices were abstracted as files. Program I/O to stor-

age devices and display and entry devices employed the same type of program-

ming interface. The specific routines which handle device dependent I/O were

embedded in the Unix kernel, and thus hidden from the programmer.

To support such a paradigm, Unix required a standard format for I/O

transfer to and from an I/O library. This format is a transparent binary stream.

Te xt format data (eg ASCII) is treated as lines which are separated by newline

characters. The mapping between a text stream and the format required by the

I/O device is typically performed by the Unix operating system.

The C language interface to all I/O devices utilised a FILE structure.

Each process used a table of such structures, and the index to the table was des-

ignated a file descriptor. A programmer accessing I/O devices of any type in

Unix uses a common set of system calls for open, close, read, write and other C

specific functions, all of which operate on the FILE descriptor. The stdio library

[RITCHIE93], developed to provide a portable I/O package, further extended

this model to use a pointer to a FILE structure.

The Unix stdio programming paradigm treats all I/O interfaces as

stream communication channels (the Unix ioctl interface is intended for device

status operations). Implementations of Unix will provide type specific support

for various types of buffering, all implementations however share the attribute

of largely concealing the buffering mechanism from the programmer.

The migration of the C language from Unix to other operating sys-

tems led to the adoption of the ANSI X3.159-1989 C language standard

[ANSI89], produced by the ANSI X3J11 committee. The X3.159-1989 stan-

dard was designed to provide a portable I/O interface for systems which did not

provide the Unix I/O model. The FILE pointer paradigm was retained in the

ANSI standard, but provisions were included to allow implementors to support

I/O models specific to other operating systems. The transparent binary stream

I/O model was not retained, and the ANSI model distinguishes between binary

streams and text streams. This measure was required to support systems in

Chapter 2 -26- Survey and Critique

which text streams are treated differently from binary streams. The low lev el

I/O functions such as open, close, read, write and lseek were not included in the

ANSI standard, because some of their functionality was considered by the

ANSI committee to be too closely tied to Unix. These functions have been

included in the IEEE 1003.1-1990 POSIX standard [IEEE90].

lseek()

ushort v_flag

ushort v_count

struct vfs *vfsmountedhere

struct vnodeops *v_op

struct vfs *v_vfsp

struct stdata *v_stream

struct page *v_pages

enum vtype v_type

dev_t v_rdev

caddr_t v_data

struct filock *v_filocks

struct vnode_t

struct file *f_next

struct file *f_prev

ushort f_flag

cnt_t f_count

struct vnode *f_vnode

off_t f_offset

struct cred *f_cred

struct file *f_next

struct file *f_prev

ushort f_flag

cnt_t f_count

struct vnode *f_vnode

off_t f_offset

struct cred *f_cred

struct file *f_next

struct file *f_prev

ushort f_flag

cnt_t f_count

struct vnode *f_vnode

off_t f_offset

struct cred *f_cred

struct file_t

Figure 2.1 System V Release 4 Unix I/O Programming Model

VNODE STRUCTURE

FILE STRUCTURE

open()

close()

read()

write()

getc()

putc()

2.2.2 Stream Inter Process Communications

Stream IPC facilities allow two processes to exchange information

over a stream channel. This style of IPC is well suited to tasks such as piping

the output from one program to the input of another. Programs such as text fil-

ters may be used in cascades, each filter in the cascade connected by a stream.

Chapter 2 -27- Survey and Critique

If a stream interface is used for I/O as well as IPC, the input to a cascade of

processes may be an input device or file, and the output of the cascade may be

directed to a file or an output device such as a terminal or printer.

Tw o areas are of principal interest in the implementation of a stream

IPC mechanism. The programming interface is of interest because it will deter-

mine the amount of effort required to use the facility, and impose constraints

upon how the facility may be used. The transport mechanism is of interest

because it constrains the functionality, achievable throughput performance and

the robustness of the stream facility.

2.3 The AT&T Unix Model

The evolution of AT&T Unix since the 1970s has seen the progres-

sive refinement of the operating system’s stream support for I/O devices and

IPC. The current version of this product, System V Release 4 (SVR4), is widely

licenced and used as the basis for Silicon Graphics Irix 5 and 6, Sun Microsys-

tems Solaris 2, Hewlett Packard HP/UX 10, Novelle UnixWare and Santa Cruz

Operation (SCO) Unix. All of these derivatives share the basic stream model of

the original AT&T Unix System Laboratories SVR4. System V Unix was

released in 1983, and the current System V Release 4 was released in 1988.

System V Unix employs the layered STREAMS interface [GOOD-

HEART94] for supporting stream mode IPC and provision of an interface to

stream oriented character devices, such as dumb terminals. In the STREAMS

model , a single programming interface termed a stream head is used. A queue

of linear buffers containing data and control messages is written to and read

from the stream head. To accommodate filters and protocol modules, the

STREAMS model employs a stack of stream modules. Each module will oper-

ate on a buffer, and then pass that buffer to the next stream module. In this fash-

ion, the channel between a stream head and device driver may employ multiple

stream modules to manipulate the contents of the data stream in the desired

manner. An example would be the cooking of terminal I/O traffic.

SVR4 employs a virtual filesystem model. In this model the FILE

(file_t) structure points to a virtual inode or vnode structure, which contains

parameters specific to the stream interface used. Each process maintains a table

of file_t structures, which are managed as a linked list of entries, using the

f_next and f_prev pointers. The f_flag parameter is a bitmask of flags which

Chapter 2 -28- Survey and Critique

describe the modes with which the interface was opened.

PROCESS A PROCESS B

S
T

R
E

A
M

S
 M

O
D

U
L

E
S

BUFFER POOL

S
T

R
E

A
M

S
 M

O
D

U
L

E
S

Fig.2.2 STREAMS Transport - Conceptual Model

DEVICE DRIVERS

STREAM HEAD STREAM HEAD

The f_count parameter is a reference count which indicates the num-

ber of FILE pointers pointing to the file_t structure. This scheme is employed to

prevent closure and deallocation of the file table entry by any other than the last

close operation against the entry. The f_offset parameter is the character count

Chapter 2 -29- Survey and Critique

offset into the file, and is adjusted by operations which read, write or seek on a

file. The f_cred parameter contains the security credentials of the process which

has opened the file.

The vnode structure is designed to accommodate a wide range of

interfaces, such as physical storage devices with a range of installed filesystem

types, symbolic links, block and character mode devices. STREAMS devices

may also be accessed.

The v_flag parameter contains a bitmask which indicates the type of

file opened, including pipes which are implemented as STREAMS devices. The

v_count parameter is a reference count which provides a similar function to the

f_count parameter. This parameter ensures that only the last process to close a

file will deallocate the vnode. The vfs_mountedhere parameter is used only with

directories which are mount points to a filesystem. The v_op points to a struc-

ture which contains an array of pointers to filesystem type specific operations.

When the vnode is created upon opening a file or a pipe, the pointers are ini-

tialised to point at functions which are specific to the type of device to be used.

The v_vfsp pointer points to a structure which describes the filesys-

tem type used. If the I/O is to a stream, then the v_stream pointer points to the

STREAMS device used. The v_pages pointer points to a page list for the vnode.

The v_type parameter specifies the type of device, for instance a regular file or

pipe. The v_rdev parameter stores the major and minor device number for spe-

cial files. The v_data filed points to the filesystem specific structure associated

with the file, such as an inode used with a regular file. The v_filocks pointer

points to a list of filock structures, used to implement file and record locking.

The v_ops pointer mechanism accommodates 37 filesystem specific

operations, many of which are supported only for Unix file systems. These

operations include reading, writing, opening, closing, fetching and setting of

attributes, flushing (Unix sync) of buffers, and the locking and unlocking of

files.

The intention of the designers of the SVR4 file_t/vnode model was to

significantly simplify the implementation of I/O libraries installed on the oper-

ating system. A Unix I/O system call operating on a file or a stream will be

pointed, via the vnode/v_ops pointer mechanism, to the specific function

required. The addition of further filesystem types to the operating system can

be readily accommodated by addition of instances of vnodeops, vfs, vtype and

v_data.

Chapter 2 -30- Survey and Critique

The SVR4 Unix model provides both mandatory and advisory file

locking mechanisms. Both mechanisms will allow the locking of records within

the file, or the locking of the whole file. Process ID numbers are used to iden-

tify the processes which have placed the locks.

The buffering strategy used is device dependent. In all instances, a

pool of linear buffers is used.

The STREAMS mechanism is used to implement pipes, named pipes

(which appear in the filesystem) and stream IPC across networks. Where the

SVR4 implementation provides a BSD socket IPC compatibility library, this is

typically implemented in STREAMS.

2.4 The BSD Unix Model

The most important derivative of AT&T Unix is BSD Unix, developed by the

University of California at Berkeley. The first Berkeley Unix, designated 1BSD,

was derived in 1977 from AT&T Unix Sixth Edition. This release was fol-

lowed by 2BSD in 1978, and 3BSD in 1979. The most important release of

Berkeley Unix was 4BSD, derived in 1979 from AT&T Unix Seventh Edition.

The 4BSD operating system became the basis for Sun Microsystems

SunOS, which dominated the Unix workstation market during the 1980s. At the

time of writing, versions of 4.2 and 4.3BSD are still widely used. The subse-

quent 4.4BSD, completed in 1993, is the basis for the commercial BSD/OS and

the public domain FreeBSD 2.0. It is therefore reasonable to expect that BSD

Unix will be used for some time yet, and thus its design is of more than histori-

cal interest.

The most recent release of 4BSD, 4.4BSD, employs a file table and

vnode model analogous to that in SVR4 Unix. The implementation is however

quite different.

The 4.4BSD system manages file structures by maintaining a list of

pointers to individual file structures. The file structures exist on the process

heap. Whenever a file is opened, address space is allocated on the heap and the

file structure is initialised. On closing the file, the space is freed, and the list

amended. The f_filef pointer points to the list entry for the file, and the f_fileb

pointer points to the head of the list. A global variable is maintained for the

number of open files [BSD44].

The f_flag field is a bitmask which contains the flags with which the

Chapter 2 -31- Survey and Critique

file was opened. The f_type field describes the file type. The f_count field is the

reference count which is identical in function to that in SVR4. The f_msgcount

field is used in managing the state of socket connections. The f_ucred pointer

points to a structure containing process credentials, and is analogous to that in

SVR4. The f_data field is the address of the vnode structure used.

Figure 2.3 4.4BSD Unix I/O Programming Model

struct file *f_filef
struct file **f_fileb
short f_flag
short f_type
short f_count
short f_msgcount
struct ucred *f_cred
struct fileops {
 int (*fo_read)
 int (*fo_write)

 int (*fo_select)
 int (*fo_close)
} *f_ops
coff_t f_offset
caddr_t f_data

 int (*fo_ioctl)

struct file *f_filef
struct file **f_fileb
short f_flag
short f_type
short f_count
short f_msgcount
struct ucred *f_cred
struct fileops {
 int (*fo_read)
 int (*fo_write)

 int (*fo_select)
 int (*fo_close)
} *f_ops
coff_t f_offset
caddr_t f_data

 int (*fo_ioctl)

struct file *f_filef
struct file **f_fileb
short f_flag
short f_type
short f_count
short f_msgcount
struct ucred *f_cred
struct fileops {
 int (*fo_read)
 int (*fo_write)

 int (*fo_select)
 int (*fo_close)
} *f_ops
coff_t f_offset
caddr_t f_data

 int (*fo_ioctl)

struct file

FILE STRUCTURE

open()

close()

read()

write()

getc()

putc()

lseek()

VNODE STRUCTURE

u_long v_flag

short v_writecount

long v_holdcnt

daddr_t vlastr

u_long v_id

struct mount *v_mount

int (**v_op)()

TAILQ_ENTRY (vnode) v_freelist

LIST_ENTRY (vnode) v_mntvnodes

struct buflists v_cleanblkhd

struct buflists v_dirtyblkhd

long v_numoutput

enum vtype v_type

union{

 struct mount *vu_mountedhere

 struct socket *vu_socket

 struct specinfo *vu_specinfo

 struct fifoinfo *vu_fifoinfo

} v_un;
struct nqlease *v_lease
daddr_t v_lastw

daddr_t v_cstart

daddr_t v_lasta

int v_clen

int v_ralen

daddr_t v_maxra

caddr_t v_vmdata

enum vtagtype v_tag

void *v_data

struct vnode

short v_usecount

The f_offset field is the file position pointer. Placement of the position

pointer in the file structure allows multiple processes to operate upon the file

Chapter 2 -32- Survey and Critique

pointer while not interfering with one another.

The most significant difference in the 4BSD file structure against the

SVR4 design, is the inclusion of the f_ops field, which points to an array of

pointers to file operation functions.

PROTOCOL

STACK

SOCKET SOCKET
BUFFER (MBUF) POOL

PROCESS A PROCESS A

DEVICE DRIVERS

NETWORK

Fig 2.4 BSD Socket Transport - Conceptual Model

Chapter 2 -33- Survey and Critique

The intention of the 4BSD designers [LMKQ89] was to provide an

object-oriented file structure. The f_ops structure is initialised at open time with

type specific instances of read, write, ioctl, select and close functions. This

design feature significantly simplifies the implementation of library functions

which operate on the file structure [BSD44], [MCKUSICK94].

The vnode structure employed in 4.4BSD is significantly more com-

plex than its equivalent in SVR4. This is largely due to the design requirement

in 4.4BSD, to support additional filesystem types. As 4.4BSD was used initially

as a research platform, changes were incorporated to accommodate the Log

Structured Filesystem and the NQNFS protocol.

The fields which are common in purpose to the SVR4 design are the

v_flag field, the v_usecount field, the v_type field, the v_mount structure, the

v_ops pointer, and the v_data pointer. The v_un field is a pointer which is ini-

tialised to type specific pointers to state variable structures. The types included

in the v_un field are regular files, sockets, special files and fifos.

Stream IPC in 4.4BSD Unix is implemented using the BSD socket

mechanism [LFJLMP]. BSD releases prior to 4.2BSD implemented pipes in the

filesystem, all subsequent releases implement pipes using the socket mecha-

nism.

The socket mechanism was designed to provide transparent stream

and datagram oriented IPC between processes running both locally and

remotely over a network. The intent of the designers was to provide a program-

ming interface which was independent of the underlying communications chan-

nel, and common to both local and remote operations.

The programming interface used was intentionally different from the

interface for filesystem objects. The designers chose not to overload the estab-

lished open system call with additional functionality to support the socket

scheme. This was intended to improve the portability of programs [LMKQ89].

Opening a socket connection requires the creation of the socket with a socket

system call, binding a socket address to the socket with a bind call and initiat-

ing the connection with a connect call. The socket call returns an index into the

process file table, termed a file descriptor in Unix. Once the connection is open,

the programmer may use both socket specific calls or the established Unix read

and write system calls. The 4.4BSD pipe system call implementation will open

a read socket and a write socket to provide a bidirectional channel [BSD44].

The socket transport mechanism is layered over the network protocol

Chapter 2 -34- Survey and Critique

drivers. Traffic to remote processes must be handled by the drivers. Traffic local

to the host bypasses the network protocol stacks. Management of the pool of

mbuf linear buffers is performed by the networking software. This approach

was employed to simplify the design by constraining the function of the socket

to that of providing the programming interface alone.

THREAD A THREAD B

PROCESS ADDRESS SPACE

KERNEL ADDRESS SPACE

Fig 2.5 Mach 3.0 Stream Communications - Conceptual Model

STREAM
INTERFACE

STREAM
INTERFACE

MESSAGE PORT MESSAGE PORT

2.5 The Mach Model

The Mach operating system was developed by Carnegie Mellon Uni-

versity as a research platform for the purpose of investigating issues in micro-

kernel design. The Open Software Foundation OSF/1 operating system utilises

the Mach 2.5 kernel and is the Unix system supplied by Digital Equipment Cor-

poration with their Alpha architecture systems. The Mach 3.0 kernel was

released in 1989, and provided some improvements to the IPC facilities used in

Chapter 2 -35- Survey and Critique

the earlier Mach 2.5 kernel [DRAVES91]. Mach is of interest in the context of

stream oriented IPC because it implements a stream mechanism which is lay-

ered over a message passing mechanism.

The Mach 3.0 kernel IPC facility is based upon a message passing

model, in which access to message communication ports is provided by capa-

bilities. The interface to the message passing mechanism is designed to support

Remote Procedure Calls, object-oriented client server operations, and stream

communications between processes.

The central element in the Mach message mechanism is the port,

which is implemented as a message queue in the address space of the kernel

[OSF93]. The kernel enforces security of the port by allowing messages to be

passed only if the sending party has the capability for the connection. Messages

received by a thread within a process are copied into the address space of the

process. The size of the message passed through a port is arbitrary, and may be

as large as the address space of the process.

In the Mach 3.0 stream implementation, messages from any giv en

thread are delivered in order, which satisfies one of the basic requirements for

stream communication. Flow control of stream traffic is implemented by limit-

ing permissible queue lengths. Threads which require different amounts of

buffering can alter the queue length associated with a port. Operations which

block due to a full or empty queue can be set to restart when the queue is able

to accept or provide further messages. If non-blocking behaviour is required,

the kernel can notify the communicating thread with a message indicating that

the queue is ready again.

The OSF/1 operating system provides access to the Mach messaging

mechanism, but implements stream IPC with BSD style sockets. A separate

socket implementation is used.

2.6 The Alloc Stream Model

The Alloc Stream Facility (ASF) was developed in the early 1990s by

researchers at the University of Toronto [KSU94] as a means of improving the

performance of Unix I/O libraries. The ASF model is of interest as it demon-

strates how appropriate use of memory mapping techniques and buffering strat-

egy can be employed to improve throughput performance at the library inter-

face to the operating system.

Chapter 2 -36- Survey and Critique

The starting point in any discussion of the ASF facility is the

behaviour of established Unix I/O libraries. A typical Unix C language stdio

library implementation will map I/O library calls such as fopen, fclose, fread,

fwrite and fseek into the corresponding Unix systems calls, open, close, read,

write and lseek. This mapping will typically involve the substitution and addi-

tion where necessary of arguments, and in read or write operations, the buffer-

ing of data within the library.

BUFFER
SYSTEM

BUFFER

I/O LIBRARY

PROCESS ADDRESS SPACE

APPLICATION

KERNEL ADDRESS SPACE

freadfwrite

write read

LIBRARY

Fig 2.6 Generic Unix stdio Library Implementation

BUFFER

LIBRARY

BUFFER

SYSTEM

Chapter 2 -37- Survey and Critique

Because the stdio library is interfaced to the Unix kernel through sys-

tem calls, all transfers of data between the library and kernel incur an overhead

in copying data, and an overhead in executing the system call. Both of these

overheads can be significant in a modern Unix system, which typically employs

a RISC architecture processor.

I/O LIBRARY

PROCESS ADDRESS SPACE

APPLICATION

KERNEL ADDRESS SPACE

freadfwrite

Fig 2.7 Unix stdio Library Implementation Using ASF Model

SYSTEM

MEMORY MAPPING OF BUFFERS

BUFFER
SYSTEM

BUFFER

System calls require a context switch which will result in the saving

of the process state. This can be an expensive operation where a large set of

Chapter 2 -38- Survey and Critique

registers must be saved. This problem is exacerbated where the application

executes frequent read and write operations containing small amounts of data,

as the overhead is incurred for each operation.

The performance loss due repeated copy operations can be signifi-

cant. In the conventional Unix model, each operation will result in two copy

operations, as the data is first copied from an application into a buffer in the

library, and then copied from the library to a kernel buffer.

PROCESS ADDRESS SPACE

APPLICATION

KERNEL ADDRESS SPACE

MEMORY MAPPING OF BUFFERS

SYSTEM

Fig 2.7 Application I/O Using the ASF ASI Interface

BUFFER
SYSTEM

BUFFER

Chapter 2 -39- Survey and Critique

The ASF model is built on the idea of using the platform’s virtual

memory system to map the kernel buffers into the address space of the user pro-

cess. The library or application then need only copy the data once, to or from

the memory mapped kernel buffer.

The ASF design provides a user level interface, termed the Alloc

Stream Interface (ASI). This interface may be used directly by an application

programmer, or by a library implementor. Buffer allocation and mapping by the

ASI is performed by an salloc call, buffer deallocation and unmapping by the

sfree call. These calls are analogous to malloc and free operations.

The ASF may be exploited in two ways. The first is the reimplemen-

tation of existing I/O libraries. The reimplemented library interfaces to the ker-

nel buffers using the ASI interface. The overhead incurred is that of the single

copy between the application and the buffer in the library. This strategy allows

existing application program code to be retained without modification.

The second method is for the application programmer to rewrite the

application, replacing the previous stdio library calls with memcpy calls

directly to and from the mapped kernel buffers. While this method incurs a soft-

ware development time overhead, it removes the execution time overhead of the

library call.

The authors of the ASF design report useful improvements to the per-

formance of standard Unix applications linked to a reimplemented stdio library,

and significantly improved performance to Unix applications reimplemented to

use the ASI interface.

2.7 Other Operating Systems

The Multics system [ORGANICK] is not discussed in detail as it

does not employ a stream IPC mechanism, and historically precedes the emer-

gence of Unix and the C language. The I/O interface employed in Multics pro-

vided a mechanism for binding device names to physical devices.

The CHORUS system [ROZIER91] is also not discussed in detail, as

stream oriented communications are not provided in its kernel. In the CHORUS

system IPC is implemented via a message passing mechanism which is similar

to that in Mach.

Chapter 3 -40- Stream IPC

Chapter 3 The Stream IPC and File Access Model

3.1 Introduction

The design of the stream IPC and file access mechanism is central to

the function of the Walnut I/O library. This mechanism is used to provide a pro-

grammer with a transparent byte oriented communications channel between a

pair of processes, or with a stream interface to a file object.

A stream IPC channel may be used for piping the output of one pro-

gram into another, as well as to provide a clean interface to a process which

provides a common service, such as support for a hardware device.

The Walnut architecture provides a user process with two types of

programming interface to an I/O device. Disk storage devices are accessed

directly through the virtual memory mechanism. Devices not accessed through

the virtual memory mechanism, such as floppy disk drives, tape drives or

stream oriented devices such as dumb terminals or printers, use a different

access model.

Tw o mechanisms may be used for accessing such a device. One

mechanism is that of mapping a page containing device control and status reg-

isters into the address space of a process. A process which knows the capability

to this page can then sense and manipulate the state of the device by reading

and writing device registers respectively. This mechanism is applicable to inter-

rupt and non-interrupt driven devices.

Interrupt driven devices must employ a further mechanism. This

mechanism is an interrupt service routine which is linked with, but otherwise

largely independent of the kernel. The interrupt service routine will directly

access device registers. Communication between an interrupt service routine

and process is accomplished by sharing a page at a fixed physical address in the

address space of the interrupt service. A process which knows the capability to

this page can then interact with the interrupt service routine.

This model therefore allows a process to first initialise a device, and

then read and write data through a shared buffer and interrupt service. While

any process knowing capabilities to a device can access that device, in practice

the only process to do so will be a device manager or server process.

Chapter 3 -41- Stream IPC

This is analogous to the Unix paradigm in that a driver is split into an

"upper part" and a "lower part", the latter being the interrupt services

[LMKQ89]. Unlike Unix, where the "upper part" of the driver is embedded in

the kernel, the "upper part" of a Walnut device driver typically runs as part of a

device manager process.

A user process may access the device manager process through a

shared page, a message, or a stream connection. Access may occur only if it has

the capability to access the shared page, send a message to or to make a stream

connection to the device manager process.

DEVICE SERVER PROCESSESUSER PROCESS

Figure 3.1 Walnut Library I/O Interface Model

INTERRUPT SERVICES

DEVICE HARDWARE

STREAM CONNECTIONS SHARED PAGES

The device manager process is typically the only entity within the

system which has direct access to the stream device. This design strategy pro-

vides a uniform interface to all devices, and a measure of security in accessing

the devices as a valid capability to connect to the device manager process must

be known.

The implementation of device driver functions in processes rather

Chapter 3 -42- Stream IPC

than inside the kernel provides a number of advantages.

• the design of the kernel is simplified

• robustness is improved, as a problem in the lower part of the device driver or

hardware will not impair the operation of the kernel. A problem in the upper

part of the device driver can impair only the operation of the device, or those

processes using the device through the device manager process.

• device drivers may be added, removed or altered without changing the design

of the kernel

• user processes may be provided with a uniform programming interface to

device manager processes.

• in multiprocessing systems, dedicated I/O processors share a common type of

user programming interface with simpler directly accessed devices

The Walnut GLui console manager is implemented using this model.

GLui is a virtual terminal manager for a PC frame buffer console and keyboard,

and emulates a number of dumb terminals. The Walnut floppy drive manager

also employs the device manager model, although the existing implementation

uses a shared page rather than a stream connection to transfer data to and from

a user process.

Because the stream IPC mechanism becomes the means of supporting

much of the I/O as well as piping between processes, throughput performance

and robustness are important issues.

To produce a simple and robust design for the stream IPC and file

access mechanism, careful consideration had to be given to the data structures

used, to allow these same data structures to be used for stream IPC and library

I/O operations against file objects.

The need to provide a substantial degree of compliance with the

ANSI C standard dictated that some established conventions be retained, and

these are detailed more closely in 3.2.1

Whilst some consideration was given to including the POSIX 1003.1

standard into the design constraints, this was subsequently rejected as too many

Chapter 3 -43- Stream IPC

aspects of the POSIX model were implicitly tied to Unix and thus irrelevant in

the provision of stdio functions. Should a port of Unix to the Walnut be

intended, analogous to that in Mach or Chorus, then the development of a

POSIX library would be justified [POSE93]. The same argument may be

applied to a BSD socket programming interface.

3.2 Walnut I/O Library Design

3.2.1 Requirements

A number of basic design constraints were set, to provide both com-

pliance with the language environment used, as well as to provide objective cri-

teria for assessing the usefulness of various design alternatives. An important

aspect of this process was to determine which attributes of the established

ANSI programming interface model were relevant for the Walnut environment,

and which were not.

The process of defining requirements was iterative. Starting from a

series of basic requirements, these were repeatedly refined by comparing con-

straints implicit in both the ANSI standard and the Walnut kernel. This strategy

was adopted to ensure that the final set of design requirements provided the best

possible fit.

Importantly, as dev elopment of the software proceeded, further con-

straints and technical issues became evident, and these in turn were added into

the final functional requirement set for the library. Some care was taken to

ensure that the design was clearly separated from the implementation. This was

to ensure that the library can be ported with a minimum of effort, when the

Walnut kernel is ported to different machine architectures.

The initial set of design requirements were defined as:

• the mechanism employed would exploit the Walnut kernel’s ability to map an

object into the address space of a process.

• the stream transport mechanism would be implemented with a circular buffer

scheme.

Chapter 3 -44- Stream IPC

• a file structure would be used to preserve the ANSI C programming interface

structure and syntax.

• within a file object, the offset pointer can be moved to an arbitrary byte

address within the capability.

• operations must be available to open and close file and stream objects.

• the syntax for open, close, seek, read and write calls should be compliant with

the ANSI C programming interface.

• support would be provided for the Walnut nameserver library, to allow the use

of name and path based object addressing syntax as is used in the ANSI stan-

dard.

• support would be provided for both blocking and non-blocking behaviour

when reading and writing both file and stream objects.

• a set of additional function calls would be added, where appropriate, to pro-

vide functionality unique to the Walnut. These would where possible retain the

style of programming interface used in the ANSI C standard and the POSIX

1003.1 standard.

• ANSI compliance would be mandatory, where such compliance did not incur

a significant development time overhead.

The requirement to preserve the ANSI and POSIX 1003.1 style of

programming interface has some important implications. Both of these models

are derived from the Unix paradigm, in which the FILE structures associated

with open files are managed as a table [Sections 2.3, 2.4]. Indeed, the argument

used to identify an open file in the POSIX environment is an integer index into

this table. As a consequence of this, the Walnut FILE structure would also have

to be managed as a table to ensure that the same behaviour is provided.

An important and implicit objective, as is evident from the initial

requirements, was to provide a programmer familiar with the ANSI C and

POSIX 1003.1 environments with a comfortable programming environment.

Chapter 3 -45- Stream IPC

This would minimise the effort required to port existing software from other

platforms to the Walnut, as well as enabling a programmer to become proficient

in the use of the library as quickly as possible.

3.2.2 Design Considerations

Whilst a number of design constraints were defined, these did not

encompass all considerations which would be relevant to the implementation.

As such, design considerations are discussed separately. Many of the design

considerations were apparent from the outset. Some became apparent during

the implementation of the library.

• locking vs lock free buffer management - the stdio library is intended for

use with single processor as well as future multiprocessor implementations of

the Walnut kernel [CP94]. Robustness in a multiprocessor environment is

important, and the use of locking mechanisms will increase complexity should

robustness be required.

• the use of common vs unique structure types for file objects and stream

objects - because file objects and stream objects have different functional

requirements, a library implementation may use either a common data structure

type for the object, or unique data structure types. Whilst the use of different

data structure types would simplify the data structures, it would increase the

complexity of a number of the library functions.

• distinguishing file objects from stream objects - two strategies were consid-

ered for this purpose. The first strategy is to define separate object types in the

kernel, using the parameter block type field. The second strategy is to use a

magic number at the beginning of the object.

• programming interface for opening and closing streams - two approaches

were considered, these being the use of unique library calls for file and stream

open operations, or the overloading of a single function call for both purposes.

• mapping ANSI file behaviour on to an object - a memory mapped object

has a number of properties which differ from those of an opened file object, as

Chapter 3 -46- Stream IPC

defined in the ANSI C standard. While memory mapping is a more powerful

approach than treating the object as a sequentially accessed file, compliance

with the standard dictated usage of the latter. Important issues were how much

of the object is to be mapped in, and how the state of the object and the position

of the file pointer are managed.

• process environment - the Walnut kernel provides a process with an address

space which contains a number of defined variables. The use of the library how-

ev er required the addition of a number of additional variables and structures, to

support its function. The foremost of these was a table of FILE structs. In addi-

tion, it was found that other functionality such as error handling was required.

• file structure strategies - the design of the FILE structure required reconcili-

ation of a number of ANSI standard related constraints, as well as the func-

tional requirements of the stream and file object handling.

• nameserver issues - the nameserver library provided a means of binding

names to capabilities. The stream IPC mechanism would need to exploit where

appropriate, nameserver functions, to provide a good fit with the ANSI pro-

gramming interface model.

• performance issues - the transport used in the stream IPC mechanism was to

be designed to minimise the computational overhead of transmitting data

through the channel, thus maximising throughput performance. While the use

of a circular buffer scheme in a shared object was a design requirement, the jus-

tification of this requirement lies in a performance advantage. Furthermore,

other library operations were to use the minimal number of system calls

required.

• security issues - the stream IPC mechanism should not degrade the security

of access inherent in the Walnut kernel. The two processes communicating

through the stream IPC channel should not be given access to each other’s

address space, other than to buffer related structures shared for purposes of data

transmission.

3.2.3 Design Rationale

Chapter 3 -47- Stream IPC

The requirement to fit the ANSI programming interface to the Walnut

paradigm suggested a simple two tier model. A file structure analogous to that

in ANSI and Unix implementations would provide the entry point into the

mechanism. A stream structure would contain pointers into the view of the

stream buffer object or into the view of the file object.

FILE OBJECT

fclose()

fread()

fwrite()

fgetc()

fputc()

fseek()

ftell()

Stream

STREAM STRUCTURE

CAPABILITY VIEW

IPC BUFFER OR

FILE STRUCTURE

File (FILE)

Figure 3.2 Walnut Library I/O Programming Model

fopen()

3.2.3.1 Buffer and Stream Structure Design

Several options were considered for the design of the Stream struc-

ture and buffer format. Initially, an arrangement with three separate objects was

proposed. The first object contained the circular data buffer. The second object

Chapter 3 -48- Stream IPC

contained buffer parameters, the in-index (write index) and out of band (OOB)

message passing parameters, which were to be a capability and state flags. The

third object contained the out-index (read index) and out of band (OOB) mes-

sage passing parameters, which were also to be a capability and state flags.

THE WALL

PROCESS OBJECT

DATA OBJECT

CODE OBJECT

Process A

THE WALL

PROCESS OBJECT

DATA OBJECT

CODE OBJECT

Process B

LOADED CAPL

LOADED CAPL

LOADED CAPL

LOADED CAPL

LOADED CAPL

LOADED CAPL

DATA BUFFER

DATA CONTENT

STREAM STRUCT #1

STREAM STRUCT #2

’WRITER’ ’READER’

MSG CAPL TO A

OOB FLAGS

IN-INDEX

MSG CAPL TO B

OOB FLAGS

OUT-INDEX

BUFFER BASE

BUFFER SIZE

READ ONLY

READ/WRITE

READ ONLY

READ/WRITE

READ/WRITE

READ ONLY

Figure 3.3 Walnut Stream Design - Initial Proposal

To provide protection from ill behaved subprocesses which could cor-

rupt the contents of the objects, the reading process would map in the buffer

and second object in read only mode. The writing process would map in the

third object in read only mode.

This arrangement evolved. The first major change was the decision to

collapse the three objects into one, as the overheads of managing three objects

for a single stream connection could not be justified unless the protection issue

Chapter 3 -49- Stream IPC

was to be a significant problem.

The capabilities and the OOB message flag fields would provide for

not only conventional blocking and non-blocking modes of operation, but also

for a "wakeup" mode of operation. In such a mode of operation, a process

which would otherwise block due to a buffer full or empty condition, would

sleep until "woken" by a message from its peer in the connection.

THE WALL

PROCESS OBJECT

DATA OBJECT

CODE OBJECT

Process A

THE WALL

PROCESS OBJECT

DATA OBJECT

CODE OBJECT

Process B

MSG CAPL TO B

OOB FLAGS

OUT-INDEX

LOADED CAPL

LOADED CAPL

’WRITER’ ’READER’

MSG CAPL TO A

OOB FLAGS

IN-INDEX

BUFFER BASE

BUFFER SIZE

READ/WRITE

READ/WRITE

DATA BUFFER

DATA CONTENT

Figure 3.4 Walnut Stream Design - Single Capability Model

The circular stream data buffer was designed for simplicity and to

provide the best achievable throughput performance. A scheme was devised,

whereby the reading and writing processes need only access their respective

index values into the buffer, and a tripwire value.

Chapter 3 -50- Stream IPC

No

Update Index

Block Flag ACTIVE

Put the Data

Return Data

Update Index

Block Flag ACTIVE
Return Data

Put the Data
Update Trip

Update Index

Block Flag ACTIVE
Return Data

Put the Data
Update Trip

Set ~RDOK Flag

Tripped ?

File or Stream ?

Update Mode

File

& !filelimit ?

Set Trip to filelimit Return EOF

myindex == inindex ?

Return STUFFED

outindex OK ?

Top of Buffer ?

Yes

Yes

Buffer Full ?

Yes

No

No

Buffer Full ?

No

Stream CLOSE?Return CLOSED
Yes

Yes
Return FULL

Reader
SLEEPMODE &

SLEEPING?
Wake Reader

Writer
SLEEPMODE ?

Yes

No

No

No

Set Flags
Sleep for 10 s

BLOCK

NONBLOCKING?

Back to Start

Back to Start

Figure 3.5 Walnut Stream Design - Simplified fputc Algorithm

Start

Yes

No

Stream

Yes

No

Yes

No

No

Chapter 3 -51- Stream IPC

Get the Data

Yes

inindex OK ?

myindex==outindex ?

Yes

No
Return STUFFED

Stream CLOSE?Return CLOSED
Yes

Yes
Return FULL

SLEEPMODE &
SLEEPING?

SLEEPMODE ?

Yes

No

No

No

Set Flags
Sleep for 10 s

BLOCK

NONBLOCKING?

Back to Start

Back to Start Yes

No

Writer

Wake Writer

Reader

Tripped ?

File or Stream ?
File

No

Start

Stream

Yes

No

Figure 3.6 Walnut Stream Design - Simplified fgetc Algorithm

Set ~WROK Flag

Update Index

Block Flag ACTIVE
Return Data

Get the Data

Set EOF Flag
Return EOF

pushback OK ?
No

No

Buffer Empty ?

No

Update Index

Block Flag ACTIVE
Return Data

Update Trip

The tripwire value is used to detect special conditions in the buffer,

such as full and empty states, or either index reaching the top to the buffer (des-

ignated the wrap condition). Because the trip condition is unique to each of the

Chapter 3 -52- Stream IPC

processes operating on the stream buffer, it was placed into the file structure.

To achieve high performance, the algorithm used in both fputc and

fgetc was designed to minimise the number of operations performed in a regu-

lar access to the buffer (i.e. non-trip condition).

This was accomplished by having fputc and fgetc first set the status

flag and test the trip condition, and then proceed to write or read the character,

or if tripped, interpret the state of the buffer and proceed further (Figure 3.5).

0x000C000

0x1000000

0x1400000

THE WALL

PROCESS OBJECT

0x5400000

DATA OBJECT

CODE OBJECT

0x000C000

0x1000000

0x1400000

THE WALL

PROCESS OBJECT

0x5400000

DATA OBJECT

CODE OBJECT

PROCESS A PROCESS B

STREAM BUFFER

Figure 3.7 Walnut Library I/O Implementation Model

FILE OBJECT

OBJECT

FILE OBJ VIEW

STREAM OBJ VIEW

STREAM OBJ VIEW

Stream Structure

Stream Structure

To implement the ungetc function, facilities for pushback of

Chapter 3 -53- Stream IPC

characters had to be provided. The mechanism adopted uses a compile time

parameter (NPUSHBACK) which is used to offset the trip point for the condi-

tion where the write index is "catching up" with the read index. If the trip point

in the buffer were not offset by the limit to the number of characters pushed

back on to the stream, these characters could be overwritten by the writing pro-

cess. The number of characters pushed back is held in the Stream structure.

The NPUSHBACK value could also be held in a field within the

Stream structure, to be initialised at the time the structure is created. This would

allow stream connections to have arbitrary values of NPUSHBACK, providing

that these values are reasonable in relation to the buffer size. It is intended that

a future version of the library include this facility.

The file structure was initially designed to operate with an IPC

stream, and subsequently modified to operate with a file object. To improve per-

formance, the file structure contains pointers to all of the fields in the Stream

structure which are required for operations on the buffer. These are initialised

when the file structure is initialised. A copy of the read or write index is

included to allow integrity checking of the Stream structure on every operation.

A field of flags was included to enable ANSI functionality to be implemented.

The unified Stream structure for both file objects and stream buffer

objects was chosen to simplify the design. Since both stream buffer objects and

file objects would be manipulated only by stdio library functions, there was no

apparent advantage to the use of file objects comprising only data. The imple-

mentation adopted therefore uses the same Stream struct and data area format

for both stream buffer objects and file objects.

Stream buffer objects and file objects are identified by the use of a

magic number, rather than using the type code of the capability. Whilst no

advantage was found to either technique for open operations, the use of the

magic number technique was cheaper for operations on objects already mapped

into the process address space. This is because the overhead of a K_CAPSTAT

system call was not incurred.

The mapping of ANSI standard open modes for files on to Walnut

access rights required some thought. For the creation of file objects, read and

write modes would map directly, and the update mode would provide both read

and write modes. If the modes specified in an open call would not match the

access rights to an existing capability, the operation would fail. Because there is

no distinction in the Walnut between binary and text streams, the optional

Chapter 3 -54- Stream IPC

ANSI mode flag for binary streams, "b", is not used.

Because the Walnut stream is unidirectional, the update mode is not

supported for operations on stream buffers. Because a stream buffer object must

be destroyed on the closing of the connection, and must be loaded by at least

two processes, the default access rights mask for a Stream buffer object is

SRSUICIDE | SRREAD | SRWRITE | SRUSER | SRMULTILOAD.

The file structures are managed as a linked list. While the alternative

method of allocating heap storage for every file structure to be used was consid-

ered, a file table managed as a linked list was adopted as this simplified the

debugging of the design. Allocation of structures on the heap is more efficient

in usage of address space.

The file table is located at a fixed address in the process object, and is

typically initialised after process creation. Adoption of this mechanism allows

the library to provide both the ANSI and POSIX programming interface con-

ventions. The latter was not implemented.

3.2.3.2 File Object Opening and Object Creation

The availability of the nameserver function library allowed the use of

a name based syntax which preserved the ANSI programming interface. Using

the interface requires that a binding to a valid capability exists. If the capability

does not exist, the open operation must fail. If a binding does not exist, the

default ANSI behaviour is to assume that the intent is to create a file.

Because the ANSI fopen call does not include parameters for default

file opening, two alternatives were available for setting parameters for the file

object to be created. One alternative is to define a default value in the library

with a global variable, the other is to exploit the ANSI standard [ANSI89] and

add an additional set of open mode flags unique to the Walnut. Expediency dic-

tated the adoption of the former approach using the setvol macro to set the vol-

ume number, although a good case can be made for the latter. The form of the

latter could be a set of fopen parameters such as

"wa,vol=0x8888,limit=1000,send=0,money=10000", where the volume param-

eter specifies the volume to create the object on, the limit parameter sets the

value of the argument for K_MAKEOBJ, the send flag prevents the capability

from being distributed to other processes, and the money parameter sets the

money to be put into the object. It is intended that this be implemented in a

Chapter 3 -55- Stream IPC

future version of the library.

The default behaviour for fopen is for an object to be created with

INITIALCASH money, and a large limit size, on the volume number set with

setvol. Alternatively, a user may create the object with a K_MAKEOBJ call,

bind it to a name with a nameserver library call and then call fopen to open the

file object.

3.2.3.3 Stream Open Programming Interface

The programming interface for opening stream connections was

implemented by overloading the programming interface for file objects with

additional qualifiers. This approach was considered preferable to designing a

separate interface, as the interface is simpler and thus more easily debugged. At

this phase in the project, the use of name bindings to processes was considered

a possibility, but not planned for implementation.

During the development of the library, stream open operations were

executed using the opencap call, which operates directly on a capability to send

a message to a process. This proved to be cumbersome during debugging. The

advantages of a scheme where name bindings were attached to processes

became very apparent. Not only was the design of client processes simplified,

but operations from the Walnut shell command line were simplified. An errant

process identifiable by name is much easier to delete. An rm utility designed for

destroying file objects could be used to destroy a no longer required process.

The fopen call was therefore modified, and additional utilities imple-

mented which allow a process to "name" itself once it begins execution, and to

"unname" itself when it destroys itself. The bindings are held in the process’

default database.

3.2.3.4 Process Environment Initialisation

The basic process environment provided by the Walnut kernel does

not provide facilities for the stdio library. A process which is intended to call

functions from the library requires initialisation of a number of library variables

and structures. This is performed by the initenv function which must be run

before any other library function.

Chapter 3 -56- Stream IPC

The initenv function will perform the following operations:

• sav e the argument list if the process was created by a shell.

• set default values for stream object size and blocking mode.

• sav e process specific information held initially in the parameter block (i.e.

process capability, maximum number of mailboxes, subprocesses and loadable

capabilities).

• initialise the debugging monitor screen.

THE WALL

PROCESS OBJECT

DATA OBJECT

CODE OBJECT

STREAM OBJ VIEW

STREAM OBJ VIEW

THE WALL

PROCESS OBJECT

DATA OBJECT

CODE OBJECT

STREAM OBJ VIEW

Stream Structure

OBJECT

STREAM BUFFER

Stream Structure

OBJECT

STREAM BUFFER

Stream Structure

OBJECT

STREAM BUFFER

Figure 3.8 Walnut Library Pipe Implementation Model

PROCESS A

THE WALL

PROCESS OBJECT

DATA OBJECT

CODE OBJECT

PROCESS B PROCESS C PROCESS D

THE WALL

PROCESS OBJECT

DATA OBJECT

CODE OBJECT

STREAM OBJ VIEW STREAM OBJ VIEW

STREAM OBJ VIEW

• make and load the object used by the stream opening protocol for the purpose

of passing arguments.

Chapter 3 -57- Stream IPC

• enable the receipt of messages.

• create a table of mailbox states for all subprocesses.

• initialise the default name server database.

• initialise the file table.

• open file table entries for the stdin and stdout streams.

• initialise global variables used for debugging and error reporting.

The open stdin and stdout file table entries are an ANSI standard

requirement. The library assumes that valid capabilities to suitable stream

objects have already been copied into the file table entries for stdin and stdout.

These will have been created by a shell or other program which has created the

process. The ANSI stderr file table entry is aliased to stdout at compile time, as

the ANSI model of directing stdout to buffered output and stderr to unbuffered

output has no meaning in the Walnut context.

The ANSI style of file table initialisation and POSIX 1003.1 style of

argument passing allows a shell to provide command line piping between pro-

grams, similar to that in Unix.

3.3 Stream/File Object Structures

The final configuration of the Stream structure provides the required

common interface to file objects and stream IPC connections. The structure def-

inition is as follows:

/* the fundamental types are defined as:
*
* Uw unsigned 32 bit
* Sw signed 32 bit
* Uh unsigned 16 bit
* Sh signed 16 bit
* Uq unsigned 8 bit
* Sq signed 8 bit
*
*/

Chapter 3 -58- Stream IPC

typedef unsigned long Uw;
typedef signed long Sw;
typedef unsigned short Uh;
typedef signed short Sh;
typedef unsigned char Uq;
typedef signed char Sq;

/*
* Standard structure at front of File and Stream objects
*/

typedef struct Streamst {
Sw magic; /* magic number determines object type */
Sw type; /* Basically, stream or file */
Sw strmsz; /* Size in chars of data area or fileobj size */
Sw base; /* Offset of data area from start of Stream struct */
Sw inindex; /* Index rel to base where NEXT char is to be put */
Sw filelimit; /* file object size limit */
Uq lock; /* Semafore */
Uq readersblock;/* Flags indicating if reader is blocking */
Uq writersblock;/* Flags indicating if writer is blocking */
Uq dum3;
/*
* ------ The rest needed only for inter-process stream ------
*/
Sw outindex; /* Index whence next char will be read */
Capl reader; /* Message capl to reader */
Sw rfdti; /* Reader’s file descriptor table index */
Sw rmode; /* Read mode flag */
Capl writer; /* Message capl to writer */
Sw wfdti; /* Writer’s file descriptor table index */
Sw wmode; /* Write mode flag */
Sw pushback; /* pushback counter, inc’ed by ungetc, dec’d by getc */
} Stream;

The magic number, magic, determines the type of capability the

Stream is associated with. Two valid types are defined at this time. The

FILEMAGIC type is associated with ordinary files, which may be text

(ASCII) or binary. Code and data objects when accessed by the library are

treated as ordinary files. The STREAMMAGIC type is associated only with

stream buffer objects.

The type field may be a FILECHAR or a FILESTREAM, and was

used during the early development of the stream IPC implementation. To retain

compatibility with other items of code produced prior to the introduction of the

magic field, this field has been retained.

The strmsz field is overloaded with two usages. In a file object it con-

tains the exact size of the file, which is less than or equal to the size of the

Chapter 3 -59- Stream IPC

object. In a stream buffer object, it contains the size of the stream buffer within

the object.

The base field contains the size of the offset from the beginning of

the object to the beginning of the file data or stream buffer.

The inindex field is overloaded with two usages. In a file object

opened in write mode, it contains the file index value. In a stream buffer object,

it contains the value of the write index.

The filelimit field is used only in file objects, and contains the abso-

lute limit to the file size. The lock field is not currently used, but is intended as a

semaphore in a multiprocessing environment.

The readersblock and writersblock fields are used to indicate the

blocking state of the file object or stream buffer object, in the read and write

directions respectively. These fields are used to indicate whether the operation

is ACTIVE, BLOCKED, SLEEPING or WOKEN, in the respective modes

of blocking.

The outindex field is overloaded with two usages. In a file object

opened in read mode, it contains the file index value. In a stream buffer object,

it contains the value of the read index.

The reader and writer fields are used in stream buffers only, and con-

tain the capabilities to message the reading process and writing process respec-

tively. When a stream connection is running in wakeup mode, these capabilities

are used by a process to send a wakeup message to the other process using the

connection.

The rfdti and wfdti fields are indices into the file tables of the reading

and writing processes, respectively. These have been retained for compatibility

with earlier developed code and may be removed in a future version of the

library.

The rmode and wmode fields are used to indicate the intended block-

ing mode of the file object or stream buffer object, in the read and write direc-

tions respectively. It is also overloaded with the closing state flag, used during

the closing of stream connections.

The pushback field contains the count of characters pushed back on

to the file object or stream buffer object by the ungetc operation.

3.4 File Structure

Chapter 3 -60- Stream IPC

The final configuration of the File (FILE) structure provides the

required interface to a file table entry. Like the Stream structure, it overloads

some fields with usages for stream communications and file objects. The struc-

ture definition is as follows:

/*
* File (FILE) Pointer - File descriptor table entry
*/

typedef struct Filest {
Capl filecap;
Sw windowsize; /* Size in chars of loaded window onto buffer/file */
Stream *obj; /* Ptr to start of buffer or file object */
Sw strmsz; /* Size of info area in chars */
Uq *strm; /* Logical ptr to start of information characters */
/*
* in- and out- indexes are indexes rel to strm
* inptr, outptr point to these values
*/
Sw *inptr; /* ptr to in-index */
Sw *outptr; /* ptr to out-index */
Sw *pushback; /* ptr to pushback counter */
Sw tripwire; /*

* A critical index value at which special action is
* needed
*/

Sw myindex; /* Next index value to use */
Uq mode;
Uq type; /* FILECHAR = file object, FILESTREAM = stream */
Uq dir; /* 1 = read, 2 = write, 3 = read/write */
Sw next; /* index to next free File */
Sw flags; /* eof, err flags */
Sw fileindex; /* file object posn pointer */
} File;

The filecap field is the capability to the file object or stream object to

be opened, or open. It is used during the opening operation.

The windowsize field contains the size of the view of a file object

mapped in. The existing version of the library does not utilise it, it is intended

to be used in situations where the view mapped into the process address space

is much smaller than the size of the object.

The obj field is a pointer to the beginning of the mapping of the file

object or stream buffer object, where the Stream structure resides.

The strmsz field is overloaded with two usages. In a file object it is

the size of the file, in a stream buffer object the size of the data buffer. Both

Chapter 3 -61- Stream IPC

values are in bytes (8-bit characters).

The strm field is a pointer which is overloaded with two usages. In a

file object it points to the beginning of the data within the object (i.e. the first

byte), in a stream buffer object it points to the beginning of the data buffer.

The inptr and outptr fields point to the inindex and outindex fields of

the Stream structure respectively. The tripwire field is used to manage the state

of the indices into the data buffer of a stream buffer object, or the index into a

file object. The myindex field is a copy of the last value of the index written by

the process accessing the file structure.

The type field is used to identify whether the file structure is associ-

ated with a file object or a stream buffer object. Valid values are FILECHAR

and FILESTREAM.

The dir field identifies the direction in which the stream may be oper-

ated upon. It may assume the values of READ, WRITE and UPDATE.

The next field is used in managing the file table linked list, and points

to the next free entry in the table.

The flags field is a 32-bit bitmask used in managing the state of the

stream. A number of flags are defined:

_EOF - end of file condition encountered

_ERR - error condition encountered

_TIMEOUT - timeout error condition encountered

_APPEND - file open in append mode

_UPDATE - file open in update mode

_RDOK - read operations are permissible

_WROK - write operations are permissible

_CAP - capability has no name binding

_TMP - object is a tmpfile

_FULL - full condition encountered

The fileindex field is used only with file objects and stores the value

of the index (pointer) into the file. If greater than the strmsz of a file object, its

value is copied to strmsz on a flush or close operation.

Chapter 4 -62- Library Implementation

Chapter 4 Library Implementation

4.1 Introduction

The implementation of the stdio library reflects the constraints and

rationale defined in Chapter 3. The library can be functionally divided into

ANSI C library functions and Walnut specific functions. Additional debugging

tools are detailed in the Appendices to this document.

4.2 Walnut Library Functions

A C programmer can directly manipulate file objects and IPC streams

using the Walnut library functions. These library functions are also used by the

ANSI stdio functions for lower level manipulation of capabilities, and provision

of services such as the opening of stream connections.

4.2.1 The opencap Function

The opencap function is similar in operation to the Unix and POSIX

1003.1 open functions, providing the low lev el programming interface for file

and stream object operations. Because the Walnut kernel operates directly on

capabilities, the programming interface for opencap provides arguments neces-

sary for this purpose.

The function call for opencap and its arguments are defined as follows:

FILE *opencap(Capl *capability, Uw flags, Uw vol, Uw money, Uw limit);

• Capl *capability, is a pointer to a file object or target process object capabil-

ity. The process opening a file object or IPC stream must have a valid capability

and access rights to the file object or process to be opened, if it exists.

• Uw flags, is a 32 bit bitmask of flags which are to be used when opening a file

object or a stream IPC connection. These flags will define modes and defaults

Chapter 4 -63- Library Implementation

should a file object need to be created.

READ - flag to open the capability for reading

WRITE - flag to open the capability for writing

APPEND - flag to open the capability for writing, and advance the pointer to

EOF

UPDATE - flag to open the capability for update (i.e. read and write), valid

only for file objects.

CREATE - flag to specify the creation of a file object, if the object to be

opened does not exist.

BLOCK - flag to set stream I/O mode to blocking.

NOBLOCK - flag to set stream I/O mode to non-blocking.

WAKEUP - flag to set stream I/O mode to sleep on empty or full.

SMALLWINDOW - flag to specify an object created with 4 kbyte size,

overriding the limit argument

LARGEWINDOW - flag to specify an object created with 4 Mbyte size,

overriding the limit argument

FILECAP - flag to specify that the capability to be opened is to a file object.

• Uw vol, this argument specifies the volume for file object creation.

• Uw money, this argument specifies the amount of money to be placed into a

file object when created.

• Uw limit, specifies the limit value to be used during object creation.

Chapter 4 -64- Library Implementation

The opencap function will first check the value of the capability argu-

ment to determine whether it is a valid capability value, or a null capability. If it

is a null capability and the CREATE and FILECAP flags are not set, then

opencap will return with an error.

Once the capability value has been checked, the opencap function

will then decode the flags argument to set values for access modes and blocking

modes.

The opencap function will then execute a K_CAPSTAT system call

to verify the existence of the capability. If the capability does not exist, and cre-

ation has not been specified, opencap returns with an error. If the capability

exists, opencap saves the parameter block containing the details of the capabil-

ity.

Once the details of the capability have been found, opencap tests the

type field to determine whether the capability is to a file object or a process

object. The flag bits for window sizes are tested to set the limit value to be used

in creating a file object or a stream object.

If a file object is to be created, opencap executes a K_MAKEOBJ

system call to create the file object, and saves its details. The object is then

loaded into the address space of the process, and initialised with a valid Stream

struct. During initialisation the magic number and type fields are set, the limit

is set and the blocking modes are set. The initialised object is then unloaded.

If opencap is operating on a file object, the objects rights are then

compared with the flags argument. A mismatch in open flags and rights will

cause opencap to return with an error.

If opencap is opening a stream connection, it will open the process

mailbox to enable the receipt of messages. Once this is done, opencap will

execute a K_PEEKPROC call via the pingtarget function, to determine the

state of the target process. If the target process doesn’t exist, does not provide

the right to peek, is frozen, in probate or dead, then opencap returns an error.

If the target process is alive and thus assumed to be capable of pro-

ducing a stream connection, opencap will employ the sendrequest protocol

module to send an open stream request message. If a valid response message is

received from the target process, opencap will decode the message. If the mes-

sage indicates that the request has been serviced, the stream object returned is

checked. The opencap function will execute a K_CAPSTAT call to verify the

existence of the object.

Chapter 4 -65- Library Implementation

At this point opencap will possess a capability to a file or a stream

object which is known to exist. It may now proceed to complete the opening of

the object.

A file table entry is now reserved for the object, and the file table

linked list amended to reflect this. The file table entry is then initialised with the

capability to the object, and the fileinit function called to complete the open. If

fileinit does not return an error, opencap returns the file pointer, and the open is

completed.

4.2.2 The fileinit Function

The fileinit (formerly open2) function is used in the final phase of

opening a stream. Its purpose is to properly initialise the File and Stream struc-

tures associated with the open stream, and load the object into the address space

of the calling process. The function call and its arguments are:

Sw open2(Uw fdindex, Uw *offset, Uw *cindex, Uw block, Uw direction);

• fdindex - index into the file table

• offset - specifies capability offset and returns offset value

• cindex - specifies capability cindex and returns cindex value

• block - specifies blocking mode

• direction - specifies read or write direction for stream or file objects

The fileinit function will first test the file table index for a valid value.

If the value is valid, it then tests the capability held in the file table entry for

validity. A K_CAPSTAT system call is then used to test for the existence of the

capability. If the capability exists, it is then loaded into the process address

space. The existence test is debugging code which was retained.

Once the stream or file object capability is loaded, fileinit will test the

magic number and if valid, initialise the pointers and pushback counters held in

the File structure. If the capability is a stream object, the index values and size

Chapter 4 -66- Library Implementation

are tested for validity.

The fileinit function will then initialise the common file structure

fields for direction, stream base, stream or file size, type, flags and for a stream,

tripwire. Stream or file object specific parameters are then initialised. These are

the capability of the calling process, the file table index and the blocking mode.

In file objects, the flags for file state are initialised.

4.2.3 The makestreamobj Function

The makestreamobj function is used to create a valid stream object. It

is typically employed by a server process which is responding to a request for a

stream connection.

Sw makestreamobj(Capl *obj, Uw *size, Uw money);

• obj - a pointer to the capability of the created stream object

• size - specifies the size of the stream buffer object to be created

• money - specifies the money value to be placed into the stream buffer object

The algorithm for setting the object size will take the size argument,

add the size of the Stream structure and set the object size to be the minimum

number of pages required to contain the structure and specified buffer size. An

object is then made, loaded and initialised. The magic number, type, base, size

and default blocking modes are set. The object is then unloaded and the func-

tion returns.

4.2.4 The copen Function

The copen function is analogous to the ANSI fopen function, but

operates on a pointer to a capability rather than a pointer to a string. It was

included in the library to allow a programmer to open capabilities which do not

have name bindings.

FILE *copen(Capl *cap, const Uq *mode);

Chapter 4 -67- Library Implementation

The mode argument is identical to that in fopen, and the copen func-

tion differs from fopen only in that it does not need to operate on the name-

server binding to determine the value of the capability.

4.2.5 The removec Function

Sw removec(Capl *capability);

The removec function is analogous to the ANSI remove function, but

operates on a pointer to a capability rather than a pointer to a string. The capa-

bility is destroyed by this function.

4.2.6 The cmap and cunmap Functions

The cmap and cunmap functions are analogous to the Unix and

POSIX mmap and munmap system calls. Unlike the Unix calls, cmap and cun-

map operate on a specified capability rather than a file pointer. The function is

included to simplify porting of applications and is not used in the library imple-

mentation. The functions will load or unload a capability into or from the

address space of the calling process, respectively.

void *cmap(void * addr, Uw len, Uw prot, Uw flags, Capl *cap, Uw offset);

• addr - address at which the capability is to be loaded

• len - specifies the length of the view to be loaded

• prot - unused in Walnut

• flags - unused in Walnut

• cap - pointer to capability to be loaded

• offset - offset to base of view to be loaded

void cunmap(void *addr, Uw len);

Chapter 4 -68- Library Implementation

• addr - address of the mapping to be unloaded

• len - unused in Walnut

The cmap and cunmap function implementation is not compliant with

the POSIX function. A compliant cmap implementation would need to create a

derived capability with parameters defined by the flags argument, and load this

capability.

4.2.7 The setmyname and clrmyname Functions

Sw setmyname(char * myname);

Sw clrmyname(char * myname);

These functions are used to create or delete a name binding to the

calling process. The sole argument is a pointer to a string. A typical use is to

simplify the design of client processes, which may locate a server by using a

name rather than a capability value. The default nameserver database is used.

4.2.8 The kerror Function

The kerror function is used to report kernel errors returned by a sys-

tem call which has failed. The function is analogous to the ANSI perror func-

tion, in that it will take a pointer to a string as an argument and write the string

and its error message to the stderr file. Where kerror differs from the ANSI

perror is in its ability to provide verbose reporting of kernel errors. A global

library variable, debug, is employed to set the level of error reporting.

void kerror(const char *s);

A debug level of 2 provides terse reporting, which writes the kernel

error code to stdout. A debug level of 3 provides verbose reporting, which

decodes the kernel error code and writes a description of the error to stdout.

Error reporting is detailed in [Appendix A].

4.2.9 The Client Server Protocol Functions

Chapter 4 -69- Library Implementation

The Walnut stdio library implements a simple client server protocol.

This protocol was designed to support process to process requests for stream

opening, as well as to provide the basic functionality for the later implementa-

tion of a remote procedure call mechanism. The latter is not implemented, as it

fell outside the scope of the library design and implementation.

MSG TYPE

PRIORITY
FLAGS

SOURCE

PAYLOAD

STATEOBJ

MSG TYPE

PRIORITY

FLAGS

SOURCE
PAYLOAD

STATEOBJ

CUSTOMER

SPECIFIC

STATE OF PROVIDER

PAYLOAD VIEW

0x000C000

0x1000000

0x1400000

THE WALL

PROCESS OBJECT

0x5400000

DATA OBJECT

CODE OBJECT

0x000C000

0x1000000

0x1400000

THE WALL

PROCESS OBJECT

0x5400000

DATA OBJECT

CODE OBJECT

Client Process Server Process

UNUSED IN STREAM PROTOCOL

Fig.4.1 Client Server (RPC) Protocol Structures

PAYLOAD VIEW

4.2.9.1 Protocol Definition

The protocol is a simple request and response scheme. The client will

Chapter 4 -70- Library Implementation

send a request message to the server. The server will validate the request, and if

appropriate, will supply a response. In the instance of stream opening, the

response will contain the capability to a stream buffer object, which is created

upon validation of the request.

Because the permitted message size in the Walnut kernel is small, a

protocol which must pass arguments back and forth would require careful

design of the message format to fit all the necessary fields into the available

space. Should the protocol need to support Remote Procedure Calling (RPC),

then the space in the message is simply too small for general use. The protocol

design created therefore passes a capability to a argument buffer between the

client and server. By using a capability to an argument buffer, the basic design

becomes readily extensible. As a result, the effort required to provide an RPC

service is minimised by exploiting the existing protocol modules used for

stream opening.

The protocol message structure has the following format:

typedef struct {
Uw type; /* protocol message type */
Uw money; /* money sent or returned */
Uw priority; /* priority of service */
Uw flags; /* flags field */
Capl src; /* originator of message */
Capl payload; /* arguments passed/returned */
Capl persistent; /* persistent values passed/returned */
} SERVICE_REQUEST;

The message format is symmetrical, in that both requests and

responses use the same structure. The values in the fields determine whether the

message is a request for a service or a response. Valid message types are:

• REQUEST_SVC - request for RPC service

• RESPOND_SVC - response to RPC service request

• REJECT_SVC - rejected RPC service request

• REQUEST_STRM - request for stream IPC connection

• RESPOND_STRM - response to a request for stream IPC connection

• REJECT_STRM - rejection of a request for stream IPC connection

A request message is sent by a client to a server, a

Chapter 4 -71- Library Implementation

REQUEST_STRM message asks for a stream connection with defined param-

eters. A response message is sent by a server to a client, acknowledging the

provision of the requested service. A reject message is sent by a server to a

client, to notify of the rejection of the request.

The client server protocol exploits the money mechanism. A server

expects payment for the provision of a service. The money field is a redundant

copy of the value of the money sent with the message, and was employed for

debugging purposes. Should insufficient money be provided, the request is

rejected.

The priority field is a facility intended to simplify the relative

scheduling of service requests from multiple clients to a single server. A queue

of received requests may be scheduled in the order of requested priority.

The flags field allows the transmission of status information. Valid

flags are:

• CPERSISTENT - return persistent state information

• CUSEPRIORITY - use the priority field

• PLOWMONEY - request rejected due insufficient money

• PNOSUCHSVCE - request rejected as service not available

• PBADMODES - request rejected due incorrect modes

• PBADPRIORITY - request rejected due invalid priority value

The client process provides the server process with the capability to

to send it a message in the src field. The payload field is the capability to a

buffer of arguments. It is used for stream requests and is intended for use with

RPC requests. The persistent field is intended for use with RPC requests. State

information pertaining to a request from a specific client can be returned to the

client, without read or write access. A subsequent RPC service request can then

restore the state information before execution. This facility is not currently

used.

When requesting a stream connection, the payload capability will

contain the parameters of the requested stream. These are loaded in the follow-

ing format:

typedef struct {
Uw size; /* stream object size - customer/provider */
Uw blockmode; /* stream blocking mode - customer/provider */
Capl streamobj; /* capability to stream object - provider */

Chapter 4 -72- Library Implementation

} STREAM_PARAMS;

The size field is the requested size, the blockmode field the requested

blocking mode for the requesting party and the streamobj field is the returned

capability to the stream object.

4.2.9.2 Programming Interface and Implementation

Three functions are implemented for the purpose of protocol handling

and decoding. These are sendrequest and getrequest, to which the sendresponse

and getresponse functions are aliased at compile time, and decoderequest.

Sw sendrequest(Uw type, Uw money, Uw priority, Uw flags, Capl *target,

Capl *payload, Capl *persistent, Uw subpn);

Sw getrequest(Uw *type, Uw *money, Uw *priority, Uw *flags, Capl *source,

Capl *payload, Capl *persistent);

Sw decoderequest(Uw type, Uw money, Uw priority, Uw flags, Capl *source,

Capl *payload, Capl *persistent);

The sendrequest function copies the argument list into the message

area, in a format defined by the SERVICE_REQUEST structure, and then

calls K_EXTSEND to send the message to the intended recipient. The getre-

quest function is called by the receiving process to retrieve the message. This

function will take the type field from the argument list and copy it into the mes-

sage area, to ensure that only messages of the specified type are received. The

getrequest function will then attempt to retrieve a message. If no message has

been received, the function makes a K_WAIT call and sleeps until a message

has arrived, upon which it repeat the previous step.

If a message of the proper type is received, getrequest will then load

the contents of the message area into the corresponding variables pointed to by

the argument list. The decoderequest function is then used to validate the con-

tents of the message. This function will return an operation code which the

server will act upon.

4.2.10 The accept Function

Chapter 4 -73- Library Implementation

The accept function is analogous to the 4BSD accept function used

with the socket interface. The Walnut accept function will wait for the arrival of

a valid request for a stream IPC connection, and then return a pointer to the file

structure associated with the open connection.

File * accept(Uw dirn, Uw maxsize, Uw myblockmode);

The dirn argument specifies the direction of the stream as seen by the

calling process. A request for a stream with the same direction specified will

fail. The maxsize argument imposes a limit on the size of the stream object to

be provided. The myblockmode argument specifies the blocking mode required

by the calling process.

The accept function will upon receipt and decoding of a valid stream

connection request, load the payload capability and extract the parameters of

the stream connection. It will then create the stream object using

makestreamobj, return a valid response to the requesting process, and then load

the stream object, initialise the file table entry with fileinit, and return a file

pointer. The server process may then use the stream connection.

4.3 ANSI stdio Library Functions

4.3.1 Stream Operation Functions

The ANSI stream operation functions manipulate the state of a file or

stream connection.

4.3.1.1 The fopen Function

FILE *fopen(char *filename, const Uq *mode);

The fopen function is substantially compliant with the ANSI model.

The most significant difference in the programming interface is that the func-

tion will open both file capabilities and stream IPC connections to named pro-

cesses. The overloading of the function call with both stream IPC and file oper-

ations was advantageous. The use of the Walnut nameserver library to bind

names to processes allows retention of the same syntax as used with file access,

Chapter 4 -74- Library Implementation

thus avoiding the need for either a separate programming interface, or a non

compliant version of the ANSI interface.

The mode argument fully conforms to the ANSI standard, supporting

read, write, append and update modes in file object access. Stream access is

constrained to write or read access, as the append and update (read and write)

modes are not defined for stream connections in the Walnut environment.

The Walnut fopen function will first decode the open mode to gener-

ate flag values for opencap. It will then call the namec function to find the capa-

bility which is bound to the filename argument. If no such capability exists, it

will assume that the intent is to create and open a file object, and appropriate

default values will be set.

If the name is bound to a capability, fopen will extract the parameters

contained in the binding to determine whether the capability is to a file or a pro-

cess. If the binding is to another capability type, fopen returns with an error.

Defaults specific to a file or a process are set if the binding is to one of these

two types. The opencap function is then called to open the file object or stream

connection.

If the binding did not exist, and a file object has been created, fopen

will then bind the string pointed to by the filename argument to the capability

for the created object.

4.3.1.2 The fclose Function

Sw fclose(FILE *stream);

The fclose function conforms to the ANSI standard. This function

will first call fflush to update the file pointer, or flush a stream connection. If a

stream connection is being closed, fclose will set the mode flags for closure to

notify the other process that the connection is being closed.

The capability is then unloaded, and if it was a tmpfile it is destroyed.

If the capability is to a stream object, and fclose has been called as a result of a

closure condition detected in the flags, fclose will destroy the object. The file

table entry is then released and fclose returns.

4.3.1.3 The fflush Function

Chapter 4 -75- Library Implementation

Sw fflush(FILE *stream);

The fflush function conforms to the ANSI standard. For file objects,

fflush will update the file size to the value of the current write pointer, and

update the trip value, and set the _RDOK flag for files in update mode. The lat-

ter is an ANSI requirement which specifies that when in update mode, a write

operation must be followed by a flushing operation before a write can be done.

For stream objects where the other process is in wakeup mode, fflush

will send a wakeup message to expedite the flushing of the buffer. The fflush

function will then poll the buffer until it is emptied. During each poll, fflush

relinquishes its time slice. Once the buffer is empty, or file operations complete,

fflush returns.

4.3.1.4 The rename Function

Sw rename(const char *oldname, const char *newname);

The rename function is not implemented. An implementation would

first locate the binding associated with the oldname argument, test it for valid-

ity, check the status of the capability, and if valid, then create a new binding to

newname and delete the binding for oldname. This would provide behaviour

which conforms to the ANSI standard.

4.3.1.5 The remove Function

Sw remove(const char *filename);

The remove function is an extension of the ANSI programming inter-

face. It provides the ANSI operation on file objects, but can also remove a pro-

cess if sufficient rights are provided to the process.

The remove function will first locate the binding associated with the

name argument, and if it is associated with a file, code, data or process object, it

will extract the capability. The binding is then deleted and the capability

destroyed.

4.3.1.6 The tmpfile Function

Chapter 4 -76- Library Implementation

FILE *tmpfile(void);

The tmpfile function conforms to the ANSI standard. It will set up default val-

ues for file creation, call opencap and then set the _TMP flag in the file table

entry so that the object is destroyed on closing. A name binding is not pro-

duced.

4.3.1.7 The tmpnam Function

char *tmpnam(char *s);

The tmpnam function is not implemented. An implementation would

generate a unique name string for the nameserver database in use and save the

binding in the database.

4.3.1.8 The freopen Function

FILE *freopen(char *filename, const char *mode, FILE *stream);

The freopen function nominally conforms to the ANSI standard, but

is untested. This function will close the file capability associated with the

stream argument, open the capability bound to the filename argument in the

specified mode, and then return a pointer to the file table entry.

4.3.1.9 The setvbuf and setbuf Functions

Sw setvbuf(char *file, char *buf, Sw mode, Uw size);

Sw setbuf(char *file, char *buf);

The Walnut stdio library does not support additional buffering in the

library. The setvbuf and setbuf functions are provided for ease of porting, and

do not perform any function.

4.3.2 Character I/O Functions

4.3.2.1 The fgetc and fputc Functions

Chapter 4 -77- Library Implementation

Sw fgetc(FILE *stream);

Sw fputc(Sw c, FILE *stream);

Sw getc(FILE *stream);

Sw putc(Sw c, FILE *stream);

Sw getchar();

Sw putchar(Sw c);

The fgetc and fputc functions are supersets of ANSI functions. Both

functions operate directly on the File structure and Stream structure, using the

scheme described in Chapter 3. ANSI character I/O functions will return EOF

if the end of file is encountered, or an error condition is encountered. The Wal-

nut library functions will provide the same behaviour for end-of-file conditions,

but will return specific negative error codes for other conditions. Unique error

codes are provided to identify empty, full, closed or invalid buffer conditions.

The getc, putc and getchar, putchar functions are implemented as

aliases. This was done to minimise coding effort, as no additional functionality

is provided by these functions. The getc and putc functions when implemented

as macros offer a performance advantage as the function call overhead is not

incurred.

4.3.2.2 The ungetc Function

Sw ungetc(Sw c, FILE *stream);

The ungetc function is a superset of the ANSI model. This function

will allow the programmer to push back up to NPUSHBACK characters. The

NPUSHBACK parameter is set at library compile time and is thus fixed. If the

programmer attempts to push back more than NPUSHBACK characters, an

EOF is returned.

4.3.2.3 The fgets and fputs Functions

char *fgets(char *buf, Sw BUFSIZ, FILE *stream);

Sw fputs(char *buf, FILE *stream);

The fgets and fputs functions both conform to the ANSI standard.

Chapter 4 -78- Library Implementation

Both functions will repeatedly call fgetc or fputc, respectively, and will test the

returned values for error conditions.

4.3.3 Direct I/O Functions

4.3.3.1 The fread and fwrite Functions

size_t fread(void *array, size_t elementsize, size_t count, FILE *stream);

size_t fwrite(void *array, size_t elementsize, size_t count, FILE *stream);

The fread and fwrite functions conform to the ANSI standard pro-

gramming interface. When operating on file objects, these functions will use

memcpy operations to efficiently copy data between the Stream buffer and the

buffer specified in the array argument. When operating on an IPC stream, these

functions employ the fgetc and fputc functions respectively to emulate the

behaviour defined in the ANSI standard.

4.3.4 Formatted I/O Functions

4.3.4.1 The fprintf and printf Functions

Sw fprintf(FILE *stream, const char* fmt, ...);

Sw printf(FILE *stream, const char* fmt, ...);

The fprintf function does not fully conform to the ANSI standard.

The function was ported from the Walnut kernel printf function. It will accept

arguments only in the %d, %x, %c and %s formats, and cannot handle float-

ing point arguments. The printf function calls fprintf with the stream argument

set to stdout. The ANSI vfprintf and vprintf functions are not implemented.

4.3.4.2 The fscanf and scanf Functions

Sw fscanf(FILE *stream, char* fmt, ...);

Sw scanf(FILE *stream, char* fmt, ...);

The fscanf function does not fully conform to the ANSI standard, and

Chapter 4 -79- Library Implementation

will provide functionality typical of Unix hosted implementations which pre-

date the ANSI standard. The function was ported from the 4.3BSD stdio library

fscanf function. The scanf function calls fscanf with the stream argument set to

stdin. The ANSI vfscanf and vscanf functions are not implemented.

4.3.5 File Positioning Functions

4.3.5.1 The fseek and ftell Functions

Sw fseek(FILE *stream, Sw offset, Sw lastoffset);

Sw ftell(FILE *stream);

Sw rewind(FILE *stream);

The fseek and ftell functions conform to the ANSI standard where the

view of file object is equal to the size of the object. Where the view is smaller

than the object, the EOF indication provided by these functions indicates that

the end of the view has been reached. Operations are defined only for file

objects. The re wind function calls the fseek function with an offset argument of

zero and a lastoffset argument of SEEK_SET, as per the ANSI standard.

4.3.5.2 The fgetpos and fsetpos Functions

Sw fgetpos(FILE *stream, Uw *pos);

Sw fsetpos(FILE *stream, Uw *pos);

The fsetpos and fgetpos functions conform to the ANSI standard.

These functions call fseek and ftell respectively.

4.3.6 Error Handling Functions

Sw feof(FILE *stream);

Sw ferror(FILE *stream);

Sw clearerr(FILE *stream);

void perror(const char *s);

The error handling functions conform to the ANSI standard. The feof

Chapter 4 -80- Library Implementation

function will test the _EOF flag in the file table entry. The ferror function will

test the _ERR flag in the file table entry. The clearerr function will clear the

_EOF and _ERR flags in the file table entry. The perror function will print the

string pointed to by its argument, followed by an error message. Defined error

messages are :

• bad file table index

• null capability

• bad magic number

• bad stream direction

• object load failed

• bad buffer object

• bad capability

• make object failed

• rights masks inappropriate

• bad buffer index

• file table full

• message send timed out

• inconsistent arguments to open

• name server error

• capl doesn’t exist

• no such process

• no right to peek

• process is frozen

• process in probate

• process is dead

• insufficient money in request

• non-existent service

• requested illegal modes

• request has invalid priority

Chapter 5 -81- Discussion

Chapter 5 Discussion

5.1 Introduction

This chapter discusses how well the Walnut stdio library meets its

design objectives, in terms of programming interface, throughput performance,

portability, robustness and security. A number of improvements to the design

are proposed.

5.2 Programming Interface

The Walnut stdio library provides a programming interface which

substantially conforms to the ANSI C standard. Whilst a number of less fre-

quently used ANSI functions have not been implemented, their absence has to

date not caused any difficulty.

The principal difference between the Walnut library and the ANSI

standard lies in the handling of file objects and the extension of the fopen and

fclose interfaces to support stream connections [Section 3.2]. Neither of these

differences compromise the initial requirement of providing ANSI compliance

where it did not incur significant overheads in development time.

The adoption of a unified programming interface for file objects and

streams has provided a simple and elegant solution to the problem of stream

opening. The integration of the name server function with stream opening cre-

ates interesting possibilities in shell design, as server processes may be easily

accessed from the command line. An example would be:

testfile | filter1 | filter2 | magtape

In this command line, testfile is a file object, filter1 and filter2 pro-

grams which manipulate a data stream, and magtape a device manager for a

tape drive. A single command line from the shell has allowed the user to

manipulate data in a file and write it to tape.

The stdio library programming interface meets its design objectives,

and provides a tool for further research on the Walnut system.

Chapter 5 -82- Discussion

OBJECTSTREAM OBJ VIEW

STREAM OBJ VIEW

Stream Structure

THE WALL

PROCESS OBJECT

DATA OBJECT

CODE OBJECT

THE WALL

PROCESS OBJECT

DATA OBJECT

CODE OBJECT

STREAM BUFFER

SOURCE PROCESS SINK PROCESS

Figure 5.1 Stream Throughput Testing Model

fputc fgetc

timing code

5.3 Throughput Performance

The throughput performance of a stream IPC scheme is an important

measure of quality in design and implementation. In a system such as the Wal-

nut, where the stream IPC mechanism is employed for purposes of piping

between processes, and I/O operations to stream oriented devices, poor stream

IPC performance will significantly affect the performance of the whole

Chapter 5 -83- Discussion

operating system. Poor response times will force the use of faster hardware to

achieve a desired user response time. Faster hardware can impose significant

cost penalties upon the owner of the system. Throughput performance was

therefore an important consideration in the design and implementation of the

stream IPC mechanism [Section 3.2.3.1].

0

20000

40000

60000

80000

100000

120000

100 1000 10000 100000 1e+06

S
tr

ea
m

 T
hr

ou
gh

pu
t [

B
yt

es
/s

]

Stream Buffer Size [Bytes]

Fig 5.2 Stream Throughput Performance (Process to Process)

"wakeup−wakeup"
"block−block"

"wakeup−block"

To determine how successfully the design and implementation

addressed this requirement, it was necessary to measure the achieved perfor-

mance. To accomplish this, test programs were produced. The model for the

testing, depicted in Fig 5.1, is that of a client process writing test data to a

server process. The client process uses the timer registers in the Wall to mea-

sure the time from the beginning to the end of the transmission of a buffer of

test data. The server process reads the test data from the stream and discards it.

Each test run copied test data buffer sizes of 64k, 128k, 256k, 512k, 1024k and

2048k. This was done to ensure that measured performance was consistent for

various durations of transfer. The test platform was a 40 MHz Intel 486 Per-

sonal Computer.

Each test run was conducted for a different stream buffer size and

blocking mode. Stream buffer sizes of 256, 512, 1024, 2048, 4096, 8192,

16384, 65536, 128k and 256k bytes were used as test points. Tests were

Chapter 5 -84- Discussion

conducted on processes which were paired in blocking mode and wakeup

mode, as well as a test with a writing process in wakeup mode and a reading

process in blocking mode. The test programs used the fwrite and fread func-

tions, which currently employ the fputc and fgetc functions respectively.

The performance measurements indicate that operation of a stream

with both ends in blocking mode always performs better than a stream with one

or both ends in wakeup mode. In blocking mode, both processes will always be

runnable. Each and every time a blocked process is scheduled to run, it will test

the condition of the stream buffer to see whether it can continue. In wakeup

mode, a process which is unable to continue will sleep until woken by its peer.

This will save the CPU time which would have otherwise been required to poll

the state of the buffer, but incurs a time delay between the sending of the

wakeup message and the commencement of reading or writing by the process’

peer. The use of wakeup mode therefore offers an economy in machine cycles

executed at a cost of about 5 to 15 kbytes/s in performance.

The dependency of throughput performance upon stream buffer size

exhibits, as we would expect, an improvement in throughput performance with

increasing buffer size, for small buffer sizes. At buffer sizes beyond 8192 bytes

there is no measurable improvement in performance. The best performance

achieved with the existing implementations of fwrite, fread, fgetc and fputc is

about 112 kbytes/s. The default stream buffer size was set to 4096 -

sizeof(Stream), which is a convenient value because it results in a page sized

stream object. The throughput performance is about 85% of the maximum mea-

sured.

For purposes of comparison, the performance measurement test code

was ported to 4.3BSD, using the Walnut fwrite (fputc based) algorithm. The

port included compensation for Walnut debugging code delays. This code was

then tested on a hardware platform identical to the Walnut testbed. Repeated

measurements yielded performance between 172 and 176 kbytes/s, which is

about 50% faster than the Walnut system. The test processes consumed about

80% of total system CPU time during the test.

While this test suggests that the Walnut design does not perform as

well as the 4.3BSD socket based pipe, it makes no allowance for the perfor-

mance of the operating system and the effect of the scheduling policy. The

4.3BSD system is a mature production system which uses a complex priority

based scheduler, whereas the Walnut is a prototype using a simple round robin

Chapter 5 -85- Discussion

scheduler. A more accurate comparison could be achieved by porting the whole

Walnut stream mechanism to Unix, and testing the complete mechanism. This

would remove the effects of context switching performance and scheduling pol-

icy, and is an area for future study.

The throughput can be improved upon by a number of changes to the

implementation of the library. The performance of fwrite and fread can be

improved by replacing the prototype implementation with a true block mode

implementation [Section 4.3.3.1], using memcpy operations to and from the

stream buffer. This would remove the time overhead incurred by the function

call required for each and every character transferred, as well as the time over-

head incurred by updating buffer index values for each and every character

transferred.

The performance of the fgetc and fputc implementations could be

improved by two changes. The first change would be to implement getc and

putc as C language macros, which is the convention in Unix and ANSI C. This

would remove the time overhead incurred by the function call required for each

and every character transferred. The second change would be to recode the

algorithms into assembly code macros, which would further improve perfor-

mance. The use of assembly code macros would however be at the expense of

portability.

5.4 Portability

The long term intention of the Walnut project is to port the operating

system to a second generation multiprocessor system. This multiprocessor is

intended to use a RISC instruction set processor and system specific memory

management, bussing and I/O interfaces. For this reason, portability of the

library design is important.

The existing Walnut stdio library design and implementation contain

no features or facilities which are specific to the Intel architecture used in the

Walnut testbed system. All macros are written in C and no Intel assembly code

is used.

The library is compiled on a Unix system (FreeBSD 1.1.5) using a

GNU (gcc 2.4.5) compiler, and a standard Unix make. The library test suite

[Section 5.5] allows compilation for running under Unix and well as the Walnut

testbed. Running the test suite under Unix allows initial detection of possible

Chapter 5 -86- Discussion

compiler dependencies during porting, while also simplifying the task of

debugging where required.

The use of generic Unix development tools, the absence of architec-

ture dependencies in the design and implementation of the library, and the use

of the test suite has resulted in a library which will be simple to port.

5.4.1 Application Development and Porting

The proof of portability lies in successfully porting programs to the

intended system. In the instance of the Walnut stdio library, the obvious target

are the standard Unix utilities. However, analysis of 4.4BSD source code sug-

gests that only more recent utilities exploit the stdio library, historically older

utilities are written around the Unix / POSIX 1003.1 system call interface.

For the purposes of demonstration, two Unix-like utilities were cre-

ated, and two 4.4BSD utilities were ported.

A Unix-like rm utility was written. Whilst this utility does not sup-

port the Unix command line options, it does have the ability to remove both

processes and file objects, should suitable access rights be known [Section

3.2.3.3]. This utility was found to be very useful during the latter phases of

library testing, as it subsumes the functions of the Unix rm and kill (-9) utilities.

A Unix-like cat utility was also written. Again, this utility does not

support the Unix command line options, but is written to accept its input stream

from either a file or a pipe. Use in the latter mode will require a shell capable of

setting up pipes between command line argument specified processes.

The first 4.4BSD utility to be ported was head, chosen for ease of

conversion. This tool was soon followed by uniq, selected also for ease of port-

ing. An attempt to port hexdump was abandoned due time constraints, as this

tool is substantially more complex than the preceding two. Source code for rm

and head is included in Appendix C, to provide examples of application devel-

opment and porting, respectively.

The porting procedure requires that include files be replaced, ANSI C

prototypes produced, function argument lists converted to ANSI format, Unix

specific types be converted to their Walnut equivalents, and finally, setmyname

and clrmyname calls added in at the beginning and end of the program respec-

tively.

The inclusion of setmyname and clrmyname calls is a convention

Chapter 5 -87- Discussion

which should be retained. Any program or utility run from the shell will create

a name binding in the format "myname-running", when it commences execu-

tion, and delete this binding once it has completed. A program which fails in a

loop can be quickly identified and killed off by its user from a command line,

using the rm utility.

5.5 Robustness

Robustness is a measure of how well a design and implementation

handle error conditions and variations in input data. In a stream IPC design and

implementation, robustness will be determined by the ability to provide error

free transmission of data regardless of the frequency and size of reads and

writes, and by the ability to handle error conditions arising from corrupted data

structures and ill-behaved peer processes in a connection.

Integrity of data transmission through pipes and I/O devices is essen-

tial. Data must be transferred free of errors and in order. The stringency of this

requirement was addressed by comprehensive testing, in several phases. The

test algorithm, devised by Wallace, writes and reads bursts of data with pseudo-

random sizes into and from the stream connection. This strategy ensures that

the stream buffer logic is forced to handle repeated full and empty conditions

for a wide range of buffer index positions. This test method successfully

detected a number of defects in the earlier implementations of the algorithm.

The first phase of testing was carried out on a Unix system, with a

single process writing and reading to and from a Stream structure within its

address space. Once a sufficient number of error free operations was accumu-

lated (in excess of 24 hours of operation), the design was moved to the Walnut

testbed system.

The second phase of testing was carried out on the Walnut testbed,

using a client server pair of processes. The client process executed the test algo-

rithm, while the server provided a simple transparent loopback.

The third phase of testing was an extension of the second phase. The

ungetc algorithm was testing by inserting an ungetc and fgetc operation into the

existing test code. This testing phase was then extended to accumulate two

weeks of uninterrupted error free operation.

Robustness in the library implementation was achieved by sev eral

means. The algorithms used in library functions were designed with very

Chapter 5 -88- Discussion

frequent integrity checks on the capabilities operated upon, and the Stream

structures contained therein.

A suite of validation tests was written to test most library functions.

This suite, designated validate, may be compiled and run under Unix, or com-

piled as a program which may be run on the Walnut testbed. The validate test

suite was incrementally extended as additional library functions were produced.

Each function was tested under Unix and the Walnut testbed to ensure that it

was error free. In addition, a convention adopted during development was that

any change to a function or addition of a function would not be considered

complete until the validation suite was shown to work error free for all func-

tions in both environments. This proved to be a wise strategy, as changes to a

number of the low lev el library functions late in the project did indeed intro-

duce bugs which would not have been found without the comprehensive test

method adopted. The validate suite contains the following twentysix tests,

which are described in [Appendix D]:

0. perror integrity test

1. opencap create object test

2. fprintf/putc write object test

3. write exclusion test

4. ferror test

5. clearerr test

6. file close test

7. opencap read mode test

8. file read test

9. feof test

10. fseek/ftell test

11. fsetpos/fgetpos test

12. file append test

13. file update test

14. removec/kerror test

15. copen create test

16. copen write test

17. copen update test

18. tmpfile test

19. stream fflush test

Chapter 5 -89- Discussion

20. fopen create test

21. fopen read test

22. fopen update test

23. remove test

24. ungetc pushback test

25. fscanf test

26. makestreamobj test

The adoption of rigourous testing techniques has therefore yielded a

robust library design and implementation.

5.5.1 Persistence

Any discussion of robustness in the Walnut context must include the

subject of persistence. One of the properties of the Walnut kernel is that all

objects are persistent. If a Walnut system is shut down, upon a restart all pro-

cesses active at the time of shutdown will resume execution. Because any

object in the system’s memory is an image of the object on disk, all processes

may be cleanly restarted. Providing that all changes to the object are flushed to

disk during a shutdown or crash, a restart should be transparent to a user.

A useful side effect of this property is that the Walnut stream IPC

mechanism is also persistent, and may be restarted. This is because all state

information pertaining to a stream is held within the process object, the process

data object, and the stream object itself. If these objects are successfully flushed

to disk during a shutdown or crash, all state information is saved. This charac-

teristic is not shared by established operating systems such as Unix, where

stream state information is perishable and lost during a shutdown or a crash.

The persistence property was successfully demonstrated during the

testing and debugging of the Walnut stdio library. A client server process pair

running a stream test restarted after a shutdown.

5.6 Security

The Walnut kernel virtual memory system provides a secure environ-

ment for a process. The address space of the process is protected from access to

third parties not holding a capability to access the process.

Chapter 5 -90- Discussion

The stream IPC mechanism employed in the Walnut does not com-

promise the inherent security afforded by the kernel. The only area of the pro-

cess address space which may be accessed by another process is the stream

buffer, which is only accessible to a peer process using the same connection.

Because the stream buffer object is unloaded and destroyed upon the closing of

the connection, a third party cannot use it to gain access to the address space of

either process.

5.7 Future Directions

There exist a number of areas in which the Walnut stdio library

design and implementation can be improved and extended.

The fgetc, fputc, fwrite and fread implementations can be made to run

more efficiently [Section 5.4]. The utility of the ungetc function can be

improved by making the NPUSHBACK parameter dynamically configurable

during stream opening [Section 4.3.2.2]. The formatted character I/O functions

fprintf and fscanf can be extended to provide full conformity with the ANSI

standard, and the ANSI v- and vf- versions of these functions implemented. A

number of infrequently used ANSI functions which are partially implemented

or untested can be completed.

The fopen programming interface can be extended to provide flexible

parameters for file object or stream opening [Section 3.2.3.2]. The Client

Server protocol modules used in stream opening could benefit from more flexi-

ble decision logic for decoding requests.

While the existing Client Server protocol has provisions to enable its

use for RPC operations, an RPC programming interface is neither defined nor

implemented. Given the availability of source code for the ONC RPC protocol

[SMI], it would be an obvious candidate for porting and integration with the

Walnut design.

A project derived from the first multiprocessor design was a port of

the 4.3BSD system call interface to the password capability kernel. Should a

similar port be intended for the Walnut, it could benefit significantly from the

existing Walnut stdio library. A library conforming to the POSIX 1003.1 or

SVID interface definitions could be implemented quite efficiently by using

existing low lev el functions in the stdio library, and deriving many other func-

tions from their ANSI equivalents. A Unix or Unix like interface library would

Chapter 5 -91- Discussion

not be complete without a BSD socket library. A socket library could be easily

implemented using components of the existing stdio library.

A case can be made for porting the Walnut stream mechanism to

Unix, exploiting the mmap interface, to provide fast and simple user level pipes.

This could also provide a good comparison of achievable throughput perfor-

mance between the two mechanisms [Section 5.3].

The presence of low lev el functions to support RPC operations pro-

vides the foundation for building a more complex object oriented client-server

programming interface, as is characterised by OMG CORBA [OMG91]. The

implementation of such an interface is however a substantial undertaking within

itself.

The existing Client Server protocol could also be exploited to provide

for a unified command and status programming interface to device manager

processes. This interface could emulate the POSIX 1003.1 ioctl call, which is

used by a process to alter the configuration of a device or a stream. The existing

programming interface between a user process and a device manager process

uses either a device specific programming interface, or the fopen/opencap inter-

face which has no provisions for altering device configuration once the stream

is open.

Finally, the presence of a working name based stream opening proto-

col will allow improvements to the existing implementation of the GLui con-

sole manager, the Walnut Shell and the floppy disk manager. All of these pro-

grams use very little if any part of the Walnut stdio library and could benefit

from a rewrite to take advantage of the library’s features.

Chapter 6 -92- Discussion

Chapter 6 Conclusion

The Walnut kernel provides a virtual memory system in which

objects are accessed through capabilities. The kernel does not provide a pro-

gramming interface for I/O devices and stream IPC.

An I/O library and stream IPC mechanism for the Walnut system has

been designed and implemented. This library provides a programming interface

through which users can access the virtual memory system, I/O devices and

other processes through a stream connection.

The programming interface mostly conforms to the ANSI C language

standard. File objects may be manipulated in the same fashion as files in operat-

ing systems such as Unix. Stream connections to other processes may be

opened using the ANSI fopen syntax. Processes are identified by names, thus

providing a simple and elegant programming interface, common to files and

streams.

The stream IPC mechanism uses a circular buffer, which resides in a

stream object. The stream object is mapped into the address space of both pro-

cesses in the connection, and is destroyed upon the closing of the connection.

The design allows a user to push back multiple characters on to the stream.

A common set of library routines and data structures is used for both

file objects and stream connections. Differences between files and streams are

accommodated by overloading members in data structures, and by the use of

alternate logic in the algorithms used.

The library is implemented in two layers. The lower layer comprises

functions which operate directly upon capabilities, and provides a number of

simple utility and debugging functions. The upper layer provides the ANSI

standard programming interface, and utilises, where appropriate, lower level

functions.

The protocol for opening stream connections between processes has

been designed to accommodate stream connections and RPC requests.

The performance of the stream IPC mechanism has been measured,

and the library implementation tested with a suite of validation programs. A

number of Unix-like utilities were written, and a number of 4.4BSD utilities

ported using the library.

Chapter 6 -93- Discussion

We hav e proposed that the library be extended to provide a program-

ming interface for POSIX functions and BSD sockets, and that the name based

stream opening syntax be further exploited in the design of shells and client

server applications.

The Walnut stdio library design has provided the means of demon-

strating a number of programming interface and functional features which are

not commonly used in established operating systems.

The shared use of names for accessing files and processes is the fore-

most such feature. At the programming interface level, this significantly simpli-

fies the programming interface to device manager processes handling I/O, to

server processes providing user specific or system wide services, and to any

future RPC or object management mechanism. Moreover, at the command line

interface level, this mechanism allows a user to monitor and if necessary

manipulate the activity of running processes by simply listing the bindings in

the current working set or directory. Attempts to provide similar functionality

in Unix are demonstrably cumbersome.

Because a server process providing either a user specific or system

wide service can be identified and accessed from a command line, this feature

can be further exploited in the design of new shells, built around a client-server

model. Such shells can provide a rich set of features without the performance

penalties associated with running individual commands as separate processes.

This is an area for future research.

The name based access model for file and stream opening can be

extended further. An area worth further study is that of using the fopen interface

to create processes. The existing model does not exploit the Walnut type identi-

fier in a capability, and treats code objects identically to file objects. An fopen

on a code object could therefore be made to result in the creation of a process

running this code object. This is yet another area for future research.

The Walnut IPC mechanism exploits the persistence properties inher-

ent in the Walnut virtual memory system. Streams retain all state information in

objects which are persistent. As a result of this, a stream connection may be

cleanly stopped and restarted through a Walnut shutdown and boot. This is a

characteristic which is not available in conventional systems.

The properties inherent in the Walnut IPC mechanism also enable the

redirection of running streams. Redirection of streams would be particularly

useful for command line operations by a user, who can then interrupt the

Chapter 6 -94- Discussion

operation of a program to redirect its input or output to another source or sink.

A shell design which can exploit this behaviour is another area for future

research.

The provision of an ANSI standard programming interface to a pass-

word capability virtual memory system provides a programmer with a well

known interface to an unconventional kernel. The library design maps the

behaviour of the Walnut kernel into ANSI calls without compromising the

properties of the Walnut virtual memory system. Programs may thus be devel-

oped for the Walnut with a minimum of effort expended, as the complexities of

the Walnut system call interface are effectively hidden from the programmer.

This will make the Walnut a more attractive target for researchers, as it com-

bines ease of use with a powerful virtual memory architecture.

The Walnut stdio library and its embedded IPC mechanism provide

the means for further productive research into the area of password capability

systems.

References -95-

References

ABRAMSON82

Abramson D.A., Computer Hardware to Support Capability

Based Addressing in a Large Virtual Memory, PhD Thesis,

Department of Computer Science, Monash University,

1982

ANSI89

ANSI XJ311 Committee, Rationale for American National

Standard for Information System - Programming Language

- C, ANSI, 1989.

ANDERSON87

Anderson, M., A Password Capability System, PhD Thesis,

Department of Computer Science, Monash University, Jan-

uary 1987

APW85

Anderson M., Pose R.D., Wallace C.S., A Password Capa-

bility System, Technical Report No.52, Department of

Computer Science, Monash University, March 1985

APW86

Anderson M., Pose R.D., Wallace C.S., A Password-

Capability System, The Computer Journal, Vol. 29, No. 1,

1986.

BSD44

4.4BSD Lite Source Code Tree, University of California,

Berkeley, published as FreeBSD 2.0.5 Release, Walnut

Creek CDROM, Walnut Creek, 1995.

CASTRO95

Castro M., The Walnut Kernel: User Level Programmer’s

Guide, Technical Report No.95/222, May 1995

CATHRO88

Cathro, D., An I/O Subsystem for a Multiprocessor, MSc

Thesis, Department of Computer Science, Monash Univer-

sity, January 1988

CP94

References -96-

Castro M., Pose R.D., The Monash Secure RISC Multipro-

cessor: Multiple Processors without a Global Clock, Aus-

tralian Computer Science Communications, Vol. 16, No. 1,

1994, pp. 453-459.

CRAWFORD87

Crawford J.H., Gelsinger P.P., Programming the 80386,

Sybex, 1987

DRAVES91

Draves R., A Revised IPC Interface, Working Paper, Mach

Project Group, CMU Dept of Computer Science, 1991.

GEHRINGER82

Gehringer E.F., MONADS: A Computer Architecture to

Support Software Engineering, MONADS Report No.12,

Department of Computer Science, Monash University, Jan-

uary 1982

GOODHEART94

Goodheart B. and Cox, J., The Magic Garden Explained -

The Internals of Unix System V Release 4, Prentice-Hall,

1994.

IEEE90

IEEE, Information Technology Portable Operating System

Interface (POSIX) Part 1: System Application Program

Interface (API) [C Language], IEEE Standard 1003.1-1990.

INTEL84

iAPX386 High Performance 32-Bit Microprocessor Prod-

uct Preview, Intel Corporation, Santa Clara, 1984

KSU94

Krieger O., Stumm M., Unrau R., The Alloc Stream Facil-

ity - A Redesign of Application Level I/O, IEEE Computer,

March 1994. Also Technical Report by same authors, Com-

puter Systems Research Institute, University of Toronto,

1994.

LMKQ89

Leffler S.J., McKusick M.K., Karels M.J., Quarterman J.S.,

References -97-

The Design and Implementation of the 4.3BSD UNIX

Operating System, Addison-Wesley, 1989.

LFJLMP

Leffler S.J., et al, An Advanced 4.3BSD Interprocess Com-

munication Tutorial, Computer Systems Research Group,

Dept of EE and CS, University of California, Berkeley.

MCKUSICK94

McKusick M.K., UNIX Kernel Internals: Data Structures,

Algorithms, and Performance Tuning, Course Notes, Aus-

tralian UNIX Users Group, Summer, 1994.

NS85

National Semiconductor Corporation, Series 32000 Data-

book, National Semiconductor Corporation, Santa Clara,

June 1985

OMG91

Object Management Group, The Common Object Request

Broker: Architecture and Specification, OMG Document

Number 91.12.1, Revision 1.1, Draft 10 December, 1991.

ORGANICK

Organick, E.I., The Multics System: An Examination of its

Structure, The MIT Press, Massachusetts, 1972.

OSF93

Open Software Foundation, Design of the OSF/1 Operating

System, P T R Prentice-Hall, New Jersey, 1993.

PLAUGER92

Plauger P.J., The Standard C Library, Prentice Hall, New

Jersey, 1992.

POSE89

Pose R.D., Capability Based Tightly Coupled

References -98-

Multiprocessor Hardware to Support a Persistent Global

Virtual Memory, Proceedings of the 22nd Hawaian Interna-

tional Conference on System Sciences, Vol. 2, pp. 1-10.,

1989.

POSE93

Pose R.D., Porting Unix to the Password-Capability Sys-

tem, submitted to the First International Workshop on

Architectural and Operating Support for Persistence, 1993.

PRINGLE95

Pringle G., Walnut User System Documentation, Draft

Technical Report , Department of Computer Science,

Monash University, December 6, 1995

RITCHIE93

Ritchie D.M., The Development of the C Language, Pro-

ceedings of the Second History of Programming Languages

conference, ACM, Cambridge, Mass., 1993.

ROZIER91

Rozier M., et al, Overview of the CHORUS Distributed

Operating Systems, Technical Report CS-TR-90-25, Cho-

rus systemes, 1991.

SMI

Sun Microsystems, Inc, RPC Programming, Network File

System: Version 2 Protocol Specification

WALLACE90

Wallace C.S., Physically Random Generator, Computer

Systems Science and Engineering 5, 2, 82-8, 1990.

WP90

Wallace C.S., Pose R.D., Charging in a Secure Environ-

ment, Proceedings of the International Workshop on Com-

puter Architectures to Support Security and Persistence of

Information, Bremen, FRG. 1990., pp. 24-1..24-11.

Appendix A -99- Release Notes

Appendix A Release Notes

The Walnut stdio Library
RELEASE NOTES V1.1

Carlo Kopp
carlo@cs.monash.edu.au

20th March, 1996

Appendix A -100- Release Notes

1. Introduction

The Walnut kernel stdio library provides standard C language stdio library
functions and an environment for user processes running on the Walnut micro-
kernel. The library provides most ANSI standard stdio functions, although
some functions are not fully featured. The ANSI specific v- and vf- versions of
the formatted print and scan functions are not implemented, as are the linear
buffer management functions.

The design philosophy of the library was to provide ANSI compliance, where
such compliance did not incur substantial additional development effort over a
K&R C library.

Central features of the stdio library are the provision of preloaded and ini-
tialised stdin and stdout I/O streams for user processes, the provision of a
stream communication mechanism for Inter Process Communications, unified
stream and file object structures, a family of ANSI-C and POSIX like functions
for capability operations, and support for the Walnut kernel nameserver library.
The library includes embedded debug message reporting, accessible by an
application programmer.

Appendix A -101- Release Notes

2. Process Environment

The Walnut kernel provides a simple process environment which does not pro-
vide explicit support for stdio functions, or stream communications. These
functions are provided by the stdio initialisation module, initenv(). The
initenv() call sets up the environment for the stdio library within the process
address space.

The process environment provides the following facilities:

• file pointer (descriptor) table

• global environment variables used by the library at runtime

• a debug environment variable

• support for screen debug messaging

• nameserver library initialisation

• initialised stdin and stdout file pointers

The initenv() module must always be linked in with the stdio library, as without
it the library will be unable to function. The module is called with a conven-
tional C-language argument list:

initenv(int argc, char **argv, char **envp);

These arguments provide the parent process with the means of passing specific
arguments down to the child process. This allows programs such as shells to
execute commands out of process, by creating child processes which execute
programs with specified argument lists.

2.1 The FILE Table and the Initialisation of stdin, stdout Descriptors

The file table is an array of FILE (File) structs. Each struct contains the facili-
ties which allow a stdio stream I/O function to read and write a shared stream
object or a file object. Each opened file object or stream object requires a FILE
struct and is accessed by passing a pointer to the FILE struct as the stream
argument of the function call.

When the process is created the file table is also created at a fixed address in the
process address space, and the stream object capabilities for stdin and stdout
are preloaded into the appropriate fields. The stream objects for stdin and stdout
are initialised by the parent process.

The initenv() module completes the initialisation of the file table, by perform-
ing the following tasks:

• setting up the linked list pointers used during fopen() and fclose() to maintain
the file table free list

• removing fdt[0], stdin, and fdt[1], stdout, from the free list

Appendix A -102- Release Notes

• executing a low lev el fileinit call on stdin and stdout to complete the stream
opening process, thus enabling their use for I/O

2.2 Global Environment Variables

The stdio library employs a number of global environment variables. These are
private to the process and cannot be read by other processes unless the process
makes them readable to another party. These variables are initialised by the
initenv() module, and may be accessed by programs executing in the stdio pro-
cess environment. The variables are described as follows:

• Uw errno, ANSI global error flag used by library calls

• Uw iomode, specifier for default I/O blocking mode

• Uw max_ld_cap, maximum number of loaded capabilities

• Uw max_mail_box, maximum number of mailboxes

• Uw max_subp, maximum number of subprocesses

• Uw max_auto_ld_cap, maximum number of auto loaded capabilities

• nameserverDB mydb, name server database object to be loaded

• Capl nullcap = { 0, 0, 0, 0 }, constant null capability

• Capl mycap, process capability id

• Param mypb, process parameter block

• char *screen, pointer to debug buffer

• Uw debug, debug level, used to enable verbose error reporting

• int argc, the number of command line arguments

• char **argv, array of pointers to command line argument strings

• char **envp, array of pointers to environment variables for process

These variables should not need to be used in the course of application pro-
gramming, but may be useful for system programming tasks, and for custom
extensions to the stdio library.

2.3 Nameserver Library Initialisation

The default nameserver database capability is loaded into the process address
space at creation time, by the parent process. The initenv() module will ini-
tialise the nameserver library, with a initDB(&mydb, envp) call, using the
default database and the process’ preloaded environment variables.

Appendix A -103- Release Notes

Should the user require the use of a different nameserver database, the initDB()
must be repeated with the appropriate arguments.

Appendix A -104- Release Notes

3. ANSI C stdio Functions

The Walnut kernel stdio library implements a substantial subset of the
ANSI/ISO X3.159-1989 (X3J11) C language stdio library. As the original C
standard I/O library was written around the Unix operating system, many
aspects of the ANSI library reflect its origins, such as the stream operations
functions. In the Walnut kernel implementation, most of the behaviour specified
in the ANSI standard is replicated, although some differences do exist.

As the ANSI standard functions are comprehensively documented both in hard
copy and the BSD manual pages, this document will concentrate on known dif-
ferences between the Walnut kernel library and ANSI standard.

The most substantial differences at a functional level arise from the fundamen-
tal differences between the Walnut kernel’s memory mapped object scheme,
and the traditional Unix I/O mechanism. The conventional Unix filesystem
object scheme provides access to objects via stream operations which are
embedded in the monolithic kernel, and the kernel buffers accessed blocks in
memory as required. In the Walnut kernel stream I/O functions are provided
within the library, and objects are accessed by loading them into a process
address space.

In the Walnut process environment the stdio library implementation thus sub-
sumes a number of functions which users may be accustomed to finding in tra-
ditional monolithic kernels.

3.1 Stream Operation Functions

FILE *fopen(char *filename, const Uq *mode);
Sw fclose(FILE *stream);
Sw fflush(FILE *stream);
Sw rename(const char *oldname, const char *newname);
Sw remove(const char *filename);
FILE *tmpfile(void);
char *tmpnam(char *s);
FILE *freopen(char *filename, const char *mode, FILE *stream);
Sw setvbuf(char *file, char *buf, Sw mode, Uw size);
Sw setbuf(char *file, char *buf);

The fopen() call is a compliant implementation of the ANSI standard function
call, and will open either a file object or an I/O stream in read, write or with file
objects, also update mode, subject to flag usage. The update mode is not
defined for I/O stream objects, and thus can only be used for file objects.

The current implementation of the library supports only unbuffered binary
streams, as defined by the ANSI standard. This provides transparent transport
for both binary and text streams, with no intervening buffering between the
object and the calling function (a future implementation may support line
buffering of text I/O streams on receive).

The fopen() call recognises the following flag types:

Appendix A -105- Release Notes

• r - read only flag, the stream can only ever be read

• w - write only flag, the stream can only ever be written

• w - append flag, write mode with the file pointer positioned to the end of file
position

• + - update flag, the file object can be read or written. A file positioning func-
tion or fflush() call must be interposed between consecutive read and write, or
write and read operations

When handling I/O streams, the fopen() call is given a name which maps into
the capability to message a process. If the process does not respond to or rejects
the request to open the stream, the call will return a null pointer and set the
global error code. The use of perror() is recommended, when using fopen().
The value of the default volume for object creation is set using the setvol
macro. The fclose() call is ANSI compliant.

The fflush() function differs in its behaviour from the ANSI standard, which
assumes the use of linear buffers. The fflush() function exhibits the following
behaviour:

• file objects - in write, append or update mode the file size value of the object
is updated to the current value of the file pointer

• stream objects - in write mode, the fflush() call will wait until the buffer is
emptied by the reading process, and then return.

The remaining file management functions are ANSI compliant, the buffer man-
agement functions are dummy functions included for compatibility.

3.2 Character I/O Functions

Sw fgetc(FILE *stream);
Sw fputc(Sw c, FILE *stream);
Sw ungetc(Sw c, FILE *stream);
char *fgets(char *buf, Sw BUFSIZ, FILE *stream);
Sw fputs(char *buf, FILE *stream);

The character mode I/O functions are designed to provide ANSI compliant
behaviour for stream and file object types. At this time, the getc() and putc()
calls, traditionally implemented as macros, are implemented as aliases to the
fgetc() and fputc() function calls, and thus will not exhibit a performance
advantage as with conventional implementations.

The ungetc() function is substantially enhanced against the minimal require-
ments of the ANSI standard, and provides guaranteed pushback of up to
NPUSHBACK characters, where NPUSHBACK is a compile time parameter
defined in the filedefs.h include file.

3.3 Direct I/O Functions

size_t fread(void *array, size_t elementsize, size_t count, FILE *stream);

Appendix A -106- Release Notes

size_t fwrite(void *array, size_t elementsize, size_t count, FILE *stream);

The direct I/O functions emulate the behaviour of the ANSI standard, although
the current implementation uses character mode I/O for stream access, and thus
will not exhibit an advantage in transfer rate performance over the character I/O
functions.

3.4 Formatted I/O Functions

Sw fprintf(FILE *stream, const char* fmt, ...);
Sw fscanf(FILE *stream, char* fmt, ...);

The formatted I/O functions provide a partial implementation of the ANSI stan-
dard functions. The fprintf() function at this time does not support floating
point arguments, and thus accepts only %d, %x, %c and %s type arguments.
The fscanf() function was ported from BSD 4.3 source, and thus implements
commercial standard K&R functionality.

3.5 FILE Positioning Functions

Sw fseek(FILE *stream, Sw offset, Sw lastoffset);
Sw ftell(FILE *stream);
Sw fgetpos(FILE *stream, Uw *pos);
Sw fsetpos(FILE *stream, Uw *pos);

The file positioning functions have defined behaviour only for file objects, as
with most stdio library implementations. Due to the memory mapping of
objects into the process address space, these functions will not return a mean-
ingful EOF indication if the mapped window into process memory is smaller
than the object size. Where the mapped size is larger than or equal to the object
size proper, these functions will exhibit nominal ANSI behaviour.

3.6 Error Handling Functions

Sw feof(FILE *stream);
Sw ferror(FILE *stream);
Sw clearerr(FILE *stream);
void perror(const char *s);

The error handling functions all exhibit nominal ANSI standard behaviour. Use
of the perror() function requires the inclusion of the werrno.h file.

Appendix A -107- Release Notes

4. Walnut Capability Functions

The Walnut stdio library contains a number of extensions to the ANSI stdio
library suite. These extensions provide for ANSI like and POSIX (IEEE
1003.1) like functions which operate directly on capabilities, and thus do not
require use of the nameserver library. Where an application program directly
manipulates capabilities, these functions should be used in preference to ANSI
functions, as the capability function library extensions are more efficient.

4.1 The opencap() Function

FILE *opencap(Capl *capability, Uw flags, Uw vol, Uw money, Uw limit);

The opencap() function is directly analogous to the POSIX.1 and Unix open()
system call, but takes a pointer to a capability instead of the file name argu-
ment. The argument list is defined as follows:

• Capl *capability, pointer to file object or target process object capability

• Uw flags, flags for opening, or default object creation

The following flags are defined for opencap():

READ - open the capability for reading

WRITE - open the capability for writing

APPEND - open the capability for writing, and advance the pointer to EOF

UPDATE - open the capability for update, i.e. read and write (file only)

CREATE - if capability doesn’t exist, create on open

BLOCK - stream I/O mode is blocking

NOBLOCK - stream I/O mode is non-blocking

WAKEUP - stream I/O mode is wakeup

SMALLWINDOW - object created with 4 kbyte size, overrides limit argu-
ment

LARGEWINDOW - object created with 4 Mbyte size, overrides limit argu-
ment

• Uw vol, specified volume for object creation

• Uw money, specified money for object creation

• Uw limit, specified limit for object creation

The opencap() call will first check its arguments, then execute a CAPSTAT
system call to confirm the state of the capability. If the capability doesn’t exist
and the CREATE flag isn’t set, opencap() returns a null pointer, else it creates

Appendix A -108- Release Notes

a file object with parameters defined by the argument list, and initialises the
object header. If the capability does exist, and is a file object, then opencap()
tests its access rights against the flags in its argument list, should these be
inconsistent, opencap() returns a null pointer.

If the capability is a process object, opencap() will attempt to open an IPC
stream to the nominated process, with parameters determined by the argument
list. If the stream cannot be opened, opencap() returns a null pointer. The limit
parameter is overloaded to define the requested stream size. Within the range of
object sizes supported, any stream buffer size may be requested.

The opencap() function will then fetch a descriptor from the file table, return-
ing a null pointer if the table is full or in a erroneous state. The descriptor num-
ber is then passed to the low lev el fileinit() function, which initialises the file
descriptor (pointer) and loads in the object.

The opencap() call returns a valid FILE pointer if successful, or a null pointer
if in error. The error condition may be analysed using perror().

4.2 The copen() Function

FILE *copen(Capl *cap, const Uq *mode);

The copen() function is analogous to the ANSI standard fopen() function, but
takes a pointer to a capability as a first argument, rather than a pointer to a file-
name string. The mode flags used are identical to those used by fopen(). The
copen() function returns a FILE pointer if successful, or a null pointer if
unsuccessful.

4.3 The removec() Function

Sw removec(Capl *capability);

The removec() function is analogous to the ANSI standard remove() function,
but takes a pointer to a capability as its argument. The removec() function
returns 0 if successful, or -1 if unsuccessful.

4.4 The cmap and cunmap Functions

The cmap and cunmap functions are analogous to the Unix and POSIX mmap
and munmap system calls. Unlike the Unix calls, cmap and cunmap operate on
a specified capability rather than a file pointer. The function is included to sim-
plify porting of applications and is not used in the library implementation.

void *cmap(void * addr, Uw len, Uw prot, Uw flags, Capl *cap, Uw offset);

• addr - address at which the capability is to be loaded

• len - specifies the length of the view to be loaded

• prot - unused in Walnut

• flags - unused in Walnut

Appendix A -109- Release Notes

• cap - pointer to capability to be loaded

• offset - offset to base of view to be loaded

void cunmap(void *addr, Uw len);

• addr - address of the mapping to be unloaded

• len - unused in Walnut

The cmap and cunmap function implementation is not compliant with the
POSIX function.

4.5 The setmyname and clrmyname Functions

Sw setmyname(char * myname);
Sw clrmyname(char * myname);

These functions are used to bind and unbind names to and from the calling pro-
cess. The sole argument is a pointer to a string. A typical use is to simplify the
design of client processes, which may locate a server by using a name rather
than a capability value.

4.6 The setvol macro

setvol(Uw volume);

The setvol macro is used with the ANSI fopen function. It sets the global value
of the default volume for file or stream creation. If setvol is not invoked before
an fopen is called, fopen will fail.

Appendix A -110- Release Notes

5.Error Reporting Facilities

The Walnut kernel stdio library provides comprehensive error reporting facili-
ties for the debugging of applications. In the existing implementation, there are
three levels of debug error reporting.

The first of these is enabled by setting the global variable debug = 1, and
reports library error messages using the ANSI style perror(const char *func-
tion).

The second level of debug reporting provides abbreviated Walnut kernel kernel
error code reporting, and is enabled by setting the global variable debug = 2.

Full Walnut kernel kernel error reporting is then enabled by using the third
debug reporting level, which is enabled by setting debug = 3.

Default operation is at debug = 0 which is effectively a library reporting silent
mode, where the user has the option of independently using the ANSI perror()
reporting function.

An example of using the error reporting follows:

/*
* enable full error reporting for the fopen() function, then disable it
*/
debug = 3;
fd = fopen("blogs","r");
fwrite(buf, 4, 4096, fd);
fclose(fd);
debug = 0;

The debug facilities should be used selectively, as the stdio library functions, in
the course of operation, will often execute kernel calls which fail, such as CAP-
STATs on non-existent file objects. If used indiscriminately, error reporting will
clutter the user display with irrelevant messages.

5.1 The kerror() Function

void kerror(const char *s);

The kerror() function provides Walnut kernel kernel error reporting in terse
and verbose modes. Its function is analogous to the ANSI perror() function, in
that it accepts a single string argument to identify the location of the error, and
then prints either a numerical error code, or a numerical error code and one line
listing of the error message. The kerror.h file must be included.

NB: this library call uses the returned value of the parameter block error field
parameter->error to identify the error state. This field cannot be zeroed until
the kerror() call has returned.

5.2 The KERROR() Macro

Appendix A -111- Release Notes

KERROR(function,err)

The KERROR macro provides a packaged invocation of perror and kerror, and
some trivial screen positioning to provide an easily readable error report. Usage
of the KERROR macro is analogous to the concurrent usage of perror() and
kerror(), with function used to identify the name of the calling function (i.e.
location of the failure), and err set to the value of the returned error code. The
kerror.h file must be included.

NB: the error code is not the returned value from a stdio library function, which
is defined by the ANSI standard. KERROR should be used when coding
directly with Walnut kernel system calls. The following internal error codes are
defined in the Walnut kernel stdio library:

EBADFDINDEX - bad file table index
ENULLCAP - null capability
EBADMAGIC - bad magic number
EBADDIRN - bad stream direction
EBADLOAD - object load failed
EBADBUFOBJ - bad buffer object
EBADCAP - bad capability
EBADMAKE - make object failed
EBADRIGHTS - rights masks inappropriate
EBADINDEX - bad index
EFDTFULL - file table full
EMSGTMOUT - message send timed out
EBADARGS - open args inconsistent
ENSERROR - name server error
ENOEXIST - capl doesn’t exist
EKERNEL - kernel error

Appendix A -112- Release Notes

6. Utility and Debugging Functions

The stdio library provides a number of utility and debugging functions, which
may be productively used for system programming tasks involving the library.
These functions provide for formatted display of file descriptor structs, object
headers and general screen output bypassing the stdin and stdout paths.

6.1 Debug I/O Display Functions

void outs(char *string);
void outh(Uw h);
void outi(Sw i);
void newline(void);
void outc(int c);
int getx();
int gety();
void gotoxy(int x, int y);
void clrscr();

The debug screen debugging facility allows processes to display messages on a
character mode display, wholly bypassing the stdio stream communication
channel. The debug screen uses a separate frame buffer to the console display.
This can be of use should difficulties be encountered with library operation.
Enabling the screen debug facility requires recompilation of the library with the
-DDEBUG flag.

The outs() function takes a pointer to a string of chars, and prints these to the
debug monitor. This function cannot display a newline character, unlike ANSI
I/O functions.

The outh() function takes an unsigned integer and prints it to the debug moni-
tor.

The outi() function takes an signed integer and prints it to the debug monitor.

The newline() implements a return-newline sequence on the debug monitor.

The outc() function takes a character and prints it to the debug monitor.

The getx() function returns the x location of the cursor on the debug monitor.

The gety() function returns the y location of the cursor on the debug monitor.

The gotoxy() function sets the position of the cursor on the debug monitor.

The clrscr() function clears the debug monitor and moves the cursor to the top
left of the monitor.

6.2 Debug Display Formatted Stream Functions

void printfd(FILE *fd);

Appendix A -113- Release Notes

void printobj(Stream *obj);

The formatted stream display functions are debugging tools which dump the
formatted contents of a Stream (stream / file object header) and FILE (File
table entry) to the debug monitor. This can be of use when debugging precludes
access to the stdout I/O stream. Both functions take pointers as arguments.

6.3 Formatted Structure Display Functions

void fprintpb(Param *pb);
void fprintcap(Capl *cap);
void fprintfd(FILE *stream);
void fprintobj(Stream *streamobj);
void fprintncd(struct namecdata *ncd);

The formatted structure display functions provide the formatted display of key
stdio library structures, for debugging purposes. Output from these functions is
directed to the stdout output stream. All functions take pointers as arguments.

The fprintpb() function displays the contents of the specified Walnut kernel
kernel parameter block. The fprintcap() function displays the contents of the
specified capability. The fprintfd() function displays the contents of the speci-
fied file descriptor. The fprintobj() function displays the contents of the speci-
fied stream or file object header. The fprintncd() function displays the con-
tents of the specified name server database entry.

6.4 The fileinit() Function

Sw fileinit(Uw fdindex, Uw *offset, Uw *cindex, Uw block, Uw direction);

The fileinit() function provides low lev el operations used during the final phase
of opening a stream or a file object. The argument list is defined as follows:

• fdindex - index into the file descriptor table

• offset - specifies capability offset and returns offset value

• cindex - specifies capability cindex and returns cindex value

• block - specifies blocking, nonblocking or wakeup I/O mode

• direction - specifies read or write direction for stream or file objects

The fileinit() call will first check the index provided and the volume number for
a null volume, returning -1 if these are not usable. If they are usable, fileinit()
will execute a CAPSTAT system call to verify the state of the capability, and
then load the capability into the process address space at the specified offset. If
the offset is zero, the argument value is overwritten with the returned offset.

Once the object is loaded, fileinit() will check the magic number for a
FILESTREAM (I/O stream object) or FILECHAR (file object) value, the

Appendix A -114- Release Notes

base size against the header size, the total object size against the mapped in
window size and the object index values, returning -1 if in error. Once the
integrity of the object is confirmed, fileinit() will proceed to initialise the
remaining fields in the object header and the file descriptor (FILE pointer).

On successful completion, fileinit() returns 0.

Appendix A -115- Release Notes

7. Build Environment

Building executable targets which can be run on the Walnut kernel system
requires a Walnut kernel build environment. This environment comprises the
libstdio.a library, the libnameserv.a and a Makefile derived from the Make-
file.tmpl

The Makefile must be suitably modified to include the modules intended to be
linked with the library. The result of a successful compilation and link will be
code and data object files, myfile.cbn and myfile.dbn respectively, which can be
directly loaded and run on the Walnut kernel.

All files must include the stdio_c.h, filedefs.h and stdfiles.h include files, which
contain essential function prototypes, macros, aliases and defines. Should error
reporting be required, the kerror.h and werrno.h files must also be included.

Appendix B -116- Source Code

Appendix B Source Code (fputc, fgetc, ungetc)

/*
* wfputc.c - put character system library call
* Monash multi Intel version
* Author: Carlo Kopp
* Created: 31 May, 1994
* Modified: 1st June, 1994 - revised design
* Modified: 4th July, 1994 use CSW file descriptor
* Tested: 6th October, 1994 Carlo/Maurice
* Modified: 19th October, 1994 Chris Wallace (revised trip, new algorithm)
* Modified: 17th March, 1995 Carlo Kopp - pushback buffer added
* Tested: 17th March, 1995 Carlo Kopp
*/

/* $Id: thesis.ms,v 1.1 1996/02/28 01:20:13 walnut Exp walnut $ */

#include <string.h>
#include <funtype.h>
#include <param.h>
#include <stdfiles.h>
#include <filedefs.h>
#include <cap.h>
#include <request.h>

#ifdef UNIX
#include <stdio.h>
#else
#include <stdio_c.h>
#endif

#ifdef UNIX
extern Param localpar;
extern File localfdt[];
extern Uw localmesg[];
#define NPUSHBACK 8
#endif

/*
* The circular buffer scheme used by the Multi stdio library makes the
* following assumptions about the buffer indices:
*
* inindex (write) may assume values between 0 and (strmsz - 1)
*
* outindex (read) may assume values between 0 and (strmsz - 1)
*
* The buffer-empty state is inindex = outindex
*
* The buffer-full state is EITHER
*
* inindex = outindex - 1 - NPUSHBACK

Appendix B -117- Source Code

*
* OR
*
* inindex = strmsz - 1 , outindex = NPUSHBACK
*
* OR
*
* inindex = strmsz - 1 - (NPUSHBACK - outindex)
*
* NPUSHBACK is a compile time parameter which sets the size of the
* buffer pushback zone. NPUSHBACK < strmsz - 1, and in practice is the
* line size for line buffered character mode, as per ANSI C standard
* Typical NPUSHBACK values are << strmsz, examples would be
* strmsz = 4096 ; NPUSHBACK = 256 , strmsz = 64k ; NPUSHBACK = 2048
*
* NB NPUSHBACK is always adjusted by the value of stream->pushback to
* prevent backward creep of the tripwire with ungetc() calls
*/

/*
* Unix test environment requires NPUSHBACK < 39
*/
#if defined(TESTIO)
#define NPUSHBACK 16
#endif

Sw
wfputc(Sw data, File * stream)
{

Param *par;
Sw inindex, outindex = NPUSHBACK;

#ifndef UNIX
extern Uw lineNumber;

#else
Uw lineNumber;

#endif

#ifdef BLOGS
#define LN lineNumber=__LINE__ + 0x30000
#else
#define LN
#endif

extern Uw debug, *the_wall;

/*
* This is the common code section executed on every pass. The _RDOK
* flag is cleared to protect from a following read. The trip test
* determines whether a special case exists, in which event case
* specific code is executed. retry and writeok are specific entry
* points used by the special case handlers.
*/

Appendix B -118- Source Code

retry:
stream->flags &= (˜_RDOK);
LN;
if (stream->myindex >= stream->tripwire)

goto tripped;
LN;

writeok:
(stream->strm)[stream->myindex] = (Uq) data;
LN; /* put the character */
stream->myindex++;
LN;
*(stream->inptr) = stream->myindex;
LN; /* update inindex */
stream->obj->writersblock = ACTIVE; /* flag not full */
LN;
return (data);

/*
* Here we test for file or stream, if it’s a file we have hit the
* end and we return EOF, else continue
*/

tripped:
if (stream->type == FILESTREAM)

goto stream;
LN;

/*
* we hav e tripped on a file object write ...
*
* NB: update mode requires that tripwire is reset to limit, and char is
* put
*/
if ((stream->flags & _UPDATE) &&

(stream->tripwire < stream->obj->filelimit)) {
stream->tripwire = stream->obj->filelimit;
goto writeok;

} else
return (EOF);

/*
* We hav e a stream. Test for full and also for top-of-buffer.
*/

stream:
/*
* Lets be paranoid and test to see if anyone has stuffed up
*/
inindex = stream->myindex;
LN;
if (inindex != *(stream->inptr))

goto stuffed;
LN;
outindex = *(stream->outptr);
LN;
if ((outindex < 0) || (outindex >= stream->strmsz))

Appendix B -119- Source Code

goto stuffed;
LN;
/*
* The stream object seems OK for top of buffer
*/
if (inindex == (stream->strmsz - 1)) {

/*
* Hav e reached top of buffer. If outindex = NPUSHBACK,
* the buffer is full.
*/
if (outindex == NPUSHBACK)

goto full;
/*
* Buffer is not full. Can place data and reset inindex
*/
(stream->strm)[inindex] = data;
LN;
/*
* Next trip condition must be catching up with outindex
*/
stream->tripwire = outindex - 1 - NPUSHBACK;
LN;
stream->myindex = 0;
LN;
*(stream->inptr) = 0;
LN;
stream->obj->writersblock = ACTIVE; /* flag not full */
LN;
return (data);

}
/*
* Not at top of buffer. Buffer may be full, so test
*/
if (inindex == (outindex - 1 - NPUSHBACK))

goto full;
if (inindex == (stream->strmsz - 1 - NPUSHBACK + outindex))

goto full;
LN;
(stream->strm)[inindex] = data;
LN;
/*
* What trip will we hit next? If inindex < outindex, will hit it
* before (or same time as) hitting top of buffer.
*/
if (inindex < (outindex - NPUSHBACK)) {

stream->tripwire = outindex - 1 - NPUSHBACK;
LN;

} else if ((inindex >= outindex) && (outindex > NPUSHBACK)){
stream->tripwire = stream->strmsz - 1;
LN;

} else if ((outindex <= inindex) && (outindex <= NPUSHBACK)){
stream->tripwire = stream->strmsz - 1 - NPUSHBACK + outindex;
LN;

} else

Appendix B -120- Source Code

return (STUFFED);
LN;
stream->myindex = inindex + 1;
LN;
*(stream->inptr) = inindex + 1;
LN;
return (data);

full:
/*
* First we test for a stream closed by the other party, then we test
* for nonblocking mode, from which we return, else we block (ie
* wait and retry until a char is written)
*/
if (stream->obj->rmode == STREAMMODECLOSING)

return (CLOSED);
LN;
if (stream->obj->wmode == STREAMMODENONBLOCKING)

return (FULL);
LN;
par = (Param *) PARAMADDRESS;
the_wall = (Uw *) 0xc000;
LN;

#ifdef NOWAKEMODE
stream->obj->writersblock = BLOCKED; LN;/* flag full */
release(par); LN; /* give up slice */

#else
/*
* NB: writer wakes reader if reader’s mode is STREAMMODESLEEPONEMPTY
* reg ardless of state of writer
*/
if ((stream->obj->rmode & STREAMMODESLEEPONEMPTY)

&& (stream->obj->readersblock & SLEEPING)
&& !(stream->obj->readersblock & WOKEN)) {
wakereader(par,stream->obj); LN;

}
/*
* NB: writer puts itself to sleep if its mode is STREAMMODESLEEPONFULL
* reg ardless of state of reader
*/
if (stream->obj->wmode & STREAMMODESLEEPONFULL){

stream->obj->writersblock |= SLEEPING; LN;/* flag asleep */
sleepten(par); LN;
flushmsg(par); LN;
stream->obj->writersblock = ACTIVE; LN;/* flag active again */
goto retry;

}
/*
* Here we block ... STREAMMODEBLOCKING default
*/
stream->obj->writersblock = BLOCKED; LN;/* flag full */
release(par); LN; /* give up slice */

#endif
goto retry;

Appendix B -121- Source Code

/*
* Buffer object corrupted
*/

stuffed:
return (STUFFED);

} /* end wfputc() */

Appendix B -122- Source Code

/*
* wfgetc.c - get character system library call
* Monash multi Intel version
* Author: Carlo Kopp
* Created: 31 May, 1994
* Modified: 1st June, 1994 - revised design
* Modified: 4th July, 1994 use CSW file descriptor
* Tested (OK): 6th October, 1994 Carlo/Maurice
* Modified: 19th October, 1994 Chris Wallace (revised trip, new algorithm)
*/

/* $Id: thesis.ms,v 1.1 1996/02/28 01:20:13 walnut Exp walnut $ */

#include <string.h>
#include <funtype.h>
#include <param.h>
#include <cap.h>
#include <request.h>
#include <stdfiles.h>
#include <filedefs.h>

#ifdef UNIX
#include <stdio.h>
#else
#include <stdio_c.h>
#endif

#ifdef UNIX
extern Param localpar;
extern File localfdt[];
extern Uw localmesg[];
#define NPUSHBACK 8
#endif

/*
* The circular buffer scheme used by the Multi stdio library makes the
* following assumptions about the buffer indices:
*
* inindex (write) may assume values between 0 and (strmsz - 1)
*
* outindex (read) may assume values between 0 and (strmsz-1)
*
* The buffer-empty state is inindex = outindex The buffer-full state is EITHER
* inindex = outindex-1 OR inindex = strmsz-1, outindex = 0
*/

Sw
wfgetc(File *stream)
{

Param
*par;

Sw
inindex,
outindex;

Appendix B -123- Source Code

Uq
data;

#ifndef UNIX
extern Uw lineNumber;

#else
Uw lineNumber;

#endif

#ifdef BLOGS
#define LN lineNumber=__LINE__ + 0x20000
#else
#define LN
#endif

extern Uw debug, *the_wall;

/*
* This is the common code section executed on every pass. The _WROK
* flag is cleared to protect from a following write. The trip test
* determines whether a special case exists, in which event case
* specific code is executed. retry and readok are specific entry
* points used by the special case handlers.
*/

retry:
stream->flags &= (˜_WROK);
LN;
if (stream->myindex >= stream->tripwire)

goto tripped;
LN;

/*
* readok:
*/

data = (stream->strm)[stream->myindex];
LN; /* get the character */
stream->myindex++;
LN;
if (*(stream->pushback) > 0) *(stream->pushback) -= 1;
LN;
*(stream->outptr) = stream->myindex;
LN; /* update outindex */
stream->obj->readersblock = ACTIVE;
LN; /* flag not empty */
return (data);

/*
* Here we test for file or stream, if it’s a file we have hit the
* end and we return EOF, else continue
*/

tripped:
if (stream->type == FILESTREAM)

goto stream;
LN;

Appendix B -124- Source Code

/*
* read and update mode on file set the EOF flag and return EOF
*/
stream->flags |= _EOF;
LN;
return (EOF);
LN;

/*
* We hav e a stream. Test for empty and also for top-of-buffer.
*/

stream:
/*
* Lets be paranoid and test to see if anyone has stuffed up
*/
if (*(stream->pushback) > NPUSHBACK)

goto stuffed;
LN;
outindex = stream->myindex;
LN;
if (outindex != *(stream->outptr))

goto stuffed;
LN;
inindex = *(stream->inptr);
LN;
if ((inindex < 0) || (inindex >= stream->strmsz))

goto stuffed;
LN;
/*
* The stream object seems OK
*/
if (inindex == outindex)

goto empty;
LN;
/*
* Buffer is not empty. Can read a character
*/
data = (stream->strm)[outindex];
LN;
stream->obj->readersblock = ACTIVE; /* flag not empty */
LN; /* get the character */
outindex++;
LN;
if (outindex == stream->strmsz) {

/*
* Hav e reached top of buffer. Reset outindex to 0. Next
* trip condition must be catching up with inindex
*/
stream->tripwire = inindex;
LN;
stream->myindex = 0;
LN;
if (*(stream->pushback) > 0) *(stream->pushback) -= 1;
LN;

Appendix B -125- Source Code

*(stream->outptr) = 0;
LN;
return (data);

}
/*
* Not at top of buffer. Outindex has been stepped on. What trip
* condition can we hit next? If outindex <= inindex, will hit it
* before (or same time as) hitting top of buffer.
*/
if (outindex <= inindex) {

stream->tripwire = inindex;
LN;

} else {
stream->tripwire = stream->strmsz - 1;
LN;

}
stream->myindex = outindex;
LN;
if (*(stream->pushback) > 0) (*stream->pushback) -= 1;
LN;
*(stream->outptr) = outindex;
LN;
return (data);

/*
* First we test for a stream closed by the other party, then we test
* for nonblocking mode, from which we return, else we block (ie
* wait and retry until a char is read)
*/

empty:
if (stream->obj->wmode == STREAMMODECLOSING)

return (CLOSED);
LN;
if (stream->obj->rmode == STREAMMODENONBLOCKING)

return (EMPTY);
LN;
par = (Param *) PARAMADDRESS;
the_wall = (Uw *) 0xc000;
LN;

#ifdef NOWAKEMODE
stream->obj->readersblock = BLOCKED; /* flag empty */
release(par); LN; /* give up slice */

#else
/*
* NB: reader wakes writer if writer’s mode is STREAMMODESLEEPONFULL
* reg ardless of state of reader
*/
if ((stream->obj->wmode & STREAMMODESLEEPONFULL)

&& (stream->obj->writersblock & SLEEPING)
&& !(stream->obj->writersblock & WOKEN)) {
wakewriter(par,stream->obj); LN;

}
/*
* NB: reader puts itself to sleep if its mode is STREAMMODESLEEPONEMPTY

Appendix B -126- Source Code

* reg ardless of state of writer
*/
if (stream->obj->rmode & STREAMMODESLEEPONEMPTY){

stream->obj->readersblock |= SLEEPING; LN;/* flag asleep */
sleepten(par); LN;
flushmsg(par); LN;
stream->obj->readersblock = ACTIVE; LN;/* flag active again */
goto retry;

}
/*
* Here we block ... STREAMMODEBLOCKING default
*/
stream->obj->readersblock = BLOCKED; /* flag empty */
release(par); LN; /* give up slice */

#endif
goto retry;

/*
* Buffer object corrupted
*/

stuffed:
return (STUFFED);

} /* end wfgetc() */

Appendix B -127- Source Code

/*
* ungetc.c - unget character system library call
* Monash multi Intel version
* Author: Carlo Kopp
* Created: 17th March, 1995
*/

/* $Id: thesis.ms,v 1.1 1996/02/28 01:20:13 walnut Exp walnut $ */

#include <funtype.h>
#include <param.h>
#include <stdfiles.h>
#include <filedefs.h>

#ifdef UNIX
#include <stdio.h>
#else
#include <stdio_c.h>
#endif

#ifdef UNIX
extern Param localparam;
extern File localstreamt[];
extern Uw localmesg[];
#define NPUSHBACK 8
#endif

/*
* The circular buffer scheme used by the Multi stdio library makes the
* following assumptions about the buffer indices:
*
* inindex (write) may assume values between 0 and (strmsz - 1)
*
* outindex (read) may assume values between 0 and (strmsz-1)
*
* The buffer-empty state is inindex = outindex The buffer-full state is EITHER
* inindex = outindex-1 OR inindex = strmsz-1, outindex = 0
*
* NB: the pushback buffer zone size is set by NPUSHBACK, pushback is the
* pushback counter which is used by putc
*/

Sw wungetc(Sw c, File *stream)
{

Sw inindex, outindex;
#ifndef UNIX

extern Uw lineNumber;
#else

Uw lineNumber;
#endif
#define LN lineNumber=__LINE__ + 0x20000

/*
* beartrap for bad data such as error codes

Appendix B -128- Source Code

*/
if (c < 0) return (c);

/*
* This is code executed on every pass - if myindex is 0, we wrap around
*/

stream->flags &= (˜_WROK);
LN;
if (stream->myindex <= 0)

goto tripped;
LN;
*(stream->pushback) += 1;
LN;
if(*(stream->pushback) > NPUSHBACK)return (EOF);/* overran pushback */
LN;
stream->myindex--;
LN;
(stream->strm)[stream->myindex] = c;
LN; /* push the character */
*(stream->outptr) = stream->myindex;
LN; /* update outindex */
return (c);

/*
* Here we test for file or stream, if it’s a file we have hit the
* bottom and we return EOF, else continue
*/

tripped:
if (stream->type == FILESTREAM)

goto stream;
LN;

/*
* read and update mode on file set the EOF flag and return EOF
*/
stream->flags |= _EOF;
LN;
return (EOF);
LN;

/*
* We hav e a stream. We wrap around to the top
*/

stream:
/*
* Lets be paranoid and test to see if anyone has stuffed up
*/
if (*(stream->pushback) < 0)

goto stuffed;
LN;
outindex = stream->myindex;
LN;
if (outindex != *(stream->outptr))

goto stuffed;
LN;

Appendix B -129- Source Code

inindex = *(stream->inptr);
LN;
if ((inindex < 0) || (inindex >= stream->strmsz))

goto stuffed;
LN;
/*
* The stream object seems OK
*/
/*
* Here we wrap around
*/
*(stream->pushback) += 1;
LN;
if(*(stream->pushback) > NPUSHBACK)return (EOF);/* overran pushback */
/*
* here is where it all happens
*/
LN;
(stream->strm)[stream->strmsz - 1] = c; /* XXX */
LN;
stream->myindex = stream->strmsz - 1;
LN;
*(stream->outptr) = stream->strmsz - 1;
LN;
return (c);

stuffed:
return (STUFFED);

} /* end wungetc() */

Appendix C -130- Source Code

Appendix C Source Code (rm, head)

/*
* rm - Walnut user level rm program
*
* Authors: Carlo Kopp
*
* revision history:
*
* Date Author Change
*
* 26/10/95 Carlo Kopp created from filetest.c tests
*
* $Id: $
*/

#include <funtype.h>
#include <werrno.h>
#include <param.h>
#include <stdfiles.h>
#include <screen.h>
#include <filedefs.h>
#include <namec.h>
#include <nameserver.h>
#include <procenv.h>
#include <request.h>

#include <stdio_c.h>

#define main init

/*
* line number for gcc debug
*/

Uw lineNumber = 0;
#define LN lineNumber=__LINE__ + 0x30000
/*
* code starts here
*/

void
main(int argc, char **argv, char **envp)
{

extern Uw
errno,
debug;

int
i = 0;

setmyname("rm-running");

Appendix C -131- Source Code

debug = 3;

for (i = 1; i <= argc; i++) errno = wremove(argv[i]);
clrmyname("rm-running");
vx();

}

Appendix C -132- Source Code

/*
* Copyright (c) 1980, 1987, 1992, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
*/

#include <stdlib.h>
#include <string.h>
#include <ctype.h>

#include <funtype.h>
#include <werrno.h>
#include <param.h>
#include <stdfiles.h>
#include <screen.h>
#include <filedefs.h>
#include <namec.h>
#include <nameserver.h>
#include <request.h>
#include <stdio_c.h>

/*
* head - give the first few lines of a stream or of each of a set of files
*
* Bill Joy UCB August 24, 1977
* Walnut port Carlo Kopp February, 1996
*
*/

Uw lineNumber = 0;
#define LN lineNumber=__LINE__ + 0x60000

#define main init

int eval;
extern Uw errno;

Appendix C -133- Source Code

void
head(File *fp, register int cnt)
{

register int ch;

while (cnt--)
while ((ch = getc(fp)) != EOF) {

if (putchar(ch) == EOF)
err(1, "stdout: %s", strerror(errno));

if (ch == ’0)
break;

}
}

void
obsolete(char *argv[])
{

char *ap;

while (ap = *++argv) {
/* Return if "--" or not "-[0-9]*". */
if (ap[0] != ’-’ || ap[1] == ’-’ || !isdigit(ap[1]))

return;
if ((ap = malloc(strlen(*argv) + 2)) == NULL)

err(1, "%s", strerror(errno));
ap[0] = ’-’;
ap[1] = ’n’;
(void)strcpy(ap + 2, *argv + 1);
*argv = ap;

}
}

void
usage()
{

(void)fprintf(stderr, "usage: head [-n lines] [file ...]0);
vx();

}

#include <stdarg.h>

void
err(int fatal, const char *fmt, ...)
{

va_list ap;
va_start(ap, fmt);
(void)fprintf(stderr, "head: ");
(void)vfprintf(stderr, fmt, ap);
va_end(ap);
(void)fprintf(stderr, "0);
if (fatal)

vx();
eval = 1;

}

Appendix C -134- Source Code

int
main(int argc, char *argv[])
{

register int ch;
File *fp;
int first, linecnt;
char *ep;

setmyname("head-running");
obsolete(argv);
linecnt = 10;
while ((ch = getopt(argc, argv, "n:")) != EOF)

switch(ch) {
case ’n’:

linecnt = strtol(optarg, &ep, 10);
if (*ep || linecnt <= 0)

err(1, "illegal line count -- %s", optarg);
break;

case ’?’:
default:

usage();
}

argc -= optind;
argv += optind;

if (*argv)
for (first = 1; *argv; ++argv) {

if ((fp = fopen(*argv, "r")) == NULL) {
err(0, "%s: %s", *argv, strerror(errno));
continue;

}
if (argc > 1) {

(void)printf("%s==> %s <==0,
first ? "" : "0, *argv);

first = 0;
}
head(fp, linecnt);
(void)fclose(fp);

}
else

head(stdin, linecnt);
clrmyname("head-running");
vx();

}

Appendix D -135- Validation Tests

Appendix D Validation Test Suite

0. perror integrity test

The perror integrity test sets the errno value, and then invokes the
perror function. This is done for all defined error codes.

1. opencap create object test

The opencap create object test creates a file object in write mode.

2. fprintf/putc write object test

The fprintf/putc write object test writes a string into the object cre-
ated in the previous test.

3. write exclusion test

The write exclusion test verifies that a write mode file cannot be read.
It tests the exclusion flags which should be set in the FILE structure.

4. ferror test

The ferror test verifies that the feof function correctly tests the flags.

5. clearerr test

The clearerr test verifies that the clearerr function has cleared the
_ERR and _EOF flags in the FILE structure.

6. file close test

The file close test verifies that a file can be closed.

7. opencap read mode test

The read mode opencap test verifies that a file can be opened in read
mode. It operates on the file object created by test 2.

8. file read test

The file read test verifies that a file can be read. It operates on the file
object created by test 2.

9. feof test

The feof test verifies that the feof function tests the _EOF flag cor-
rectly.

10. fseek/ftell test

The fseek/ftell test contains four sub-tests, each of which verifies that
an fseek operation has produced the required change to the file index position.

Appendix D -136- Validation Tests

11. fsetpos/fgetpos test

The fsetpos/fgetpos test repeats test 10, using the fsetpos and fgetpos
functions.

12. file append test

This test opens the previously created file object in append mode,
writes to it, closes it, opens it in read mode and confirms that the append mode
write has been successful.

13. file update test

This test opens a file in update mode, writes to it, rewinds the file
index, and reads back the contents.

14. removec/kerror test

This test destroys the file object used in the preceding test, and then
attempts to open the non-existent file object to confirm the operation of the ker-
nel error reporting function.

15. copen create test
16. copen write test
17. copen update test

These three tests repeat the operations carried out previously in the
opencap function tests, using the copen function.

18. tmpfile test

This test verifies that a tmpfile can be created.

19. stream fflush test

This test executes the fflush function.

20. fopen create test
21. fopen read test
22. fopen update test

These three tests repeat the operations carried out previously in the
copen function tests, using the fopen function.

23. remove test

This test confirms that a previously created file object can be
removed.

24. ungetc pushback test

This test creates a file object, writes a string to it, reads back the
string, pushes NPUSHBACK characters back to file, and then verifies that the
characters pushed back are identical to the characters initially read.

Appendix D -137- Validation Tests

25. fscanf test

This test verifies that the fscanf function can correctly decode argu-
ments in the %d, %x, %c and %s formats.

26. makestreamobj test

The makestreamobj test uses the fileinit function to verify that a
stream object created by the makestreamobj function is error free.

