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Abstract

We discuss seven undesirable features common to many
programming languages used to teach first-time program-
mers, and illustrate typical pedagogical difficulties which
stem from them with examples drawn from the program-
ming languages ABC, Ada, C, C++, Eiffel, Haskell, LISP,
Modula 3, Pascal, Prolog, Scheme, and Turing. We propose
seven language design (or selection) principles which may
reduce the incidence of such undesirable features.

Introduction

Learning to program is difficult. We believe that a sub-
stantial part of this difficulty arises from the structure, syn-
tax and semantics of the programming languages which are
commonly used to teach programming.

Programming language designers are (of necessity)
highly intelligent experts in the field of programming, and
are consequently far removed both temporally and cogni-
tively from the difficulties experienced by the novice pro-
grammer. This gulf of experience and ability results in lan-
guages which are either too restrictive or too powerful (or
sometimes, paradoxically, both).

We divide introductory programming languages into
two broad categories: special purpose teaching languages
(such as Pascal [1], Turing [2], ABC [3]) and popular "real-
world" languages (such as C [4], C++ [5], Ada [6], Modula
3 [7], Haskell [8], and Scheme [9]).

There is a long history of scholarly and less-than-schol-
arly debate [10,11,12,13] regarding the comparative merits
and flaws of many of these languages. Typically this debate
centres on theoretical issues (such as expressiveness, range
of concepts supported, or paradigmatic integrity) and
practical considerations (such as range of available plat-
forms, support tools and environments, or efficiency). This
paper departs from that tradition in that it focuses exclu-
sively on the issues which arise in the context of teaching
introductory programming.

We enumerate seven serious pedagogical problems,
each of which is common to most or all of the above-men-
tioned languages, even those specifically designed for
teaching. We also propose a like number of design princi-
ples, which we believe will lead to the development of sig-
nificantly more "teachable" introductory programming lan-
guages. Finally we suggest seven criteria which educators
may find useful in evaluating existing languages for intro-
ductory teaching.

The observations and suggestions contained in this pa-
per have been developed as part of the GRAIL1 project
within the Department of Computer Science, Monash
University. The aim of this project is to study the early ac-
quisition of programming skills, with the ultimate goal of
creating more usable languages and support tools.

Seven Deadly Sins

1. Less is more.

The "less is more" principle appears in many forms, al-
most all of which seem to be ultimately detrimental to the
learning process. Perhaps the most obvious examples are
the Scheme language and other LISP variants. Scheme has
effectively only one data type – the list – and one operation
– evaluation of a list. While this abstraction is very simple
to explain, and not difficult for the beginner to grasp super-
ficially, it does result in code that is difficult to read because
of large numbers of nested parentheses and the absence of
other structuring punctuation.

Furthermore, to support this extreme degree of homo-
geneity, a large number of inbuilt functions are required,
many of which are quite sophisticated in their behaviour,
and therefore difficult to understand and use correctly (for
example: sort vs sortcar in Franz LISP [14]).

A "less is more" approach is usually justified in terms of
paradigmatic purity: strict adherence to a single functional,
logical or object oriented paradigm. While this orthodoxy
can make for a certain conceptual simplicity and elegance
(which can be of considerable advantage in teaching con-
cepts such as scoping, recursion and encapsulation), in prac-
tice it can also lead to extremely obscure and unreadable
code. In some cases, relatively simple programs must be
substantially restructured to achieve even basic effects such
as input and output.

The underlying pedagogical difficulty is that students
are not used to solving problems in a single pure paradigm.
Much of the problem solving they do in the real world is
procedural in nature (cooking a meal, totalling a restaurant
bill, etc.), but other problems with which they are familiar
are more amenable to constraint solving (dispute resolution,
holiday planning, budgeting), a functional or pipe-line ap-
proach (collaborative tasks, various types of component as-
sembly), or even object-oriented methods (using an auto-
matic teller machine, learning physical skills).

The results of enforcing paradigmatic purity can be as
simple as the annoying requirement in Turing that functions
have no side-effects, or as far reaching as the mysteries of

1 Genuinely Readable And Intuitive Languages



I/O in Haskell, which sometimes necessitate the warping of
the entire structure of an otherwise elegant and comprehen-
sible functional program.

2. More is more.

It is equally true that many languages are based on de-
sign philosophies which err in the other extreme. Powerful,
real world languages (C++ and Ada, for example) are
amongst the prime culprits here. Often such languages are
taught by subsetting – teaching a small but usable part of
the language whilst ignoring its more powerful features.

At first glance this approach seems quite reasonable, but
two pedagogical problems frequently sabotage it. The first
is that textbooks and other reference materials rarely con-
fine themselves to the selected subset. The second is that,
even if the textbook does limit itself to the required subset,
the compiler almost certainly does not. The result is often
worse than if the complete language was taught: students
must still contend with the full semantics of the language,
but much of it has deliberately not been explained to them!

C++ is certainly one of the most popular languages in
"real-world" use and (for that very reason) is also increas-
ingly widely taught as an introductory language. One of the
justifications typically cited for teaching C++ [11] is the
range of low- and high-level features it provides (from bit
manipulation of raw pointers, to templated abstract classes
with polymorphic member functions).

Beginners, however, are notoriously poor at maintaining
two or more conceptual perspectives simultaneously [15].
Dichotomies of perspective (such as syntax vs semantics,
static vs dynamic structure, process vs data) complicate the
teaching of any programming language. The availability of
very low-level implementation-oriented constructs and
high-level solution-oriented features in a single language
only serves to increase substantially the already consider-
able cognitive demands placed on the student.

As well as the obvious concerns regarding learning
curves, confusion of levels, and the difficulties of adequate
error detection, a wide range of features necessitates a
commensurately complex syntax and often also entails a
host of implicit operations and function calls, automatic
conversions, type inferences, and resolutions of overloaded
functions, variable and function scoping.

Examples of this "creeping featuritis" are easy to cite:
C++ provides over 50 distinct operators at 17 levels of
precedence, Ada9X has 68 reserved words and over 50 pre-
defined attributes, Modula 3 reserves over 100 keywords,
and some commonly-used LISP dialects ([14] for example)
define over 500 special functions. Because most textbooks
and compilers attempt to cover the full language, novice
programmers are forced to contend with all of these fea-
tures, even if they are not using them.

3. Grammatical traps.

Another class of pedagogical problems stems from vari-
ous kinds of confusing syntactic and semantic constructs
which are present in most introductory languages. Some of

these constructs arise from the constraints of the ASCII
character set, whilst others are the result of a deliberate but
(in our view) misguided "less-is-more" design policy. The
common feature of these problems is that they are analo-
gous to certain sophisticated grammatical constructs in nat-
ural languages, and result in the same types of learning
problems as are seen in natural language acquisition.

One such construct is the syntactic synonym, in which
two or more syntaxes are available to specify a single con-
struct. An common example of this is dynamic array access
in C, wherein the second2 element of an array may be ac-
cessed by any of the following syntaxes, some of which are
legal only in certain contexts:

array[1]  *(array+1)  1[array]  *++array

A less well-known example is list construction. In
Haskell the list construction expression [1,2,3] is syn-
onymous with 1:(2:(3:[])).  In Prolog [1,2,3] is
equivalent to  .(1,.(2,.(3,[])))  and both produce a
third form on evaluation: (1,2,3).

In themselves, synonyms are minor irritants (which
multiply the learning curve for particular constructs by no
more than 200–300%) However, they can also have a more
serious and insidious effect by blurring the underlying pro-
gramming concept in the student's mind, because that con-
cept is no longer associated with a single clear syntax.

Syntactic homonyms (constructs which are syntactically
the same, but which have two or more different semantics
depending on context) are perhaps a more serious flaw in a
language. An extreme example of this3 may be seen in the
pedagogically-oriented language Turing, in which the con-
struct  A(B) has five distinct meanings:

• call function A and pass parameter B
• dereference the pointer B to access an object in collec-

tion A
• access the Bth element of array A
• construct a set of type A with a single element having

the value of B
• create a one-letter substring of the string A consisting

of its Bth character
The student, armed with only a fuzzy understanding of

the differences between these concepts, finds no support
from the syntax. It should be noted that the decision to over-
load this construct was taken quite deliberately and on peda-
gogical grounds:

"Notice that referencing an element of array a with
subscript i as in a(i) is notationally equivalent to
[the pointer dereference] c(p). This is an example
of uniform referents, which means that analogous
ways of accessing data should be notationally
equivalent." [17]

Another difficult grammatical construct which fre-
quently appears in languages is elision (the omission of a
syntactic component). C is well known for its default inte-
ger return value and its curious string literal concatenation

2 The fact that array[1] refers to the second element of array is itself a
grammatical trap.

3 But not as extreme as LISP and its variants, which could be viewed as
one massive homonym.



behaviour, but default behaviours occur in many languages:
automated sorting of lists in ABC, type inference in Haskell
and Turing, LISP superbrackets, switch fall-through in
C++, etc.

4. Hardware dependence.

In addition to battling the various syntactic and semantic
levels of an introductory language, the novice programmer
is often forced to contend simultaneously with the con-
straints of the underlying hardware (sometimes merely for
the convenience of the compiler writer).

This "closeness to the metal" is particularly noticeable
in the design and implementation of basic numerical and
character string types. There seems no convincing reason
why the novice student, already struggling to master the
syntax and semantics of various constructs, should also be
forced to deal with the details of representational precision,
varying machine word sizes, awkward memory models, or a
profusion of conceptually-equivalent but semantically-dis-
tinct data types.

The semantics of arrays in Pascal, in which the novice
must grapple with the fundamental type difference of arrays
of different lengths, is a notable example. The presence of
thirty-two distinct numerical data types in C/C++4 is an-
other. These types are particularly problematical in C as
they are generally not portable. The standard int type, for
example, varies from 16 to 32 bit representations depending
on the machine and the implementation. This can lead to
strange and unexpected errors when overflow occurs. A
student whose program attempts to add a $4,000 bonus to a
$30,000 salary may be justifiably confused to find that the
result is a negative number.

5. Backwards Compatibility.

Backwards compatibility is a useful property from the
experienced programmer's point of view, as it promotes
reuse of both code and programming skills. The novice
however can take no advantage of these benefits and must
instead bear the pedagogical costs they entail.

Backwards compatibility comes in two major forms:
"genetic" and "memetic". Whilst both forms can lead to
pedagogically suspect decisions during the design of a lan-
guage, genetic compatibility is generally the result of a con-
scious decision on the part of the language designers,
whereas memetic compatibility is frequently inadvertent.

Genetic compatibility is exemplified by the relationship
between languages such as C++ and C [16], Scheme and
LISP [9], and Turing, Euclid and Pascal[17] , and results
from the decision to retain the semantics and often the
general syntactic "look-and-feel" of an ancestor language.
Genetic compatibility need not of course imply the near
complete backwards compatibility as seen in the C/C++ re-
lationship (Turing and Scheme differ significantly from

4 int, short, long, unsigned int, unsigned short, unsigned
long, float and double; plus three const and/or volatile
variants of each.

their ancestors), nonetheless languages which attempt a
significant degree of historical consistency inevitably per-
petuate some problematical constructs.

Language designers occasionally acknowledge the prob-
lems that their quest for genetic compatibility produces:

"At this point, the reader may be confused at having
so many ways to define a [Haskell] function! The
decision to provide these mechanisms partly reflects
historical conventions, and partly reflects the desire
for consistency (for example, in the treatment of
infix vs. regular functions)." [8]

"Over the years, C++'s greatest strength and its
greatest weakness has been its C compatibility. This
came as no surprise." [16]

As well as introducing (or compounding) the problems
inherent in a "more-is-more" approach, the addition of new
concepts to an old language often leads to inconsistency of
abstraction (consider the differing semantics of TEXT and
other array types in Modula 3), the creation of synonyms or
homonyms (array indexing, function calls and pointer
dereference in Turing), as well as the perpetuation of out-
moded or flawed constructs (such as char* strings in C++)
or syntax (for example, the inexplicably-named5 car and
cdr which Scheme inherits from LISP).

Not all syntactic or semantic inheritance stems from de-
liberate decisions regarding backwards compatibility. Some
constructs and symbols seem to propagate memetically
across language family boundaries, and have become de
facto standards within the programming community. This is
often despite the fact that such constructs may have been
viewed by their progenitors as ad hoc and may indeed have
no discernible connection with the concepts they are in-
tended to represent. Memetic compatibility is surprisingly
pervasive and may be seen in the widespread use of "stan-
dard" symbols such as * for multiplication,  = or := for as-
signment, array[index] for indexing.

The major pedagogical problem with the presence of
such syntactic memes is that they significantly reduce the
degree to which the novice, an outsider to the programmer
culture, can rely on existing knowledge (such as  ×  mean-
ing multiply, or a subscript representing an index).

Unfortunately, memetic compatibilities can also be par-
ticularly difficult to identify (and their pedagogical effects
correspondingly hard to analyse), precisely because both the
language designer and the programming teacher are so
familiar with them.

6. Excessive Cleverness.

Instances of "excessive" cleverness can be difficult to
spot, precisely because the "excess" exists only relative to
the knowledge level of the novice. Frequently the only way
to detect excessive cleverness is to see a novice program-
mer's complete misunderstanding of an "obvious" concept.

5 "Inexplicable" in the sense that explaining that they derive from
"contents of address register" and "contents of decrement register"
respectively, rarely assists the student's comprehension or recall.



The premier example of the adverse effects of clever-
ness in programming language design (and one which is
obvious to programmers at all skill levels) must surely be
the C/C++ declaration syntax [10]. On the surface, it seems
like an excellent notion: let declarations mirror usage.
Unfortunately, the very concept undermines the principle of
visually differentiating semantic differences. Students have
enough trouble mentally separating the concepts of declara-
tion and usage, without the syntax conspiring to blur that
crucial difference.

Other examples of detrimental cleverness are less obvi-
ous, but still easily come by. For example, some languages
(ABC, Haskell and Python, for instance) use indentation to
specify scope. This eliminates the need for grouping con-
structs (such as bracketing or BEGIN...END pairs) but fails
to take into account the apparently inability of many stu-
dents to master the concept and practice of consistent in-
denting. Indentation-based scoping also eliminates the use-
ful redundancy of employing both syntax (delimiters) and
convention (indenting) to reinforce semantics.

Sometimes a genuinely clever idea can be sabotaged by
its own syntax. For example, in Turing dynamic memory
may be partitioned into strictly typed "collections" which
are then capable of storing dynamically allocated instances
of a single data type. Pointer variables may be associated
with a particular collection and can only be used to refer to
data within that collection. This approach provides strong
type checking of dynamic memory and enables the compiler
to catch and accurately diagnose the majority of common
pointer manipulation errors.

Unfortunately, this genuinely clever idea is disastrously
undermined by poor choice of syntax:

% DECLARE A COLLECTION STORING SomeDataType
var collectionName:

     collection of SomeDataType

% DECLARE A POINTER
var ptr : pointer to collectionName

% INSTANTIATE A NEW OBJECT OF SomeDataType
new collectionName, instance

Students immediately (but erroneously) conclude that:
• collectionName is a variable (it's actually a

reference to a partition of dynamic memory and
does not have the full semantics of a variable.)

• ptr can be used to point to collectionName
(it can only be used to point at instances of
SomeDataType allocated within the partition
accessed via collectionName.)

• instance is a new instance of type collec-
tionName (instance points to an instance of
type SomeDataType newly allocated within
collectionName.)

7. Violation of Expectations.

As the last example in the previous section indicates,
violating a reasonable expectation is probably the worst
pedagogical sin that an introductory programming language

designer can commit. Some examples are very well-known,
such as the almost maliciously designed C/C++:

if (x=0 || -10<y<10)  { /* WHATEVER */ }

in which the condition always evaluates to true (regardless
of the values of x and y) whilst the value of x is silently re-
set to one. Particularly insidious is the fact that this code is
perfectly legal and compiles without even generating a
warning under many compilers.

A less obvious example of syntax violating expectations
is the use of  %  as a comment introducer in Turing. The fol-
lowing code is syntactically correct and semantically valid,
but will result in unexpectedly low pass rates:

passMark := maxMark * 50%

Semantic violations of expectation are even less excus-
able, but regrettably more common. For example, consider
the list type in the ABC programming language. A novice,
having written a seemly straight-forward program to store a
list and then print the first element:

PUT {"first"; "third"; "fifth"} IN list
WRITE list item 1

may well be considerably puzzled and disheartened when
the program prints: "fifth"

The blame for this minor failure can hardly be laid on
the novice, who may simply have forgotten (or perhaps
never grasped) that ABC lists are automatically sorted on
input. The fault lies squarely with the language designers,
for although a sorting function is an extremely useful ca-
pacity in a language, hidden side effects such as this can be
highly confusing for the inexperienced user, especially
when the "magic" gets in the way of the programming task.

Even the semantics of fundamental and nearly universal
programming memes, such the while loop and the finite
precision integer, can be surprisingly difficult for students
to comprehend. A while loop doesn't execute "while" its
condition is true, but rather until its condition ceases to be
true at the end of its associated code block.

Finite precision integers don't obey the familiar rules of
whole number arithmetic and can also cause much confu-
sion when overflow, underflow or truncation produce
consequential errors (which may manifest well after the
actual numerical error occurred).

Prolog6 offers a programming system based on predicate
calculus, but with silent and deadly caveats. The novice at-
tempting to create a recursive definition (of a list member-
ship predicate, for example) will quite reasonably construct
something like:

member(X,[_|Y]) :- member(X,Y).
member(X,[X|_]).

which is logically quite correct, but which always fails be-
cause the declaration order of predicates determines the se-
quence of predicate unification in Prolog.

The Prolog equality operator (X=Y) violates expecta-
tions in another way, in that it implies an assignment of
reference as a side effect:

6 Although Prolog is rarely used as an introductory programming
language, many more advanced students eventually find themselves in
the role of Prolog novice.



"If X is an uninstantiated variable and if Y is any ob-
ject, then X and Y are equal. As a side-effect, X will
be instantiated to whatever Y is. [When X and Y are
both uninstantiated,] the goal succeeds, and the two
variables share. If two variables share, then when-
ever one of them becomes instantiated to some term,
the other one automatically is instantiated to the
same term." [18 ]

Seven Steps Towards More "Teachable"
Languages

1. Start where the novice is.

A fundamental aspect of learning is the process of as-
similating new concepts into an existing cognitive structure
[19,20,21]. This process, known variously as connecting,
accretion or subsumption, is made all the more difficult if
parts of the existing structure have to be removed
(unlearning) or restricted (exceptions). Hence, the novice
who must unlearn that × or • means multiply, and then sub-
stitute * in a programming context, faces a harder learning
task than the student who can continue to put their knowl-
edge of × to use. Similarly, students have a large corpus of
knowledge regarding integer and real arithmetic, which
cannot be capitalised upon if they must disregard it to cope
with finite precision representations.

Another example of this type of difficulty is the use of
=  variants for assignment. Many students, when confronted
with this operator, become confused as to the nature of as-
signment and its relationship to equality. For example, see-
ing the following sequence of statements :

X = 3; Y = X; Y = 7;

novice students sometimes expect the value of X to be equal
to 7 (since "Y and X are equal"). The equivalent sequence:

X ← 3; Y ← X; Y ← 7;

seems to evoke less confusion, possibly because the syntax
reinforces the notion of procedural transfer of value, rather
than transitive equality of value.

We have shown over one thousand novice programming
students the C/C++ expression:
"the quick brown fox" + "jumps  over a lazy dog"

and asked them what they believe the effect of the + sign is.
Not one of them has ever suggested that the + sign is ille-
gally attempting to add the address of the locations of the
first characters of the two literal strings. Without exception,
they believed that the + should concatenate the two strings.

We believe that introductory languages should be de-
signed so that reasonable assumptions based on prior non-
programming-based knowledge remain reasonable assump-
tions in the programming domain. In other words, the con-
structs of a teaching language should not violate student ex-
pectations. Note that this principle has both syntactic and
semantic implications in the selection and definition of op-
erators, functions and inbuilt data types.

2. Differentiate semantics with syntax.

Novices experience great difficulty in building clear and
well-defined mental models of the various components of a
programming language. Syntactic cues can be of significant
assistance in differentiating the semantics of different con-
structs.

Constructs which may, to the accomplished program-
mer, seem naturally similar or analogous in concept, func-
tionality, or implementation (for example: using the integer
subset {0,1} as a substitute for a true boolean type, arrays
being analogous to discrete functions of finite domain and
range, arrays being implemented via pointers) still need to
be clearly syntactically differentiated for the novice.

We believe it is misguided to highlight the similarities
between such constructs with similar (or worse, identical)
syntaxes, because it initially blurs the crucial differences by
which students can first discriminate between programming
concepts, and later robs them of the opportunity to consoli-
date understanding by identifying these underlying concep-
tual connections themselves.

3. Make the syntax readable and consistent.

Novice programmers, like all novices, have a weak
grasp of the "signal" of a new concept and are particularly
susceptible to noise. This suggests that an introductory pro-
gramming language should aim to boost the conceptual sig-
nal and reduce the syntactic noise. One obvious means of
improving the S/N ratio is to choose a signal with which the
recipient is already familiar. For example: if rather than
cond, head/tail rather than car/cdr, × rather than *.

Another approach is to select signals which are consis-
tent, distinct, and predictable. For example, delineating
code blocks within constructs by <name>...end<name>
pairs:

loop
if isValid(name)

exit loop
end if
output name

name ← getNextName()
end loop

It can be difficult to steer an appropriate path between
the syntactic extremities of "less-is-more" and "more-is-
more". On one hand, reducing syntactic noise might involve
minimizing the overall syntax, for example:

if  x ≠ y
     y ← x

else

     x ← y

 rather than

if (x <> y) {

y:=x;

}else{

x:=y;

}

Alternatively, it may be better to increase the complex-
ity of the syntax in order to reduce homonyms which blur



the signal. For example, the meaning of the various compo-
nents of the Turing expression7:

f(C(p).A(I))(N)

might be better conveyed with the syntax:
f(C::p->AI)[N]

The second form, whilst regrettably no more mnemonic
than the first, does at least provide adequate visual differen-
tiation between pointer dereference, array indexing, func-
tion call, and substring extraction.

4. Provide a small and orthogonal set of features.

Homonyms and synonyms are an acute problem in the
design of a teaching language. We believe the best way to
minimize these pedagogical impediments is to select a
small set of non-overlapping language features and assign
them distinct (and mnemonic) syntactic representations.

A side effect of this recommendation is that, as the
number of language constructs is restricted, those which are
chosen must inevitably become more general and probably
more powerful. In particular, we believe that it is important
to provide basic data types at a high level of abstraction,
with semantics which mirror as closely as possible the
"real-world" concepts those data types represent.

For example, we would suggest that an introductory lan-
guage should not provide separate data types for a single
character and a character string. Rather, there should be a
single "variable length string" type, with individual charac-
ters being represented by strings containing a single letter.
A full complement of string operators should be supplied,
with operators for assignment, concatenation, substring ex-
traction, comparison, and input/output. In addition, a set of
suitable inbuilt functions (or predicates or methods, accord-
ing to the language's paradigm) should be provided to im-
plement other common operations for which operators may
be inappropriate (for example: length of string, case trans-
formations, substring membership, etc). As character strings
may be strictly ordered, the string type should be a valid in-
dexing type for case statements and user defined arrays.

Likewise, we suggest that an introductory language need
only provide a single numeric data type which stores ratio-
nal numbers with arbitrary precision integer numerators and
denominators. The restriction to rationals still allows the
educator to discuss the general issue of representational lim-
itations (such as the necessary approximation of common
transfinite numbers such as π and e), but eliminates several
large classes of common student error which are caused by
misapplication of prior mathematical understanding to fixed
precision arithmetic. A single arbitrary precision numeric
type has the additional benefit of eliminating many hard-
ware dependence problems.

Other features which might be provided include:
• A single non-terminating loop construct, possibly

modelled on the Turing or Eiffel loop statement,

7 "Create a substring consisting of the Nth letter of the string returned by
the function f when passed the Ith element of the array member A of the
object within collection C which is pointed to by p".

with an associated exit loop  command which may
be controlled by if statements within the loop.

• A single generic list meta-type, allowing the user to
define homogeneous or heterogeneous lists, indexed
by any well-ordered type (numeric, boolean, string).

• A single, consistent model and syntax for I/O.

5. Be especially careful with I/O.

With growing awareness of the importance of software
usability, it is natural that students should be encouraged to
engineer the input and output of their programs carefully.
Too often, however, they are hampered by "more-is-more"
programming language I/O mechanisms which are need-
lessly ornate or complicated.

The essence of I/O is very simple: send a suitable repre-
sentation of a value to a device. The complexity frequently
observed in the I/O mechanisms of introductory languages
often stems from a desire to provide too much control over
the value conversion process.

Somewhat surprisingly, the C++ language, not other-
wise known for its friendliness towards the novice8, pro-
vides a reasonable (if over-featured) model of I/O. Turing
also offers a very straightforward I/O model and syntax.

We believe that the I/O mechanism for an introductory
language should be defined at the same high level of ab-
straction as the other language constructs. We see the basic
features of a good pedagogical I/O model as being:

• a simple character stream I/O abstraction, with spe-
cific streams (for screen, keyboard, and files) repre-
sented by variables of special inbuilt types.

• uniform input and output syntaxes for all data types
(for example, infix "input" and "output" operators
which may be applied between a stream object and a
heterogeneous list of values and/or references)

• a default idempotent9 I/O format for all data types
(including character strings and user defined types),
with appropriate formatting defaults for justification,
output field width, numerical precision, etc.

• a reasonable, automatically-deduced output format for
user-defined data types (for example, output each
globally accessible data member of a user-defined
ADT, one value per line)

• a simple and explicit syntax for specifying non-de-
fault output formatting (for example: a generic
leftjustify function to convert any value to a
left-justified character string of specified field width.)

6. Provide better error diagnosis.

There is a widely cherished belief amongst educators
that one of the ways students learn best is by making their
own mistakes. What is often neglected is that this mode of

8 or indeed towards the expert!
9 Idempotence of I/O means that outputting the value of a variable and

then reading that output value back into the same variable has no dis-
cernable overall  effect. String I/O is non-idempotent in most program-
ming languages, because strings are typically written out in their full
length, but read in word-by-word (ie: to the first white-space character).



learning is only effective if a student's otherwise random
walk through the problem space can be guided by prompt,
accurate, and comprehensible feedback on their errors.

Making and correcting an error is certainly a useful ex-
perience for expert and beginner alike, but the process of
correction can be tortuous without meaningful guidance.
Compiler error messages are often couched in unnecessarily
terse and technical jargon which serves only to confuse and
distress the student. By the time the messages have been
deciphered and explained by a teacher or tutor, any useful
feedback which may have been gained has been largely
negated by the delay and stress involved.

The type of feedback that students receive when compil-
ing their programs typically runs along the lines of:

Syntax error near line 4

Not implemented: & of =

No subexpression in procedure call

Application of non-procedure "proc"

Even should they manage to compile their program, run
time errors typically produce useful feedback like:

Segmentation violation: core dumped

Application "unknown" exited (error code 1)

<<function>>

Error diagnosis is a weak point of most compiler tech-
nology, yet it is this compiler feature that novices spend
most of their time interacting with. Whilst well-designed er-
ror feedback is not unknown (Turing is exemplary in this
respect) many language implementations, particularly inter-
preters, have little or no error diagnosis. In these cases, er-
rors are detected when the program executes in some unex-
pected way. Detecting and correcting errors in these imple-
mentations can be extremely difficult, particularly for a be-
ginner, who may be uncertain what the expected behaviour
of the program actually was.

For an introductory language, error messages should be
issued in plain language, not technical jargon. They should
reflect the syntactic or semantic error that was discovered,
rather than the behaviour of the parser. Error diagnosis must
be highly reliable or, where this is infeasible, error mes-
sages must be suitably non-committal. For example, given
the statement:

int F(X); // WHERE X IS AN UNDECLARED TYPE

a widely-used C++ compiler emits the error message:
')' expected

rather than explaining that:
An unknown type 'X' was used in the
parameter list of function 'F'.

In this case even a vague message like:

There seems to be a problem with the
parameter list of function 'F'.

would be of more use.
We suggest that a fully-specified error reporting mecha-

nism should be an integral part of any introductory pro-
gramming language definition. Such a mechanism must
mandate plain language error messages and should ideally

provide multiple levels of detail in error messages (possibly
through a "tell-me-more" option).

Common compilation errors (such as omitted end-of-
statement markers or mismatched brackets) should be accu-
rately diagnosed and clearly reported. Cases where the root
cause of an error is not easily established should be reported
as problems of uncertain origin, with one or more suggested
causes offered in suitably non-committal language.

Run-time errors should likewise be clearly and accu-
rately reported, at the highest possible level of abstraction.
It is sufficient for the expert to be informed that a segmen-
tation fault has occurred, but the novice needs a hint as to
whether the event was caused by an array bounds violation,
an invalid pointer dereference, an allocation failure, or
something else entirely.

7. Choose a suitable level of abstraction.

When first introduced to programming, students often
have trouble finding the correct level of abstraction for
writing algorithms. Some expect a very high level of under-
standing from the computer, to the extent of assuming that
variable names will affect the semantics of the program (for
example, believing that naming a function max is sufficient
to ensure that it computes the maximum value of its argu-
ments). Others attempt to code everything, including basic
control structures, from scratch. To require algorithms to be
coded in languages with extreme levels of abstraction (for
example: high-end logic, functional or pure object-oriented
languages, or low-level assembler) merely compounds the
students' already abundant confusion.

It is critical for an introductory language to approximate
closely the abstraction level of the problem domain in
which beginners typically find themselves working. Hence
it is appropriate to provide language constructs suitable for
dealing with basic numerical computing, data storage and
retrieval, sorting and searching, etc. For most introductory
courses, language features which support very low-level
programming (for example: direct bit-manipulation of
memory) or very high-level techniques (such as continua-
tions) will merely serve to stretch the syntax and semantics
of the language beyond the novice's grasp.

Seven Criteria for Choosing an Introductory
Language

Each of the preceding design principles also provides a
criterion against which to evaluate the suitability of existing
programming languages for introductory teaching. We
would suggest that when evaluating a potential teaching
language, in addition to addressing the usual considerations
(such as language paradigm, compiler availability, textbook
quality, establishment and maintenance costs, popularity,
etc.), educators should also bear in mind the seven "sins"
we have enumerated. The key questions are:

• Is the syntax of the language excessively complex
(and therefore lexically "noisy") or too sparse (and
therefore insufficiently discriminating)? Are there



syntactic homonyms, synonyms or elisions which
may confuse the novice?

• Are the control structures, operators and inbuilt func-
tions of the language reasonably mnemonic? Are they
likely to be consistent with students' previous
(mathematical) experience? How much "unlearning"
will they require of the novice?

• Are the semantics of the language inconsistent, ob-
scure, or unnecessarily complicated? Are there con-
structs whose invocation, behaviour or side-effects
are likely to confuse a student or violate novices' rea-
sonable expectations?

• Are the error diagnostics clear and meaningful at a
novice's level of understanding? Are they unambigu-
ous, detailed and not overly technical? Are they accu-
rate where possible and non-committal otherwise?

• Are parts of the language subject to unnecessary
hardware dependencies or implementation-related
constraints? Will necessary restrictions be difficult to
explain to the novice?

• Is the language too big (over-featured) or too small
(restrictive)? Is the level of abstraction of the lan-
guage constructs appropriate for the practical compo-
nents of the course?

• Are the apparent virtues of the language equally "ap-
parent" from the novice's perspective? Alternatively,
are they a product of the educator's familiarity with
the candidate language or with the languages which
were the candidate's genetic and memetic influences?

In the real world it is clear that the choice of any one
language must necessarily be a compromise between eco-
nomic, political and pedagogical factors. The relative im-
portance of each of these considerations will depend on the
specific aims and priorities of the institution, educator and
course. Unfortunately, all too often pedagogical factors are
neglected, or sacrificed to more obvious and prosaic con-
cerns. We believe that this approach undermines the ulti-
mate goal of successful student learning.

Conclusion

We have enumerated seven ways in which introductory
programming languages conspire to hinder the teaching of
introductory programming and have also suggested seven
principles of programming language design which may help
to reduce those hindrances. We do not suggest that either
list is exhaustive, nor that the principles we expound are
definitive or universally applicable. The design of any pro-
gramming language is an art, and the design of a language
whose purpose is to teach the fundamental concepts of pro-
gramming itself is high art indeed.

Just as no battle plan survives contact with the enemy,
no pedagogical language design (no matter how sound its
design principles or clever their realization) can hope to
survive contact with real students. Yet the outcomes of such
encounters are the only meaningful measure of the success
of an introductory language. This implies that the most im-
portant tool for pedagogical programming language design
is usability testing, and that genuinely teachable program-

ming languages must evolve through prototyping rather
than springing fully-formed from the mind of the language
designer.
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