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. and the root of all sciences.”
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Abstract

The visualisation of relational information has many applications in diverse domains
such as software engineering and cartography. Relational information is typically mod-
elled by an abstract graph, where vertices are entities and edges represent relationships
between entities. The aim of graph drawing is to automatically produce drawings of
graphs which clearly reflect the inherent relational information.

Numerous graph drawing styles have been proposed in the literature. Orthogonal
graph drawings have been widely studied due to their appropriateness in a variety of
visualisation applications and in the design of VLSI circuitry. Most of the research
conducted in graph drawing, including orthogonal drawings, has dealt with drawings
in the plane. With the widespread availability of graphics workstations and the de-
velopment of software systems for three-dimensional graphics, there has been recent
interest in the design and analysis of algorithms for three-dimensional graph drawing.

This thesis is primarily concerned with problems related to the automatic generation
of three-dimensional orthogonal graph drawings. Our methods also have application to
two-dimensional orthogonal graph drawing and generalise to higher dimensional space.

In particular, we develop a number of models for three-dimensional orthogonal graph
drawing, and within each model, algorithms are presented which explore trade-offs be-
tween the established aesthetic criteria. The main achievements include (1) an algo-
rithm for producing three-dimensional orthogonal box-drawings with optimal volume
for regular graphs, (2) an algorithm for producing degree-restricted three-dimensional
orthogonal cube-drawings with optimal volume, (3) an algorithm which establishes the
best known upper bound for the total number of bends in three-dimensional orthogonal
point-drawings, and (4) an algorithm which establishes the best known upper bound
for the volume of 3-D orthogonal point-drawings with three bends per edge route.

As a by-product of this investigation, we develop methods for a number of com-
binatorial problems of independent interest, including the balanced vertex ordering

problem, equitable edge-colouring of multigraphs, and the maximum clique problem.

vi
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Orthogonal Graph Drawing



Chapter 1

Introduction

In this chapter we provide a broad overview of graph drawing applications
and conventions, surveying the theoretical background to the development of
algorithms for drawing graphs. This provides the setting and motivation for

the results presented in the remainder of the thesis.

1.1 Graph Drawing

Graph drawing is concerned with the automatic generation of geometric representations
of relational information, often for visualisation purposes. The typical data structure
for modelling relational information is a graph whose vertices represent entities and
whose edges correspond to relationships between entities. Most applications of graph
drawing call for two-dimensional drawings, although with the widespread availability of
graphics workstations, there has been considerable recent interest in three-dimensional
graph drawing. As can be seen in the three-dimensional representation of network traffic
in Figure 1.1, drawing graphs in three dimensions allows for more flexible drawings than
if we restrict the drawing to the plane.

Software engineering has provided considerable motivation for the development of
graph drawing algorithms. The method for laying out data-flow diagrams due to Knuth
[128] was one of the first graph drawing algorithms for visualisation purposes. More
recently, methods for drawing in three-dimensional space have been developed for vi-

sualising object-oriented class structures by Robertson et al. [180], Koike [131], Ware
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Figure 1.1: A 3-D drawing representing NSFNET traffic, courtesy of the NCSA.

(http://www.ncsa.uiuc.edu)

et al. [214] and Reiss [179]. Batini et al. [15] present an algorithm for the display of
entity-relationship diagrams in database systems. Munzner and Burchard [158] have
explored the use of graph drawing techniques for visualising the world wide web in
three dimensions, In Figure 1.2 we present a three-dimensional representation of the

organisation of an internet site.

An important area for the application of graph drawing techniques is the automatic
layout of VLSI circuit schematics. In two dimensions such algorithms have been de-
veloped by Quinn Jr. and Breuer [177], Leiserson [141], Bhatt and Leighton [22] and
Schlag et al. [191] (see also Lengauer [143]). Three-dimensional VLSI layouts have
been investigated by Preparata [173], Rosenberg [185, 186], Leighton and Rosenberg
[140] and Aboelaze and Wah [1]. Three-dimensional field-programmable gate arrays
(FPGASs) have been designed by Veretennicoff et al. [210], and in the Rothko project
at Northeastern University, Leeser et al. [138, 139] and Meleis et al. [153] construct

three-dimensional FPGAs with interconnections between layers of active devices.
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Figure 1.2: A 3-D drawing representing the organisation of part of the
web site for the journal Nature Neuroscience, courtesy of Dynamic Diagrams

(http://www.dynamicdiagrams.com).

Other scientific applications for graph drawing include biology (evolutionary trees),
chemistry (molecular drawings), architecture (floor plan maps) and cartography (map
schematics). The drawing of graphs which arise in mathematics, such as commutativity

diagrams, is an often overlooked application domain for graph drawing.

1.2 Algorithmic Graph Theory

Algorithms for drawing graphs are typically based on some graph-theoretic decom-
position or insight into the structure of the graph. We now survey the development
of algorithmic graph theory, highlighting the algorithmic approaches employed in this
thesis.

For many years in the shadow of topology, abstract graph theory is now a well-
developed theory with important connections to number theory, logic, algebra, knot

theory and probability (see Beineke and Wilson [18]). Recent deep structural results,
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most notably the minor theorem of Robertson and Seymour [182] (see Diestel [76] for a
comprehensive overview), have placed graph theory at the forefront of combinatorics.
Furthermore, graph theory is now providing new insights into topology including the
simple graph-theoretic proof due to Thomassen [207] of the notoriously difficult Jordon-
Schonflies Curve Theorem. Recent highlights in topological graph theory include a
new proof of the four-colour theorem by Robertson et al. [181], and the discovery of
forbidden minor characterisations of graphs admitting certain topological embeddings,

as discussed below.

Graph theory is often used to model real world algorithmic problems, such as
scheduling and transportation. Furthermore many important issues in computational
complexity theory are illustrated with graph-theoretic problems. For example, three of
the six basic NP-complete problems in Garey and Johnson [105] deal with graphs. The
theory of computational complexity dates from the study of the fundamental capabil-
ities and limitations of computation by logicians such as Godel, Church and Turing.
Our understanding of computational complexity made great advances with the devel-
opment of the theory of NP-completeness (see Garey and Johnson [105]) in the 1970s.
The explosion of interest in the theory of algorithms in the past three decades has
motivated much research in the field of graph theory. The growth of graph drawing as

a discipline of Computer Science is a natural byproduct of this development.

As we shall see many graph drawing problems are NP-complete. Exact solutions to
NP-complete problems, using integer programming formulations or branch and bound
techniques, have exponential time complexity. An example of this approach is given in
Appendix C, where we provide a branch and bound algorithm for the maximum clique
problem, which combined with efficient heuristics to provide lower and upper bounds,
solves relatively small instance of the maximum clique problem in a realistic amount

of time.

Unless P=NP, exact polynomial time algorithms cannot be obtained for NP-complete
problems. Much recent research has focused on classifying the approximability of prob-
lems, and the development of approximation algorithms which guarantee near-optimal
solutions or at least have tight worst case performance bounds. For many of the graph

drawing problems investigated in this thesis, we present approximation algorithms and
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heuristics with tight worst case bounds. Graph algorithms, such as topological order-
ing, matching and vertex- and edge-colouring form the basis of the many of the methods

presented in this thesis.

1.3 Graph Embeddings and Representations

Many approaches to graph drawing, for example the topology-shape-metrics approach
discussed in Section 3.2.2, and the algorithms presented in Sections 9.1 and 5.5, are
based on graph embeddings. A graph embedding describes the essential topological
features of a graph drawing. We now provide a review of the principal results from the

theory of graph embeddings, concentrating on three-dimensional graph embeddings.

Planar Embeddings

One of the most famous result in graph theory is Kuratowski’s characterisation of planar
graphs. Kuratowski [137] showed that a graph is is planar if and only if it contains
neither K5 nor K33 as a topological minor. The result was extended to general minors
by Wagner [212]. Since these early results, the theory of planar graphs has been widely
studied. Notable are the linear time algorithms for recognising planar graphs, for

example that of Hopcroft and Tarjan [119].

Recently, relationships between graph embeddings and an algebraic graph invariant
p introduced by Colin de Verdiere [61, 62] have been discovered. Colin de Verdiere
shows that u(K,) = n — 1 and characterises those graphs G with u(G) < k for each
k < 3. In particular, u(G) < 1 if and only if G is a disjoint union of paths; u(G) < 2
if and only if G is outerplanar; and u(G) < 3 if and only if G is a planar. For each
fixed k, the class of graphs with u < k is closed under taking minors, so by the minor
theorem there is a finite forbidden minor characterisation of such graphs. Note that
Colin de Verdiére conjectures that u(G) > x(G) — 1, a result which implies the 4-colour

theorem.
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Surface Embeddings

Embeddings of graphs in surfaces provide a natural generalisation of plane graphs.
Informally, the genus of a graph G is the minimum k such that there is a embedding
of G in the surface constructed from the sphere with k£ ‘handles’. The sphere with
one handle, called the torus, can be thought of as a rectangle whose sides have been
identified. The drawing in Figure 1.3 of K7 embedded in the torus is an elegant example

of a surface embedding.

Figure 1.3: A straight-line drawing of K7 on the ‘square’ torus.

A significant corollary of the minor theorem is that for every surface S there is a
finite forbidden minor characterisation of those graphs embeddable in S [183]. Apart
from the plane, the only surface where the complete list of forbidden minors is known is
the projective plane, where the 35 minor-minimal graphs were discovered by Archdea-
con [6]. Mohar [155] presents a linear time algorithm, which for a fixed surface S,
finds an embedding of a given graph in S or identifies a subgraph homeomorphic to a

forbidden minor for S.

Linkless Embeddings

A spatial embedding of a graph is an embedding in R3. A spatial embedding is linkless
if there is no pair of disjoint linked cycles. A graph with a linkless embedding is said to
be linkless, otherwise it is self-linked. Conway and Gordon [63] and Sachs [188] showed
that Kg is self-linked (see Figure 1.4).

A AY -exchange in a graph replaces a triangle by a 3-star, while a Y A-exchange
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Figure 1.4: Linked spatial embedding of K.

replaces a 3-star by a triangle. Sachs [188] establishes that the six graphs obtained from
K¢ by a sequence of AY-exchanges and Y A-exchanges, called the Petersen Family (as
the Petersen graph is a member), are also self-linked. Robertson et al. [184] show
that these graphs comprise a forbidden minor characterisation of the class of linkless
graphs'. Furthermore they show that a linkless graph has ;1 < 4. Their conjecture that

the converse is also true was established by Lovasz and Schrijver [149].

Knotless Embeddings

A spatial embedding of a graph is said to knotted if there is a cycle which forms a
non-trivial knot. We call a graph knotless if it has a spatial embedding which is not
knotted, and self-knotted otherwise. Conway and Gordon [63] and Shimabara [196]
respectively showed that K7 and Kj 5 are self-knotted.

Up until the proof of the minor theorem it was unknown if there is an algorithm
for deciding the knotlessness of a given graph. The class of knotless graphs is closed
under taking minors, so by the minor theorem, remarkably there is an O(n?) algorithm
to decide if a given graph is knotless, although no one knows what the algorithm is. It
is a tantalising open problem to determine whether the knotless graphs are precisely

those graphs with p < 5.

'The proof of this result announced by Motwani et al. [157] was refuted by Kohara and Suzuki [130].
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Book Embeddings

A book consists of a line in 3-space, called the spine, and some number of pages (each
a half-plane with the spine as boundary). A book embedding of a graph is a spatial
embedding consisting of an ordering of the vertices, called the spine ordering, along the
spine of a book and an assignment of edges to pages so that edges assigned to the same
page can be drawn on that page without crossings; i.e., for any two edges vw and zy,
if v <z < w < y in the spine ordering then vw and zy are assigned different pages.

The minimum number of pages in which a graph can be embedded is its pagenumber.

Figure 1.5: A 3-page book embedding of a graph

Yannakakis [226] showed that the maximum pagenumber of a planar graph is four.
By the four-colour theorem [4, 5, 181], the maximum pagenumber and maximum chro-
matic number are equal for planar graphs. Similarly, Endo [88] showed that the pa-
genumber of a toroidal graph is at most seven. Since each toroidal graph is vertex
7-colourable [116], the maximum pagenumber is no more than the maximum chromatic
number. It is a fascinating open problem (see [88]) to determine if the maximum

pagenumber and maximum chromatic number are equal for all surfaces.

Heath and Istrail [115] proved that the pagenumber of a genus g graph is O(g),
and conjectured the correct bound is O(,/g). This conjecture was confirmed by Malitz
[150]. As a corollary of this result, and proved independently by Malitz [151], the
pagenumber of a graph with m edges is O(y/m). These results are non-deterministic
in nature, and Las Vegas algorithms are presented to compute book embeddings with
O(\/g) pages. Book embeddings, and in particular these results of Malitz, form the

basis of our algorithms presented in Sections 5.5 and 9.1.



CHAPTER 1. INTRODUCTION 10

Graph Representations

A representation of a graph, loosely speaking, describes the vertices by some set of
geometric objects and the edges by some relationship between the objects. Examples
include the visibility representations described in Section 3.2.1 and touching circle and
sphere representations of graphs. Koebe [129] first proved that the vertices of a pla-
nar graph can be represented by non-overlapping circles in the plane, so that vertices
are adjacent if and only if the corresponding circles are tangent. Kotlov et al. [134]
have recently discovered relationships between the invariant ;4 and the touching sphere

representations of graphs in R3.

1.4 Graph Drawing Conventions

We now describe the common conventions, or styles, of graph drawings for which algo-
rithms have been developed. We concentrate on those conventions that have been used
for three-dimensional graph drawing. For a complete summary see Di Battista, Eades,
Tamassia, and Tollis [71]. While the criteria for deciding the quality of a given graph
drawing is somewhat dependent on the application domain, for each graph drawing
convention there is a commonly accepted set of aesthetic criteria by which the quality
of a drawing is judged. For any graph and any style there is (typically) an infinite num-
ber of possible drawings. The goal of graph drawing algorithms is to produce drawings
which satisfy the aesthetic criteria. More often than not we need to make a trade-off
between the various aesthetic criteria. The study of trade-offs between various aesthetic

criteria is at the heart of the study of graph drawing algorithms.

1.4.1 Grid Drawings

So that the area (or volume in three dimensions) of a graph drawing can be measured
in a consistent fashion, we often require vertices to have integer coordinates. We say
the vertices are placed at grid-points and such a drawing is called a grid drawing.
The smallest rectangle (or box in three-dimensions) which surrounds a grid drawing
is called the bounding box. The area (or volume) of the bounding box is perhaps the

most commonly used quantity to measure the aesthetic quality of grid drawings. For
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example, drawings with small area can be drawn with greater resolution on a fixed-size
page. In some three-dimensional applications, for example when visualising the drawing
on a computer screen, it may be more important to minimise the ‘depth’ of the drawing.

We therefore have the following possible aesthetic criteria for grid drawings.

e Minimise the bounding box volume.

e Minimise the minimum bounding box side length.

e Minimise the maximum bounding box side length.

An alternative to grid drawings is to stipulate that vertices are at least unit distance
apart.
1.4.2 Straight Line Drawings

It is natural to draw each edge of a graph as a straight line between its end-vertices.
So-called straight-line graph drawings are one of the earliest graph drawing conventions

to be investigated. In Figure 1.6 we present examples of straight-line graph drawings.

(a) (b)

Figure 1.6: Straight-line drawings of the octahedron graph: (a) plane drawing, (b) 3-D
drawing.

Aesthetic criteria for straight-line graph drawings include the following.

e Minimise edge crossings (in 2-D non-planar drawings).

e Maximise the angular resolution; i.e., the angle between edges incident at a com-

mon vertex.
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e Minimise the edge separation; i.e., the distance between edges not incident to a

common vertex.
e Minimise the total length of edge routes.
e Minimise the maximum length of an edge route.
e Preserve the symmetry of the graph.

Note that Purchase et al. [176] and Purchase [175] concluded from their experimen-
tal study of the human perception of 2-D graph drawings that minimising the number
of edge crossings and minimising the number of bends were both significant aesthetic
criteria for increasing the understandability of drawings of graphs.

That every planar graph has a straight-line plane drawing was proved indepen-
dently by Wagner [211], Fary [94] and Stein [198]. In a recent extension of this result,
Brightwell and Scheinerman [45] show that a planar graph and its dual can be simul-
taneously represented in the plane with straight-line edge routes such that the edges of
the graph cross the dual edges at right angles. These authors were only really interested
in proving the existence of straight-line embeddings and not with producing algorithms
for graph drawing. In particular, if we stipulate minimum unit distance between ver-
tices then exponential area may be required by these methods. de Fraysseix et al. [66]
and Schnyder [192] independently developed algorithms for planar straight-line grid
drawing with O(n?) area.

Every simple graph has a straight-line 3-D grid drawing with no crossings, and
for this reason we only consider crossing-free 3-D graph drawings. To construct such
a drawing of a graph with vertex set {v1,v2,...,v,}, vertices are positioned along a
moment curve; i.e., v; is at (i,4%,4%) € Z3. It is easily seen that no two straight lines
between vertices can intersect. This drawing has O(n%) bounding box volume. Cohen
et al. [60] showed that by placing vertex v; at (i mod p,i2 mod p,i* mod p) € Z? for
some prime p, n < p < 2n, no two edge routes cross and we obtain a grid drawing
with O(n?) bounding box volume. This result has been strengthened by Pach et al.
[161] who show that every k-colourable graph, for some fixed k, has a 3-D straight-line
grid drawing with O(n?) volume. Instead of requiring vertices to be at grid-points,

Garg et al. [108] stipulate that distinct vertices are at least unit distance apart in a
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3-D straight-line graph drawing. Their algorithm establishes bounds on the bounding
box volume, aspect ratio and edge separation of such drawings. Simulated annealing
techniques for generating 3-D straight-line graph drawings have been developed by Cruz
and Twarog [65] and Monien et al. [156].

One of the earliest graph drawing methods, namely the barycentre method, was
developed by Tutte [208, 209]. Here a fixed set of vertices are placed on a strictly
convex polygon, and the remaining vertices, said to be free, are repeatedly placed at
the barycentre of their neighbours until the coordinates of the free vertices converges.
If the input graph is triconnected and planar, then the drawing produced is planar and
each face is a convex polygon. The barycentre method has been extended to produce

3-D straight-line graph drawings by Chilakamarri et al. [55].

The barycentre method is an example of the force-directed approach for graph
drawing. Here the graph is viewed as a physical system with forces acting between
the constituent bodies. For example, edges can be modelled as springs and vertices as
charged particles which repel each other (see Di Battista et al. [71] for details and ref-
erences). Force directed methods for producing 3-D graph drawings have been studied
by Ostry [160] and Brufi and Frick [48]. As noted by Eades and Lin [83], an advantage
of force directed algorithms is that symmetries of the graph are often preserved in the

drawing.

A relationship between the force-directed approach to graph layout and graph con-
nectivity was discovered by Linial et al. [144], later extended to the case of digraphs
by Cheriyan and Reif [54]. They prove that a (di)graph G is k-connected (k > 2) if
and only if for any X C V(G) with |X| = k there is a convez-X embedding of G; i.e.,
the vertices of G' can be represented by points in general position in R¥~! (i.e., no k
vertices are on a common hyperplane), so that each vertex, except for the k specified
vertices in X, is in the convex hull of its (out)neighbours. This result generalises the
notion of st-orderings (used extensively in graph drawing; see Sections 3.2.3 and 4.2) to
arbitrary dimensions. The proof is based on a physical model where the edges are ideal
springs and the vertices settle into equilibrium. Although the authors do not note this,
for £ > 4, edges drawn as straight lines cannot cross since the vertices are in general

position.
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An interesting graph invariant related to multi-dimensional straight-line graph draw-
ing is that of the dimension of a graph. Erdés, Harary, and Tutte [89] define the dimen-
sion of a graph to be the minimum number of dimensions in which it can be embedded
with each edge a unit length straight-line (possibly with crossings). They showed that
the dimension of the complete graph K, is n — 1, and the dimension of the complete

bipartite graph K, is four, among other results.

1.4.3 Orthogonal Drawings

In a polyline graph drawing each edge consists of a sequence of contiguous line segments.
Di Battista et al. [71] describe algorithms for constructing planar polyline drawings. In
a polyline grid drawing, the bends on edge routes as well as the vertices are required to
be at grid points. If each segment of an edge in a polyline grid drawing is parallel to some
axis then the drawing is called orthogonal. (Precise definitions are given in Chapter 2.)
A feature of the orthogonal drawing style is its very good angular resolution. For this
reason, it is commonly used for many applications including data-flow diagrams, and
in VLSI circuit design where electrical wires must be axis-parallel. Examples of ‘real-
world’ orthogonal graph drawings in two and three dimensions are shown in Figures 1.7
and 1.2, respectively.

We say an orthogonal graph drawing is orientation-dependent if, loosely speaking,
the drawing is significantly different when viewed with respect to one particular di-
mension; otherwise we say it is orientation independent. For example, the following

properties are indicative of orientation-independent drawings.
e The bounding box is a cube.
e The box surrounding the vertices is a cube.

e It is equally likely that an edge incident with a particular vertex, is routed using

any port on that vertex.

Whether or not orientation-dependence is a desirable quality in orthogonal draw-
ings is often an application-specific question. We shall take the view that orientation-
independent orthogonal drawings are more aesthetically pleasing than orientation-

dependent orthogonal drawings. Orientation dependence is a particularly appropriate
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Figure 1.7: An orthogonal drawing of a computer network, courtesy of Tom Sawyer

Software (http://www.tomsawyer.com)

consideration for 3-D orthogonal drawings. Biedl [27] describes orientation independent

3-D orthogonal drawings as being ‘truly three-dimensional’.
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Orthogonal graph drawings with many bends appear cluttered and are difficult
to visualise. Existing algorithms for two-dimensional orthogonal graph drawing have
bounds on the maximum number of bends per edge route as well as the total number of
bends. Up until now, algorithms for 3-D orthogonal graph drawing have concentrated
only on the maximum number of bends per edge route. The algorithms for orthogonal
graph drawing presented in Chapter 5 initiate the study of the total number of bends
in 3-D orthogonal drawings. As well as the aesthetic criteria already discussed in the

previous section, orthogonal graph drawings should exhibit the following properties.

e Minimise the maximum number of bends per edge route.
e Minimise the total number of bends.

e Drawings should be orientation-independent.

For orthogonal graph drawings a number of tradeoffs between aesthetic criteria,
most notably between the maximum number of bends per edge route and the bounding
box volume, have been observed in existing algorithms [87]. In this thesis we shall also
observe a tradeoff between orientation-independence and bounding box volume, and
between orientation-independence and the maximum number of bends per edge route.
In Figure 1.8 we present orthogonal drawings of the octahedron which demonstrate
some of the aesthetic criteria for such drawings.

If we represent each vertex by a point, as in the above examples, for a graph to
admit a two-dimensional orthogonal drawing each vertex must have degree at most
four. In three dimensions each vertex must have degree at most six. Overcoming this
restriction has motivated the consideration of orthogonal box-drawing where vertices
are represented by rectangles in two dimensions and by boxes in three dimensions.
Box-drawings also have the advantage that a label can be attached to each vertex.

For orthogonal box-drawings the size and shape of the boxes representing the ver-
tices is also considered an important measure of aesthetic quality. For the purposes of
visualisation, the ideal shape for a box is a small cube, as this most closely resembles
a point. How closely a vertex resembles a point can be measured by its aspect ratio

which is defined to be the ratio of the length of the longest side to that of the shortest.
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/
(c) (d) /

—

Figure 1.8: Orthogonal drawings of the octahedron graph: (a) 3-bend plane, (b) 2-bend

planar with crossings, (¢) 3-D with few bends and small volume, (d) 3-D orientation-

independent.

While other applications, such as 3-D VLSI, may make different demands on the size
and shape of vertices, we shall take the view that the following criteria are desirable

features of orthogonal box-drawings.

e Vertex surface area is proportional to vertex degree.

e Vertices have bounded aspect ratio.

This thesis is concerned with the development of algorithms for orthogonal graph
drawing. In Chapter 3 we survey existing algorithms and models for producing orthog-

onal graph drawings.
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1.4.4 Other 3-D Graph Drawing Conventions

Three-dimensional graph drawings in the following styles have also been considered.

e Convex drawings [56, 80].
e Spline curve drawings [110].
e Multilevel drawings of clustered graphs [79, 97].

e Upward drawings [160].

1.5 Contributions and Outline of this Thesis

In this thesis we present and analyse methods for the generation of orthogonal graph
drawings, concentrating on algorithms for producing 3-D drawings. We now outline
the structure of this thesis and summarise the principal results obtained. Figure 1.9
illustrates this structure, highlighting the relationships between various parts of this

thesis.

Part I: Orthogonal Graph Drawing

e Chapter 1 provides a broad overview of graph drawing, providing the motivation

for the results presented in the remainder of this thesis.
e Chapter 2 introduces definitions and the notation used in this thesis.

e Chapter 3 surveys the existing results for orthogonal graph drawing, and compares

these results with those presented in this thesis.

Part II: General Position Orthogonal Graph Drawing

e Chapter 4 presents heuristic and local minimum methods for solving the so-called
balanced ordering problem. This one-dimensional problem is used as a basis for
a number of 2-D and 3-D graph drawing algorithms presented in subsequent

chapters.
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Figure 1.9: Dependence between sections of this thesis.

drawing. Achievements include an algorithm for minimising the total number of

bends in diagonal layout 3-D orthogonal point-drawing (Section 5.2.1), establish-
ing the best known upper bound for the total number of bends in 3-D orthogonal

point-drawings (Section 5.4), and proving the best known upper bound for the

volume of 3-bend 3-D orthogonal point-drawings (Section 5.5.3).
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e Chapter 6 develops an algorithm for 2-D orthogonal graph drawing in the general
position model which establishes the best known upper bound for the degree-
restriction of vertices. This algorithm is generalised to multi-dimensional orthog-

onal graph drawing in Chapter 7.

e Chapter 7 develops the general position model for multi-dimensional orthogonal
box-drawing, establishing the best known bound for the degree-restriction of 3-D

orthogonal box-drawings.

Part III: Other Orthogonal Graph Drawing Models

e Chapter 8 provides an algorithm for equitable edge-colouring of multigraphs. This
algorithm is used in the graph drawing algorithms presented in Section 9.1 and

Chapter 10.

e Chapter 9 develops the coplanar vertex layout model for 3-D orthogonal draw-
ing, providing algorithms for producing 3-D orthogonal box-drawings with one
bend per edge route (Section 9.1), 3-D orthogonal box-drawings with optimal
volume for regular graphs (Section 9.2), and degree-restricted 3-D orthogonal

cube-drawings with optimal volume (Section 9.2).

e Chapter 10 introduces the non-collinear vertex layout model for producing
orientation-independent 3-D orthogonal point-drawings with optimal volume, and

3-D orthogonal box-drawings with optimal volume for regular graphs.

e Chapter 11 presents an algorithm for multi-dimensional point-drawing with a

bounded number of bends per edge route.

Part IV: Conclusion

e Chapter 12 summarises the main achievements of this thesis, the open problems in
3-D orthogonal graph drawing which have been identified, and discusses avenues

for future work in 3-D graph drawing.
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Part V: Appendices

e Appendix A provides the only known non-trivial lower bounds for the total num-

ber of bends in 3-D orthogonal point-drawings.

e Appendix B presents a number of 3-D orthogonal point-drawings with two bends
per edge route. Some of these drawings were found using the algorithm for finding

maximum cliques presented in Appendix C.

e Appendix C presents an algorithm for the maximum clique problem and provides
an extensive experimental analysis of its performance. This algorithm which is
of independent interest, has been applied to the search for 2-bend orthogonal

point-drawings (see Section 5.2.2).

1.6 Publications

Much of the material in this thesis has appeared or will appear in the following publi-

cations.

Journal Publications:

e An Algorithm for Finding a Maximum Clique in a Graph, Oper. Res. Lett., 21(5),
pages 211-217, 1997. [218]

e (with T. Biedl and T. Thiele) Three-Dimensional Orthogonal Graph Drawing
with Optimal Volume, submitted. (see [34])

e (with T. Biedl and M. Kaufmann) Area-Efficient Algorithms for Orthogonal
Graph Drawing, in preparation. (see [30, 222])

e (with T. Biedl) Three-Dimensional Orthogonal Graph Box-Drawing with Few
Bends, in preparation. (see [27, 222])

e Algorithms for Three-Dimensional Orthogonal Graph Drawing in the General
Position Model, in preparation. (see [220, 221])



CHAPTER 1. INTRODUCTION 22

e Lower Bounds for the Number of Bends in Three-Dimensional Orthogonal Graph

Drawings, in preparation. (see [224])
Refereed Conference Publications:

e (with T. Biedl and T. Thiele) Three-Dimensional Orthogonal Graph Drawing
with Optimal Volume, In J. Marks (ed.), Proc. 8th International Symposium on
Graph Drawing (GD’00), Lecture Notes in Comput. Sci., to appear. [34]

e Lower Bounds for the Number of Bends in Three-Dimensional Orthogonal Graph
Drawings, In J. Marks (ed.), Proc. 8th International Symposium on Graph Draw-
ing (GD’00), Lecture Notes in Comput. Sci., to appear. [224]

e Multi-Dimensional Orthogonal Graph Drawing with Small Boxes, In J. Kratochvil
(ed.), Proc. 7th International Symp. on Graph Drawing (GD’99), Lecture Notes
in Comput. Sci., vol. 1731, pages 311-322, Springer, 1999. [222]?
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ogy, 1997. [220]
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Chapter 2

Preliminaries

In this chapter we introduce definitions and the notation used in this thesis.
Undefined terms from graph theory can be found in Chartrand and Lesniak
[53], and from graph drawing in Di Battista et al. [71].

2.1 Graphs

Throughout this thesis G = (V, E) is a graph with vertex set V(G) = V and edge
set E(G) = E. We assume G is undirected unless explicitly called a digraph. Graphs
and digraphs are simple; i.e., there are no parallel edges, although a digraph may have
a 2-cycle. A multigraph allows parallel edges but no loops, while a pseudograph is a
multigraph possibly with loops. We denote the number of vertices of a graph G by
n = |V(G)| and the number of edges of G by m = |E(G)|. For a (di)graph G, the
set of vertices {w : vw € E(G)} adjacent to a vertex v € V(@) is denoted by Vi(v),
and the set of (outgoing) edges {vw € E(G)} incident with v is denoted E¢(v). The
(out)degree |G(v)| of a vertex v € V(@) is denoted (out)deg(v). G has maximum
(out)degree A(G). The subgraph of G induced by S C V(G) is denoted G[S].
Associated with any graph G is the digraph ‘G with vertex set V(?) = V(@) and
arc set E('G’) = {(v,w), (w,v) : {v,w} € E(G)}. We denote E('G’) by A(G). The arc
(v,w) € A(G) is called the reversal of (w,v). The set of outgoing arcs {(v,w) € A(G)}
at a vertex v € V(G) is denoted by A/ (v) or simply Ag(v), and set of incoming

arcs {(w,v) € A(G)} at v is denoted by A, (v). For ease of notation, vw refers to

23
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the undirected edge {v,w}, and 7@ may refer to the directed edge (v,w) or the arc
(v,w) € A(G) (for some graph G).

2.2 Cliques and Colourings

A clique of a graph is a set of pairwise adjacent vertices; i.e., a clique induces a complete
subgraph. In Appendix C we present an algorithm for finding a clique of maximum
size in a given graph.

A (proper) wvertez-colouring of a graph is an assignment of colours, usually repre-
sented by positive integers, to the vertices such that adjacent vertices receive different
colours. A vertex-colouring with £ colours is called a vertez k-colouring.

A sequential greedy strategy for vertex-colouring a graph is to assign to each vertex,
in turn, the minimum colour not assigned to an adjacent vertex (see for example Biggs
[35]). This is equivalent to assigning the first colour to every vertex available; repeating
for the second colour, and so on, until all the vertices are coloured. This algorithm,
which we call GREEDY VERTEX-COLOUR, applied to a graph G uses at most A(G) + 1
colours.

An edge-colouring of a graph is an assignment of colours to the edges. If all edges
incident to a common vertex receive different colours then the edge-colouring is proper.

Suppose col : X — C' is a colouring of some class of objects X, e.g., vertices, edges
or arcs. We denote the colour class of objects receiving some colour ¢ € C by X]|¢]; i.e.,
X[e] = {z € X : col(z) = ¢}. In particular, if A(G) is coloured, then <?[z], for some

colour %, denotes the subgraph of ‘G induced by the arcs coloured 3.

2.3 Orthogonal Grid

The D-dimensional orthogonal grid (D > 2) is the D-dimensional cubic lattice, con-
sisting of grid-points in Z, together with the coordinate-axis-parallel grid-lines deter-
mined by these points. A positive integer 4, 1 < i < D, used to index the coordinates
of a grid-point in ZP, is called a dimension, and a non-zero integer d, 1 < |d| < D, is
called a direction, as illustrated in Figure 2.1. For D = 2 and D = 3, we also refer to the

dimensions as {X,Y} and {X,Y, Z}, and directions as {X*,Y*} and {X* Y+, 2%},
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respectively.
3 Z +3 Z+
—2 Y~
1 X -1 +1 X X T
2 Y +2 vyt
(a) Dimensions (b) Directions

Figure 2.1: Dimensions and directions in the 3-D orthogonal grid.

The (i = K)-hyperplane, for some dimension 7, 1 < i < D, and integer K € Z,
is called a grid-hyperplane. For D = 3 a grid hyperplane is called a grid-plane. For
each dimension i, 1 <7 < D, a grid-line parallel to the i-axis is called an i-line, and a
grid-(hyper)plane perpendicular to the i-axis is called an i-(hyper)plane.

A grid-box B in the D-dimensional orthogonal grid is a region
{(a1,a9,...,ap) €R” : [;(B) < a; <ry(B),1 <i< D} .

for some [;(B),ri(B) € Z, 1 < i < D. The grid-points (I1(B),l2(B),...,Ip(B)) and
(r1(B),r2(B),...,rp(B)) are referred to as the minimum corner and mazimum corner
of B, respectively. The size of B is a1(B) X as(B) x .-+ x ap(B) where o;(B) =
ri(B) —;(B) + 1. Note that «;(B) is the not the actual side length of B in dimension
i. This convention enables us to consistently speak of the volume (and area in two
dimensions) of a possibly degenerate grid-box as the number of grid-points in the box;
ie.
volume (B) = H a;(B) .
1<i<D

For a two-dimensional ax X ay box, the side lengths ax and ay are called the
width and height of the box, respectively. For a three-dimensional ax X ay X az box,
the side lengths ay, ay and ayz are called the width, depth and height of the box,
respectively.

For each direction d, 1 < |d| < D, the set of grid-points in a grid-box B which are

extremal in direction d is called the d-face of B. At each grid-point on the d-face of a
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box we say there is a port. A port is considered to extend out from the surface of the

box in direction d, as illustrated in Figure 2.2.

'S

-

(a) (b) () ! (d)

Figure 2.2: Ports on grid-boxes:

(a) 1 x 1 2-D point with volume 1 and surface 4,

(b) 3 x 2 x 1 3-D rectangle with volume 6 and surface 22,

(c) 3 x2x 2 3-D box with volume 12 and surface 32,

(d) 2 x 2 x 2 x 2 4-D hyperbox with volume 16 and surface 64.

A port in direction d, 1 < |d| < D, is called a d-port, and for any dimension i,
1 <i < D, a (£i)-port is also called an i-port. The number of ports on the (i*)-face of
B (which obviously equals the number of ports on the (i~ )-face) is referred to as the
surface ;(B); i.e.,

surface ;(B) = H a;j(B) .
1<j<D
JF

The total number of ports on B is the surface (B); i.e.,

surface (B) = 2 Z surface ;(B) .
1<i<D

2.4 Orthogonal Graph Drawing

A D-dimensional orthogonal drawing of a graph G, called an orthogonal drawing, rep-

resents each vertex v € V(G) by a grid box B, such that
Vo,w € V(G),v#w= B,NB, =0 .

The graph-theoretic term ‘vertex’ will also refer to the corresponding box. Allowing

vertices to degenerate to rectangles or lines is the approach taken in [27, 32, 33, 222,
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223], but not in [166, 168]; enlarging vertices to remove this degeneracy increases the
volume by a multiplicative constant.

A grid-polyline in the D-dimensional orthogonal grid is a polyline consisting of
contiguous segments of grid-lines, possibly bent at grid-points. An orthogonal drawing
of G represents each edge vw € F(G) by a grid-polyline, called an edge route, between
grid-points on the boundaries of B, and B,,, not intersecting any vertices except at
these boundary points. The interior of edge routes are pairwise non-overlapping, and
only for D = 2 are edge routes allowed to cross. A segment of an edge route parallel
to the i-axis, for some dimension i, is called an i-segment.

Two-dimensional and three-dimensional orthogonal drawings are called 2-D and 3-
D orthogonal drawings, respectively. A 2-D orthogonal drawing without edge crossings

is a plane 2-D orthogonal drawing.

Port Assignment and Routings

An orthogonal drawing of a graph G assigns each arc 7w € A(G) a unique port at v,
referred to as the port(vw). The set of ports at a vertex v is denoted by ports(v), and
we define ports(G) to be the set of ports of a graph Gj i.e.,

ports (G) = U ports (v)
veEV(Q)

If, in a D-dimensional orthogonal drawing of a graph G, for some vertices v, w €
V(G) and dimension i, 1 < i < D, the (i7)-face of v has i-coordinate less than the i-
coordinate of the (i™)-face of w then we say w is in direction i™ from v, v is in direction
i~ from w, an (i*)-port at v points toward w, and an (i~ )-port at v points away from
w.

If for some arc 91 € A(G) and dimension i, 1 < i < D, the port(vw) is an i-port
then we consider 9 to be coloured i. In this manner a D-dimensional orthogonal
drawing of a G determines a D-colouring of A(G). We call a D-colouring of A(G) a
(D-dimensional) routing of A(G). An orthogonal drawing is routing-preserving if the
drawing determines a given routing.

For point-drawings, at each vertex v and direction d, there is exactly one port at

v in direction d. We denote this port by port(v,d). We say port(v,d) is opposite to
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port(v, —d), for each vertex v and direction d. A D-dimensional orthogonal point-
drawing of G determines a routing with at most two outgoing arcs at each vertex
receiving the same colour; i.e., |[Ag(v)[i]| < 2 for every vertex v and dimension i,
1 <i < D. We call a routing with this property a (D-dimensional) point-routing of
A(G).

Note that a routing of a graph G does not fully describe the edge routes in an
orthogonal drawing of G. It merely describes the axes which the first and last segments
of each edge route are parallel to. In the general position model (see Chapters 6, 5 and

7), we show that a routing suffices as a data structure for representing the edge routes.

Aesthetic Criteria

We now make precise definitions for the criteria by which we measure the aesthetic
quality of an orthogonal box-drawing. The minimum-sized box enclosing an orthogo-
nal drawing is called the bounding box of the drawing. We refer to the volume of the
bounding box as the volume of the drawing. An orthogonal drawing with a maximum
of b bends per edge route is called a b-bend orthogonal drawing. An orthogonal draw-
ing with a particular “shape” of grid-box representing every vertex, e.g., point, line,
rectangle, square, cube or hypercube, is called an orthogonal shape-drawing for each

particular “shape”, as illustrated in Figure 2.3.

P -

(a) (b) (c)

Figure 2.3: Orthogonal drawings of Kj: (a) 1-bend 2-D square-drawing, (b) 2-bend
3-D point-drawing, (¢) 0-bend 3-D line-drawing.

A D-dimensional orthogonal drawing of a graph G is said to be strictly a-degree-
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restricted if there exists a constant « such that for every vertex v € V(G),
surface (v) < a - deg(v) .

Such a drawing is said to be strictly degree-restricted.

For some orthogonal graph drawing algorithm, the minimum « such that the draw-
ings produced by the algorithm are strictly a-degree-restricted does not necessarily
reflect the asymptotic relationship between the surface and the degree of the vertices.
We therefore say that in an orthogonal drawing of a graph G, a vertex v € V(G) is

a-degree-restricted if
surface (v) < a - deg(v) + o (deg(v))

If for some constant «, every vertex v € V(G) is a-degree-restricted, then the
drawing is said to be («)-degree-restricted. This definition enables us to compare the
asymptotic behaviour of « for various algorithms.

Clearly, if a drawing is strictly degree-restricted then it is also degree-restricted.
Conversely, it is easily seen that all degree-restricted drawings produced by algorithms
presented in this thesis are also strictly degree-restricted. Hence for our purposes the
two notions coincide, although one can contrive examples where this is not the case.
It is necessary to distinguish the two terms as the lower bound in Theorem 3.2 is for
strictly degree-restricted drawings.

The aspect ratio of a vertex v is:

aspect ratio (v) = (11382)% az’(v)> / (1r<ni<nD ai(”))
RS S

A hypercube has aspect ratio one, while a k x 1 x 1 X --- x 1 line has aspect ratio

equal to k.

2.5 Cycle Cover Decomposition

A cycle cover of a digraph is a spanning subgraph consisting of directed cycles. We
now describe an algorithm for the decomposition of a graph into cycle covers. This
algorithm will often form the preprocessing step in the graph drawing algorithms to

come. This step was first used by Eades et al. [86] in their 3-D orthogonal point-drawing
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algorithm for maximum degree six graphs. The following generalisation to arbitrary
degree graphs can be found in [87, 219]. The result can be considered as repeated
application of the classical result of Petersen that “every regular graph of even degree

has a 2-factor” [172].

Theorem 2.1. If G is a multigraph and d = [A(G)/2] then there exists a directed

multigraph G’ such that:

1. G is a subgraph of the underlying undirected multigraph of G'.

2. Each vertex of G' has in-degree d and out-degree d.

3. The arcs of G' can be partitioned into d edge-disjoint cycle covers.
G' and the edge-disjoint cycle covers can be computed in O(A?n) time.

Proof. Initially let G’ = G. The number of vertices of odd degree in any multigraph
must be even. So that each vertex of G’ has even degree we pair the odd degree vertices
and add an edge between each pair. For each vertex v € V(G'), add d — deg(v)/2 self-
loops to v, to create a 2d-regular pseudograph. Since each vertex of G’ has even degree
it is Eulerian. Direct the edges of G’ by following an Eulerian tour through G'. Each
vertex of G' now has in-degree d and out-degree d.

For each vertex v € V(G'), define Voyur = {vout : v € V(G }, Vip = {vin : v € V(G")},
where vy = {w € V(G') : 9w € E(G")} and v;;, = {u € V(G') : wd € E(G")}. Now
construct an undirected bipartite graph H with V(H) = Vg U Vi, and E(H) =
Huout, vin} : (u,v) € E(G")}.

Since H is d-regular and bipartite, by Hall’s Theorem [114], H contains a perfect
matching; colour its edges 1 and remove them. The remaining graph is (d — 1)-regular
and bipartite, so it also contains a perfect matching; colour its edges 2 and remove them.
Continue this process, to create d edge-disjoint perfect matchings in H. Colouring
each arc w0 € E(G") the same colour given to {u,us,vin} in H gives each node of G’
exactly one incoming arc and one outgoing arc for each colour. Hence the arcs of G’
are partitioned into d distinct subgraphs C,Cs ..., Cy, corresponding to each colour
1,2,...,d, each of which is a cycle cover for G'. This partition into perfect matchings

is sometimes referred to as Konig’s Theorem [133].
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Schrijver [194] describes an algorithm for determining all perfect matching of a k-
regular n-vertex bipartite graph in O(k?n) time. H is d-regular with 2n vertices, so the
calculation of the perfect matchings which form the partition of H, which is the most

time-consuming stage of the algorithm, takes O(A%n) time. O



Chapter 3

Approaches to Orthogonal Graph

Drawing

In this chapter we survey existing results for orthogonal graph drawing,
describing the models and algorithms employed for the production of such

drawings, and compare these results with those presented in this thesis.

This chapter is organised as follows. Section 3.1 reviews the known NP-hardness
results for the optimisation of various aesthetic criteria in orthogonal graph drawings.
2-D orthogonal graph drawing is surveyed in Section 3.2, including an introduction
to the general position model for 2-D orthogonal graph drawing which is the model
employed in Chapter 6. Table 3.1 summarises the known bounds, including those
presented in this thesis, for 2-D orthogonal drawings possibly with crossings. We then

consider orthogonal graph drawing on surfaces (other than the plane) in Section 3.3.

Section 3.4 surveys models and algorithms for 3-D orthogonal graph drawing, and
introduces the algorithms presented in this thesis. In Section 3.5 we conclude with a
discussion of the known bounds and principal open problems for 3-D orthogonal graph
drawing. Tables 3.2 and 3.3 summarise the known bounds for aesthetic criteria of 3-D

orthogonal point-drawings and 3-D orthogonal box-drawings, respectively.

32
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3.1 Complexity

It is NP-hard to optimise many of the aesthetic criteria for orthogonal graph drawings
discussed in Chapter 1. In particular, for a given maximum degree four graph, minimis-

ing each of the following aesthetic criteria is NP-hard for 2-D orthogonal point-drawing.

e Total number of bends (Garg and Tamassia [106]).

e Bounding box area

(Dolev et al. [78], Storer [199], Kramer and van Leeuwen [135]).

e Maximum edge length (Bhatt and Cosmadakis [21], Gregori [111]).

Garg and Tamassia [106] establish that it is NP-hard to even approximate the
minimum number of bends in a planar graph with O(nl_f) error, for any € > 0. Shermer
[195] shows that it is NP-complete to recognise weak rectangle visibility graphs (see
Section 3.2.1), and hence it is NP-hard to minimise the number of bends in a 2-D
orthogonal box-drawing of a given graph.

Using straightforward extensions of the corresponding 2-D NP-hardness results,
Eades et al. [85] show that it is NP-hard to minimise each of the following aesthetic

criteria in a 3-D orthogonal point-drawings.

e Bounding box volume.
e Total number of bends.

e Total edge length.

These methods can be applied with the NP-completeness result of Shermer [195]
discussed above to show that it is NP-hard to minimise the total number of bends in a

3-D orthogonal box-drawing of a given graph.

3.2 2-D Orthogonal Drawings

Algorithms for producing 2-D orthogonal drawings have been extensively studied in

the literature. We now discuss the principal approaches employed.
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3.2.1 Visibility Approach
Plane Drawings

Plane orthogonal drawings with straight-line edge routes (with no bends) are aestheti-
cally very pleasing since the relational information represented in the graph is clearly
expressed. A closely related idea to that of a straight-line orthogonal drawing is that
of a visibility representation. A (weak) visibility representation of a graph G represents
each vertex v € V(@) by a horizontal segment in the plane, and represents each edge
vw € E(G) by a vertical segment between the horizontal segments representing v and
w and not intersecting any other horizontal segments. A graph admitting a visibility
representation is clearly planar. Tamassia and Tollis [202] and Rosenstiehl and Tarjan
[187] independently show that every planar graph has a visibility representation, and
hence a straight-line orthogonal drawing, which can be computed in linear time.
Various types of visibility representations can be defined, depending on whether ver-
tices are segments or intervals and whether visible vertices must be adjacent. Tamassia
and Tollis [202] and Wismath [216] characterise those planar graphs which admit each
possible type. The disadvantage of the visibility representation method for producing
plane orthogonal drawings is that the vertices are not necessarily degree-restricted and

have high aspect ratio.

Drawings with Crossings

In a (weak) rectangle visibility representation of a graph, vertices are represented by
rectangles, and adjacent vertices can ‘see’ each other by some axis-aligned ‘band of
visibility’ not intersecting any other vertex (see Dean and Hutchinson [67] for precise
definitions). It follows that a graph has a straight-line 2-D orthogonal box-drawing if
and only if it has a weak rectangle visibility representation. The subgraphs induced by
the horizontal and vertical edges of such a graph are planar, so the graph has thickness
at most two. Bose et al. [37] establish that numerous classes of graphs with thickness
two admit straight-line 2-D orthogonal box-drawings. Since Ko has thickness three (see
Beineke [16]), the straight-line 2-D orthogonal drawing of Kg presented by Dean and

Hutchinson [67] is the largest complete graph admitting such a drawing. K5¢ has a
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straight-line 2-D orthogonal box-drawing, as shown in Figure 3.1.

Figure 3.1: Straight-line 2-D orthogonal drawing of K5 .

Even though K5, (7 < n < 12) and K, (6 < n < 8) have thickness two [17],
it is unknown if these graphs admit 2-D straight-line orthogonal box-drawings. We
conjecture that K57 and Kgg do not admit such drawings. Bose et al. [37] show that

K4, (n > 1) has a 2-D straight-line orthogonal box-drawing.

3.2.2 Topology-Shape-Metrics Approach

A number of algorithms for 2-D orthogonal graph drawing can be grouped under the so
called topology-shape-metrics approach approach (see Di Battista et al. [71, chap. 5]).

These methods consist of the following three main steps.

Planarisation: Determine a planar embedding of the graph with few crossings, and

represent each crossing by a dummy vertex.
Orthogonalisation: Determine the shape of the drawing.

Compaction: Determine the coordinates of the vertices and bends to minimise the

area.

The development of these algorithms can be traced to the classical algorithm of

Tamassia [200] for determining a bend-minimum orthogonal point-drawing which pre-
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serves a given planar embedding of a graph with maximum degree four (see also Batini
et al. [14]). This algorithm models the bend-minimisation problem using network flow
techniques, and takes O(n2 log n) time (subsequently improved to O(n7/ 4@) by
Garg and Tamassia [107]). Biedl [26] has since obtained bounds on the area and the
number of bends for this algorithm.

Tamassia et al. [201] present the GIOTTO algorithm for orthogonal drawing of non-
planar graphs of arbitrary degree, which is based on Tamassia’s algorithm for planar
graphs. To cater for arbitrary degree vertices, each vertex v of degree d > 4 is replaced
by a cycle of d vertices where each vertex of the cycle is incident to one of the edges
formally incident to v, as illustrated in Figure 3.2. Experimental results confirming the

success of this approach are reported in Di Battista et al. [72].

43 -

Figure 3.2: Replacing v by a cycle.

The KANDINSKY model for 2-D orthogonal drawings, which has been investigated
by FoBmeier and Kaufmann [103, 104] and FéBmeier et al. [102], consists of a 2-D
(sparse) grid with uniform distance A between the grid lines. The vertices have side
length less than A, and the centres of the vertices are placed at the intersection of
the grid lines; this ensures that no vertex is intersected by any grid line except those
defining its position, and censequently no two vertices intersect. Edges are routed on
the underlying orthogonal grid. Under the assumption that vertices are represented
by uniformly small squares and that each face is a non-empty region, the algorithm
in [103], given a planar graph embedding, minimises the number of bends in a 2-D
orthogonal drawing in the KANDINSKY model. Fomeier and Kaufmann [104] extend
the KANDINSKY model to cater for non-planar graphs and to remove the requirement

in [103] that vertices have the same size.
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In recent developments the algorithm of Di Battista et al. [70] determines an
embedding-preserving 2-D orthogonal drawing where the size of each vertex is spec-
ified by the user. The drawings produced have the minimum number of bends among
a wide class of drawings.

Di Battista et al. [73] introduce the notion of spirality of planar orthogonal point-
drawings and explore the connection between spirality and the number of bends. In
particular, they present polynomial time algorithms for determining bend-minimum
orthogonal point-drawings for series-parallel graphs and for planar graphs of maximum
degree three. Bertolazzi et al. [20] and Didimo and Liotta [75] use advanced data
structures to represent all the planar embeddings of a given graph in their algorithms
to determine bend-minimum 2-D orthogonal drawing. Their algorithms run in time

exponential in the number of vertices with degree greater than four.

3.2.3 Geometric Approach

We now describe algorithms for orthogonal graph drawing which are purely geometric,
as opposed to the algorithms described above which are based on topological embed-

dings. Bertolazzi et al. [20] calls this the draw-and-adjust approach.

Plane Point-Drawings

Numerous algorithms have been proposed in the literature for drawing planar orthog-
onal point-drawings. Algorithms for drawing cubic graphs include those of Papakostas
and Tollis [163], Rahman et al. [178], Calamoneri and Petreschi [50, 51] and Biedl [23].
For maximum degree four graphs, algorithms include those of Tamassia and Tollis [203],
Liu et al. [146], Kant [124], Biedl [24] and Biedl and Kant [29]. We now outline two of
the approaches used by these algorithms.

The algorithm of Tamassia and Tollis [203] for 2-D orthogonal point-drawing of
planar graphs, is based on a visibility representation of the given graph. The horizontal
segments representing vertices in the visibility representation are replaced by points and
bends are added to the edge routes. The algorithm, which runs in linear time, produces
2-D orthogonal plane drawings with O(n2) area, at most four bends per edge route,

and a total of at most 12n/5 + 2 bends.
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The algorithm of Biedl and Kant [29], for a biconnected graph G of maximum de-
gree four, determines in linear time an orthogonal point-drawing with at most 2n + 2
bends and n X m bounding box. Every edge has at most two bends (unless G is
the octahedron graph which is shown by Even and Granot [91] not to have a 2-bend
plane orthogonal point-drawing; see Figure 1.8(a)). This algorithm is based on an
st-ordering of the vertices (see Section 4.2). A modified algorithm determines an
orthogonal point-drawing of a connected graph G with at least one cut vertex with
(n — 1) x (n — 1) bounding box, at most two bends per edge, and at most m bends
in total. For triconnected graphs the algorithm of Kant [124], improved by Biedl [24],
establishes an upper bound on the number of bends of [4n/3] + 4.

Point-Drawings with Crossings

Algorithms which do not guarantee plane drawings even for planar graphs have been
considered by Schiffter [190] and Papakostas and Tollis [165]. The latter algorithm
determines in linear time an orthogonal point-drawing of a given maximum degree four
graph having area at most 0.76n? and at most 2n + 2 bends. Lower bounds for 2-D

orthogonal point-drawing have been established by Tamassia et al. [205] and Biedl [25].

Plane Box-Drawings

Motivated by the desire to overcome the inherent restriction on the maximum degree
of graphs admitting orthogonal point-drawings, there has been recent interest in the
development of algorithms for 2-D orthogonal box-drawing.

Even and Granot [92] studied 2-D orthogonal box-drawings where the size of each
vertex and the port assignments are given as part of the input. This approach is
particularly applicable to VLSI layout problems where the components of the circuit
have predefined sizes. They present two algorithms. The first, which is for planar
drawings, is based on a visibility representation of the graph. The second algorithm
employs a diagonal layout of the vertices. The drawings produced have at most four
bends per edge and (W +m) x (H +m) bounding box, where W and H are respectively
the total width and height of the boxes representing vertices.

Using the ‘cycle of low degree vertices’” method illustrated in Figure 3.2, the al-
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gorithm of Biedl and Kant [29] is extended to produce planar drawings of arbitrary
degree planar graphs. The disadvantage of this approach is that the vertices are not
necessarily degree-restricted. This algorithm can also cater for drawings of non-planar

graphs.

Box-Drawings with Crossings

We now discuss box-drawing algorithms which are applicable to arbitrary graphs but
do not guarantee a planar drawing even for planar graphs. This is the approach taken
by the 2-D orthogonal box-drawing algorithm presented in Chapter 6. (In Chapter 7
this algorithm is generalised to a multi-dimensional setting.) Table 3.1 summarises the

known upper bounds for this class of 2-D orthogonal graph drawings.

Table 3.1: Upper Bounds for 2-D Orthogonal Box-Drawing

Box Max.  Degree- Aspect

Shape Area Bends Restriction  Ratio Reference
line (m—1) x () 1 2 < deg(v)/2  [164, 169]
line () x () 1 2 < deg(v)/2 [30]
rectangle (Bmb2n) o (Smt2n) 1 2 2 [30]
rectangle (3m+4n+2) X (3m+4"+2) 1 % 2 Theorem 6.3
square (3Tm %”) X (3Tm %”) 1 2 1 Theorem 6.4

The algorithms of Papakostas and Tollis [164, 169] and Biedl and Kaufmann [30]
(which is an example of the unified approach to orthogonal graph drawing called the
three-phase method [31]) were the first to produce degree-restricted 2-D orthogonal
box-drawings. Each vertex v has aspect ratio at most deg(v)/2 and each edge route
has at most one bend. For sparse graphs (m < (1 +v/2)n to be precise), the algorithm
in [164, 169] requires less area than that in [30]. A second algorithm in [30] produces
drawings in which each vertex has aspect ratio at most two, at the expense of an

increase in area.
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The algorithm of Biedl and Kaufmann [30] produces drawings such that no two
vertices are intersected by a single grid-line. We call such drawings general position
2-D orthogonal drawings. An introductory version of the algorithm of Papakostas and
Tollis [164, 169] also produces general position 2-D orthogonal drawings; in a refined
version certain pairs of vertices share a row or column.

The algorithms presented in Chapter 6 also produce general position 2-D orthogonal
drawings. In Section 3.4.4 we introduce the general position model for D-dimensional
orthogonal graph drawing and classify algorithms for producing such drawings as
layout- or routing-based. The algorithms in [30] and [164, 169] can be classified as
routing-based.

Maintaining the aspect ratio bound of two in [30], the layout-based algorithm pre-
sented in Section 6.2.3 produces 3/2-degree-restricted 2-D orthogonal drawings. Using
a diagonal layout, our algorithm described in Section 6.2.4 produces 2-degree-restricted
2-D orthogonal square-drawings. Note that 2-D diagonal layouts have been employed
by Even and Granot [91] and Schéffter [190]. Our bounding box area bounds are slightly

above those in [30].

Interactive Drawing

As well as considering the aesthetic criteria already discussed for static orthogonal
graph drawing, interactive graph drawing algorithms should ‘preserve the mental map’
of the viewer of the drawing when vertices and edges are inserted or deleted (see Misue
et al. [154], for example). Interactive orthogonal point-drawing has been studied by
Papakostas et al. [162], Fofmeier [100], Bridgeman et al. [44], Brandes and Wagner
[42] and Papakostas and Tollis [167]. Biedl et al. [31] also describe how the three-phase

method can be extended to an interactive setting.

3.3 Orthogonal Drawings on Surfaces

A natural, yet little studied generalisation of plane orthogonal drawings, is that of
orthogonal drawings on surfaces. An embedding of a graph in an orientable surface

other than the plane can be drawn in an orthogonal surface, as illustrated in Figure 3.3
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(see Garrido and Marquez [109]). Consider the following open problem.

Problem 3.1. SURFACE POINT-DRAWING

Instance: An embedding ® of a graph G (with maximum degree four) in the orientable
surface of genus g, and a positive integer B € Z.

Question: Is there an orthogonal point-drawing of GG in the orthogonal surface of genus

g which preserves ® and with at most B bends?

Figure 3.3: An orthogonal drawing of a graph in the surface of genus g.

Garrido and Marquez [109] sketch proofs, that for any fixed orientable surface S
(except the plane), it is NP-complete to test whether a given graph embedding in S
has an essentially equivalent' straight-line orthogonal point-drawing in an orthogonal
surface corresponding to S. Hence minimising the number of bends in an orthogonal

drawing essentially equivalent to a given embedding is NP-hard.

3.4 Models for 3-D Orthogonal Graph Drawing

In this section we survey models and algorithms for the generation of 3-D orthogonal
graph drawings, including those presented in this thesis. We classify models for vertex

layout by the minimum integers a and b, 1 < a,b < 2 such that
e all vertices are intersected by a single a-dimensional orthogonal grid, and

e no two vertices are intersected by a single b-dimensional orthogonal grid.

!The term essentially equivalent is not precisely defined.



CHAPTER 3. APPROACHES TO ORTHOGONAL GRAPH DRAWING 42

Here a 1-dimensional (respectively, 2-dimensional) grid refers to a grid-line (grid-

plane) within the 3-dimensional orthogonal grid.

3.4.1 Visibility Representations

Visibility representations of graphs in the plane (see Section 3.2.1) naturally extend
to three dimensions. In the so-called ZPR (Z-Parallel Representation) model for
straight-line 3-D orthogonal graph drawing, each vertex is a rectangle parallel to the
XY-plane, and edges are routed parallel to the Z-axis. Bose et al. [38] showed that
there does not exist a ZPR of K, for n > 56. The proof is based on deep results
concerning unimaximal subsequences. They also found a ZPR of K3 using simulated
annealing techniques. Representing vertices by squares of the same size, Fekete et al.
[95] showed that K7 has a ZPR, but K, for n > 8 does not. The ZPR model was
extended to arbitrary dimensions by Cobos et al. [59], establishing that every graph
has a ZPR in some number of dimensions.

In a straight-line D-dimensional orthogonal graph drawing, the axis each edge is
parallel to defines a edge D-colouring of the graph. As pointed out by Biedl et al.
[32, 33] in the case of D = 3, each colour class induces a ZPR, so by the above K55 ZPR
non-existence result, it follows that there does not exist a 3-D straight-line orthogonal
drawing of K, for n greater than the Ramsey number R(56,56,...,56) (with D 56’s).
In three dimensions this upper bound has been significantly improved to Kig4 by Fekete
and Meijer [96] (their proof is still based on the non-existence of a ZPR of K5g). Based
on the ZPR of K52 mentioned above, Fekete and Meijer also construct the largest known
straight-line 3-D orthogonal drawing of a complete graph, namely Ksg, and establish
a number of bounds on the size of complete graphs admitting such drawings when the
shape of the boxes and the number of different sized boxes is restricted?.

This K5 construction immediately generalises to multiple dimensions, providing a
straight-line D-dimensional orthogonal box-drawing of Kyyp_1)112. For D > 2 and

n > 1, the bipartite graph Ksp, has a D-dimensional orthogonal drawing without

2The lower bound of K3 for 3-D straight-line orthogonal drawings and the upper bound of Kj¢ for
ZPR’s is a coincidence. Hitchhikers are disappointed that the previous best lower bound of K4» due to

Bose et al. [40] is not optimal.
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bends. To construct this drawing, place the n vertices along a D-dimensional diagonal,
and place the remaining vertices on the sides of the D-dimensional box surrounding the
interior vertices. This construction is a generalisation of the case D = 2 due to Bose
et al. [37].

We now provide a simple sufficient condition for the existence of a straight-line 3-D

orthogonal line-drawing.

Theorem 3.1. FEvery vertex 3-colourable graph has a straight-line 3-D orthogonal line-

drawing.

Proof. We will construct a straight-line 3-D orthogonal line-drawing of the complete
tripartite graph K, ,,. Consider the vertices of K, , , to be coloured with colours
{X,Y,Z} with corresponding colour classes {ui,u2,...,un}, {vi,v2,...,v,} and
{wi,wa,...,wy}. As illustrated in Figure 3.4, a vertex w;, v; or wy, 1 <i,j,k, < nis

represented by the following line parallel to the X-, Y or Z-axis, respectively.
o u;t (2,20 +1,2i) —» (2n+ 1,21 + 1,21)
o vt (25,2,2j+1) = (24,2n 4+ 1,25 + 1)
o wi: (2k+1,2k,2) — (2k 4+ 1,2k,2n 4+ 1)

A vertex u; has odd/even Y’/ Z-coordinates, a vertex v; has even/odd X /Z-coordinates,
and a vertex wy has odd/even X /Y-coordinates, so no two vertices intersect.
The edge routes for the edges u;v;, u;wy and vjwy, 1 <4, j,k, < n, are respectively

parallel to the Z-, Y- and X-axes as follows.
o u;t (25,20 4+1,2i) — (24,20 + 1,25+ 1) w;
o u;: (2k+1,21,21) — (2k + 1,2k, 24) wyg
o vt (27,2k,25 +1) = (2k +1,2k,25 + 1) 2wy,

An edge route u;v; has even/odd X /Y -coordinates, an edge route u;wy, has odd/even
X /Z-coordinates, and an edge route v;wy has even/odd Y /Z-coordinates, so no two

edge routes intersect.
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Figure 3.4: Vertex layout for a straight-line 3-D orthogonal line-drawing of a vertex

3-colourable graph.

Suppose an edge route u;v; intersects some vertex z. Then z has a coordinate
(24,2i+ 1, Z;), which implies that z = u; or = v;, and similarly for edge routes u;wy,

and vjwy. Hence each edge route only intersects its end-vertices. O

This result suggests the following open problem.

Open Problem 3.1. What is the maximum k € Z* such that every k-colourable
graph has a straight-line 3-D orthogonal box-drawing? By Theorem 3.1 and since Kjg4

does not have such a drawing we know 3 < k < 184.

3.4.2 Coplanar Vertex Layout Model

A 3-D orthogonal graph drawing is in the coplanar vertez layout model, called a coplanar
3-D orthogonal graph drawing, if there exists a single grid-plane intersecting every

vertex. Of course, such drawings are inherently orientation-dependent.
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Coplanar Grid Vertex Layout

One strategy for producing 3-D orthogonal graph drawings in the coplanar vertex layout
model, is to position the vertices in a plane grid. This model was first employed by
Hagihara et al. [113] for producing degree-restricted 3-D orthogonal cube-drawings,
although it is understood that all subsequent research in 3-D orthogonal graph drawing,
including that presented in this thesis, was completed without knowledge of this paper.

The CoMPACT algorithm of Eades et al. [86, 87] introduced this model for 3-D
orthogonal point-drawing, and produced drawings with optimal volume. Vertices are
positioned in the (Z = 0)-plane in a O(y/n) x O(y/n) grid, and edges are routed either
within, above or below the (Z = 0)-plane. A sequence of refined algorithms in [87]
explore the tradeoff between bounding box volume and the maximum number of bends
per edge route.

In Chapter 9 we present two algorithms for producing coplanar 3-D orthogonal
drawings of arbitrary degree graphs. The first represents vertices by Z-lines in an
O(y/n) x O(y/n) grid, and produces drawings with optimal volume for regular graphs.
The second algorithm positions vertices in the (Z = 0)-plane in a O(y/m) x O(y/m)

grid, and produces degree-restricted cube-drawings with optimal volume.

Non-Collinear Coplanar Vertex Layout

A second approach to producing coplanar 3-D orthogonal drawings is to position the
vertices such that no two vertices lie in the same grid-line. A commonly used strategy
for producing such drawings is to position the vertices along a 2-D diagonal.

Biedl et al. [32, 33] construct coplanar 3-D orthogonal line-drawings of K,, (and
hence for any simple graph), using a 2-D diagonal layout with O(n3) volume and
one bend per edge route®. Biedl [27] calls this the LIFTING-EDGES algorithm. This
construction represents the vertices as Z-lines of length n positioned in a 2-D diagonal
layout, and routes each edge with one bend in some Z-plane. In Chapter 9 we present

an algorithm for producing 1-bend 3-D orthogonal drawings using a similar strategy

3Biedl et al. [32, 33] also describe 3-D orthogonal drawings of K,, with O(n3) volume and two bends
per edge route. Since all the vertices in this construction are intersected by a single grid-line, we say

this drawing is in the collinear vertex layout model.
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based on book embeddings.

Biedl [27] introduced an algorithm called LIFTING-HALF-EDGES, which improves on
the LIFTING-EDGES algorithm, for producing degree-restricted line-drawings with two
bends per edge route. This algorithm starts with a 1-bend 2-D general position point-
drawing possibly with overlapping edges (see Section 3.2.3), and extends the vertices to
form Z-lines. X-segments are routed above the (Z = 0)-plane, Y-segments are routed
below the (Z = 0)-plane, and Z-segments are added to the edges in such a way to avoid

edge route crossings. A modified algorithm produces degree-restricted cube-drawings.

Closson et al. [58] present an algorithm for producing coplanar 3-D orthogonal
point-drawings with a 2-D diagonal vertex layout, which supports the on-line insertion
and deletion of vertices and edges. In Chapter 11 we present an algorithm for multi-
dimensional orthogonal point-drawing with a bounded number of bends per edge which

also positions the vertices in a 2-D diagonal.

3.4.3 Non-Collinear Model

A 3-D orthogonal graph drawing is in the non-collinear vertex layout model, called a
non-collinear 3-D orthogonal drawing, if no two vertices lie in the same grid-line. The
spiral layout algorithm of Closson et al. [58] for 3-D orthogonal point-drawing was the
first for producing drawings in this model. This algorithm starts with the vertices in a
O(y/n) x O(y/n) grid, and then assigns each vertex a unique height in a spiral manner.
The bounding box has volume O(y/n) x O(y/n) x O(n), so the drawings are somewhat

orientation-dependent.

In Chapter 10 we present algorithms for generating orientation-independent non-
collinear orthogonal box- and point-drawings. Our vertex layout algorithm positions the
vertices such that each grid-plane intersects at most [y/n] vertices. The point-drawings
produced have optimal volume, and for regular graphs, the box-drawings produced also
have optimal volume. These are the only known algorithms for producing orientation-
independent drawings with optimal volume. For point-drawings with optimal volume,
we observe a tradeoff between orientation-independence and the maximum number of

bends per edge.
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3.4.4 General Position Model

A D-dimensional orthogonal graph drawing (D > 2) is in the general position model,
called a general position orthogonal drawing, if no two vertices are intersected by a
single (D — 1)-dimensional grid-hyperplane?. In a general position 2-D orthogonal
drawing, no two vertices are intersected by a single grid-line (see Section 3.2.3), and in
a general position 3-D orthogonal drawing, no two vertices are intersected by a single
grid-plane®. A simple general position vertex layout is constructed by positioning the
vertices along the main diagonal of a hypercube, called a diagonal general position
vertez layout.

General position drawings typically have few bends per edge route (but relatively
many bends in total) and are degree-restricted. Many algorithms for general position
orthogonal graph drawing produce orientation-independent drawings. The disadvan-
tage of this model is that the drawings necessarily have large volume compared to the
other models.

Chapters 5, 6 and 7 describe algorithms for producing general position 3-D point-
drawings, general position 2-D box-drawings and general position D-dimensional (D >
3) box-drawings, respectively. Our algorithms for producing general position orthogonal

drawings have the following three major steps, which loosely correspond to those in the

three-phase method [31].

Vertex Layout: Determine the relative positions of the vertices.
Arc Routing: Determine the ‘shape’ of each edge route.

Port Assignment: Construct vertex boxes, assign ports for each edge route, and

remove edge crossings.

We classify algorithms for generating general position orthogonal graph drawings

as being layout- or routing-based. In a layout-based algorithm, the vertex layout stage

*In computational geometry a set of points in R” are in general position if no D + 1 points are in a
common (D — 1)-dimensional hyperplane. Strictly speaking we should therefore say a general position
orthogonal drawing is in general grid position.

®This is called the Unique Coordinates Model in [221].
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is completed initially followed by the arc routing step. In a routing-based algorithm,
the vertex layout is determined with respect to a pre-determined arc-routing. The port

assignment stage is always completed last.

Point-Drawings

A 3-D diagonal vertex layout is used by the 3-BENDS algorithm of Eades et al. [86, 87]
for orthogonal point-drawing. We present a layout-based algorithm for 3-D orthogonal
point-drawing in Section 5.2.1, which given a fixed diagonal layout, minimises the total
number of bends. A modification of the 3-BENDS algorithm of Eades et al. [86, 87]
described in Section 5.5.3, produces 3-bend point-drawings with the best known volume

upper bound.

A routing-based algorithm for 3-D orthogonal point-drawing is presented in Sec-
tion 5.3. The DIAGONAL LAYOUT AND MOVEMENT (DLM in Table 3.2) algorithm
presented in Section 5.4 combines the layout- and routing-based approaches, and es-
tablishes the best known upper bound for the total number of bends in 3-D orthogonal

point-drawings.

Box-Drawings

Algorithms for producing general position 3-D orthogonal box-drawings with two bends
per edge route have been developed by Papakostas and Tollis [166, 168] and Biedl [27].
The incremental algorithm in [166, 168] inserts each new vertex as a cube, and as new
neighbours are inserted a vertex may grow in different directions, producing drawings
which one would expect in practice to be orientation-independent. No bound on the

aspect ratio of a vertex is established. We refer to this algorithm as INCREMENTAL.

Our layout-based algorithm for multi-dimensional orthogonal box-drawing, pre-
sented in Section 7.2, in the case of three dimensions, establishes improved bounds
on the degree-restriction of vertices compared to the algorithms in [27, 166, 168]. A
routing-based algorithm for general position 3-D orthogonal box-drawing is presented

in Section 7.3.
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3.4.5 Ad-hoc Methods for 3-D Point-Drawing

Other approaches for 3-D orthogonal point-drawing include that of Papakostas and
Tollis [166, 168]. Their algorithm, which allows for the on-line insertion of vertices in
constant time, produces 3-D orthogonal point-drawings with at most three bends per
edge route. The split and push approach to 3-D orthogonal point-drawing, developed
by Di Battista et al. [74], starts with a degenerate drawing with all vertices on one
point and repeatedly inserts planes splitting the drawing apart until all crossings are
removed. Experimental tests in [74, 168, 221] show this method works well only on

relatively small graphs, and no bounds on the number of bends or volume are presented.

3.5 Bounds for 3-D Orthogonal Graph Drawing

We now summarise the known bounds for the number of bends and the volume of 3-D

orthogonal drawings, initially for point-drawings and then for box-drawings.

3.5.1 Point-Drawings

Table 3.2 shows the tradeoff between the bounding box volume and the maximum
number of bends per edge apparent in algorithms for 3-D orthogonal point-drawing of

graphs of maximum degree A < 6.

Bounds on the volume

An early result in 3-D orthogonal point-drawing due to Kolmogorov and Barzdin [132]°
established a lower bound of Q(n3/?) for the bounding box volume. Rosenberg [186]
independently proved the same result.

The CoMPACT algorithm of Eades et al. [86, 87] determines orthogonal point-
drawings in the coplanar vertex layout model with O(n3/ 2) bounding box volume and
at most seven bends per edge route. As discussed above, this volume bound is asymp-
totically best possible. The same bound is achieved by the orientation-independent

NoON-COLLINEAR algorithm presented in Chapter 10, at the expense of needing eight

5This paper has been repeatedly cited incorrectly in the literature, with the word ‘set’ replacing

‘net’ in the title.
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Table 3.2: Upper Bounds for 3-D Orthogonal Point-Drawing

Max. Orientation
Algorithm (Avg.) Volume Independent Reference
Bends
NON-COLLINEAR 8 O(n3/?) yes Theorem 10.2
COMPACT 7 0O(n3/?) no [86, 87]
CompACT1 6 0(n?) no [87]
DYNAMIC 5 0(n?) no (58]
COMPACT?2 5 O(n®/?) no [87]
COMPACT3 4 O(n?) no [87]
DM 4 (7/3) | 2.37n? yes Theorem 5.4
3-BENDS 3 8n? yes [86, 87]
INCREMENTAL 3 4.63n3 yes [166, 168]
MODIFIED 3-BENDS 3 n® + o (n?) yes Theorem 5.6
DM (A < 5) 2 n? yes Theorem 5.4
COMPACT (A < 4) 3 0(n?) no [86]

bends for some edge routes. Improving the bound on the maximum number of bends
per edge route in an O(n3/ 2) volume 3-D orthogonal point-drawing is an interesting

open problem.

Open Problem 3.2. Does every maximum degree six graph have a 6-bend 3-D or-

thogonal point-drawing with O(n3/ 2) bounding box volume?

In a series of refinements of the COMPACT algorithm, referred to as COMPACTI1,
CoMPACT2 and COMPACTS, the tradeoff between the bounding box volume and the
maximum number of bends per edge route is explored. For O(n2) volume 3-D point-
drawings, the DYNAMIC algorithm of Closson et al. [58] improves the upper bound for

the maximum number of bends per edge route from six [87] to five.
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Bounds on the maximum number of bends per edge

The 3-BENDS algorithm of Eades et al. [86, 87] and the INCREMENTAL algorithm of
Papakostas and Tollis [166, 168] established an upper bound of three for the maximum
number of bends per edge route. Both algorithms take O(n) time’. Note that the
authors of the 3-BENDS algorithm were not interested in improving the constant in the
27n3 bounding box volume bound — by deleting each grid plane not containing a vertex
or a bend, it can easily be shown that the volume is at most 8n3. A modification of the
3-BENDS algorithm presented in Section 5.5.3 improves this bound to n3 +o0 (n3) This
is the best known upper bound for the volume of 3-bend orthogonal point-drawings.

There are few non-trivial lower bounds for the number of bends in 3-D orthogonal
point-drawings. Obviously any orthogonal point-drawing of K3 has at least one bend.
Less obvious is the result, proved in Theorem 11.1, that in any 3-D orthogonal point-
drawing of K3 there is an edge route with at least two bends. In Appendix A we give
a formal proof of the well-known result that a 3-D orthogonal point-drawing of the
multigraph consisting of two vertices and six edges requires an edge route with at least
three bends.

The difference between the lower bound of two and the upper bound of three for
the maximum number of bends per edge route in 3-D orthogonal point-drawings of

maximum degree six graphs motivates the following 2-Bends Problem.

Open Problem 3.3. [86, 87] Does every maximum degree six graph admit a 2-bend

3-D orthogonal point-drawing?

The DIAGONAL LAYOUT AND MOVEMENT algorithm (DLM in Table 3.2) presented
in Section 5.4 solves the 2-Bends Problem in the affirmative for graphs of maximum
degree five. This result establishes the only known class of graphs for which 2-bend
3-D orthogonal point-drawings exist.

A natural candidate for a simple graph requiring an edge route with at least three
bends in every 3-D orthogonal point-drawing is K7, as conjectured by Eades et al. [86].

A counterexample to this conjecture, namely a 3-D orthogonal point-drawing of Ky

"In Eades et al. [86] an O(n®/?) time bound is stated. In Eades et al. [87] this is reduced to O(n) using

the algorithm of Schrijver [194] in the calculation of the cycle cover decomposition (see Section 2.5).
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with at most two bends per edge route, was first exhibited by Wood [219]. A more
symmetric 3-D orthogonal point-drawing® of K7 with at most two bends per edge route
is shown in Figures 3.5 and 3.6 (see also Appendix B). This drawing has the interesting

feature of rotational symmetry about the line X =Y = 7.

Figure 3.5: Components of a 2-bend 3-D orthogonal point-drawing of K.

8A physical model of this drawing is on display at the School of Computer Science and Software

Engineering, Monash University, Clayton.
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Figure 3.6: A 2-bend 3-D orthogonal point-drawing of K.

One may consider the other 6-regular complete multi-partite graphs Kgg, K333
and K222 to be potential examples of simple graphs requiring an edge route with at
least three bends. In Appendix B we present 2-bend 3-D orthogonal point-drawings of
these graphs.

Bounds on the total number of bends

In certain applications it may be more important to minimise the total number of
bends in 3-D orthogonal point-drawings rather than to minimise the maximum number
of bends on any edge route. The DIAGONAL LAYOUT AND MOVEMENT algorithm
presented in Section 5.4, which solves the 2-Bends Problem for graphs of maximum

degree five, uses a total of at most 7m/3 bends for drawings of m-edge simple graphs
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with maximum degree six. A related algorithm presented in Section 5.2.1 minimises the
total number of bends in a 3-D orthogonal point-drawing for a fixed diagonal layout.
Improving the upper bound for the total number of bends in a 3-D orthogonal point-

drawing is an interesting open problem.

Open Problem 3.4. Does every maximum degree six graph with m edges have a 3-D

orthogonal point-drawing with fewer than 7m/3 bends?

In Appendix A we establish the first non-trivial lower bounds for the total number of
bends in 3-D orthogonal point-drawings. In particular, we prove that a 3-D orthogonal
point-drawing of K5 has at least seven bends. (A drawing of K5 with seven bends is
shown in Figure 2.3(b) on page 28.) We also show that a 3-D orthogonal point-drawing
of the multigraph consisting of two vertices and six edges has at least twelve bends.

(Such a drawing is shown in Figure A.7 on page 228.)

Open Problem 3.5. Are there better lower bounds than 7m/10 (for simple graphs)
and 2m (for multigraphs) on the total number of bends in a 3-D orthogonal point-

drawing of an m-edge graph with maximum degree six.

In Figure 3.7 we show a 3-D orthogonal point-drawing of K7 with a total of 24
bends (compared with the total of 42 bends for the drawing shown in Figures 3.5 and
3.6). Most edge routes are straight-lines or have one bend, and three edge routes have
four bends. We conjecture that there is no 3-D orthogonal point-drawing of K with

fewer than 24 bends.
3.5.2 Box-Drawings

Lower Bounds

The first lower bounds for 3-D orthogonal box-drawings were due to Hagihara et al.
[113]. They show that the volume of a degree-restricted 3-D orthogonal cube-drawing

of a simple graph is
Q (max {AQn, (An/log n)3/2})

For an arbitrary graph G, let vol(G,r, @) denote the minimum bounding box volume

of the 3-D orthogonal drawings of G which are strictly a-degree-restricted and every
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Figure 3.7: A 4-bend 3-D orthogonal point-drawing of K7 with 24 bends.

vertex has aspect ratio at most r. Let vol(n,m,r, ) be the maximum of vol(G,r, a)
where G is a graph with n vertices and m edges. Thus, vol(n, m,r, «a) describes a
volume bound within which all graphs with n vertices and m edges can be drawn such
that each vertex v has aspect ratio at most r and surface at most « - deg(v). Biedl,

Thiele, and Wood [34] establish the following results.
Theorem 3.2.

e vol (n,m,00,00) = Q (m+/n)

e vol (n,m,r,00) = Q (m*?/\/r)

e vol (n,m,00,a) = Q (m3/2/a)

Hence the volume of arbitrary 3-D orthogonal box-drawings is Q(m+/n), and for
degree-restricted drawings or drawings with each vertex having bounded aspect ratio,
the volume is Q(m?3/2). This result includes the lower bound of Q(n°/?) for the volume

of 3-D orthogonal drawings of K, due to Biedl et al. [32, 33]. In fact, the proof is based
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on techniques developed in that paper generalised for sparse graphs. Biedl et al. [32, 33]
also establish the lower bound of (n?) for the number of bends in a 3-D orthogonal
drawings of K,. For general position 3-D orthogonal drawings, Biedl [27] establishes
a lower bound of (max {n3, m2}) for the bounding box volume, and conjectures the

lower bound of Q(n2m).

Upper Bounds

The algorithm presented in Section 9.1, which generalises the LIFTING-EDGES algo-
rithm of Biedl et al. [32, 33] for simple graphs, establishes that every multigraph
has a 1-bend 3-D orthogonal box-drawing. As discussed in Section 3.4.1, there exist
graphs with no straight-line 3-D orthogonal box-drawing, so these results are optimal
for the maximum number of bends per edge route. Since the drawings produced are
orientation-dependent and are not degree-restricted, the following open problem is of

interest.

Open Problem 3.6. Does every graph have an orientation-independent or degree-

restricted 3-D orthogonal box-drawing with at most one bend per edge route?

The algorithm of [34] produces 3-D orthogonal box-drawings with O(m./n) volume
and at most four bends per edge route. By Theorem 3.2 this bound is optimal. A
simplified version of this algorithm, presented in Section 9.2, produces drawings with
O(An3/ 2) volume, which for regular graphs is the same as O(my/n). Reducing the

number of bends in optimal volume box-drawings is an important open problem.

Open Problem 3.7. Does every graph have a 3-D orthogonal box-drawing with
O(m+/n) volume and at most three bends per edge route? (Note that K,, does have a
3-bend box-drawing with O(n5/2) = O(m+/n) volume [32, 33].)

We now consider upper bounds for the volume of degree-restricted 3-D orthogo-
nal box-drawings. The INCREMENTAL algorithm of Papakostas and Tollis [166, 168]
first established that every graph has a 2-bend degree-restricted 3-D orthogonal box-
drawing. Their upper bound of O(m3) for the bounding box volume has subsequently

been improved by the LIFTING HALF-EDGES algorithm of Biedl [27] to O(n?A).
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The algorithm presented in Section 9.3 produces degree-restricted cube-drawings
with O((m + n)3/ 2) volume. By Theorem 3.2 this upper bound is optimal for degree-
restricted drawings or drawings with each vertex having bounded aspect ratio (assuming
m = Q(n), which is true for most graphs). This algorithm uses at most six bends per

edge route. The following problem is therefore of interest.

Open Problem 3.8. Does every graph have a 5-bend degree-restricted 3-D orthogo-
nal box-drawing with O((m +n)¥/ 2) bounding box volume and bounded aspect ratio

vertices?

Table 3.3 summarises the known bounds for 3-D orthogonal box-drawings (of n-
vertex m-edge graphs with maximum degree A and genus g (< m)). We consider
four groupings of algorithms, depending on which aesthetic criteria (out of orientation-
independent, bounded aspect ratio and degree-restricted) are satisfied by the drawings
produced. Within each grouping a tradeoff between the bounding box volume and the

maximum number of bends per edge route is observed.
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Table 3.3: Bounds for 3-D Orthogonal Box-Drawings.

Volume Bends Model Graphs Time Reference

orientation-independent / bounded aspect ratio / degree-restricted
O((nm)3/2) 2 general position simple O(m) [27] (Thms. 7.5,7.6)
O((nA)3/2) 6  non-collinear multigraphs O(m) Theorem 10.1

orientation-dependent / bounded aspect ratio / degree-restricted

0] (nm\/K) 2 lifting %—edges multigraphs O(m) [27]
O(m(m+mn)) 5  coplanar multigraphs O(m) Theorem 9.5
0 ((nA)3/2) 10 coplanar simple ? [113]
O((m +n)®?) 6  coplanar multigraphs O (my/m + n) Theorem 9.4

orientation-dependent / no bounds on aspect ratio / degree-restricted

0] (n2A) 2 lifting %—edges simple O(m) [27]
O((m +mn)3/2) 6  coplanar multigraphs O (my/m + n) Theorem 9.4

orientation-dependent / no bounds on aspect ratio / not degree-restricted

0(n®) 1 lifting edges simple O(m) [32, 33]
O(nm \/g) 1 diagonal coplanar multigraphs - Theorem 9.1
O (n?/?) 3 lifting edges simple O(m) [32, 33
O(nm) 3 coplanar multigraphs O(m) Theorem 9.3

(
(m/n) 4  coplanar multigraphs O(m?/y/n) [34] (see Thm. 9.2)
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Tables 3.4, 3.5 and 3.6 provide precise bounds on the aesthetic criteria for each the

first three groups discussed above.

Table 3.4: Orientation-independent, Degree-restricted 3-D Orthogonal Drawing with
Bounded Aspect Ratio.

Bends  Volume Degree-  Aspect Model Reference
Restriction Ratio
2 O((nm)3/?) 6 1 general position [27]
2 O((nm)3/?) 5/3 2 general position Theorem 7.5
2 O((nm)3/?) 4 1 general position diagonal Theorem 7.6
6 O((nA)3/?) 8 1 non-collinear ° Theorem 10.1

Table 3.5: Degree-restricted 3-D Orthogonal Cube-Drawing Algorithms.

Bends Volume Degree  Aspect Model Reference
Restriction Ratio
2 O(n*m) 6 1 lifting $-edges [27]
5 O(m(m +n)) 12 1 coplanar layout Theorem 9.5
6  O((m+n)*?) 12 1 coplanar layout Theorem 9.4

Table 3.6: Degree-restricted 3-D Orthogonal Drawing with Unbounded Aspect Ratio.

Bends Volume Degree- Aspect Model Reference
Restriction  Ratio
2 O(m?) 6 - incremental [166, 168]
2 O(n*A) 2 deg(v)/2 lifting $-edges [27]
2 O(n*m) 2 deg(v)/2 general position [27]
2 O(n*m) 2 deg(v)/2 general position diagonal Theorem 7.7
2 O(A (nm)*?) 2 deg(v)/4 general position Theorem 7.8

94-degree-restricted for simple graphs.
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Chapter 4

Balanced Vertex Ordering

In this chapter we describe and analyse methods for determining ‘balanced’
orderings of the vertices of a graph. Here balanced means that the neigh-
bours of each vertex v are evenly distributed to the left and right of v in the
ordering. This problem is of theoretic interest in its own right, and forms
an important part of the graph drawing algorithms to be presented in Chap-
ters 5, 6 and 7. In particular, we define the cost of a vertex ordering as
a measure of its imbalance, and present a linear time heuristic with tight
worst case bounds for the cost of the vertex orderings produced. Furthermore
we establish useful properties of vertex orderings which locally minimise the

cost.

4.1 Introduction

A number of the algorithms for producing general position orthogonal graph drawings
involve the manipulation of an ordering of the vertices of a graph. Given a (di)graph
G, a total ordering < on V(G) induces a numbering (vy,vs,...,v,) of V(G) and vice
versa. We shall refer to both < and (vy,vs,...,v,) as a vertez ordering of G.
Consider a vertex ordering < of a graph G. For each edge vw € F(G) with v < w,
we say the arc 9w € A(G) is a successor arc of v and w is a successor of v; similarly
the arc o is a predecessor arc of w and v is a predecessor of w. Now consider a vertex

ordering < of a digraph G. For each edge vw € E(G), if v < w we say 91 is a successor

61
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arc of v and w is a successor of v, and if w < v we say W is a predecessor arc of v and
w is a predecessor of v.

For each vertex v € V(G), the number of successor and predecessor arcs of v are
denoted s (v) and p.(v), respectively. Where the vertex ordering < is clear from the
context we use s(v) and p(v) instead of s<(v) and p.(v), respectively. Note that, for
digraphs, we only count the outgoing edges at a vertex v in p(v) and s(v).

We say a vertex v in a given vertex ordering is positive if s(v) > p(v), negative
if p(v) > s(v) and balanced if s(v) = p(v). For positive and balanced vertices v and
for k > 0 (respectively, k < 0), v* denotes the k™ successor (predecessor) of v to the
right (left) of v in the ordering. For negative v and for k& > 0 (respectively, k& < 0), v*
denotes the k™ predecessor (successor) of v to the left (right) of v in the ordering. Two
adjacent vertices v, w with v < w are opposite if v is positive and w is negative.

As illustrated in Figure 4.1, we shall say a vertex v is each of the following types.
e p(v)-s(v) vertex

e (min{p(v),s(v)},max {p(v), s(v)})-vertex

e max {p(v), s(v)}-vertex.

’U4 ’U3 ,02 ’Ul v ,U—l ’U_2

Figure 4.1: In a vertex ordering, v is a 4-2 vertex, a (2,4)-vertex, and a 4-vertex.

In a vertex ordering of a (di)graph G, we measure the imbalance of a vertex by
defining the cost of v to be ¢(v) = |s(v) — p(v)|. Note that a vertex has even cost if and
only if it has even (out)degree, and the cost of an odd (out)degree vertex is at least

one. We firstly note that,
2 -min {s(v),p(v)} + ¢(v) = (out)deg (v) = 2 - max {s(v),p(v)} — c(v) (4.1)

The total cost of a vertex ordering is the sum of the costs of the vertices. In a vertex

ordering of an undirected graph G, the total cost is equal to the total cost of the same
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vertex ordering of the digraph ‘G’. Hence we model a vertex ordering of an undirected
graph G by a vertex ordering of the digraph ‘G’. We are interested in the following

problem.

Problem 4.1. BALANCED VERTEX ORDERING
Instance : A (di)graph G, integer K > 0.

Question : Does G have a vertex ordering with total cost Z c(v) < K?
veV(Q)

We conjecture that the BALANCED VERTEX ORDERING problem is NP-
complete. To establish bounds for this problem we employ a heuristic approach in
Section 4.3, and a local minimum approach in Section 4.4. Obviously any vertex order-
ing of the complete graph has the same total cost, thus providing an important lower

bound for the balanced ordering problem.

Lemma 4.1. In any vertex ordering of the complete graph K, the total cost

St = 5] = 3

Proof. In a vertex ordering (v1,vs,...,v,) the total cost is

Z |s(v;) — p(vi)] = 2 Z (n—2i+1)

1<i<n 1<i<|n/2]

=2 [n/2l(n+1) =2 Y i
1<i<|n/2]

= 2([n/2] (n +1) = [n/2] ([n/2] + 1))

= [n*/2]

= m+|n/2] . O

4.2 st-Orderings

A vertex ordering (vi,vs, ... ,v,) of a (di)graph G is an st-ordering if v; = s, v, = t,
and for every other vertex v;, 1 < i < n, with (out)deg (v;) > 2, we have p(v;) > 1 and
s(v;) > 1. Lempel et al. [142] show that for any biconnected undirected graph G and
for any s,t € V(G), there exists an st-ordering of G. Recently Cheriyan and Reif [54]

extended this result to digraphs.



CHAPTER 4. BALANCED VERTEX ORDERING 64

Even and Tarjan [93] develop a linear time algorithm to compute an st-ordering of an
undirected biconnected graph. It is an open problem to develop a linear time algorithm
for finding an st-ordering of a biconnected digraph. To determine a vertex ordering
of a connected graph based on st-orderings of its biconnected components (blocks),
number the blocks Bi, B, ..., Br according to a depth-first-search of the block-tree,
and concatenate s;t;-orderings of each B;, where s; (respectively, ¢;) is chosen wherever
possible to be a cut-vertex with some block Bj, j < i (j > i). We obtain the following

easy result.

Lemma 4.2. Every graph G has a vertex ordering, which can be computed in O(n+m)
time, with at most c+k vertices v having p(v) = 0 or s(v) = 0, where c is the number of
connected components of G, and k is the number of end-blocks in the block decomposition
of G. (An end-block corresponds to a leaf of the block-forest. Note that an isolated edge

contributes one connected component and one end-block.) O

4.3 Median Placement Ordering

We now describe a heuristic for the balanced vertex ordering problem which provides
a tight upper bound for the total cost of the vertex orderings produced, and forms
a critical part of many of the graph drawing algorithms presented in this thesis. The
algorithm inserts each vertex, in turn, mid-way between its already inserted neighbours.
At any stage of the algorithm we refer to the ordering under construction as the current
ordering. Similar methods were introduced by Biedl and Kaufmann [30] and Biedl et al.

[31].

Algorithm 4.1. MEDIAN PLACEMENT ORDERING

Input: e (di)graph G.
e vertex ordering (u1,ug, ... ,u,) of G (called the insertion ordering).

Output: vertex ordering of G.

for:=1,2,... ,ndo

Suppose the predecessors of u; in the insertion ordering
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are ordered wy,ws, ... ,wy in the current ordering.
if £ =0 then Insert u; arbitrarily into the current ordering.
else if k is even then Insert u; arbitrarily between wy, /5 and wy,/a41.
else (k is odd) Insert u; immediately before or after w;1)/s-
end-for

Output the current ordering.

It is easily seen that for undirected graphs the MEDIAN PLACEMENT ORDERING
algorithm, at each iteration, inserts the vertex u; to minimise the total cost of the

current ordering. For digraphs this is not the case, as the example in Figure 4.2

illustrates.
° @
U v w x y U w x y v
1-1 2-0 2-0 1-1 1-1 2-0
(a) median placement insertion (b) minimum cost insertion

Figure 4.2: Inserting vertex v into a vertex ordering of a digraph.

Lemma 4.3. The algorithm MEDIAN PLACEMENT ORDERING determines a vertex

ordering of a (di)graph G, in O(m + n) time, with total cost

Z c(v) < k+ Z s(u;), and

vEV(G) 1<i<n
where, in the insertion ordering, s(u;) is the number of successors of u; and k is the

number of vertices u; € V(G) with odd p(u;).

Proof. When a vertex u; is inserted into the current ordering it has cost c(u;) = 0 if
p(u;) is even and c(u;) = 1 if p(u;) is odd. So, even if all the successors of u; (in the

insertion ordering) are inserted on the one side of u;, in the final ordering, the cost
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c(u;) < s(u;) if p(u;) is even, and c(u;) < s(u;) + 1 if p(u;) is odd. So the total cost is
at most £+ >, s(u;). By (4.1) we have

> " max {s(v),p(v)} < Zw = m—i—% (k—l—Zs(ui))

v
Using the median-finding algorithm of Blum et al. [36], and the algorithm of Dietz
and Sleator [77] to maintain the vertex ordering and orderings of the adjacency lists of

G, the algorithm can be implemented in O(m + n) time. O

For an important class of graphs, if the insertion ordering is chosen carefully, the

MEDIAN PLACEMENT ORDERING algorithm is optimal.

Theorem 4.1. A minimum-cost vertex ordering of an acyclic (di)graph can be deter-

mined in O(m + n) time.

Proof. Using a reverse topological ordering as the insertion ordering in the MEDIAN
PLACEMENT ORDERING algorithm, each vertex v has s(v) = 0 in the insertion ordering,
so no neighbours of v are inserted into the current ordering after v. Hence ¢(v) = 1 if
p(v) is odd, and ¢(v) = 0 if p(v) is even. Since p(v) = (out)deg (v) the ordering has
minimum cost. A topological ordering can be determined in O(m + n) time [64], as can

the algorithm MEDIAN PLACEMENT ORDERING (see Lemma 4.3). O

For undirected graphs, ) . s(u;) = m in any ordering, and since k < n, we obtain

the following immediate corollary.

Corollary 4.1. The MEDIAN PLACEMENT ORDERING algorithm, with any insertion

ordering, determines a vertex ordering of an undirected graph G with total cost

Im+n
Z c(v) <m+n , and Z max {s(v),p(v)} < 5 .
veEV(QG) veEV(Q)
If we choose a particular insertion ordering we can obtain improved upper bounds on
the total cost of the vertex orderings produced by the MEDIAN PLACEMENT ORDERING

algorithm. As indicated by Lemma 4.3, there are two approaches for determining a

‘good’ insertion ordering.

1. Determine an insertion ordering with a small number of vertices with an odd

number of predecessors. We present an algorithm for doing so in Section 4.3.1.
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2. Determine an insertion ordering with small ), s(u;). For undirected graphs,
>;s(u;) = m in any ordering, so this approach is only applicable for digraphs.
We describe methods for determining an insertion ordering with small >, s(u;)

in Section 4.3.2.

4.3.1 Vertices with an Odd Number of Predecessors

We now describe an algorithm for determining a vertex ordering with few vertices
having an odd number of predecessors. The ordering is constructed from right to left;

i.e., from v, to vy.

Algorithm 4.2. INSERTION ORDERING

Input: (di)graph G.

Output: vertex ordering of G.

Set i + |V(G)].
while F(G) # 0 do
Choose an edge vw € E(G).
if (out)deg (v) is even then Set u; < v; u;—1  w; else Set u;  w; u;—1 < v.
Remove v and w (and their incident edges) from G.
Set 4 <1 — 2.
end-while
while V(G) # 0 do
Choose v € V(G).
Set u; + v.
Remove v from G.
Set 4 i — 1.
end-while

Output (uy,ug,. .., up).

Lemma 4.4. The algorithm INSERTION ORDERING determines a vertexr ordering

(ui,u2,...,uy) of G with at most [n/2] vertices u; having odd p(u;).
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Proof. Consider an iteration of the first while-loop in the algorithm. If (out)deg (v) is
even then p(v) = (out)deg (v), otherwise if (out)deg (v) is odd then p(v) = (out)deg (v)—
1. In either case, the vertex v will have an even number of predecessors in (u1, ug, . . ., Uy).
So at least half of the vertices added to the ordering in the first stage of the algorithm
have an even number of predecessors. During the second while-loop every vertex v has
p(v) = 0 and thus has an even number of predecessors in (u1,us,...,u,). The result

follows. O
Combining Lemma 4.3 and Lemma 4.4 we obtain the following result.

Theorem 4.2. FEvery undirected graph G has a vertex ordering, which can be computed

in O(n +m) time, with total cost

Z c(v) < m+ LgJ , and Z max {s(v),p(v)} < 37m+g . a

veEV(G) VeV (G)

By Lemma 4.1, the vertex ordering of the undirected complete graph K,, has total

cost m + |n/2], so for K, we have a tight bound on the total cost.

4.3.2 Feedback Arc Set Problem

We now describe the second method for improving the bound on the total cost of
vertex orderings produced by the MEDIAN PLACEMENT ORDERING algorithm. This
method is only applicable for digraphs. We wish to determine an insertion ordering
(u1,ug,...,u,) with small ), s(u;).

A feedback arc set of a digraph G is a set of arcs of G whose removal makes the
graph acyclic. A vertex ordering < of a digraph determines a feedback arc set consisting
of the edges {vw € E(G) : v < w}. Conversely, given a feedback arc set F' C E(G), a
topological ordering < of G[F] has |{vw € E(G) : v < w}| = |F|. So determining an
insertion ordering with minimum ), s(u;) is equivalent to the problem of determining
a feedback arc set of minimum size. This problem, called the FEEDBACK ARC SET

problem, is NP-hard [125]. For any vertex ordering of a digraph,

min{z s(v),Zp(v)} <m/2 .
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So trivially every digraph has a vertex ordering with >, s(u;) < m/2.

Berger and Shor [19] establish an asymptotically tight bound for the FEEDBACK
ARC SET problem'. They show that, for digraphs of maximum degree A and without
2-cycles, the minimum of 3, s(u;) (taken over all vertex orderings) is m/2—©(m/vA),
and a vertex ordering with 3. s(u;) = m/2 — ©(m/VA) can be determined in O(mn)
time. Using such an ordering as the insertion ordering in algorithm MEDIAN PLACE-

MENT ORDERING, by Lemma 4.3 with & < n, we obtain the following result.

Theorem 4.3. Every digraph without 2-cycles has a vertex ordering, which can be

computed in O(mn) time, with total cost

Zc(v)gn—l—%—@(%) . .

v

Only for small values of A is the constant in the ©(m/v/A) term evaluated. The
linear time greedy heuristic for the FEEDBACK ARC SET problem due to Eades et al.
[84] provides an exact bound on ), s(u;), which in a number of instances, provides a
tighter upper bound than that in [19]. They show that every digraph without 2-cycles
has a vertex ordering (ui,us,...,uy) with >, s(u;) < m/2 —n/6. Using this ordering
as the insertion ordering in algorithm MEDIAN PLACEMENT ORDERING, by Lemma 4.3

with k£ < n, we obtain the following result.

Theorem 4.4. Every digraph without 2-cycles has a vertex ordering, which can be

computed in O(m + n) time, with total cost
m  hn U

< =4
Zc(v) <57 6
v

In the case of cubic graphs, the (more) greedy heuristic of Eades and Lin [82] de-
termines, in O(mn) time, a vertex ordering with ). s(u;) < m/4. Using this ordering
as the insertion ordering in the MEDIAN PLACEMENT ORDERING algorithm produces

a vertex ordering with total cost at most n +m/4.

'Berger and Shor actually consider the corresponding maximisation problem called the MAXIMUM
ACYCLIC SUBGRAPH problem.
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4.4 Local Minimum Approach

We now describe a method for the balanced ordering problem which finds a local
minimum of the total cost. A vertex ordering (vi,vs... ,v,) of a graph G is k-balanced
if moving any k vertices does not reduce the total cost of the ordering.

4.4.1 Undirected Graphs

Consider the following rule for moving a vertex in a vertex ordering.

M1 (v,w): If w = v* is opposite to v for some &, 1 < k < [e(v)/2] (except if c(v) is

odd, k = [e¢(v)/2] and ¢(w) = 1), then move v to immediately past w, as in Figure 4.3.

Figure 4.3: The move M1 for a 1-5 vertex v and a 4-2 vertex w = v?.

Lemma 4.5. A vertex ordering is 1-balanced if and only if M1 cannot be applied.

Proof. Suppose a vertex v in a given vertex ordering, with y(v) = s(v) — p(v), gains «
successors and loses a predecessors in the ordering. Then c¢(v) becomes |(s(v) + a) —
(p(v) — @) = |y(v) + 2a0)]|, so the change in ¢(v), denoted ¢4 (v), is |y(v) + 2| — |y(v)].

The following cases summarise the possible values of ¢, (v).
L. y(v)+2a >0

(a) 7(v) 2 0: ca(v) = 7(v) +2a+7(v) = 2(y(v) +a)

(b) (v) <0: ca(v) = ¥(v) +2a —7(v) = 2c
2. y(v) +2a <0

(8) ¥(0) = 0: ca(v) = —y(v) — 20 +7(v) = ~2a
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(b) 7(v) <0: calv) = =7(v) =20 =7(v) = =2(y(v) + )

Applying M1 reduces c(v) by at least 2k and for each i, 1 < i < k — 1, ¢(v?) is
increased by at most two. The cost of all other vertices remains unchanged. Thus the
total cost decreases by at least two. So if M1 is applicable then the vertex ordering is
not 1-balanced.

Now, suppose a given vertex ordering is not 1-balanced. Then there exists a vertex
v and a neighbour w = v* of v such that moving v past w reduces the total cost. Each
neighbouring vertex v?, 1 < |i| < |k| (i the same sign as k), that v moves past will gain
one successor and lose one predecessor if ¥ moves to the right, or lose one successor and

gain one predecessor if v moves to the left. In these respective cases the cost change at

each v is
=2, ify(v') < -2 2, ify(v’) < -2
a() =10, ify@)=-1; ca(W) =140, ify()=1;
2, ify(v') > 0. -2, if y(v") > 0.

Suppose that v is balanced. Then the new cost of v will be 2|k|. The cost of each
vertex v* will decrease by at most 2, so the total cost cannot decrease. Hence v cannot
be balanced.

Suppose k£ < 0. Moving v past w will increase the cost of v by 2|k|, while the
decrease in cost for each vertex v’, k < i < 0, is at most 2. Thus the increase in cost of
v cannot be offset by the decrease in the cost of the neighbours of v. Hence k& > 0.

We select the minimum & > 1 such that moving v past w = v* reduces the total
cost; i.e., moving v past any u = v*, 1 < i < k, does not reduce the total cost. Since
M1 does reduce the total cost, each of the neighbours v¢, 1 < i < [¢(v)/2], must be
not opposite to v (unless c(v) = 1 and i = [¢(v)/2]).

Suppose k > [c¢(v)/2]. Then moving v past w increases the cost of each vertex v,
1 < < [e(v)/2], by 2. The new cost ¢(v) becomes 2k — ¢(v), so the change in ¢(v) is
2(k — c(v)). The cost of v', [¢(v)/2] < i < k, can decrease by at most 2. Adding up
the cost changes, it follows that the total cost cannot decrease. So k < [c(v)/2].

Suppose w is not opposite to v. Then the cost increase at w is 2 (unless c(w) = 1),

so while c(v) decreases by 2k, the cost increase at v%, 1 < i < k, is 2. Hence the total
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cost change is 0. So w is opposite to v and 1 < k < [e(v)/2] (except if ¢(v) is odd,
k = [e(v)/2] and ¢(w) = 1), and the result follows. O

We have the following immediate corollary.

Corollary 4.2. For every vertex v in a 1-balanced vertex ordering, each of the vertices

vl 02, /2] s ot opposite to v.

We now present an algorithm for determining a 1-balanced vertex ordering. Let
M1 (o) be a function which, for a given arc 7w € A(G), returns true if and only if v

is moved past w by rule M1.

Algorithm 4.3. 1-BALANCED VERTEX ORDERING

Input: undirected graph G.
Output: vertex ordering of G.

Determine an arbitrary vertex ordering of G.
Set A + A(G).
while A # () do
Choose an arc 7w € A.
if M1(9w) then
for € Viz(v) do Set A + AU A[(z) UA,(x).
else
Set A + A\ {vw}.
end-if
end-while

Output the current ordering.

Lemma 4.6. The algorithm 1-BALANCED VERTEX ORDERING determines a 1-balanced

vertex ordering of G in O(AQm) time.

Proof. We shall prove that at all times the set A contains all arcs in A(G) for which
M1 is possibly applicable. At the start of the algorithm this is true, since A = A(G).
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Consider an adjacency list representation of G where each adjacency list is ordered
according to the current vertex ordering.

Suppose the arc 7w is chosen from A. If M1(ow) is not applied then, of course,
E\ {5} contains all arcs in A(G) for which M1 is possibly applicable.

Suppose M1 (7) is applied, and v moves past w in the current vertex ordering. The
only vertices whose cost may change are v and its neighbours, and only the adjacency
lists of v and its neighbours are changed. For an arc pg € A(G) where p and ¢ are
both not adjacent to v or one of the neighbours of v, the adjacency lists of p and ¢ do
not change, and the cost of every vertex adjacent to p or ¢ does not change. Hence if
M1(pq) is not applicable before moving v past w then M1(p¢) will not be applicable
after moving v past w.

Therefore, by adding to A the sets of arcs A (z) and A (z) for each neighbour z of
v, we maintain the condition that A contains all arcs in A(G) for which M1 is possibly
applicable. The algorithm continues until A = (), at which point there are no arcs for
which M1 is applicable. By Lemma 4.5, the final vertex ordering is 1-balanced.

The total cost of a vertex ordering is at most 2m. M1 reduces the total cost by at
least two, so M1 is applied at most m times. Whenever M1 is applied, O(AQ) arcs
are added to A. Hence the algorithm inserts O(AQm) arcs into A, so M1 is checked
O(A2m) times.

Using the order maintenance algorithm of Dietz and Sleator [77], the vertex order-
ing and adjacency lists of each vertex can be maintained in constant time under the

move operation. Hence M1 can be checked in constant time, so the algorithm runs in

O(A%m) time. O
We now present rules for moving two vertices in a vertex ordering.
M2: If v is opposite to w and v < w/ < v* < w for some i,j (1 < i < [e(v)/2],

1 <j < Te(w)/2], 2i + 27 < c(v) + c(w) + 2), then move v up to v’ and move w up to

w’, as in Figure 4.4.
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Figure 4.4: The move M2 for a 1-5 vertex v and a 4-2 vertex w.

M3: If v is opposite to w and v < v’ = w/ < w for some 4,7 (1 < i < [e(v)/2],
1 <4< le(w)/2], 2i+25 < c(v) +c(w)) then move v to immediately past v and move

w to immediately past w’, as in Figure 4.5.

Figure 4.5: The move M3 for a 0-5 vertex v and a 5-1 vertex w.

Applying M2 or M3 reduces ¢(v) by at least 2i and for each k, 1 < k < i—1, ¢(v*)
is increased by at most two, ¢(w) is reduced by at least 2j and for each k, 1 < k < j—1,
c(w*) is increased by at most two. The cost of all other vertices remains unchanged.

Thus the total cost decreases by at least four.

Note that there are other rules for moving two vertices in a vertex ordering to
reduce the total cost, thus M1, M2 and M3 alone cannot guarantee a 2-balanced
vertex ordering. For our purposes, however, these rules suffice (see Algorithm 5.8
DIAGONAL LAYOUT AND MOVEMENT). Let M2(vw) and M3(vw) be functions that,
given an edge vw € E(G), return true if and only if v and w move under rule M2 and
M3, respectively. The following algorithm determines a vertex ordering in which M1,

M2 and M3 are not applicable.



CHAPTER 4. BALANCED VERTEX ORDERING 75

Algorithm 4.4. ALMOST 2-BALANCED VERTEX ORDERING

Input: undirected graph G.
Output: vertex ordering of G.

Determine an arbitrary vertex ordering of G.

Set F + E(G).

while E # () do
Choose an edge vw € E.
if M1(9w) or M1(wd) or M2(vw) or M3(vw) then

for z € Vg (v) UVe(w) do Set E <+ E'U Eq(z).

else Set £ <+ E \ {vw}.

end-while

Output the current ordering.

Lemma 4.7. The algorithm ALMOST 2-BALANCED VERTEX ORDERING determines

a vertex ordering of G in O(A3m) time in which M1, M2 and M3 are not applicable.

Proof. The proof is essentially the same as that for Lemma 4.6 except that M2 and
M3 take O(A) time. O

4.4.2 Directed Graphs

For a digraph without 2-cycles and of maximum outdegree two, a local minimum ap-
proach establishes the following bound for the total cost. We shall apply this result in
Section 5.3.

Theorem 4.5. A 2-balanced vertex ordering of a mazimum outdegree two digraph G

has total cost
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Proof. In a vertex ordering of a maximum outdegree two digraph, each vertex is either
a (0,2)-vertex, a (1,1)-vertex or a (0,1)-vertex. Consider a (0,2)-vertex v in a 1-balanced
vertex ordering. If there is no arc % with = between v and v', or there is such an z
but z is opposite to v, then, as in Figure 4.6, we can move v past v' to reduce the total
cost. (c(v) becomes 0 and the cost of all other vertices does not increase.) Hence, in
a 1-balanced vertex ordering, for every (0,2)-vertex v, there must be an arc zo from a

(1,1)-vertex x between v and v'. We say z blocks v.

Figure 4.6: Move v past v!.

Suppose a (1,1)-vertex x blocks distinct vertices v and w. 2 must be between v and
w, as otherwise z would be a (0,2)-vertex. Suppose v < z < w. As in Figure 4.7, if
we move v past v! and move w past w' then both v and w become balanced and c¢(z)
remains zero. The cost of all other vertices does not change. In particular, c(v') and

c(w") do not change since the graph contains no 2-cycles.

v wl X ’Ul w w wl X ’Ul v

0-2 1-1 2-0 1-1 1-1 1-1

Figure 4.7: Move v past v' and move w past w'.

Hence in a 2-balanced vertex ordering a (1,1)-vertex can block at most one (0,2)-
vertex. The total cost of the ordering is twice the number of (0,2)-vertices plus the
number of (0,1)-vertices. Since every (0,2)-vertex has a blocker which is a (1,1)-vertex,
and a (1,1)-vertex blocks at most one (0,2)-vertex, the number of (0,2)-vertices is at
most the number of (1,1)-vertices. So the total cost is at most the number of (0,2)-

vertices plus the number of (0,1)-vertices plus the number of (1,1)-vertices, which is at
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most n. O

Using a similar analysis to that in Lemma 4.6, it is easily seen that the algorithm
described in the previous proof runs in O(n) time. We therefore have the following

result.

Corollary 4.3. A vertex ordering of a maximum outdegree two digraph with total cost

at most n can be determined in O(n) time. O



Chapter 5

The General Position Model for
Three-Dimensional Orthogonal

Point-Drawing

In this chapter we describe the general position model for producing 3-D or-
thogonal point-drawings. We present a number of algorithms for producing
orthogonal point-drawings in this model. Among other results we establish
the best known upper bound for the total number of bends in 3-D orthogonal
point drawings, and the best known upper bound for the volume of 3-bend

orthogonal point-drawings.

A 3-D orthogonal point-drawing is said to be a general position 3-D orthogonal
point-drawing if no two vertices lie in a common grid plane. We are interested in the

following problem.

Problem 5.1. BEND-MINIMUM GENERAL POSITION 3-D
POINT-DRAWING

Instance: A graph G with A(G) < 6.

Output: A general position 3-D orthogonal point-drawing of G with the minimum

number of bends.

78
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This chapter is organised as follows. Section 5.1 describes a representation for gen-
eral position 3-D orthogonal point-drawings, thus forming a foundation for the main
algorithms to follow. We initially concentrate on the problem of minimising the total
number of bends per edge in general position 3-D orthogonal point-drawings. As dis-
cussed in Section 3.4.4, algorithms for producing general position orthogonal drawings
can be classified as layout-based or routing-based.

In Section 5.2 we present our layout-based approach for 3-D orthogonal point-
drawing. Firstly, we describe an algorithm which minimises the total number of bends
for a fixed diagonal vertex layout. We also describe a method, based on a maximum-
clique formulation, for searching for bend-minimum drawings given a fixed general
position vertex layout.

Our routing-based approach for producing 3-D orthogonal point-drawings is de-
scribed in Section 5.3. The DIAGONAL LAYOUT AND MOVEMENT algorithm described
in Section 5.4 combines the layout- and routing-based approaches. It establishes the
best known upper bound for the total number of bends in 3-D orthogonal point-
drawings of simple graphs, and is a 7/6-approximation algorithm for the problem
BEND-MINIMUM GENERAL POSITION 3-D POINT-DRAWING. Furthermore, the
same algorithm produces 2-bend point-drawings for maximum degree five graphs.

In Section 5.5 we consider the problem of minimising the maximum number of
bends per edge route in a orthogonal point-drawing. We present two algorithms, both
of which follow the layout-based approach. The first algorithm, given a fixed general
position vertex layout, determines an orthogonal point-drawing with three bends per
edge. We then describe a modification of the 3-BENDS algorithm of Eades et al. [86, 87]
which produces 3-D orthogonal point-drawings using a diagonal vertex layout with
n?® + O(n5/ 2) volume. This is the best known upper bound for the volume of 3-bend
3-D orthogonal point-drawings.

Finally, in Section 5.6 we present lower bounds for the number of bends in general
position orthogonal point-drawings. These results have important implications for the
nature of any solution to the 2-bends problem (see Section 3.5.1). Figure 5.1 provides

an overview of the algorithms presented in this chapter.
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5.1 Representation

Consider a general position 3-D orthogonal point-drawing of a graph G with maximum
degree A(G) < 6. Since no two vertices share a common coordinate, this drawing
defines X-, Y-, and Z-vertex orderings of GG, representing the relative coordinates of
the vertices. The assignment of ports to edge routes defines a (non-proper) 3-colouring
of A(G), where an arc 9w € A(G) is coloured i € {X,Y, Z} if the edge route vw uses an
i-port at v. Clearly, for each vertex v € V(G), there are at most two arcs 7w € A(G)
receiving the same colour. We therefore represent a general position 3-D orthogonal

point-drawing of G by:

e A (3-D general position) vertex layout, consisting of X-, Y-, and Z-vertex order-

ings (x1,%2,...,%n), (Y1,Y2,.-.,yn) and (21, 29,...,2y,) of G.

e A (3-D) point-routing, consisting of a 3-colouring of A(G) such that for each
vertex v € V(G), there are at most two arcs 9w € A(G) receiving the same

colour; i.e., A (ﬁ[z]) < 2, for each colour 7 € {X,Y, Z}.

In a general position vertex layout, for an edge vw to have a 2-bend edge route, it
is necessary for the reversal arcs 7, wo € A(G) to be coloured differently. If for every
edge vw € E(G), the reversal arcs 51, wo € A(G) are coloured differently, then we call
the point-routing a 2-bend point-routing.

As discussed in Section 3.4.4, algorithms for producing general position 3-D or-
thogonal drawings can be classified as layout-based or routing-based. Our layout-based
algorithms determine a vertex layout initially, followed by the computation of a point-
routing. Our routing-based algorithm determines the vertex layout with respect to a
pre-determined point-routing.

The following algorithm forms the final step of all our algorithms. Given a ver-
tex layout and a point-routing, it constructs a layout- and routing-preserving general
position 3-D orthogonal point-drawing (possibly with crossings) in linear time. By a
sequence of port assignment swaps, the algorithm then removes all edge route crossings

from the drawing in quadratic time in the worst case.

Algorithm 5.1. GENERAL POSITION 3-D POINT-DRAWING
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Input: e graph G with A(G) <6.
e general position 3-D vertex layout of V(G).

e point-routing of G (with 3 colours).

Output: general position 3-D orthogonal point-drawing of G

1. For each vertex v € V(G),

if v = z; = y; = 2, then initially position v at (31,37, 3k).

\)

. Apply Algorithm 5.2 DETERMINE PORT ASSIGNMENT.

w

. Apply Algorithm 5.3 CONSTRUCT EDGE ROUTES.

4. Apply Algorithm 5.4 POINT-DRAWING REMOVE EDGE CROSSINGS.

5. Delete each grid-plane not containing a vertex or a bend.

In what follows we describe the details of the components of Algorithm GENERAL

PosIiTION 3-D POINT-DRAWING.

5.1.1 Edge Routes

As a first step in constructing edge routes for a given vertex layout and point-routing of
a graph, we determine the assignment of ports to arcs. The following algorithm assigns
ports to arcs so that, whenever possible, the port at a vertex v assigned to an arc 7
points toward w. Recall that Ag(v)[i] is the set of outgoing arcs at a vertex v € V(G)
which are coloured ¢ € {X,Y, Z}.

Algorithm 5.2. DETERMINE PORT ASSIGNMENT

Input: e graph G with A(G) <6
e general position 3-D vertex layout of G

e point-routing of G (with 3 colours)

Output: routing-preserving assignment of ports to A(G)
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for each vertex v € V(G), for each colour i € {X,Y,Z} do
if Ag(v)[i] = {vw} then
Assign to 9 the i-port at v pointing towards w.
else if Ag(v)[i] = {vt, 70} (u # w) then
if v is between u and w in the ¢-ordering then
Assign to 0% and 9 the i-ports at v pointing towards v and w.
else if w0 € Ag(u)[i] then
Assign to 0% the i-port at v pointing away from .
Assign to % the i-port at v pointing towards w.
else if wd € Ag(w)[i] then
Assign to 9w the i-port at v pointing away from w.
Assign to 0% the i-port at v pointing towards w.
else
Arbitrarily assign the i-ports at v to o7 and .
end-if
end-if

end-for

The following algorithm, for a given port assignment, determines each edge route

with the minimum number of bends.

Algorithm 5.3. CoNsSTRUCT EDGE ROUTES

Input: e graph G with A(G) <6
e general position 3-D vertex layout of G

e port assignment for G

Output: general position 3-D point-drawing of G (possibly with crossings)

For each edge vw € E(G),

1. If port(ow) is perpendicular to port(wd), port(ow) points toward w, and port(w?)

points toward v then route vw with the 2-bend edge route shown in Figure 5.2.
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v

Figure 5.2: 2-bend edge route vw.

2. If exactly one of port(oa) or port(w®) points away from w or v respectively then,
supposing 7w does, use a 3-bend edge route for vw, said to be anchored at v, as

illustrated in Figure 5.3.

P
v
A

(a) perpendicular ports (b) parallel ports

Figure 5.3: 3-bend edge routes vw anchored at v.

3. If port(ow) points toward w, port(wv) points toward v, and port(vw) is parallel
to port (@), then choose v or w arbitrarily and, as in Figure 5.4, route vw with

the 3-bend edge route said to be anchored at the chosen vertex.

w

w K——
VAR

=

v v

(a) anchored at v (b) anchored at w

Figure 5.4: 3-bend edge routes.
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4. If port(vw) points away from w and port(wd) points away from v then use a
4-bend edge route for vw as in Figure 5.5. We say the edge route vw is anchored

at v and at w.

A 71 v
K _ ¥ _

(a) perpendicular ports (b) parallel ports

Figure 5.5: 4-bend edge routes vw anchored at v and at w.

For a given assignment of ports, each edge route uses the minimum number of bends,
so in a general position 3-D orthogonal point-drawing the only edge routes needed are
those described above (assuming that edge crossings are allowed). If the edge route vw
is anchored at v then we say the arc 7 has been anchored. Note that if for some edge
vw, the arcs 0 and wo are coloured the same, then the edge route vw needs at least
three bends; i.e., at least one of o and wd is anchored. The drawings produced have

precisely 2m + k bends where k is the number of anchored arcs.

Lemma 5.1. The algorithms DETERMINE PORT ASSIGNMENT and CONSTRUCT EDGE
ROUTES construct a general position 3-D orthogonal point-drawing (possibly with edge

crossings) with precisely one anchored arc for each instance of the following conditions

(see Figure 5.6).

e For some vertex v and colour i € {X,Y, Z},
(a) ot, 91 € Ag(v)[i] (v # w), and (5.1)

(b) v is not between u and w in the j-ordering.
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e For some edge vw € E(G) and colour i € {X,Y, Z},
(a) vw, o4 € Ag(v)[i] (w # u),
(b) T, @ € Aa(w)li] (v £ ), (5.2)
(c) v is between v and w in the i-ordering, and
(d) w is between v and z in the i-ordering.
Proof. In Algorithm CONSTRUCT EDGE ROUTES, there is one anchored arc in Cases
2 and 3, and two anchored arcs in Case 4. Case 3 occurs precisely when (5.2) occurs.

If Case 2 occurs there is one instance of (5.1), and if Case 4 occurs then there are

two instances of (5.1). Hence there is one anchored arc for each instance of (5.1) and

(5.2). O
(a) Case (5.1) (b) Case (5.2)

Figure 5.6: Cases with anchored arcs (with vertices in the i-ordering and arcs coloured

i).

5.1.2 Removing Edge Crossings

We now characterise all possible intersections between edge routes constructed by the
previous algorithm. As illustrated in Figure 5.7, each edge route can be considered to
consist of a 2-bend edge route possibly with unit length segments attached at either
end. The segments of the 2-bend component of an edge route vw in order from v to w
are called the v-segment, the middle segment, and the w-segment of vw.

For a vertex v = z; = y; = 2, we say that the (X = 37 — 1)-plane, the (X = 3i)-
plane and the (X = 3i 4+ 1)-plane belong to v, and similarly for Y- and Z-coordinates.
Note that the middle segment of an edge route vw contains grid-points belonging to
v and w and no other vertices. Grid-points contained in the v-segment of vw, except
for the grid-point at the intersection of the v-segment of vw and the middle segment

of vw, only belong to v.
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w—segmery Lw

middle segment

N————
v-segment

Figure 5.7: Segments of the 2-bend component of an edge route.

Suppose in a drawing produced by the algorithm CONSTRUCT EDGE ROUTES the
edge routes vw and zy intersect. If vw and zy are non-adjacent then the grid-point
of intersection must belong to each of v, w, z and y, which implies that two of these
vertices are coplanar. Since the vertices are in general position, two of {v,w,z,y} are
equal. Hence intersecting edge routes must be incident to a common vertex. Suppose
the edge routes vu and vw intersect.

In all edge routes, there are no consecutive unit length segments, and an edge
crossing involving a unit-length segment must also involve the adjacent non-unit-length
segment, so we need only consider intersections between non-unit-length segments.

Case 1 — The v-segments of vu and vw intersect: Clearly both of vu and
vw must be anchored at v, and they must intersect as in Figure 5.8. Swapping the
ports assigned to 9% and 9%, and removing both anchors eliminates the edge crossing.

Doing so introduces no new edge crossings.

u u

Y w
/]
Figure 5.8: Case 1 — Rerouting intersecting v-segments (which must be anchored).

Case 2 — The v-segment of vw intersects the middle segment of vu:
Case 2(a) — vw is not anchored: Clearly vu must be anchored. Since the
middle segment of vu is parallel with the port assigned to ©%, the ports assigned to o7

and % must be perpendicular. As shown in Figure 5.9, by swapping the ports assigned
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to ot and 0w, anchoring 7, and unanchoring %, the edge crossing is removed. Note

that the new edge routes contain no new grid points belonging to u or w, so there are

no new edge crossings introduced by this operation.

U u

v
/)

Figure 5.9: Case 2(a) — Rerouting intersecting v-segment of vw and middle segment

of vu if vw is not anchored.

Case 2(b) — vw is anchored (see Figure 5.10): The edge route vu may be
anchored at v, and if it is, then as in Case 2(a), the ports assigned to #7 and @ must
be perpendicular. By swapping the ports at v assigned to 9% and 70 the edge crossing
is removed. The arc 9% is now not anchored, if 7% was anchored then 7@ is now
anchored, and if 7% was unanchored then o is now unanchored. Hence an anchor, and

thus a bend, is eliminated. Note that this operation may introduce new edge crossings

between uv and some other edge incident to w.

u E—— iV

Figure 5.10: Case 2(b) — Rerouting intersecting v-segment of anchored vw and middle

segment of vu.

Case 3 — The middle segments of vu and vw intersect (See Figure 5.11):
Note that o7 and 9@ may or may not be anchored. If #7 is anchored then the edge
route vu must use perpendicular ports at v and u, and similarly, if 7@ is anchored then
the edge route vw must be assigned perpendicular ports at v and w. Swapping the

ports assigned to % and 970, and swapping any anchors, removes the edge crossing.

Note that the sum of the lengths of the new middle segments of vu and vw is strictly
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Figure 5.11: Rerouting intersecting middle-segments.

less than the previous sum. This operation may introduce new edge crossings between
uv and some other edge at u, or between wv and some other edge at w.

The following algorithm summarises the crossing removal phase of our algorithm.

Algorithm 5.4. POINT-DRAWING REMOVE EDGE CROSSINGS

Input: e graph G with A(G) <6
e general position 3-D orthogonal point-drawing of G (possibly with crossings)
generated by the CONSTRUCT EDGE ROUTES algorithm.

Output: general position 3-D orthogonal point-drawing of G (without crossings).

V + V(Q)
while V # () do
Choose v € V, and set V « V' \ {v}.
for each Case 2(b) or Case (3) crossing between edges vu and vw do
Swap the ports at v assigned to ¥ and 7.
Reroute the edge routes vu and vw according
to Algorithm 5.3 CONSTRUCT EDGE ROUTES.
Set V « VU {v,u,w}.
end-for
end-while
for each vertex v € V(G) do
for each Case (1) or Case 2(a) crossing between edges vu and vw do
Swap the ports at v assigned to vu and vw.
end-for

end-for
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Lemma 5.2. The algorithm POINT-DRAWING REMOVE EDGE CROSSINGS removes

all crossings from the given 3-D orthogonal point-drawing in O(nQ) time.

Proof. In Case 3 and Case 2(b), but not Cases 2(a) and Case 1, swapping ports may
create new edge route crossings between uv and some other edge route incident to w,
or similarly at w. Therefore removing all Case 3 and Case 2(b) crossings in the first
phase of the algorithm, and removing all Cases 2(a) and Case 1 edge crossings in the
second phase of the algorithm, removes all crossings from the drawing.

In Case 3 the sum of the lengths of the middle segments of vu and vw is reduced
(see the segments in bold). The length of each middle segment is O(n) and there are
at most 3n middle segments in total, so the sum of the lengths of the middle segment
is O(n?).

In Case 2(b) (and also in Case 1) at least one anchored arc (and thus a bend) is
eliminated. The number of anchored arcs is at most 6n.

Hence the sum of the lengths of the middle segments plus the number of anchored
arcs is O(nZ), and every Case 3 or Case 2(b) port swap reduces this number by at least
one. Therefore the algorithm executes O(nQ) Case 3 or Case 2(b) port swaps. With
each such port swap three vertices are added to V for re-checking. Hence, Case 2(b)
and Case 3 needs to be checked for some vertex O(n?) times. To check Case 2(b) and
Case 3 for a particular vertex v involves comparing the coordinates of a O(1) number
of pairs of edge routes incident to v. Hence the first phase of the algorithm takes O (nQ)
time.

Similarly, for a particular vertex, Case 1 and Case 2(a) can be checked in constant
time. So the second phase of the algorithm takes O(n) time, and the algorithm removes

all edge crossings in O(nQ) time. O
We can now prove the main result of this section.

Theorem 5.1. Suppose G is a graph with A(G) < 6, and we are given a general posi-
tion vertex layout and point-routing of G with k instances of (5.1) and (5.2). Then the
algorithm GENERAL POSITION 3-D POINT-DRAWING will, in O(n?) time, construct a
layout-preserving 3-D orthogonal point-drawing of G with at most four bends per edge

route and at most 2m+k bends in total. The bounding box volume is at most (n+k/3)3.
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Proof. As discussed earlier there is one anchored arc for each occurrence of (5.1) and
(5.2). Clearly, a grid-plane not containing a vertex or a bend can be removed without
affecting the drawing. The (X = 3¢ £ 1)-plane belonging to a vertex v = x; contains a
bend if and only if there is an anchored arc o assigned an X-port (i.e., coloured X)
with its v-segment lying in this plane. Similarly for Y-planes and Z-planes. Therefore,
after removing grid-planes not containing a vertex or a bend, the bounding box is
(n+kx) x (n+ky) x (n+ kz), where k; is the number of anchored arcs coloured i,
i €{X,Y,Z}. It is well-known that of the boxes with fixed sum of side length the cube
has maximum volume (see for example Kazarinoff [126]). So if k is the total number of
anchored arcs then the bounding box volume is maximised when kx = ky = kz = k/3,

so the bounding box volume is at most (n + k/3)3. O

5.2 Layout-Based Algorithms

We now describe our layout-based approach for producing general position 3-D orthog-

onal point-drawings. Here we are concerned with the following problem.

Problem 5.2. LAYOUT-BASED GENERAL POSITION 3-D POINT-
DRAWING

Instance: A general position 3-D vertex layout of a graph G with A(G) < 6.

Output: A layout-preserving 3-D orthogonal point-drawing of G with the minimum

number of bends.

This problem amounts to finding a point-routing of G with the minimum number

of instances of (5.1) and (5.2). We conjecture that it is NP-hard.

5.2.1 Diagonal General Position Vertex Layout

We initially consider layout-based algorithms with a diagonal layout of the vertices.
A diagonal layout was first used for 3-D orthogonal point-drawing by the 3-BENDS
algorithm of Eades et al. [86, 87]. Consider a diagonal layout of a maximum de-
gree six graph G with corresponding vertex ordering <. A vertex v € V(@) has
max {max {s<(v),p<(v)} — 3,0} arcs incident to v which must be assigned a port at v

which point away from their destination. Such arcs must be anchored. Each edge route
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has at least two bends and each anchored arc contributes one further bend. Therefore
the total number of bends in a diagonal layout 3-D orthogonal point-drawing is at least
2m + Z max {max {s<(v),p<(v)} — 3,0} . (5.3)
VeV (G)
The following algorithm determines a diagonal layout 3-D orthogonal point-drawing
with precisely this number of bends, thus solving the LAYOUT-BASED GENERAL
POSITION 3-D POINT-DRAWING problem in the case of a diagonal layout.

Algorithm 5.5. DIAGONAL GENERAL POSITION 3-D POINT-DRAWING

Input: e graph G with A(G) <6

e vertex ordering < of G

Output: diagonal layout 3-D point-drawing of G

1. Construct a graph H with V(H) = A(G).

2. For each vertex v € V(G), add cliques {U’UA,U’UB,U’UC} and {va,va,vvF} to
E(H), according to Table 5.1. (Refer to Section 4.1 for the relevant definitions.
If deg(v) < 6 then some of vod, voB, v, VP, Y and Vo will not be defined,

so the above-mentioned cliques may be empty or consist of a single edge.)

Table 5.1: Definition of vo, vo®, vv®, v vo and vo’

v vt B v vl vt pl
a-vertex (a < 3) w03 72 eyt vol vv? v?
4-vertex w2 vt ! w? v vt
5-vertex vw ! vt wo? w3 vt w?
6-vertex vl vv? w3 vot v vt

3. For each edge vw € E(G), add the edge {vw,wd} to E(H) (called an ‘r’-edge),
as illustrated in Figure 5.12.

4. Determine a point-routing of G' from a vertex 3-colouring of H.
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Figure 5.12: The subgraph of H corresponding to a 2-4 vertex v.

5. Apply Algorithm 5.1 GENERAL POSITION 3-D POINT DRAWING.

Lemma 5.3. The algorithm DIAGONAL GENERAL POSITION 3-D POINT-DRAWING
determines, in O(n) time, a diagonal layout 3-D orthogonal point-drawing of G with
2m + Z max {max {s<(v),p<(v)} — 3,0} .

veEV(Q)

bends and at most four bends per edge route. The volume is

3

n -I-% Z max {max {s<(v),p<(v)} — 3,0}
veEV(Q)

Proof. A vertex of H is incident with one ‘r’-edge and at most two unlabelled edges,
so the graph H has maximum degree A(H) < 3, and is not Ky, so by Brooks’ The-
orem [47], H is vertex 3-colourable. The proof of Brook’s Theorem due to Lovéisz
[147] and simplified by Bryant [49] describes an algorithm for vertex 3-colouring H in
O(|E(H)|) = O(n) time. The 3-colouring of V(H) determines a 3-colouring of A(G).
The unlabelled edges ensure that at most two arcs at a vertex v can receive the same
colour, so the colouring is a point-routing of G.

Applying Theorem 5.1 with the given diagonal layout and this point-routing de-
termines a 3-D orthogonal point-drawing with 2m + k& bends where £ is the number
of instances of (5.1) and (5.2). Since all pairs of reversal arcs are coloured differently
there are no instances of (5.2).

Suppose o, v € Ag(v)[i] (v # w) for some vertex v and colour i € {X,Y, Z}.

E

Then we can assume % € {va,va,vvC} and 710 € {va,vv ,vvF}. An instance of
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(5.1) occurs if v is not between u and w in the i-ordering. This occurs if and only if

vu = vo' for some i, 1 < i < max {max {s-(v),p<(v)} — 3,0}. So there are

k= Z max {max {s<(v),p<(v)} — 3,0} .

veV(QG)

anchored arcs. By Theorem 5.1 the volume bound holds.

Consider the algorithm POINT-DRAWING REMOVE EDGE CROSSINGS applied with
a diagonal layout. Clearly Case 3 cannot occur. If Case 2(b) occurs then i must
be anchored and port(9w) points towards w. However, in Algorithm DIAGONAL GEN-
ERAL POSITION 3-D POINT-DRAWING if an arc 9@ is anchored then port(ow) points
away from w. Hence Cases 3 and 2(b) cannot occur when we apply POINT-DRAWING
REMOVE EDGE CROSSINGS, so it takes O(n) time. Therefore each step of DIAGONAL

LAayouT 3-D POINT-DRAWING takes O(n) time. The result follows. O

Combining (5.3) and Lemma 5.3 we obtain the following result.

Theorem 5.2. The problem LAYOUT-BASED GENERAL POSITION 3-D POINT-
DRAWING can be solved in O(n) time in the case of a diagonal layout. [

We now can characterise those 2-bend 3-D orthogonal point-drawings with a diag-

onal layout, a result first established by Wood [220].

Corollary 5.1. A diagonal layout of a graph G admits a 2-bend 3-D orthogonal point-
drawing if and only if every vertex v in the corresponding vertex ordering has s(v) < 3

and p(v) < 3.

Proof. By Theorem 5.2, a diagonal layout admits a 2-bend point-drawing if and only
if, for every vertex v, max {max {s(v),p(v)} — 3,0} = 0; i.e., max {s(v),p(v)} < 3; i.e.,
s(v) < 3 and p(v) < 3. O

If we apply algorithm DIAGONAL GENERAL POSITION 3-D POINT-DRAWING with a
diagonal layout whose vertex ordering is determined using st-orderings (see Section 4.2)

we obtain the following result.

Corollary 5.2. If a graph G with mazimum degree A(G) < 6 has ¢ connected compo-

nents and k end-blocks, then there exists a diagonal layout 3-D orthogonal point-drawing
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of G, which can be determined in O(n) time, with at most 3m — n + ¢+ k bends and
at most ((2n 4+ m + ¢ + k)/3)® volume. If G is 6-regular and has a constant number
of biconnected components then the number of bends is at most 8m/3 + O(1) and the

volume is at most (5n/3)* + O(n®/?).

Proof. Firstly, remove each vertex with degree one and its incident edge from G. Sup-
pose the remaining graph, called G', has n’ vertices, m’ edges, ¢ connected components
and £’ end-blocks. Let n; be the number of vertices v € V(G') with dege (v) = i. By
Lemma 4.2, G' has a vertex ordering < with ¢ + k' vertices having zero predecessors

or zero successors. For such a vertex v, max {s(v),p(v)} = deg(v), so

0, if degg(v) < 3;
1, if degg(v) = 4;
max {max {s(v), p(v)} — 3,0} = ¢

2, ifdegg(v) =5;

3, ifdegy(v) =6.

For all other vertices v we have

01 if degG’(v) < 47
max {max {5(0), p(v)} 3,0} < 41, if degg(v) = 5:

2, ifdegy(v) =6.

Hence
Z max {max {s(v),p(v)} — 3,0} < ns+2ng+c +k&" .
veV(G")
If we determine a 3-D orthogonal point-drawing of G’ with Algorithm 5.5 DIAGO-

NAL GENERAL POSITION 3-D POINT-DRAWING using the vertex ordering <, then by

Lemma 5.3 there is at most

2m' + Z max {max {s(v),p(v)} — 3,0} < 2m' +n5+2ng+c + &
veVv(G)

bends. Now,

0 <ng+2n4+ns
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2n5 + 4ng < n3 + 2ng4 + 3ns + 4ng
2ns + 4ng < (2ng + 3ng + 4ny + dng + 6ng) — 20’
2ns + 4ng < 2m’ — 2n/

ng + 2ng < m’' —n'

2m' +ns+2ng+c +K <3m' —n/ + + K .

So the number of bends in the drawing of G’ is at most 3m' —n'+c + k. Tt is easily
seen that the vertices with degree one can be reinserted into the diagonal layout, and
each incident edge routed with two bends. Hence the number of bends in the drawing
of Gis3m' —n '+ + K +2(m—-—m') =m' —n'+ + K +2m.

Now, (n—n') = (c—=¢)+ (k—Fk'). So (n—n") < (m—m')+ (c— ')+ (k— k'), and
hence m’ —n' + ¢ + k' <m —n + ¢+ k. So the number of bends in the drawing of G
is at most 3m —n+c+ k.

The number of anchored arcs is at most m —n +c+k, so the volume of the drawing
of G is at most (n+ (m —n+c+k)/3)3 = (2n+m +c+k)/3)3.

If G is 6-regular and has a constant number of biconnected components then the
number of bends is 8m/3 + O(1) and the volume is (51/3) + O (n"/2).

By Lemmas 4.2 and 5.3, the st-orderings and the drawing itself can be determined

in O(n) time, respectively. O

If we use Algorithm 4.1 MEDIAN PLACEMENT ORDERING to determine the vertex

ordering of a diagonal layout, we obtain the following result.

Corollary 5.3. A graph G with mazimum degree A(G) < 6 has a diagonal layout
3-D orthogonal point-drawing, which can be determined in O(n) time, with at most
5m/2 + n/4 bends and at most (m/6 + 13n/12)3 volume. For 6-reqular graphs the

number of bends is at most 31m/12 and the volume is at most (19n/12)3.

Proof. Let < be a vertex ordering of G determined by Algorithm 4.1 MEDIAN PLACE-
MENT ORDERING (with insertion ordering determined by Algorithm 4.2 INSERTION
ORDERING). Suppose G has n; vertices with degree i. Determine a diagonal layout
3-D point-drawing, with corresponding vertex ordering <, using the algorithm D1-

AGONAL GENERAL POSITION 3-D POINT-DRAWING. By Lemma 5.3, the number of
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anchors is

Z max {max {s<(v),p<(v)} — 3,0} .

veEV(Q)

A degree one or two vertex v has max {s<(v),p<(v)} > 1, so
max {max {s<(v),p<(v)} — 3,0} < (max {s<(v),p<(v)} —3)+2 .
A degree three or four vertex v has max {s<(v),p<(v)} > 2, so
max {max {s<(v),p<(v)} = 3,0} < (max {s<(v),p<(v)} —3)+ 1.
A degree five or six vertex v has max {s-(v),p<(v)} >3, so
max {max {s<(v), p<(v)} = 3,0} = max {s<(v),p<(v)} -3 .

Hence the number of anchored arcs is at most

Z (max {s<(v),p<(v)} = 3) + 2n1 + 2n2 + 13 + 14
veEV(Q)
3m n

< 5 + 1 3n + 2ny + 2n9 + ng + nyg (by Theorem 4.2)

IA

2 2

+2n1+2n2+n3+n4

m 1
= E+—(—n1+n2—n3+n4—n5+n6)

m
2

m 1 11
—+—(m+2n2+3n3+4n4+5n5+6n6)—Z(n1+n2+n3+n4+n5+n6)

< +

=3

By Lemma 5.3 the total number of bends is at most 5m /2 4+ n/4, and volume is at
most (n + (m/2 +n/4)/3)* = (m/6 + 13n/12)3. For 6-regular graphs the number of
bends is at most 31m/12 and the volume is at most (19n/12)3.

By Theorem 4.2 and Lemma, 5.3, the vertex ordering and the drawing itself can be

determined in O(n) time, respectively. O

For graphs with average degree at least five, using the MEDIAN PLACEMENT OR-
DERING algorithm to determine the diagonal layout produces drawings with fewer bends

and less volume than the algorithm based on st-orderings.
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5.2.2 Arbitrary General Position Vertex layout

In this section we consider the layout-based approach for minimising the number of
bends in 3-D orthogonal point-drawings given a fixed general position layout. Although
the methods developed run in exponential time, they have proved to be effective in

searching for 2-bend drawings of reasonably small graphs.

Maximum Clique Formulations

We now present a method for searching for solutions to LAYOUT-BASED GENERAL
POSITION 3-D POINT-DRAWING using a maximum weight clique formulation. Con-
sider the edge route graph R consisting of a vertex for every possible edge route. For
each edge vw € F(G) there are 36 possible edge routes, one for each combination of
ports at v and w. Vertices are adjacent in R if and only if their corresponding edge
routes can co-exist in the drawing; i.e., vertices of R corresponding to edge routes for
the same edge are non-adjacent, and vertices corresponding to edge routes which use
the same port are non-adjacent. All other pairs of vertices in R are adjacent. A ver-
tex is in a clique of R if and only if the corresponding edge route is in the drawing.
The weight of the vertex corresponding to an edge route vw is 4 — #bends (vw). So a

maximum weight clique will define a bend-minimum drawing.

Lemma 5.4. A general position vertex layout of a graph G has a layout-preserving
3-D orthogonal point-drawing with B bends if and only if the graph R has a clique of
weight 4m — B. [

In Appendix C we review the existing clique finding algorithms and present a simple
algorithm which performs well in comparison to the established methods. The graph R
has 36m vertices and is quite dense, so even for relatively small graphs G, this method
for solving LAYOUT-BASED GENERAL POSITION 3-D POINT-DRAWING is not
practical. We shall now introduce a related problem whose maximum clique formulation

can be solved for relatively small instances.

Problem 5.3. LAYOUT-BASED 2-BEND 3-D POINT-DRAWING

Instance: A general position vertex layout of a graph G with A(G) < 6.
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Output: A layout-preserving 2-bend 3-D orthogonal point-drawing of a subgraph G; C

G with the maximum number of edges.

We conjecture that this problem is also NP-hard. The problem LAYOUT-BASED
2-BEND 3-D POINT-DRAWING suggests an approach for producing 3-D orthogonal
point-drawings where we find a partial 2-bend point-routing and then arbitrarily extend
it to a point-routing of G. We shall describe two methods for the solution of LAYOUT-
BASED 2-BEND 3-D POINT-DRAWING, the first in terms of a maximum clique
formulation and the second involving hypergraph matching.

Consider the arc route graph R with vertex set V(R) = A(G) x {X,Y,Z}. There
is an edge in R between ‘compatible’ arc routes. We define the (complement of the)
edge set of R as follows. Since each arc 9 € A(G) can be coloured at most once,
for each pair of distinct colours i,j € {X,Y,Z}, the edge {(vw,1), (v0,5)} ¢ E(R).
For a 2-bend edge route vw, reversal arcs must be coloured differently, so for each
colour i € {X,Y,Z}, the edge {(vw,i),(wd,i)} ¢ E(R). Since different arcs must
be assigned different ports, for each vertex v € V(G), for each pair of arcs %, 0w €
Ag(v) and for each colour i € {X,Y,Z}, if v <; u,w or u,w <; v, then the edge
{(94,4), (0,i)} ¢ E(R). All other pairs of vertices of R are adjacent. The next result
follows immediately from the definition of R, where including a vertex (vw0,i) € V(R)

in a clique of R corresponds to colouring the arc 7@ with colour i.

Lemma 5.5. For a fized general position vertezx layout of a maximum degree six graph
G, there is a layout-preserving 2-bend 3-D orthogonal point-drawing of a subgraph G1 C
G if and only if R has a clique of size 2|E(G1)|. O

Given a clique @ of R, to determine a point-routing of G \ G1, colour those arcs
7w € A(G) without a corresponding vertex in @, with whatever spare colour is available,
so that there are at most two outgoing arcs at each vertex v receiving the same colour.

Clearly, the arc route graph can be used if a partial routing of the arcs is specified.
Moreover, if we relax the general position model so that some vertices share a com-
mon coordinate, we can specify a partial routing of the edges by 2-bend non-planar
edge routes, and use the arc route graph formulation to search for 2-bend general po-

sition point-drawings in the remainder of the graph. This approach was used to find
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some of the 2-bend point-drawings of the complete multi-partite graphs presented in

Appendix B.

Hypergraph Matching Formulation

We now formulate the LAYOUT-BASED 2-BEND 3-D POINT-DRAWING problem
as a hypergraph matching problem. Consider the hypergraph P with vertex set

V(P) = A(G) Uports (G) U (E(G) x {X,Y,Z}) ,

and edge set consisting of two edges each of size three, for each edge v € E(G) and
colour i € {X,Y, Z}. If v <; w then

(w0, port (v, +i), ({v,w} ,i)), (W0, port(v, —i), ({v,w},i)) € E(P) ,
and if w <; v then
(v, port(v, —i), ({v,w},i)), (W0, port(v, +i), ({v,w} ,i)) € E(P) .

P is 3-uniform and 3-colourable. The vertex corresponding to an arc v € A(G)
has degree three, the vertex corresponding to a positive (respectively, negative) i-port
at a vertex v € V(@) has degree s;(v) (p;(v)), and the vertex corresponding to a pair

(7, 1) has degree two.

Lemma 5.6. There is a layout-preserving 2-bend 3-D orthogonal point-drawing of a

subgraph Gy C G if and only if P has a matching M with |M| = 2|E(G)|.

Proof. Including an edge (o0, port(v,+i), ({v,w},i)) in a matching M of P corre-
sponds to assigning the arc v € A(G) the colour i in a point-routing of G. By
construction the arc vw will be assigned the i-port at v pointing towards w when edge
routes are determined.

Given a matching M of P, for each arc 90 € A(G) there is at most one edge
in M incident to the vertex corresponding to vw, so each arc is coloured at most
once. For each (i*)-port at a vertex v there is at most one edge in M incident to
the vertex corresponding to port(v, £i), so each port is used at most once. Since

the edges (7w, port(v, +i), ({v,w} ,i)) and (wd, port (v, Fi), ({v,w} ,4)) have a common
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vertex, namely ({v,w},7), they cannot both be in M. So reversal arcs are coloured
differently, and a 2-bend point-routing of G is determined. By the reverse argument, a
layout-preserving 2-bend 3-D orthogonal point-drawing of a subgraph G| determines a

matching of size 2|E(G1)]. O

A matching of the hypergraph P defines a matching in the graph P’ formed from P
by removing the vertices ({v,w} ,7) and their incident edges. Hall’s marriage theorem
[114] thus provides the following necessary condition for the existence of a matching
in P, and thus a necessary condition for the LAYOUT-BASED 2-BEND 3-D POINT-
DRAWING problem.

At each vertex v € V(H), for any set S C Ag(G1) v, the number of ports

at v which point toward a vertex w for some arc 7w € S is at least |S|. (5.4)

This implies that the number of neighbours of a vertex v in a single octant relative
to v is at most three, in a single quadrant is at most four, in half-space must be at
most five. The following example illustrates why (5.4) is not sufficent for our problem.
Consider adjacent vertices v and w, such that sz(v) = 5, pz(w) = 5, and w <z v.

Both vw and % must be coloured Z, as in Figure 5.13.

Figure 5.13: A layout satisfying (5.4) but without a 2-bend routing.

The Gallai-Edmonds matching structure theorem (see [148]) provides a mechanism
describing all maximum matchings of any (bipartite or non-bipartite) graph. We can

use this technique to evaluate all the maximum matchings of P’ such that reversal arcs



CHAPTER 5. GENERAL POSITION 3-D POINT-DRAWING 102

receive different colours, thus providing a method for the solution of LAYOUT-BASED
2-BEND 3-D POINT-DRAWING. Unfortunately there may be an exponential number

of such matchings, so this algorithm is not polynomial.

5.3 Routing-Based Algorithm

We now describe a routing-based algorithm for producing general position 3-D orthog-
onal point-drawings. This method determines a general position vertex layout with
respect to a pre-determined point-routing. Our aim is to produce drawings with as
many 2-bend edge routes as possible. Hence the routing which is determined is a
2-bend point-routing. Initially we present two algorithms for determining a 2-bend
point-routing of a given graph. The routing-based vertex-layout algorithm itself is

described in Section 5.3.2.

5.3.1 2-Bend Routing Algorithms
Cycle Cover Decomposition

Our first method for determining a 2-bend point-routing is based on the algorithm for

determining a disjoint cycle cover decomposition described in Section 2.5.

Algorithm 5.6. 2-BEND 3-D POINT-ROUTING

Input: graph G with A(G) <6
Output: 2-bend 3-D general position point-routing of G.

1. Determine a cycle cover decomposition of G with red, green and blue cycle covers.
2. For each edge vw in the red cycle cover, set col(vw) < X and col(wd) < Y.
3. For each edge vw in the green cycle cover, set col(vw) < Y and col(wd) + Z.

4. For each edge vw in the blue cycle cover, set col(vw) + Z and col(wd) + X.
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Lemma 5.7. The algorithm 2-BEND 3-D POINT-ROUTING determines a 2-bend point-

routing in O(n) time.

Proof. There are at most two arcs at each vertex v coloured 7 € {X,Y, Z} and reversal
arcs are coloured differently, so the colouring is a 2-bend point-routing. By Theorem 2.1,
the cycle cover decomposition and hence the 2-bend point-routing can be found in O(n)

time. H

Systems of Transitions

We now describe a second method for determining a 2-bend point-routing based on
systems of transitions. Suppose G is an Eulerian graph. (A non-Eulerian graph of
maximum degree six can be augmented to a 6-regular graph, as in Theorem 2.1.) A
transition at a vertex v is a pair of distinct edges incident with v. A system of transitions
at v is a partition of {vw € F(G)} into transitions at v. A system of transitions of G
is a family T = {T), : v € V'} where T, is a system of transitions at v [98, 121].

A Ek-colouring of the transitions in T such that transitions at a common vertex and
transitions with a common edge receive different colours determines a k-colouring of
A(G) such that reversal arcs are coloured differently and A((ﬁ[z]) = 2 for each colour
i; i.e., a point-routing. We therefore vertex-colour the graph T'(G) whose vertex set
consists of all transitions in T, with vertices of T'(G) being adjacent if their corre-
sponding transitions in G are (1) at a common vertex of G, or (2) contain a common
edge of G.

These two types of edges decompose the graph T'(G) into (1) a collection of vertex-
disjoint cliques {C, : v € V(G)} where |C,| = deg(v)/2, and (2) a 2-regular spanning
subgraph. If the system of transitions is determined by following an Eulerian tour of
G, this 2-regular spanning subgraph is, in fact, a Hamiltonian cycle.

Hence, for a 6-regular graph G, if we determine the system of transitions by following
an Eulerian tour of G, the graph T'(G) has an edge-decomposition into a Hamiltonian
cycle and a set of edge-disjoint triangles. Each triangle represents a vertex of G' and
the edges around the Hamiltonian cycle correspond to the Fulerian tour of G.

That a 4-regular graph with such a ‘cycle plus triangles’ decomposition is vertex

3-colourable was conjectured by Erd8s and first proved by Fleischner and Stiebitz [99]
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using a non-constructive and non-elementary colouring result of Alon and Tarsi [3].
Sachs [189] has since developed a constructive and elementary proof. So T'(G) is vertex

3-colourable, thus determining a 2-bend point-routing of G.

5.3.2 Determining a Layout

For a fixed routing of a graph G, in a general position 3-D orthogonal point-drawing
with the minimum number of bends, each i-ordering, i € {X,Y,Z}, is an optimal
solution to the balanced ordering problem on the subgraph ﬁ[z] In the following
algorithm, to determine each i-ordering, we use the local minimum approach for the

balanced ordering problem developed in Chapter 4.

Algorithm 5.7. ROUTING-BASED GENERAL POSITION 3-D POINT-DRAWING

Input: graph G with A(G) <6

Output: general position 3-D orthogonal point-drawing of G.

1. Determine a 2-bend point-routing of G using Algorithm 5.6 2-BEND 3-D POINT-

RoOUTING.

2. For each i € {X,Y,Z}, set the i-ordering to be a 2-balanced ordering of ﬁ[z]
(see Theorem 4.5).

3. Apply Algorithm 5.1 GENERAL POSITION 3-D POINT-DRAWING.

Theorem 5.3. The algorithm ROUTING-BASED GENERAL POSITION 3-D POINT-
DRAWING determines, in O(n2) time, a 4-bend 3-D orthogonal point-drawing of G

with at most 2m + 3n/2 bends and at most (3n/2)3 bounding box volume.

Proof. In a 2-bend point-routing, reversal arcs are coloured differently, so ?[z] has
no 2-cycles, for each colour ¢ € {X,Y, Z}. ﬁ[z] has maximum outdegree two, so by
Theorem 4.5, a 2-balanced vertex ordering of <?[z] has total cost at most n. Applying
Theorem 5.1, since reversal arcs are coloured differently, there will be no instances of

(5.2), and in each i-ordering there will be at most n/2 instances of (5.1). Hence there
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will be at most n/2 anchored arcs coloured 4, for each ¢ € {X,Y, Z}. In total there will
be at most 3n/2 anchored arcs, so the total number of bends is at most 2m + 3n/2,
and the bounding box volume is at most (n + n/2)® = (3n/2)3. By Theorem 2.1
calculating the cycle covers and by Theorem 4.5 each vertex ordering takes O(n) time.
The final step of the algorithm, which by Theorem 5.1 takes O(nQ) time, is the most

time-consuming. So the overall algorithm takes O(nQ) time. O

5.4 Diagonal Layout and Movement Algorithm

In this section we describe an algorithm for 3-D orthogonal point-drawing which, in
some sense, combines the layout- and routing-based approaches. Initially the vertices
are placed along the main diagonal of a cube, and a point-routing is determined. This
routing also defines the movement of vertices away from the diagonal. This algorithm
establishes the best known upper bound for the total number of bends in 3-D orthogonal

point-drawings.

Algorithm 5.8. DIAGONAL LAYOUT AND MOVEMENT

Input: graph G with A(G) < 6.

Output: general position 3-D orthogonal point-drawing of G.

1. Determine a vertex ordering < of V(@) using Algorithm 4.4 ALMOST 2-BALANCED
VERTEX ORDERING. Call a vertex v balanced if max {s(v),p(v)} < 3, and unbal-

anced otherwise.

2. Initialise the X-, Y- and Z-orderings of a general position vertex layout to be the

vertex ordering <.

3. For each unbalanced vertex v € V(G), depending on the number of predecessors
and successors of v in the vertex ordering < (see Section 4.1), label arcs 7w € A(G)

as movement or special arcs, according to Table 5.2.

4. Determine a point-routing of G with Algorithm 5.9 DLM — DETERMINE POINT-

ROUTING, described in Section 5.4.2.
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Table 5.2: Definition of movement and special arcs at an unbalanced vertex v.

v (0,4) (1,4) (0,5) (2,4) (1,5) (0,6)

vv' | movement movement movement special movement movement
VU - - movement - special  movement

VU - - - - - special

5. For each movement arc vw coloured i € {X,Y, Z}, move v to immediately past

w in the i-ordering.

6. Apply Algorithm 5.1 GENERAL POSITION 3-D POINT-DRAWING

5.4.1 Movement of Vertices

The general stratgey of the DIAGONAL LAYOUT AND MOVEMENT algorithm is to anchor
at most one arc 1 at each vertex v. The port at a vertex v assigned to an unanchored
arc oW must point toward w. In the initial diagonal layout, there are three positive
ports which can be assigned to unanchored successor arcs, and three negative ports
which can be assigned to unanchored predecessor arcs. So, at a balanced vertex v (i.e.,
max {5(v), p(v)} < 3), all of the arcs 7% need not be anchored.

If s(v) > 3 (respectively, p(v) > 3) the positive (negative) ports can be assigned to
at most three successor (predecessor) arcs of v. The remaining successor (predecessor)
arcs v must be assigned a negative (positive) port at v. These are precisely the
movement and special arcs defined in Table 5.2. Note that there is one special arc ot
at each unbalanced degree six vertex v. We shall prove that special arcs will become
anchored when algorithm GENERAL POSITION 3-D POINT-DRAWING is applied.

If vw is a movement arc coloured ¢, then v is moved to immediately past w in the
i-ordering (Step 5 of the algorithm), thus allowing vw to be assigned the port(v, —i) for
positive v and the port(v, +1) for negative v. In Figure 5.14 we illustrate the movement
and anchoring process in the case of a positive (0,6)-vertex.

k

For a vertex v with max {s(v),p(v)} > 3, if vw = vv" is a movement or special
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1 2

Figure 5.14: v is a positive (0,6)-vertex, vv' is a movement arc coloured X, vv® is a

movement arc coloured Y, vv? is an special arc coloured Z; move v to v'.

arc then k < |¢,/2], so rule M1 is applicable. Therefore w cannot be opposite to v,
and hence W% cannot also be a movement or special arc. (Consequently when edges are
routed no 4-bend edge routes are constructed immediately. It is only through swapping
ports to remove crossings that a 4-bend edge route can be introduced.) Furthermore,
if vv* is a movement arc then k < |(c, — 1)/2], so by rules M2 and M3, if v and w are
opposite unbalanced vertices then the movement arcs of v do not ‘cross over’ or have

the same destination vertex as the movement arcs of w.

5.4.2 Determining a Point-Routing

To determine a point-routing we construct a graph H with vertex set V(H) = A(G).
Vertices are adjacent in H if the corresponding arcs must use perpendicular ports. A

3-vertex-colouring of H then determines a point-routing of A(G).

Algorithm 5.9. DLM — DETERMINE POINT-ROUTING

Input: e graph G with A(G) <6.
e vertex ordering of G determined in Step 1
of Algorithm DIAGONAL LAYOUT AND MOVEMENT.

e classification of movement and special arcs from Step 3
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of Algorithm DIAGONAL LAYOUT AND MOVEMENT.

Output: point-routing of A(G).

1. Construct a graph H with vertex set V(H) = A(G). We distinguish four types

of edges of H as follows.

(a) The first type of edge ensures that arcs which ‘compete’ for the same ports

are coloured differently. Tn Table 5.3 the arcs vo, vv®B, vv®, vo?, voF and

vof" are defined for each type of vertex. (If v is a balanced or a positive

(respectively, negative) unbalanced vertex then vv?, vv® and vo® will be

assigned the negative (positive) ports at v. The arcs vo?, vo¥ and vof” will
be assigned the positive (negative) ports at v.) For each vertex v € V(G),

add a triangle {va,va,vvC} and {va,va,vvF} to E(H).

Table 5.3: Definition of vo, voB, vv®, voP, vof and vol

v vt B vl P pof
balanced vo 3 w2 gyt vl v? vv?
(0,4)-vertex vol - - vw? v vt
(1,4)-vertex vl ol - v? v vt
(2,4)-vertex vo~? vo~! vl v? v vt
(0,5)-vertex vol vv? - w3 vt w®
(1,5)-vertex vo~t vl ww? vo® vt vwd
(0,6)-vertex vol v? vwd vt vv® vt

(b) If neither the arc ¥ not its reversal arc w® are special then add the edge
{ow,ws} (labelled ‘) to E(H).

(c) If v and Wz are both movement arcs for some vertices v, w and z, then
add the edge {ow, w7} (labelled ‘+’) to E(H). (This ensures that v and w
do not move in the same ordering.)

(d) If vv? is a movement arc coloured i then v will move past v!' in the i-

ordering. To ensure that v'v does not use the incorrect i-port at ', add the
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edge {vv?,v'v} (labelled ‘+x’) to E(H). (Observe that in Figure 5.14, v'v

cannot use the port (v, Y ™).)

2. Repeatedly remove vertices of H with degree at most two, and merge non-adjacent
vertices v,w € V(H) in a K4 \ vw subgraph (and replace any parallel edges by a
single edge).

3. Determine a proper vertex-colouring of H with three colours.

4. Colour the removed vertices v € V(H) in reverse order of their removal, with a

colour different from the (< 2) neighbours of v.

5. Determine a 3-colouring of A(G) from the colouring of V(H).

Lemma 5.8. The graph H is vertex 3-colourable in O(n) time.

Proof. 1f K4 \ vw is a subgraph of H for some non-adjacent vertices v and w, then in
any proper 3-colouring of V(H), v and w must receive the same colour, so merging
these vertices preserves the 3-colourability of H. We now show that after repeatedly
removing vertices with degree at most two, and merging pairs of vertices in a Ky \ vw
subgraph, H has maximum degree three, and is not Ky, so by Brooks’ Theorem [47],
is 3-colourable.

For an unbalanced vertex v, let H, be the subgraph of H consisting of the vertices
vo, voP and vo® and their incident edges. We shall initially show that H, ‘reduces’
to a maximum degree three subgraph.

For a degree six unbalanced vertex v, the vertex of H corresponding to the special

¢ is incident with at most two (unlabelled) edges, and therefore can be removed

arc vv
from H. Since a (0,6)-vertex and a (0,5)-vertex v both have o and vo® as movement
arcs, H, is the same for a (0,6)-vertex v (after removing v0“) and for a (0,5)-vertex v
(see Figures 5.15 and 5.16). Similarly, for (1,5)- and (2,4)-vertices, H, is the same as
for (1,4)- and (2,3)- vertices respectively. We therefore need only consider (0,5)-, (1,4)-
or (0,4)- unbalanced vertices. Thus the result for graphs with unbalanced degree six

vertices in the vertex ordering reduces to the result for vertex orderings without such

vertices.
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! may be balanced or a (1,4)-vertex. If v! is balanced

Consider a (0,5)-vertex v. v
then, as in Figure 5.15, vo! has degree two and can be removed. In the remaining

graph, vv? and v'v have degree three.

Il
<
—
—~
<
—
~—
—
I
[
<

— -
| |
| | |
[ 4

Figure 5.15: The subgraph H, for a (0,5)-vertex or a (0,6)-vertex v with v! balanced.

1

Now, if v! is a (1,4)-vertex then, as in Figure 5.16, vo? and v!(v!)! are the non-

1

adjacent vertices in a K4 \ {e} subgraph. If we merge these vertices then v*v and

vo' have degree two and can be removed. If 2 is balanced then there is no edge
{vv?, 0?2 (v?)'}. If ©? is unbalanced then v? must be a (1,4)-vertex, and therefore v2v
and the edge {vv?,v%v} (labelled ‘r’) will be removed (see Figure 5.17). In either case

vv? (=v!(v')!) has degree three.

Figure 5.16: The subgraph H, for a (0,5)-vertex or a (0,6)-vertex v with v' a (1,4)-

vertex.

Consider a (1,4)-vertex v, and assume that v=! is not a (0,5)-vertex with (v=!)! = o

(we have already considered this case). As in Figure 5.17, the vertex vv~! has degree
two and can be removed. vv! now has degree at most three. For a (0,4)-vertex v, H,

simply consists of the degree one vertex vv', which can be removed.

Consider a vertex vo/ € V(H) for some j € {D,E,F}, or j € {A,B,C} if v is
balanced. vv? is incident with at most two unlabelled edges and to at most one edge
labelled ‘. Unless v/ is a (0,5)- or (0,6)-vertex and (v/)! = v (in which case v/ is

incident with an edge labelled ‘++” and has already been considered), vv/ has degree at
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— -
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Figure 5.17: The subgraph H, of H for a (1,4)-vertex or a (1,5)-vertex v.

most three.

We have shown that all remaining vertices in H have degree at most three, and it
is easily seen that H is not K4, so by Brooks’ Theorem [47], H is 3-colourable. The
proof of Brook’s Theorem due to Lovdsz [147] and simplified by Bryant [49] describes
an algorithm for finding a vertex 3-colouring of H in O(|E(H)|) = O(n) time. O

The 3-vertex-colouring of H determines a 3-colouring of A(G). The unlabelled edges
in H ensure that at most two outgoing arcs at each vertex v receive the same colour. So
the 3-colouring of H determines a point-routing of G' (Step 4 of Algorithm DIAGONAL
LAYOUT AND MOVEMENT), and hence Algorithm GENERAL POSITION 3-D POINT-

DRAWING is applicable (Step 6 of Algorithm DIAGONAL LAYOUT AND MOVEMENT).

Theorem 5.4. For a given graph G with mazimum degree siz, the DIAGONAL LAYOUT
AND MOVEMENT algorithm will, in O(n2) time, determine a 4-bend 3-D orthogonal
point-drawing of G with bounding box volume (4n/3)3 = 2.3Tn® and at most Tm/3
bends. If G has mazimum degree five then the bounding boz has volume n3 and each

edge route has two bends.

Proof. We now calculate the number of bends and the volume of the drawing which will
result when we apply algorithm GENERAL POSITION 3-D PoOINT-DRAWING. To do so,
we count the number of instances of (5.1). Suppose the arcs o1, 716 € Ag(v)[i] (u # w)
for some vertex v and colour i € {X,Y, Z}. We can assume that ot € {vv?,v0?, 00}
and 7w € {voP,vv vol}.

Suppose o7 is a movement arc. Then u is not between v and w in the initial
ordering. v moves past u in the i-ordering, and since the movement arcs originating at

w (if any) do not cross over u, w cannot move past u in any ordering. Therefore v is

between u and w in the final i-ordering.
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Suppose 7% is neither a movement arc nor a special arc. Then v is between v and

w in the initial ordering, and v does not move past « or w in any ordering. If « moves
past v then it does so in the same ordering as the colour assigned to the movement arc
wv. Since {7, w0} € E(H) in this case, & is not coloured 4, so u does not move in the
i-ordering. Similarly w does not move in the i-ordering, and hence, v is between u and

w in the i-ordering.

So, the only case where v is not between u and w in the i-ordering is if % or ¥ is
special. Since every vertex is incident to at most one special arc, every instance of (5.1)
corresponds to a unique special arc. Hence there are at most k instances of (5.1) where
k is the number of special arcs, which is precisely the number of unbalanced degree six

vertices.

Now suppose there is an instance of (5.2); i.e., there is a pair of reversal arcs
v, wo € A(G) receiving the same colour i, 78 € Ag(v)[i] (w # u), Wt € Ag(w)]i]
(v # z), v is between u and w in the i-ordering, and w is between v and z in the
i-ordering. The ‘r” edges in H ensure that one of 7% and wd, say i, must be special.
However, in this case v will not be between v and w in the i-ordering. So there are no

instances of (5.2).

If £ is the number of special arcs then Theorem 5.1 asserts G has a 4-bend 3-D
orthogonal point-drawing with bounding box volume (n + k/3)% and 2m + k bends.
Since k < n the bounding box volume is at most (n + n/3)® = (4n/3)3. If d is the
average degree of those vertices without special arcs then 6k + d(n — k) = 2m and the
number of bends is 2m + k = 2m + (2m — d(n — k))/6 = Tm/3 — d(n — k)/6. Since
n > k the drawing has at most 7m/3 total bends.

For maximum degree five graphs, no special arcs are introduced by the algorithm
and reversal arcs are coloured differently, so the point-routing is a 2-bend point-routing.
By the same argument as above, if 9%, 70 € Ag(v)[i] (u # w) then v is between u and
w in the i-ordering. Hence, the conditions (5.1) and (5.2) do not occur. So there are
no anchored arcs in the point-drawing produced. With no anchored edge routes, no
new anchors can be introduced by the edge crossing removal stage. So the crossing-free

drawing has two bends per edge route and bounding box volume n?.

The 3-colouring of H takes O(|E(H)|)=0(n) time, and by Theorem 5.1, algorithm
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GENERAL POSITION 3-D POINT-DRAWING takes O(n?) time, so the algorithm DIAG-

ONAL LAYOUT AND MOVEMENT takes O(n?) time. O

Corollary 5.4. The algorithm DIAGONAL LAYOUT AND MOVEMENT is a
7/6-approzimation algorithm for the BEND-MINIMUM GENERAL POSITION 3-D
POINT-DRAWING problem.

Proof. Since every general position 3-D orthogonal point-drawing has at least 2m bends,
and the DIAGONAL LAYOUT AND MOVEMENT algorithm determines a general position
3-D orthogonal point-drawing with at most 7m/3 bends, the approximation factor is

at most (7m/3)/(2m) = 7/6. O

5.5 3-Bend Algorithms

We now consider the problem of minimising the maximum number of bends on any edge
route in 3-D orthogonal point-drawings. As discussed in Section 3.5.1, K5 provides a
lower bound of two for the maximum number of bends per edge route in 3-D orthogonal
point-drawings. Eades et al. [86, 87] first established that every maximum degree six
graph has an orthogonal point-drawing with a maximum of three bends per edge route.
Their 3-BENDS algorithm is based on an arbitrary diagonal layout of the vertices, and a
cycle cover decomposition of the edges. As stated in their paper the drawings produced
have 27n3 volume; by simply deleting grid-planes not containing a vertex or a bend the
volume is easily seen to be at most 8n3.

The INCREMENTAL algorithm of Papakostas and Tollis [166, 168], using an ad-hoc
vertex layout and edge routing strategy, also produces orthogonal point-drawings with
at most three bends per edge. The volume of the drawings produced is at most 4.63n3.
This algorithm has the advantage of supporting the on-line insertion of vertices in
constant time.

In this section we describe an algorithm, which given an arbitrary 3-D general po-
sition vertex layout of graph, determines a 3-bend layout-preserving orthogonal point-
drawing. We then present an algorithm, which is a modification of the 3-BENDS al-

gorithm of Eades et al. [86, 87], for producing 3-D orthogonal point-drawings with
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n? + O(n5/ 2) volume and at most three bends per edge. This is the best known upper

bound for the volume of 3-bend 3-D orthogonal point-drawings.

5.5.1 Edge Routes

In this section we employ a modified version of Algorithm GENERAL POSITION 3-D
POINT-DRAWING as the basis for our main algorithms. Given a maximum degree
six graph GG, a general position vertex layout and a point-routing of G we position the
vertices as in Algorithm GENERAL POSITION 3-D POINT-DRAWING, however our algo-
rithms directly specify the port assignment. We again employ Algorithm CONSTRUCT
EDGE ROUTES, although we only use 2-bend edge routes (see Figure 5.2) and 3-bend
edge routes with parallel ports (see Figures 5.3(b) and 5.4). Furthermore, 3-bend edge
routes using ports pointing in the same direction are constructed somewhat differently,
as we now describe.

The minimal box containing all vertices is called the inner boz. For each direction
d e {X*,Y*, Z*}, the box extending out from the d-face of the inner box is called the

d-outer box, as shown in Figure 5.18.

Z 1 -outer box

Y ~-outer box

/

X ~-outer box

i
7

X T-outer box

| A

Y T-outer box X

7 ~-outer box

Figure 5.18: Inner and Outer Boxes.
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2-bend edge routes and 3-bend edge routes vw using opposite ports at v and w are
routed entirely within the inner box exactly as was the case previously. We call these
edge routes inner. If, for some direction d, an edge is assigned d-ports at both end-
vertices, instead of the edge route shown in Figure 5.3(b), we use the edge route shown
in Figure 5.19, which is routed to a height h(vw) in the d-outer box. The algorithms

to follow specify the value of h(vw).

inner box —>

S

e

Figure 5.19: Outer 3-bend edge route.

This approach has the advantage that some edges routed in a particular outer
box can have the same height, thus reducing the volume. Also, given a drawing only
using the above-mentioned edge routes, we shall prove that the Algorithm 5.4 POINT-
DrRAWING REMOVE EDGE CROSSINGS will not introduce any 4-bend edge routes. A

disadvantage of this approach is that the edge routes are longer.

5.5.2 Arbitrary Layout 3-Bend Algorithm

The following algorithm for producing 3-bend 3-D orthogonal point-drawings which
preserve a given general position vertex layout, is based on a cycle cover decomposition
of the graph. Edges in the cycle cover Cy, i € {X,Y,Z}, are routed using i-ports at

both end-vertices. All edges are outer 3-bend edge routes except in the case of an odd
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cycle where one edge of the cycle is an inner 3-bend edge route. Edges in a particular

outer box are routed with unique height.

Algorithm 5.10. GENERAL POSITION 3-BEND 3-D POINT-DRAWING

Input: e multigraph G with A(G) < 6
e general position 3-D vertex layout of V(G)
Output: layout-preserving 3-bend 3-D orthogonal point-drawing of G

1. Suppose the X-, Y- and Z-vertex orderings are (z1,%2,...,Zn)s (Y1,Y25---Yn)

and (21, 29, ..., 2y,), respectively.
2. For each vertex v € V(G), if v = x; = y; = 2z, then position v at (34, 37, 3k).
3. Determine a cycle cover decomposition Cx, Cy, Cz of G (see Section 2.5).

4. For each i € {X,Y, Z}, and for each cycle C = (vy,vs,...,v;) of C;:

e If k is even, then traverse the cycle and assign to each edge alternately the

it /i~ ports at both end-vertices.

e If k is odd, then assign to the edge vivy the i-ports at vy and vy which point
toward each other. Traverse the remainder of the cycle and assign to each

edge alternately it /i~ ports at both end-vertices, as shown in Figure 5.20.

(a) vp < v1 (b) v1 <; vg

Figure 5.20: Port assignment for an odd cycle in C;.

5. For each d € {Xi, Y+, Zi}, for each edge vw assigned d-ports at v and w, assign

to vw a unique height h(vw) > 1.
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6. For each edge vw € E(G) assigned d-ports, for some direction d, at both v and
w, route vw with the 3-bend edge route shown in Figure 5.19 in the d-outer box.

Route edges assigned opposite ports as in Figure 5.4.
7. Apply Algorithm 5.4 POINT-DRAWING REMOVE EDGE CROSSINGS.

8. Remove each grid-plane not containing a vertex or a bend.

Theorem 5.5. The algorithm GENERAL POSITION 3-BEND 3-D POINT-DRAWING
determines, in O(nQ) time, a layout-preserving 3-D orthogonal point-drawing of G- with

8n3 bounding box volume and three bends per edge route.

Proof. By construction, each edge is assigned unique ports at its end-vertices, and
only 3-bend edge routes are used. We now prove that given a general position 3-D
orthogonal point-drawing only using 2-bend edge routes and 3-bend edge routes with
parallel ports (routed as described above), the algorithm POINT-DRAWING REMOVE
EDGE CrOssSINGS will not introduce a 4-bend edge route.

For the edge route shown in Figure 5.19, both of the segments in the outer box are
called middle segments. The segment of such an edge route incident to the end-vertex
v is called a v-segment.

Since middle segments on outer edge routes have unique height, they cannot inter-
sect. A v-segment parallel to the i-axis has an i-coordinate belonging to v and no other
vertex, so v-segments can only intersect as in Case 1 of Algorithm 5.4 POINT-DRAWING
REMOVE EDGE CROSSINGS. Swapping ports, in this case, does not introduce any new
edge route crossings, so cannot introduce a 4-bend edge route. Therefore the only
possible intersection is between the middle segments of 2-bend edge routes (Case 3 of
Algorithm 5.4 POINT-DRAWING REMOVE EDGE CROSSINGS). Swapping ports removes
the crossing, and both edge routes remain two bend edge routes.

The inner box is initially 3n x 3n x 3n. Every edge in cycle cover C; either adds
one i-plane in the outer box or occupies one of the i-planes belonging to one of its
end-vertices. Since there are at most m/3 edges in each cycle cover, after removing

grid-planes not containing a vertex or a bend, the bounding box volume is at most
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(n+m/3)3 < 8n3. The most time-consuming step of the algorithm is the removal of

edge crossings which takes O(n2) time. O

We now describe a heuristic for determining sets of edge routes in the same outer box
which can be routed with the same height, thus reducing the volume of the drawing.
Construct a graph H with vertex set corresponding to the edges of G routed in a
particular outer box, with edges between vertices of H corresponding to edge routes
which will intersect if routed with same height. Then if we determine the heights of the
edge routes from a vertex-colouring of H, then we obtain an intersection-free drawing.
In general, this method does not provide improved worst case volume bounds. In the
next section we describe an algorithm which does provide improved volume bounds, by

allowing certain edges routed in a particular outer box to have the same height.

5.5.3 Diagonal Layout 3-Bend Algorithm

We now describe a modification to the 3-BENDS algorithm of Eades et al. [86, 87],
which provides the best known upper bound for the volume of 3-bend 3-D orthogonal

point-drawings.

Algorithm 5.11. DIAGONAL GENERAL POSITION 3-BEND POINT-DRAWING

Input: multigraph G with A(G) <6
Output: 3-bend 3-D orthogonal point-drawing of G

1. Determine a book-embedding of G using the algorithm of Malitz [151] (See
Section 1.3). Suppose (vi,vs,...,v,) is the spine ordering, and p : E(G) —
{1,2,..., P} is the page numbering where P = O(y/n).

2. Apply the 3-BENDS algorithm of Eades et al. [86, 87] using (v1, v, ...,v,) as the
ordering of the vertices along the diagonal, and route each 3-bend edge route vw

as shown in Figure 5.19 with h(vw) = p(vw).

3. Remove each grid-plane not containing a vertex or a bend.
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Theorem 5.6. The algorithm DIAGONAL GENERAL POSITION 3-BEND POINT-
DRAWING determines a 3-D orthogonal point-drawing of G with n3+0(n5/2) bounding

box volume and three bends per edge route.

Proof. Note that the only types of edge routes used in the 3-BENDS algorithm of Eades
et al. [86, 87] are 2-bend edge routes and 3-bend edge routes with both ports pointing
in the same direction. So, by the proof of Theorem 5.5, edge routes can only intersect
if they are routed with the same height in the same outer box; i.e., they are in the same
page of the book embedding. However, if edges routed at the same height intersect in
the outer box, then they would also intersect in the book embedding (see Figure 5.21).

Hence there are no edge route crossings.

Figure 5.21: Edges in the same page and routed in the same outer box.

The bounding box is (P +n + P) x (P +n + P) x (P +n + P). By Malitz [151],
P = O(ym) = O(y/n), so the volume is (n + O(y/n))* = n? + 0(n?/?). O

5.6 Lower Bounds

Since every edge route in a general position 3-D orthogonal drawing has at least
two bends, there is an obvious lower bound of 2m for the BEND-MINIMUM GEN-
ERAL POSITION 3-D POINT-DRAWING problem. We now present infinite families
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of graphs which require more than two bends per edge in any general position 3-D
orthogonal point-drawing. Our results are based on the observation that if an edge is
routed using the X+ port at the vertex z,, then this edge route must be anchored, and

similarly for other ‘extreme’ ports, as in Figure 5.22.

ANy

Figure 5.22: Edge routes using ‘extreme’ ports are necessarily anchored.

For 6-regular graphs all ports must be used, so such a graph requires at least 2m + 6
bends in a general position 3-D orthogonal point-drawing. Hence the graph consisting
of some number of disjoint copies of K7 provides the following lower bound. Note that

general position 3-D orthogonal point-drawings of K7 with 2m + 6 bends do exist.

Lemma 5.9. There exists an infinite family of graphs, each with at least 2m + 6n/7

bends in any general position 3-D orthogonal point-drawing. U

Note that this lower bound differs from our upper bound of 7m/3 (see Theorem 5.4)

by only n/7. For biconnected graphs we have the following lower bound!.

Lemma 5.10. There exists an infinite family of biconnected graphs, each with at least

2m + 4n /7 bends in any general position 3-D orthogonal point-drawing.

Proof. Consider the 6-regular graph G, (a > 2) formed from a copies of K7 \ e (for
some edge e) with a cycle added between the copies, as illustrated in Figure 5.23.
Clearly GG, is biconnected. Removing an edge from K7 can save at most two an-

chored arcs, so a general position 3-D orthogonal point-drawing of K7 \ e has at least

!This result was discovered in conjunction with Therese Biedl.
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~
-~

a copies

Figure 5.23: The graph G,.

2|E(K7 \ e)| + 4 bends. The ‘cycle’ edges of G, each have at least two bends, so G,
has at least 2m + 4n/7 bends. O

Lemma 5.11. There exists an infinite family of /-connected graphs, each with at least

2m + 2n/7 bends in any general position 3-D orthogonal point-drawing.

Proof. Consider the 6-regular graph G, (a,b > 2) formed from the a x b 4-regular
‘torus grid’ graph replacing each vertex by K7 \ {e1,es} (for some non-incident edges
e1, es), as shown in Figure 5.24.

Removing any three vertices from G cannot disconnect the graph, but removing
four vertices can, so G is 4-connected. Removing two edges from K7 can save at most
four anchored arcs, so a general position 3-D orthogonal point-drawing of K7\ {e1,e2}
has at least 2|E(K7 \ {e1,e2})| + 2 bends. Edges not in a K7 \ {e1,e2} have at least
two bends, so G has at least 2m 4+ 2n/7 bends. O

This sequence of lower bounds suggests the following open problem.
Open Problem 5.1. Does every 6-connected 6-regular graph have a general position
3-D orthogonal point-drawing with at most 2m + 6 bends?
5.6.1 2-Bends Problem

We now look at the ramifications of the above lower bounds for the 2-bends problem
discussed in Section 3.5.1. Kdge routes with at most two bends can be classified as

0-bend, 1-bend, 2-bend planar or 2-bend non-planar, as illustrated in Figure 5.25.

Lemma 5.12. Suppose in a given 2-bend 3-D orthogonal point-drawing of an m-edge

graph G the number of 0-bend edge routes is kg and the number of 2-bend planar edge
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\J

e
oo o

a times

Figure 5.24: The graph G, .

w
w W &———
w
r—0 [ 4 [
v w v v v
(a) 0-bend (b) 1-bend (c) 2-bend (d) 2-bend (e) 2-bend
planar planar non-planar

Figure 5.25: Edge routes vw with at most two bends.
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routes is ko. Then there exists a general position 3-D orthogonal point-drawing of G

with 2m + ko + ko bends.

Proof. > We now show that by inserting planes and adding bends to the edge routes that
the given 2-bend drawing can be transformed into a drawing with a general position
vertex layout and the stated number of bends.

Consider a grid-plane P containing k vertices (k > 1). As illustrated in Figure 5.26,
replace the plane by k adjacent planes, and position each of the k vertices in a unique

plane.

Figure 5.26: Removing a plane containing many vertices.

A 0-bend edge route is split in the middle and replaced by the 2-bend planar edge
route shown in Figure 5.25(c). (If the 0-bend edge has length one then an extra plane
perpendicular to the original plane is also inserted.)

Edge segments from an edge with at least one bend and incident to a vertex v are
routed in the plane containing v. For a 1-bend edge route vw in the original plane, an
extra segment is inserted perpendicular to P, running between the planes containing v
and w. Hence vw is replaced by a 2-bend non-planar edge route.

For a 2-bend edge route vw in the original plane, the middle segment of vw is routed

arbitrarily in the plane containing v or w, and a third segment is inserted perpendicular

This proof was developed in conjunction with Antonios Symvonis.
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to P, running between the planes containing v and w. Hence vw is replaced by a 3-bend
non-planar edge route.

For a 2-bend non-planar edge route vw incident to one of the k vertices, the segment
of vw perpendicular to P is extended in the obvious manner. Similarly, an edge passing
through the original plane and not incident to any of the k vertices, is extended so that
it passes through all k£ planes.

This process is continued until there are no grid-planes containing more than one
vertex. Note that a 0-bend edge route will firstly be replaced by a 2-bend planar edge,
and in a second transformation will be replaced by a 3-bend edge route (as shown
in Figure 5.26 for edge ab). The resulting drawing has no crossings, has a general
position vertex layout, and every edge has two bends except for the 0-bend and 2-bend
planar edge routes in the original drawing, which now have three bends. Hence the

new drawing has 2m + kg + ko bends. O

Corollary 5.5. There exists an infinite family of 6-reqular n-vertex graphs, such that

in any 2-bend 3-D orthogonal point-drawing of any one of the graphs, ko + ko > 6n/7.

Proof. By Lemma 5.9, there exists an infinite family of graphs, each with at least
2m + 6n/7 bends in any general position 3-D orthogonal point-drawing. If there is a
2-bend point-drawing of such a graph, then by Lemma 5.12 there is exists a general
position point-drawing with 2m + ko 4+ k2 bends. Hence 2m + ko + ko > 2m + 6n/7, so
ko + ko > 6n/7. O

The following two results are obtained using the same argument applied with Lem-

mas 5.10 and 5.11, respectively.

Corollary 5.6. There exists an infinite family of 6-reqular biconnected n-vertex graphs,
such that in any 2-bend 3-D orthogonal point-drawing of any one of the graphs, ko+ko >
an /7. a

Note that a 1-factor has n/2 edges, and n/2 < 4n/7, so there exists biconnected
graphs for which any 2-bend 3-D orthogonal point-drawing has more than a 1-factor of

0-bend and 2-bend planar edge routes.
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Corollary 5.7. There exists an infinite family of 6-reqular 4-connected n-vertex graphs,
such that in any 2-bend 3-D orthogonal point-drawing of any one of the graphs, ko+ko >
2n/7. O



Chapter 6

The (General Position Model for
Two-Dimensional Orthogonal

Box-Drawing

In this chapter we present algorithms for producing 2-D orthogonal box-
drawings which establish improved degree-restriction results compared to ex-
isting algorithms. The methods and results presented in this chapter were

published in Wood [221].

A 2-D orthogonal graph drawing is said to be in the general position model if no two
vertices are intersected by a single grid-line. We call such a drawing a general position
2-D orthogonal drawing. This chapter, which describes algorithms for producing gen-
eral position 2-D orthogonal drawings, is organised as follows. In Section 6.1 we present
a framework for the main algorithms to follow. As discussed in Section 3.4.4 we classify
such algorithms as layout- or routing-based. Section 6.2 describes our layout-based al-
gorithm. The vertex layout algorithm is based on methods developed in Chapter 4 for
the balanced vertex ordering problem. The arc-routing algorithm, which can be applied
to an arbitrary general position 2-D vertex layout, constructs and colours the vertices
of a certain graph. The drawings produced have the smallest known degree-restriction
bound for bounded aspect ratio drawings. This strategy is generalised to a multi-

dimensional setting in Chapter 7. Routing-based approaches to 2-D general position

126
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box-drawing are given by Papakostas and Tollis [164, 169] and Biedl and Kaufmann
[30].

6.1 Representation

Consider a general position 2-D orthogonal box-drawing of a graph G. Since no two
vertices share a common coordinate, this drawing induces X- and Y-vertex orderings
of G, representing the relative coordinates of the vertices. The assignment of ports to
edge routes induces a (non-proper) 2-colouring of A(G), where an arc 7w € A(G) is
coloured 7 € {X,Y} if the edge route vw uses an i-port at v.

Since each pair of vertices differ in both coordinates, an edge route has at least one
bend. Our algorithms use exactly one bend per edge route. The ports used by a 1-bend
edge route must be perpendicular and point toward the other vertex (see Figure 6.1);
i.e., reversal arcs are coloured differently. We therefore represent a general position 2-D

orthogonal box-drawing of G by:

e A (2-D general position) vertex layout consisting of vertex orderings (<x, <y) of

GG, which represent the relative coordinates of the vertices in each dimension.

e A (2-D general position) arc-routing of G consisting of a 2-colouring of A(G) such
that for every edge vw € E(G), the reversal arcs 91 € A(G) and w0 € A(G) are

coloured differently!.

In the X-ordering a predecessor (respectively, successor) arc of a vertex v is called
a X -predecessor (X -successor) arc of v. We denote the number of predecessor and
successor arcs of v in the X-ordering by px(v) and sy (v) respectively. The cost of a
vertex v € V(@) in the X-ordering, defined in Section 4.1 to be [sx(v) — px(v)], is
denoted by c¢x (v). Similarly definitions are made for the Y-ordering.

For each vertex v € V(@) and direction d € {£X,£Y}, the set of outgoing arcs
v € A(G) with w in direction d from v, is denoted by Ag(v)(d). We represent a

YA 2-D arc-routing can simply be represented by an orientation of the edges. For an edge vw
oriented from v to w, the arcs o and @o are coloured X and Y, respectively. This is the approach
taken by Biedl and Kaufmann [30]. We use the 2-colouring representation for consistency with our

representation for multi-dimensional arc-routings used in Chapters 5 and 7.
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Figure 6.1: 2-D 1-bend edge routes

quadrant relative to v by the corresponding pair of non-opposite directions. The set of

arcs 70 € A(G) with w in some quadrant @Q relative to v is denoted by Ag(v)(Q); i.e.,

Aa()(@) = () A)(d) -

deqQ

Using the notation introduced in Section 2.1, for some dimension i € {X,Y},
Ag(v)(i*) i refers to the arcs in Ag(v)(it) coloured i. If an arc vw € Ag(v)(X ) X,
for example, then the edge route vw will leave v on the left. A vertex v clearly must

have width at least
My (v) = max {| 46 () (Y ) [V] |, | Ac(0) (Y 7) Y]]}
and height
My (v) = max { | Ag(0)(X*)[X]|, | Ag(0)(X )[X] |} .

We now present an algorithm, which given a 2-D general position vertex layout and
arc-routing of a graph G, determines a general position 2-D orthogonal box-drawing of

G. This algorithm will form the final step in our graph drawing algorithms to follow.

Algorithm 6.1. GENERAL POSITION 2-D BOX-DRAWING

Input: e graph G
e 2-D general position vertex layout of V(QG)
e 2-D general position arc-routing of A(G)

Output: general position 2-D box-drawing of G
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1. Represent each vertex v € V(G) by a Mx(v) x My (v) rectangle with maximum

corner at

D Mx(w), >, My(u

w<xv w<lyv

2. For each vertex v € V(@) and 7 € {X, Y}, assign ports on the (+7)-face of v to the
arcs 0w € Ag(v)(i*)[i]. To reduce the number of crossings we assign particular
ports on v to these arcs in order of the distance from v to w in the i-ordering, as

illustrated in Figure 6.2.

{Xy}
{X*Y+}(>[1

oo | *_*_i_l [_*_»’ |
A ( )[X]{ | ]}A{X+’Y+}(v)[X]
l}A{XﬁyhanJ

[

A{X*Y‘NUMYJ

I

L. AT )

Figure 6.2: Port assignments at a vertex v.

3. For each edge vw € F(G), if the arcs 9@ and w0 have been assigned an X-port
and a Y-port at v and at w with coordinates of (z,,y,) and (z.,, ¥, ) respectively,

then the edge vw is routed from v to w with one bend as follows.

(Zvs Yo) = (Tws Yo) = (Tws Yw)

The next result follows immediately from the above construction.

Lemma 6.1. The algorithm GENERAL POSITION 2-D BOX-DRAWING determines a
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general position 2-D orthogonal boz-drawing of G with bounding box

(Z MX(U)> X (Z My(U))
Each vertex v has surface

2(Mx (v) + My (v))

6.2 Layout-Based Approach

In a 2-D general position vertex layout of a graph G, the cost of a vertex v € V(G) is

defined to be the average? cost of v over the X- and Y-orderings; i.e.,

o) = 3 (ex(v) + ey (v) -

We are interested in the following problem.

Problem 6.1. 2-D GENERAL POSITION VERTEX LAYOUT
Instance : Graph G, integer K > 0.

Question : Does G have a 2-D general position vertex layout with maxc(v) < K 7
v
We conjecture that this problem is NP-complete. In Section 6.2.3, we provide an
algorithm which determines a vertex layout with a tight bound on max, ¢(v).
6.2.1 Arc-Routing Algorithm

The following algorithm, given an arbitrary 2-D general position vertex layout of a graph
G, determines a 2-D general position arc-routing of G. To represent the colouring of

A(G) we vertex-colour a graph H with vertex set V(H) = A(G).

Algorithm 6.2. 2-D GENERAL POSITION ARC-ROUTING

Input: 2-D general position vertex layout of a graph G.
Output: 2-D general position arc-routing of A(G).

“We use the ‘average’ here rather than the ‘sum’ since this definition will be extended to a multi-

dimensional setting in Chapter 7.
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1. For each edge vw € E(G), add the edge {vw,wv} to E(H) (called an r-edge).

2. For each vertex v € V(@) and for each quadrant @ relative to v,

(a) Arbitrarily  partition  the arcs in  Ag(v)(Q) into  pairs
{vug,vwt},...,{vug, vw}}, with at most one leftover arc in Ag(v)(Q) not
included in a pair.

(b) Add an edge (called a g-edge) to E(H) between the vertices corresponding

to the arcs v_ug> and 17@75-, 1 <5<k

3. Split those vertices in v € V(G) with at least three leftover arcs in Ag(v) into

two groups Vx and Vi of equal size (or differing by one).

4. For each vertex v € V(G):

(a) If there are exactly two leftover arcs 7%, v € Ag(v) then add an edge (called

an l-edge) between the vertices in H corresponding to 9% and 0.

(b) Ifv € V; (i € {X,Y}) has exactly three leftover arcs then add an edge, called
an [-edge, between the vertices of H corresponding to the two leftover arcs at

v which are both i-successor arcs or both i-predecessor arcs (see Figure 6.3).

(c) If v e V; (1 € {X,Y}) has four leftover arcs then add edges (called /-edges)
between the vertices of H corresponding to the two leftover i-successor arcs
of v, and between the vertices of H corresponding to the two leftover i-

predecessor arcs of v (see Figure 6.3).

5. Determine a 2-colouring of A(G) from a vertex-colouring of H with two colours.

Lemma 6.2. The algorithm 2-D GENERAL POSITION ARC-ROUTING determines a

2-D general position arc-routing of G in O(m + n) time such that for each vertez v,

2(Mx (v) + My (v)) < deg(v) +c(v) +4 ,
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(a) v € Vy (b) v e Vy

Figure 6.3: Connecting leftover arcs at v.

and for each i € {X,Y},

3 M) < % + i<3n+1+Zci(v)>

v

Proof. A cycle in H consists of alternating r- and (g- or [-) edges and is therefore of
even length. So H is bipartite, and a 2-colouring of H can be computed in O(|E(H)|) =
O(m) time, thus determining a 2-colouring of A(G). Since the vertices corresponding to
reversal arcs 910 and W0 are adjacent in H, this 2-colouring of A(G) is a 2-D arc-routing
of A(G).

For each quadrant ¢ relative to a vertex v and in each pair of the partition of
Ag(v)(Q), the arcs vw; and vw, are coloured differently, so we have the following

bounds on, for example, the number of X-successor arcs 7w coloured X.

|Ac()({XT,Y*}) \J . {\AG(U><{X+,Y}> \‘
2 2
< |Ac)(XH)yX]| <

[Ac XY D] [Aem)(x vy |
2 * 2

So,

sx(v)

1.
2+

Similarly, we have the following bound on the number of X-predecessor arcs coloured
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+1.

pX2('U) 1< ‘Ag(v)<X_>X‘ < pX2('U)

Recall that My (v) = max {|Ag(v)(XT) X|,|Ag(v)(X ) X|}. So

%max{sx(v),px(v)}—l < My (v) < %max{sx(v),px(v)}—i-l

1

1 ( L deg(v) + cx(v)) + 1 (by (4.1))

deg(v) +ex(v)) =1 < My(v) < 2 (

Using the same argument for the number of Y -successors and Y -predecessors coloured
Y, for each i,5 € {X,Y} (i # j),
1 1
7 (deg(v) +¢j(v)) =1 < Mi(v) < 7 (deg(v) +¢;(v)) +1 . (6.1)
So

2(Mx(v) + My (v)) < 2 <i (2deg(v) + cx (v) + ey (v)) + 2)

cx (v) + ey (v)
2

= deg(v) +c(v) +4 .

= deg(v) + +4

Now, in each quadrant relative to a vertex v, there is at most one leftover arc at v.

A vertex v with at most two leftover arcs has, for each i € {X,Y},

i) < [eslelnto)]

A vertex v € V; with at least three leftover arcs has

[max{si(;)),m(v)}l , and

=
S
IN

Mj(v) < maX{Sj(;’)’pj(”)}H (j#i.d € {X.V}) .

So, for each i € {X,Y},

YoMi(w) = Y Mi(v) + > My(v)

vEV; veV;
=S max{si(v)épi(v)}-l-l £y <max{5j(;)apj(v)} +1>
VgV VeV

n |V max {s;(v),p;(v)}
st Xv: 2
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_l’_
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m 1
5 t 1 <3n+1+zv:c¢(v)> . O

v
n+1 m ci(v)
+ + 5 +§v:
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6.2.2 Fixed Vertex Layout Drawings

We now derive results for a fixed general position vertex layout.

Algorithm 6.3. FIXED GENERAL POSITION 2-D BOX-DRAWING

Input: e graph G

e 2-D general position vertex layout of V(G)

Output: layout-preserving 2-D orthogonal box-drawing of G.

1. Determine an arc-routing with Algorithm 6.2 2-D GENERAL POSITION ARC-

ROUTING.

2. Apply Algorithm 6.1 GENERAL POSITION 2-D BOX-DRAWING.

Theorem 6.1. For an arbitrary 2-D general position vertex layout, Algorithm FIXED
GENERAL POSITION 2-D BOX-DRAWING determines a 2-D orthogonal box-drawing of

G in O(m + n) time such that:

Each edge route has 1 bend.

Each vertex is 2-degree-restricted.

The aspect ratio of a vertex v is at most 2 + o (deg(v)).

The bounding boz is at most

+3n-|-1 o +3n+1
m 4 m 4
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Proof. By Lemma, 6.2, for every vertex vertex v, surface (v) < deg(v)+ c(v)+4. Since

c(v) < deg(v), v is 2-degree-restricted.

For each i € {X,Y}, 0 < ¢;(v) < deg(v), so by (6.1),

Hence,

<

— 2+ 0 (deg(v))

e { M0, M

) deg(v)/2+1
My (0)’ wa)} :

~ deg(v)/4 -1

So v has aspect ratio at most 2 + o (deg(v)). The bounding box is

(o) (o)

Since ¢;(v) < deg(v) and by Lemma 6.2, the bounding box is

(%—l—% <3n+1+2deg(v)>) X (%—Fi <3n+1+2deg(v)>>

3n—+1 3n+1
= (m+ 1 X [m+ 1 . O

6.2.3 Balanced Vertex Layout Drawings

We now describe how the methods developed for the balanced ordering problem in
Section 4.3 can be applied to find ‘balanced’ 2-D general position vertex layouts. By
balanced we mean that there is an upper bound on the cost ¢(v) for each vertex v.
The following algorithm, which is similar to the vertex layout technique of Biedl and

Kaufmann [30], is illustrated in Figure 6.4.



CHAPTER 6. GENERAL POSITION 2-D BOX-DRAWING 136

Algorithm 6.4. BALANCED 2-D GENERAL POSITION VERTEX LAYOUT

Input: graph G.
Output: 2-D general position vertex layout of G.

1. Determine an arbitrary vertex ordering (vq,ve,...,v,) of G.

2. Determine the X-ordering using Algorithm 4.1 MEDIAN PLACEMENT ORDERING

with insertion ordering (vq,ve,...,v,).

3. Determine the Y-ordering using Algorithm 4.1 MEDIAN PLACEMENT ORDERING

with insertion ordering (vy,vp—1,...,v1).

Us

U3

v
1 Vo

U4

U6

Figure 6.4: Balanced 2-D vertex layout of K.

Theorem 6.2. The algorithm BALANCED 2-D GENERAL POSITION VERTEX LAYOUT
determines a 2-D general position vertex layout of G in O(m +n) time such that for

each vertex v,
1
c(v) <1+ 3 deg(v) .

Proof. For each vertex v, by Lemma 4.3 concerning the performance of the algorithm
MEDIAN PLACEMENT ORDERING with arbitrary insertion orderings, cx(v) < s(v) + 1
and ¢y (v) < p(v)+1, where s(v) and p(v) are the number of successors and predecessors
of v respectively in the vertex ordering (v1,v2,...,v,). So c¢(v) < (s(v) +p(v) +2)/2 =
deg(v)/2 + 1. O
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Note that the above bound is tight up to the additive constant, since an extremal
vertex in the X-ordering has cx(v) = deg(v), so ¢(v) > deg(v)/2. We now present
our algorithm for 2-D orthogonal box-drawing using a balance general position vertex

layout.

Algorithm 6.5. BALANCED GENERAL POSITION 2-D BOX-DRAWING

Input: graph G.
Output: 2-D orthogonal box-drawing of G.

1. Determine a general position vertex layout with Algorithm 6.4 BALANCED 2-D

GENERAL PoOSITION VERTEX LAYOUT.

2. Determine an arc-routing with Algorithm 6.2 2-D GENERAL POSITION ARC-

ROUTING.

3. Apply Algorithm 6.1 GENERAL POSITION 2-D BOX-DRAWING.

Theorem 6.3. The algorithm BALANCED GENERAL POSITION 2-D BOX-DRAWING

determines a 2-D orthogonal boz-drawing of G in O(m + n) time such that:
e FEach edge route has 1 bend.
e Fach vertex is %—degree—restricted.

e The aspect ratio of a vertex v is 2 + o (deg(v)).

e The bounding box area is (3m+f”+2) X (3m+ff”+2).

Proof. For any vertex v, by Lemma 6.2, surface (v) = 2(Mx(v) + My (v)) < deg(v) +
¢(v) + 4. By Theorem 6.2, in a 2-D balanced vertex layout, for every vertex v € V(G),
c(v) < 1+ deg(v)/2. So surface (v) < 2deg(v) + 5, and each vertex is 3/2-degree-

restricted. By Lemma 6.2, the bounding box is

(Z Mx(v)> x (Z My(v)>
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1 m  3n+1 1 m  3n+1
g(zzcx(u)+§+ T )X(ZZCy(’U)-FE‘I‘ I )

v v
The X- and Y-orderings are determined by algorithm MEDIAN PLACEMENT ORDER-

ING, so by Corollary 4.1, the bounding box is at most

4 2 4 4 4

(3m+4n+2> (3m+4n+2>
_ (2prEm ) (2mr ATy 0

(m-l—n m 3n+1>x<m+n m 3n+1>
2

4 4

6.2.4 Diagonal Vertex Layout Drawings

We now present an algorithm for producing 2-D orthogonal square-drawings using a

diagonal layout.

Algorithm 6.6. DIAGONAL GENERAL POSITION 2-D SQUARE-DRAWING

Input: graph G.
Output: 2-D orthogonal square-drawing of G.

1. Determine a 2-D diagonal layout of G with the corresponding vertex ordering
determined by Algorithm 4.1 MEDIAN PLACEMENT ORDERING (with insertion

ordering determined by Algorithm 4.2 INSERTION ORDERING).

2. Determine a 2-D arc-routing with Algorithm 6.2 2-D GENERAL POSITION ARC-

ROUTING.

3. Apply Algorithm 6.1 GENERAL POSITION 2-D BOX-DRAWING.

Theorem 6.4. The algorithm DIAGONAL GENERAL POSITION 2-D SQUARE-DRAWING

determines a diagonal layout 2-D square-drawing in O(m + n) time such that:
e Fach edge route has one bend.

e Fach vertex is 2-degree-restricted.
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e The bounding box volume is

3m  on)\  (3m  on
4 8 4 8

Proof. We represent a vertex v by the max {Mx (v), My (v)} x max{Mx(v), My (v)}
square. Algorithm 2-D GENERAL POSITION ARC-ROUTING determines a 2-D arc-

routing such that,

Mx (v), My (v) < [m&x{s(m,p(v)w

2

Hence

surface (v)

_ 4 [max{S(;f),p(v)}w

IN

2 (max {s(v),p(v)} + 1)

2deg(v) +2 .

A

So each vertex v is 2-degree-restricted. The bounding box side length is at most

3 [maX{S(;f),p(v)}]

U > (% (max {s(v),p(v)} + 1))

v

IA

3m n

1
3 (7 +o+ n) (by Theorem 4.2)
3

IA

3m _ on
; .

8

IA

The bounding box volume bound follows. O



Chapter 7

The General Position Model for
Multi-Dimensional Orthogonal

Box-Drawing

In this chapter we present and analyse algorithms for producing general
position D-dimensional orthogonal boz-drawings (D > 3) of arbitrary degree
graphs. For D = 3, our results establish improved bounds for the degree-
restriction of vertices. This chapter was published in Wood [222].

A D-dimensional orthogonal drawing is in the general position model, called a gen-
eral position orthogonal drawing, if no two vertices are intersected by a single (D — 1)-
dimensional grid-hyperplane. This chapter presents algorithms for determining general
position D-dimensional orthogonal drawings, for some constant D > 3. These algo-
rithms generalise those for general position 2-D orthogonal box-drawing presented in

Chapter 6.

This chapter is organised as follows. Section 7.1 provides a framework for the
development of the main algorithms to follow. As discussed in Section 3.4.4, algorithms
for general position orthogonal graph drawing can be classified as layout- or routing-
based. We present layout-based algorithms in Section 7.2 and a routing-based algorithm

for general position 3-D drawing in Section 7.3.

140
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7.1 Framework

Consider a general position D-dimensional orthogonal drawing of a graph GG. Since no
two vertices share a common coordinate, this drawing induces D vertex orderings of G,
representing the relative coordinates of the vertices in each dimension. The assignment
of ports to edge routes, induces a (non-proper) D-colouring of A(G), where an arc
v € A(G) is coloured i € {1,2,..., D} if the edge route vw uses an i-port at v. Since
each pair of vertices differ in all D coordinates, each edge route has at least D —1 bends.
The ports used by a (D — 1)-bend edge route must be perpendicular and point toward
the other vertex, as in Figure 7.1, so for each edge vw the reversal arcs v, wo € A(G)

are coloured differently.

Figure 7.1: (D — 1)-bend edge routes in D = 3 dimensions.

We therefore represent a general position D-dimensional orthogonal drawing of G

by:

e A (D-dimensional general position) vertex layout of V(G), consisting of D vertex
orderings (<1,<2,...,<p) of G. We call <;, 1 < i < D, the i-ordering of the
layout, and for D = 3 we will refer to the 1-, 2-, and 3-orderings as the X-, Y-

and Z-orderings.

e A (D-dimensional general position) arc-routing of A(G), consisting of a D-colouring
of A(G) such that for each edge vw € E(G) the reversal arcs v, wt € A(G) are

coloured differently.
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Consider a D-dimensional general position vertex layout of a graph G. In each
i-ordering, 1 < ¢ < D, a predecessor (respectively, successor) arc of a vertex v is called
an i-predecessor (i-successor) arc of v (see Section 4.1). We denote the number of
predecessor and successor arcs of v in the i-ordering by p;(v) and s;(v), respectively. The
cost of a vertex v € V(@) in the i-ordering, defined in Chapter 4 to be |s;(v) — p;(v)], is
denoted c;(v). The cost of v is defined to be the average cost of v over the D orderings;

ie.,

The following problem is of interest.

Problem 7.1. D-DIMENSIONAL GENERAL POSITION VERTEX LAY-
ouT

Instance : graph G, integer K > 0.

Question : Does G have a D-dimensional general position vertex layout with c(v) < K

for every vertex v € V(G)?

We conjecture that this problem is NP-complete. In Section 7.2.3 we provide lower
and upper bounds for this problem. The methods to be described in this section are

summarised in the following algorithm.

Algorithm 7.1. D-DIMENSIONAL GENERAL POSITION BOX-DRAWING

Input: e graph G
e D-dimensional general position vertex layout of V(G)

e D-dimensional general position arc-routing of A(G)

Output: general position D-dimensional box-drawing of G

1. For each vertex v € V(G), determine the size ay(v) X as(v) X -+ X ap(v) of the

box representing v (see Section 7.1.1).

2. Position each vertex v € V(G) at the grid-point with maximum i-coordinate of

Z a;(w) .

w<v
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Note that the bounding box has size

(Z a1<v>) x (Z a2(v)> . (Z QD@))

3. Assign ports to edges, as described in Section 7.1.2. (An arc 7w € Ag(v)[i] will

be assigned a port on the i-face of v pointing towards w.)

4. For each edge vw € F(G) construct a (D —1)-bend edge route as follows. Suppose
the arc 70 € A(G) is coloured i € {1,2,... , D} and its reversal arc w? is coloured
g > 1. The edge route vw consists of D contiguous grid-line segments which
traverse the sides of the hypercube with corners at port(v2) and port(w). These
segments are respectively parallel to the 7,(1 — 1),...,1,(i + 1), (4 +2),...,(j —
1),D,(D —1),...,j axes.

5. Remove edge crossings using Algorithm 7.2 Box-DRAWING REMOVE EDGE CROSS-

INGS.

For a given general position vertex layout, Ag(v)(d) denotes the set of outgoing

arcs at some vertex v € V(G) in the direction d; i.e.,

00 € Ag(v) - . ifd > 0;
(o) (d) = {06 € Ag(v) : v <4 w} if d >
{vw € Ag(v) : w <_q v}, ifd<D0.

For each direction d € {1,2,...,D} and vertex v € V(G), the set of arcs in
Ag(v)(d), which are coloured i is denoted Ag(v)(d)[i]. If an arc 7w € Ag(v){i*)[i]

then the edge route vw uses an (i%)-port at v. The maximum of the number of edges

routed on the (i*)-face and (i~ )-face of v is denoted M;(v); i.e.,

M;i(v) = max{\AG(v)@)[i] |, [Ac () (i i) \}.

Clearly surface;(v) must be at least M;(v).

7.1.1 Determining Vertex Size

We now describe how to determine the size of the grid-box representing a vertex v given

the number of edges routed on each face of v. For each vertex v we wish to determine
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positive integers «;(v), 1 <17 < D, such that surface;(v) is at least M;(v); i.e.,

determine a;(v),1 <4 < D such that Vi H aj(v) > M;(v). (7.1)

1<j<D
#i

Our aim is to minimise the surface (v) such that (7.1) is satisfied. For each 7 with

M;(v) = 0 we replace M;(v) by 1. A solution to the new problem with
surface (v) < k (Z 2Mi(v)> + K
i
is a solution to the original problem with
surface (v) < k <Z 2Mz~(v)> + (k' + D)

So we now assume that M;(v) > 1.

We define M, (v) to be the geometric mean of {M;(v) :i=1,2,...,D}; ie.,

1/D
M, (v) = (H Mi(v)> .

Lemma 7.1. A real-valued exact solution to (7.1) can be obtained with «;(v) = r;(v)

where we define

i = 7.2
ri(v) Mi(0) (7.2)
Proof. For each i, 1 <14 <D,
surface ; (v) = H ri(v)
1<k<D
ki
= [T (M@P® /()
1<k<D
ki
1/(D—-1)
= 11 || II Mo /My ()
1<k<D \ \1<j<D
ki
1/(D-1)
- 0| (T sw00) fnior
1<k<D 1<j<D
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1/(D-1)
= 1I (H Mﬂv))/Mk(v)“
1<k<D | \1<5<D
ki £k
[ (w7 T a0 2) /( T1 amio)
139;2.D 1§Icl;siD
(Do
=<Mi(U)D1>
= M;(v) U

145

1/(D-1)

This result suggests to obtain an integer-valued solution to (7.1), set o;(v) = [r;(v)]

for each 7. We now present a technical lemma which will be applied in the analysis of

the algorithms to follow. It essentially says that if the ratios among {M;, My, ..., Mp}

are bounded then surface (v) is asymptotically 2", M;(v), which is the obvious lower

bound.

Theorem 7.1. If for each i,5, 1 <1i,57 < D, M;(v)/M;(v) < f(v), for some function

f:V(G) = R, then setting ca;(v) = [ri(v)],

surface (v) < 2ZMi(U) + O(f(v)"7?) (Z M;(v)

Proof. We initially show that M;(v)/M;(v) < f(v) implies r;(v)/r;(v) <

i,j,1<i,j <D.

M, (U)D/(D—l)

>(D—muD—u

f(v) for all

M, (U)D/(D—1)>

miaxri(v)/ mjinrj(v) < <miamx T(”)) / (HlllnT(v)

= M;(v)/M;(v) ,

where M;(v) and M;(v) are maximum and minimum of {M;(v), Mz(v),...

Hence r;(v)/r;(v) < f(v) for all i, j, 1 <i,j < D.

For each 7, 1 <i < D,

surface ;(v) = Haj(v) < H(rj(v)+1)
JFi JFi

, Mp(v)}.
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Since [[;,;7j(v) = M;(v), our aim to is to show that adding one to r;(v) does not
increase surface ;(v) by too much. To this end, we establish the following result, whose
proof we defer until Lemma 7.2.

If z1,29,...,2, > 0 with z;,z; <A(> 1), for all 4,5, 1 <4,5 < D, then

n (n—1)/n
H(xi—kl H:cz + O(A™h) (H:cz> (7.3)

i=1 i=1

Applying (7.3), with {z1,22,...,z,} = {rj : j #i} and A = f(v), we obtain

(D-2)/(D-1)
oo < Do v ovor (I)

i#i i

Hence
surface ;(v) < M;(v) + O(f(v)D—Q) M;(v)(P=2/(D=1)
Therefore

surface (v)

< 2> M(v) + ZO M;(v)(P=2/(D=1)

< 22:]\42'(11) + O(f(v)P7?) ZMi(v)(D_Q)/(D_l)

2ZMZ(U) + O(f(U)D—Q) (Dl/(D—l) ZMZ(U)
Z Z(D*2)/(D*1)

ZZMi(U) + O(f(v)D_Q) (ZMAU)) [

IA

(D—2)/(D-1)
) (by Cauchy-Schwarz)

IA

Lemma 7.2. If z1,25,...,2p > 0 (n > 2) with z;/x; < A, for all i,j, 1 <i,j < D,
then

n

(n=1)/n
[[@i+1) < sz + O(A™ ) <H:1:> (7.4)

i=1
Proof. Suppose x1 > xo > -++ > . Denote Hle z; by P;. We proceed by induction

on k with the following induction hypothesis.

k
[[+1) < P + o(A'H) (P,) k= D/ (7.5)

=1
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Consider the case of k = 2. Since z1 /1y < A, we have z9 > x1/A and 2129 > 22 /A.
So 71 < VryzoA. Similarly zo < V/z1xeA. So (1 +1)(22+1) = z120+ 11 + 22 +1 <
1Ty + 2v/T1z9A + 1 < 129 + O(A) VZ1@2. So the induction hypothesis holds for
n = 2.

Suppose the induction hypothesis holds for all ky < k. Then

k
H(xz- +1)
- k—1
= (Ik + 1) (IZ + 1)
=1

< (zp+1) (Pk—l + O(Ak_Q) (Pk_l)(kﬂ)/(k*l)) (by the induction hypothesis)

<P + op O(N2) (P )00 Py o(572) (P ) B2/ (76

We now determine upper bounds in terms of A and P}, for each component of (7.6).

Since z < zj, for j, 1 <j <k —1, we have a:’,zfl < P,_1. So
< (Pmy)VOTY (7.7)

Now, for all j, 1 < j <k — 1, we have z;/z;, <A. So x;, > x;/A, and hence

8
BN
L
vV

Pk_l/Akfl

Pk/Akfl

S
ESES
vV

8
e
vV

(Pk/Ak—l)l/k
(Ak—l/Pk)l/k

_ —1/k
AG=D/kpr /

8
= |
IA

8
e
IN

A=k pl=17k

T
IA

(AP,)k=1/k (7.8)

T
IA

Now,
75 O (Ak—Q) (Pkfl)(k_Q)/(k_l)

< (Py_y) Y1) O<Ak72) (Pk_l)(k72)/(k71) (by (7.7))

< O(AH) P 1
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(Ak_1> (P) k=D (7.9)

Now,

AF=1) (P k2K (7.10)

Substituting (7.8), (7.9) and (7.10) into (7.6) we obtain,

k

[[@i+1)

i=1

<P, + O(Ak—1> (Pk)(k—l)/k 1 (APk)(k—l)/k 1 O(Ak—1> (Pk)(k—Q)/k

<P + O(A’H) (P) =Dk

Hence the induction hypothesis holds for k&, and by the induction principle the result
holds. O

In D = 3 dimensions we have the following bound for the surface (v) regardless of

whether Mx (v), My (v) and Mz(v) have bounded ratios.
Lemma 7.3. For every Mx(v), My (v) and My (v) there is a solution to (7.1) with
surface (v) < 4(Mx(v) + My (v) + Mz (v)) + O(1)

Proof. In what follows {i,j,k} = {X,Y, Z}, and we omit the ‘(v)’ from M;(v), r;(v),
etc. Note that for D = 3, problem (7.1) becomes

determine oy, aj, o, such that a0 > My, oy, > My and ooy, > M; . (7.11)

We wish to minimise the surface (v) = 2 (5 + ;04 + ajay). For each i € {X,Y, 7}
the real-valued exact solution to (7.11) is given by

M; M,
M;

(ai :) ri =
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Suppose without loss of generality that M; > M; and M; > Mj,. Then r; < r; and
r; < r,. We initially consider three special cases for small values of ;.
Case 1: r; <1 (i.e., M; > M;Mj,).

We set a; « 1, aj <~ M, and oy, < [M;/M},]. Hence

;0 = Mk, (071097 > Ml/Mk > Mj and e7187> > Mk(Mi/Mk) = Mi .
So a valid solution to (7.11) is determined. We have the following upper bound.

surface (v) = 2(voj + o + ajay)

2(My + [M;/My] + My [ M;/M])

N

(

(

2(Mj, + M; /My + 1 + My(M; /M, + 1))

2(2Mj, + M; /My + M; + 1)
(

<2(2My +2M; +1) .
So, in this case the result stands.
Case 2: 1 <1; <2 (i.e., M;My/2 < M; < M;My).
We set a; < 1, aj < M}, and oy, < M;. Hence
ajoj = My, oy, = Mj and ojay, = MpM; > M; .
So a valid solution to (7.11) is determined. We have the following upper bound.

surface (v) = 2(viaj + a0 + ajay)
= Q(Mk + Mj + Mij)

< 2(Mj + M; + 2M;) .
So, in this case the result stands.
Case 3: V2 <7; <2 (i.e., M;Mg/4 < M; < M;My/2).

Set a; <— 2. Assume without loss of generality that M; < M, and set aj < [ M} /2]

and ay, <= M;. Hence

OtiOtj =2 |—Mk/2-| Z Mk,
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o = 2Mj > Mj, and

o) = [Mk/2—| Mj > Mij/2 > M,; .
So a valid solution to (7.11) is determined. We have the following upper bound.

surface (v) = 2(oyoj + oy, + ajoy)

2(2 [ My /2] + 2M; + [ My /2] M;)

IA

IA

2 Mk+1+2Mj+2MZ'+Mk/2)

(
(
2(My + 1+ 2M; + M;My/2 + M;/2)
(
(

2(2M; + 2Mj + 3Mk/2 + 1)
So, in this case the result stands.
Case 4: r; > 2 for every i € {1,2,3}.

Set a; < [r;], oj < [r;], and ag < [rg]|. Obviously this is a valid solution to

(7.11) and we have the following upper bound.

surface (v) = 2(ogj + o + ajay)

AN

(
2((ri + 1)(rj + 1) + (ri + 1) (r, + 1) + (rj + 1) (rg + 1))

=2((rirj +ri4+rj+1) + (rirg +ri +rp + 1) + (rjry + 15 + 1 + 1))
=2((My +ri+rj) +(Mj +ri + 1) + (M; + 7 +11) +3)

It is well-known that x +y < zy for any two real numbers z,y > 2. So r; +r; <

rirj = My, ri + 1 < rirp = Mj; and r; +rp < rjrp, = M;. Hence
surface (v) < 2(2M; + 2M; + 2M;, + 3)

and, in this case the result stands. U

7.1.2 Determining Port Assignments

Given a general position vertex layout and arc-routing, we now describe how to assign
ports on a vertex v to the arcs incident to v such that an arc 91 € A(v)[i] is assigned

an i-port on v pointing toward w. Suppose the kb segment of an arc vw, 1 < k < D,

kth

refers to the segment of the edge route vw starting at v.
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We firstly assign ports to arcs so that no two edges routed on the same face can
intersect. This algorithm improves on the algorithm of Biedl [27] for D = 3, in that we
potentially use all the ports on a face. This is possible due to the second stage of our

port assignment method which eliminates all subsequent edge route crossings.

We now describe how to assign the ports on the (i*)-face of a vertex v (for some
dimension i), to the arcs in Ag(v){i")[i]; i.e. arcs 9w coloured i with w in direction 4+

from v. Assigning ports on the (i~ )-face to the arcs in Ag(v)(i~)[i] is analogous.

We group the arcs in Ag(v){i*)[i] according to the direction of their second segment,
which by the routing of edges described in Algorithm 7.1 D-DIMENSIONAL GENERAL
PoSITION BOX-DRAWING is one of (i + 1), (i + 1), (i —1)" and (i — 1)~. For these
cases we say an arc in Ag(v)(i)[i] is either an up, down, right or left arc, respectively.
Ports are assigned so that the ports ‘underneath’ the second segment of an arc are

assigned to arcs within the same grouping.

Firstly, as illustrated in Figure 7.2(a), we partition the face into two regions, the
first with enough ports for the Down and Right arcs, and the second with enough ports
for the Up and Left arcs. Within the first region we determine the ports to be used by
the Right arcs by numbering the ports starting at the top-right corner in a right-to-left
row-by-row fashion, as in Figure 7.2(a). Similarly, we determine the ports of the second
region to be used by the Left arcs by numbering the ports starting at the bottom-left
corner of the second region in a left-to-right row-by-row fashion. The remaining ports
in the first region are assigned to the Down arcs and the remaining ports in the second

region are assigned to the Up arcs, as in Figure 7.2(b).

We assign ports to the arcs in each grouping in turn, and within a grouping we
assign ports to the arcs in increasing order of the length of the first segment of the arc.
Since our graphs are simple this length is unique. For each arc we choose an unused
port within its grouping so that the second segment of the produced edge route has
minimum possible length, as in Figure 7.2(b). Clearly no two edges routed on the same

face can intersect.
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Up & Left - ——— T/AL/T T TT

!« 6 5+ 4+ 34 ‘ P
Down & Right / o 7476 T

(a) (K// (b)

Figure 7.2: Determining port assignments on a face.

7.1.3 Removing Edge Crossings

We now show how to remove edge route crossings in general position D-dimensional
orthogonal box-drawings (D > 3). The method is a generalisation of the crossing

elimination rule for 3-D orthogonal point-drawings shown in Figure 5.11.

Suppose the edge routes vw and zy intersect at some grid-point, and the intersecting
segments of vw and xy are a- and b-segments, respectively (for some dimensions a and

b). Label the endpoints of these segments r, s, p and ¢ as shown in Figure 7.3(a).

Y Y Y
P P —1p
T S
v w S w w
b q v X
q -~—
v

(a) (b) (c)
Figure 7.3: Removing edge crossings in general position.

In what follows we describe a sequence of segments contained in an edge route as a
path. Since the graph is simple, we can assume without loss of generality that y # w.
Therefore port(w?) and port(7z) differ in every coordinate. It follows that for every

dimension ¢ except for a and b, there is an i-segment on the paths from w to s, and
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y to p. This implies there is at most one segment on the paths r to v, and if there
is such a segment then it is a b-segment. Similarly, there is at most one segment on
the path ¢ to z, and if there is such a segment then it is an a-segment. This implies
that v and z are coplanar, and since the vertices are in general position, v = z. By
the construction used in the previous section, edge routes are assigned unique ports
on a face, and no two edge routes on the same face can intersect. So the paths from
r to v (= z) and from ¢ to x (= v) have exactly one segment, and the edge crossing
occurs between the second segments of arcs incident to a common vertex, as shown
in Figure 7.3(b). Each such crossing can be removed by swapping the ports assigned
to these arcs, and rerouting the corresponding edge routes as shown in Figure 7.3(c).
We have the following algorithm for removing edge route crossings in general position

orthogonal drawings.

Algorithm 7.2. BoxX-DRAWING REMOVE EDGE CROSSINGS

Input: D-dimensional general position orthogonal drawing of a graph G (possibly with
crossings)

Output: D-dimensional general position orthogonal drawing of G (without crossings).

A+ A(G)
while A # () do
Choose 710 € A.
Set A + A\ {7w}.
if 7w intersects some other arc #7 then
Swap the ports at v assigned to 7w and .
Reroute the edge routes vu and vw as described above.
Set A + AU {vd, 0w}
if D =3 then
Set A «+ AU {u0,wd}.
end-if
end-if

end-while
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Lemma 7.4. The algorithm BOX-DRAWING REMOVE EDGE CROSSINGS removes all

crossings from the given general position orthogonal box-drawing in O(mnA) time.

Proof. We shall prove that at all times the set A contains all arcs which possibly
intersect some other arc. Initially this is true since A = A(G). As proved above, an arc
7w can only intersect another arc incident to v. Hence, if 7 does not intersect some
other arc o7, then 9 does not intersect any arc, and @ can be removed from A.

Suppose that 7 intersects some other arc o%. After swapping the ports assigned
to o4 and W all new edge crossings must involve 9% or ow (or @d or wo if D = 3).
By adding 9% and 9 (and @9 and w9 if D = 3) to A for re-checking, we maintain
the condition that A contains all arcs which possibly intersect some other arc. The
algorithm continues until A = (), at which point the drawing must be crossing-free.

For an arc 7w whose second segment is parallel to the i-axis, let I(vw) = |p — ¢,
where (u1,us,...,uy,) is the i-ordering of the vertices and v = u, and w = u,.

Now (7)) = O(n), so 3 s [(976) = O(mn). Each port swap between arcs v and
ot reduces [(vw) + [(v%). Hence there will be O(mn) port swaps. Therefore O(mn)
arcs are added to A, so O(mn) arcs are checked for crossings. To test if an arc intersects

some other arc takes O(A) time, so the algorithm takes O(mnA) time. O

The effect of a number of port swaps, all in the same plane, is shown in Figure 7.4.

A

¥

Vo
4

Yo
7

Figure 7.4: Rerouting crossing edge routes.
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Based on the above methods for port assignment and the elimination of edge cross-

ings we have the following result.

Lemma 7.5. Given a D-dimensional general position vertex layout, D-dimensional
general position arc-routing and the size of each vertex of a graph G, if for every vertex
v € V(Q) the surface;(v) > M;(v) for each i, 1 <1 < D, then a crossing-free assign-
ment of the ports on each vertex v to the arcs Ag(v) can be determined in O(mnA)

time. [l

7.1.4 Upper Bounds

We now establish upper bounds for the surface and volume of the bounding box of a
general position D-dimensional orthogonal box-drawing in terms of the size and shape

of the vertices. For each vertex v we denote the arithmetic, geometric and harmonic

means of ai(v),as(v),... ,ap(v) by at(v), a*(v) and a (v) respectively; i.e.,
1/D -1
1 . _ 1
at(v) = D Za’i(v)a ot (v) = H aj(v)] , a (v)=D Z m
1<i<D 1<i<D 1<i<D !

Obviously volume (v) = o*(v)?, and also,

surface (v) = 2 Z H a;(v)

1<i<D 1<j<D
i
=y O
1<i<D @;(v)
1
- 9 * D
o’ (v) Z a;(v)
1<i<D
2Da* (v)P

= (7.12)

The arithmetic, geometric and harmonic means of the dimensions of the bounding
box are denoted by 8T, B* and 5~ respectively. As in (7.12) we have,
2D ()"

5

It is well-known that, of the D-dimensional hyperboxes with fixed sum of side

surface ( bounding box ) = (7.13)

lengths, the D-dimensional hypercube has maximum volume and maximum surface
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area (see for example Kazarinoff [126]). Given a D-dimensional vertex v, consider the
hypercube C with the same sum of side lengths as v; i.e., C has side length o™ (v). We
define the surface aspect(v) to be the ratio of the surface(C') to the surface(v), and the
volume aspect(v) to be the ratio of the volume(C') to the volume(v). Clearly surface

aspect and volume aspect are both at least one. By (7.12) we have,

suriace v)P~la~

surface aspect (v) = surfface((f)) = (oz*(v)D ) , (7.14)
volume atw)\"”

volume aspect (v) = volluTe((g)) <a* (v))> (7.15)

Lemma 7.6. For a general position D-dimensional orthogonal box-drawing,

surface ( bounding box ) < n”~? Z surface aspect (v) x surface (v)

v
Proof. Since the surface aspect of the bounding box is at least one, by (7.14) applied

to the bounding box,
BP/p~ < (BT
so by (7.13),
D(B*)"

2
surface ( bounding box ) = B < 2D (B*

)D—l .

The average side ‘length’ of the bounding box is

1
=D zj:;ai(v)

So the surface of the bounding box is

1 D—1 1 D—1 D—1
D <5 Zzai(v)> = 2D (Z 5 Zai(v)> = 2D (Z a+(v)> :

By the Cauchy-Schwarz inequality,

D—1
2D (Z a+(v)> < 2D7LD*22:oz+(v)D*1
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() (2)

= nP~2 Z surface aspect (v) x surface (v) . O

v

It is easily seen that this bound is tight for D = 2, for same-sized hypercube draw-
ings and in the case of n = D pairwise perpendicular lines. The proof of the following

bound on the volume of the bounding box is similar to that of Lemma 7.6.

Lemma 7.7. For a general position D-dimensional orthogonal box-drawing,

surface (v) > b/(b-1)

volume ( bounding box ) < nP! zv: volume aspect (v) X < %)

Proof. The volume of the bounding box is

9P < (84"

D
- e
1<i<D v
D
- |z
v 1<i<D

D
= Zoﬁ(v)) .

By the Cauchy-Schwarz inequality,
D
(Z a+(v)> <npP-t Z at(v)?
v v
+ D
_ . D-1 « (’U) % D
=n zvz(a*(v)> a*(v)

=Pt Z volume aspect (v) X volume (v)
v

Of the D-dimensional hyperboxes with fixed surface S, the cube with side length
(§/2D)'/(P=1) has maximum volume [126]. So

surface (v) ) b/(b=1) 0

1 bounding box ) < n”~! 1 t
volume ( bounding box ) < n Zvo ume aspect (v) x < 5D

v
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Corollary 7.1. For a general position D-dimensional orthogonal box-drawing,

surface ( bounding box ) < n”~2 Z aspect ratio (v) x surface (v)

v

surface (v) b/(b-1)
2D

volume ( bounding box ) < n”~! Z aspect ratio (v) x (

Proof. Of the D-dimensional hyperboxes with fixed sum of side lengths, the line has
minimum surface and minimum volume, so the surface aspect and volume aspect of a
line is maximum (for the D-dimensional hyperboxes with fixed sum of side lengths).
The surface aspect and volume aspect of a line are no more than its aspect ratio. The

result follows from Lemma 7.6 and Lemma 7.7. O

The next result will be used to establish a bound on the bounding box volume for

the orthogonal graph drawing algorithms presented in Sections 7.2 and 7.3.

Theorem 7.2. A d-degree-restricted general position D-dimensional orthogonal box-

drawing with each vertex having aspect ratio at most a has

D/(D-1)
volume ( bounding box ) < a <nD_2 (dﬁm + o(m)>>

Proof. By Corollary 7.1,

surface (v) D/(D=1)
volume ( bounding box ) < nP~ IZ < )

By the Cauchy-Schwarz inequality,

f D/(D-1)
volume ( bounding box ) < an”~ ( (D=1)/D—1 Z surface ( )

_ amD-tpoi/(o-n) [ surtace (v)
an”"'n (XU: 5 )

£ ( ) D/(D-1)
_ anP(0-2/(0-) (g suface (v)
o ( 2D )

v

f D/(D—1)
4 < D 2z:surace )

Since the drawing is d-degree-restricted,

DI(D-1)
volume ( bounding box ) < a (nD2 5 d- deg(v);;)o (deg(v))>
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:a<nﬂﬁ<%¥+omm>>MUFU. 0

7.2 Layout-Based Algorithms

In this section we describe our layout-based approach for determining general position
D-dimensional orthogonal drawings, for some constant D > 3. In Section 7.2.1 we
present an algorithm for determining an arc-routing given an arbitrary general position
vertex layout. We derive algorithms using fixed, balanced and diagonal vertex layouts

in Sections 7.2.2, 7.2.3 and 7.2.4.

7.2.1 Arc-Routing Algorithm

We now present an algorithm for determining an arc-routing of A(G) with respect to
a given general position vertex layout of a graph G. To represent the colouring of
A(G) we vertex-colour a graph H with vertex set V(H) = A(G). We represent a D-
dimensional orthant by the corresponding set of D pairwise non-opposite directions.
For a given vertex v and direction d, the set of orthants {T" : d € T'} in direction d from
v is denoted ®2(v). We denote the set of arcs 7 at a vertex v with w in orthant T
by Ac(v)(T); i.e.,
Ag()(T) = [ Aa(v)(d)

deT

Algorithm 7.3. D-DIMENSIONAL GENERAL POSITION ARC-ROUTING

Input: e graph G

e D-dimensional general position vertex layout of V(G)

Output: D-dimensional general position arc-routing of A(G)

1. For each edge vw € E(G), insert the edge {90, w5} to E(H) (called an ‘r'-edge).

2. For each vertex v € V(G) and for each orthant T relative to v,



CHAPTER 7. GENERAL POSITION BOX-DRAWING 160

(a) Partition the arcs in Ag(v)(T) into sets Q1,Q2,...,Qk, so that |Q;| = D,
1 < j < k (see Figure 7.5).
(b) Add a clique (called ‘c’-edges) to E(H) between the vertices of H corre-

sponding to the arcs in Q;, 1 < j < k.

3. Determine a D-colouring of A(G) from a vertex-colouring of H with D colours.

(Xf’Y+’Z7)— (X+,Y+,Z+)-

ortha% »\,\orthant

|
|
|
N | s
AN | / _
(X—, Y+, Z+)- N > | < e (X*, Y+, Z27)-
' ' o \ ‘ 7 orthant
orthant Y \\ ‘ /s
AN | Ve
o A

|
|
|
(X 7€ 7Z )_S\ /// } \\ }(X+7Y—7Z+)_
orthant P I>’—’ } AN orthant
|
|
|

(X_,Y_,Z+)— (X+7Y_JZ_)_
orthant orthant

Figure 7.5: Partitioning of A (v) and construction of H for D = 3.

Lemma 7.8. The algorithm D-DIMENSIONAL GENERAL POSITION ARC-ROUTING

determines an arc-routing of A(G) in O(D(m 4+ n)) time such that for each vertex

v e V(G),
23 M;(v) < deg(v) +c(v) + (D —1)2" .

Proof. A vertex of H is incident with one ‘r’ edge and at most D — 1 ‘¢’ edges. So the
maximum degree A(H) < D, and since the complete graph Kp.1 € H, by Brooks’
Theorem [47], H is vertex D-colourable. The proof of Brook’s Theorem due to Lovasz

[147] and simplified by Bryant [49] describes an algorithm for finding a vertex-colouring
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of H with at most A(H) colours in O(|E(H)|) = O(Dm) time. The vertex-colouring
of H determines a D-dimensional routing of A(G). Since {vw,wd} € E(H), reversal
arcs are coloured differently, so the routing is an arc-routing.

For each orthant T relative to a vertex v and in each partition of Ag(v)(T'), there is
at most one arc 9w coloured i, 1 < i < D. Therefore, for each dimension i, 1 <i < D,

we have the following bounds on the number of arcs 7 coloured i with w in direction

it from v.
S {%‘ < [Ag)@E]] < > PAG(U,#W
TedP (v) TedP (v)
So,

% (( S |Ac()(T) ) — (D - 1)<I>iD(v))
TedP (v)

< Ag(v)(@)[i] | <
% (( S |Ac()(T) ) + (D - 1)<I>?(v)>
Te®P (v)

It follows that

% (si(v) — (D —1)2P71) <|Aa(v) ()] | < % (si(v) + (D —1)2P~1)
Similarly,
% (pi(v) = (@ = 1)2771) < |Aa()(i7)lil| < % (pi(v) + (D = 1)2°7)

Since M;(v) = max {|Ag(v){i)[7] |, |Ag(v) (i )[7] |},

1

D (max {s;(v),pi(v)} — (D —1)2°7")

% (max {s;(v), pi(v)} + (D — 1)2D_1)
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M;(v) <

(5 deeto) + o) + (0 - 12”1} . (ras)

Sl= A

Summing over all dimensions, we obtain,
S M) < 3 (5 (deslo) + eiw) + (D - 1)2°7!
- 2 = D 2 (3
2> M;(v)
i

23 M;(v) < deg(v)+c(v) + (D —1)2" . O

3

IN

Z% (deg(v) + ¢i(v) + (D — 1)2D)

3

7.2.2 Fixed Vertex Layout Drawings

We now derive an algorithm for a fixed general position vertex layout.

Algorithm 7.4. FIXED GENERAL POSITION D-DIMENSIONAL BOX-DRAWING

Input: e graph G.

e D-dimensional general position vertex layout of V(G).

Output: layout-preserving D-dimensional orthogonal box-drawing of G.

1. Determine an arc-routing with Algorithm 7.3 D-DIMENSIONAL GENERAL PoOsI-

TION ARC-ROUTING.

2. Apply Algorithm 7.1 D-DIMENSIONAL GENERAL POSITION BOX-DRAWING.

Theorem 7.3. The algorithm FIXED GENERAL POSITION D-DIMENSIONAL BoOX-
DRAWING determines a layout-preserving D-dimensional orthogonal boz-drawing of G

in O(mnA) time such that:
e Fach edge route has D — 1 bends.
e Fach vertex is 2-degree-restricted

e The aspect ratio of each vertex v is at most 2+ o (deg(v)).
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e The bounding box volume is O((nD_Qm)D/(Dfl))

Proof. By (7.16) and since ¢;(v) < deg(v),

1 (%deg(e))—(D—l)zD—l) < M) < &

D
So for all 4,7, 1 <14,7,< D,

deg(v) + (D —1)2P~1
3 deg(v) — (D —1)2P~!
2deg(v) + (D —1)2P
deg(v) — (D —1)27
2 (deg(v) — (D — 1)2P) + 3(D —1)2”
- deg(v) — (D —1)2P
3(D —1)2P
deg(v) — (D —1)2D

<

It follows from Theorem 7.1 with

3(D —1)2P

flo) =2+ deg(v) — (D —1)2P

that

(deg(v) + (D —1)2P~1) .

163

- (D-2)/(D-1)
3(D — 1)2P b2
surface (v) < 2ZM + < + eg(v)—(D—1)2D> ZMZ .

For constant D we have

7

(D-2)/(D-1)
surface (v) < 2 Z M; + (24 O(deg(v)™") (Z M) . (7.17)

By Lemma 7.8 and since ¢(v) < deg(v) with D a constant we have
23 M;(v) < 2deg(v) +0(1) .
Hence,

surface (v) < 2deg(v) + O(1) (2+ O(deg(v)*l))D_2 (deg(v) + 0O(1)

IN

2deg(v) + O (deg(v)(D_Q)/(D_1)>

< 2deg(v) + o(deg(v)) .

)(D—Q)/(D—l)
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So v is 2-degree-restricted. Suppose a;(v) and «;(v) are the maximum and minimum

of {a1(v), az(v),...,ap(v)}, respectively. Then

aspect ratio (v) = a;(v)/aj(v)

= | @) [T ax(o) | / [ ;o) I] ex(®)

k#i,j k#1,j

= Hak(v) / Hak(v)

k#j ki
surface ;(v)
surface;(v)

Now,

surface ;(v) < M;(v) + O(f(v)D_Q) Mj(v)(D—Q)/(D—l)

< Mj(v) + (24 0(deg(v)™"))" > M;(v)P=2/(P=1)
Since M;(v) < & (deg(v) + (D — 1)2P1), for constant D we have
surface ;(v) < %deg(v) 4 O(deg(v)(D—Q)/(D—1)>

Now surface ;(v) > deg(v)/2D, so

% deg(v) + O(deg(v)(D”)/(D*l))
5p deg(v)

- 2 deg(v) + O(deg(v)(P=2/(P=1))

B deg(v)

< 2+ o(deg(v)) .

aspect ratio (v) <

Hence the aspect ratio of v is 2 4+ o(deg(v)). The volume bound follows immediately
from Theorem 7.2.

Applying Algorithm D-DIMENSIONAL GENERAL POSITION BOX-DRAWING, which
takes O(mnA) time, is the most time-consuming step of the algorithm. So Algorithm

FIXED GENERAL POSITION D-DIMENSIONAL BOX-DRAWING takes O(mnA) time. [

7.2.3 Balanced Vertex Layout Drawings

We initially show that the complete graph provides a lower bound for the problem
D-DIMENSIONAL GENERAL POSITION VERTEX LAYOUT.
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Lemma 7.9. In any D-dimensional general position vertex layout of K, there is a

verter v with

deg(v)

c(v) > 5

Proof. By Lemma, 4.1, the total cost of a D-dimensional layout of K,, is

1 1 1 5 n?
S EYaw = X Va0 = 53w = |5
v A 2 v 2
So even if each vertex has the same cost, there exists a vertex v with

s

n/2, if n is even;

(n? —1)/2n, if nis odd.

n—1

= ) O

The following algorithm provides a tight upper bound for the problem
D-DIMENSIONAL GENERAL POSITION VERTEX LAYOUT. It is based on the
algorithm for determining balanced 2-D general position vertex layouts presented in

Chapter 6.

Algorithm 7.5. BALANCED D-DIMENSIONAL GENERAL POSITION VERTEX LAYOUT

Input: graph G and positive integer D.

Output: D-dimensional general position vertex layout of G.

1. Determine a 2-D general position vertex layout, represented by X- and Y- ver-
tex orderings, with Algorithm 6.4 BALANCED 2-D GENERAL POSITION VERTEX

LAayour.
2. Set the i-ordering of the vertex layout to be the X-ordering for odd 7, 1 <4 < D.

3. Set the i-ordering of the vertex layout to be the Y-ordering for even 4, 1 <1¢ < D.
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Theorem 7.4. The algorithm BALANCED D-DIMENSIONAL GENERAL POSITION VER-
TEX LAYOUT determines a D-dimensional general position vertex layout of G in

O(D(m 4+ n)) time such that for each vertezx v,
D/2
c(v) <1+ % deg(v) .

Proof. For each vertex v and each ordering i, 1 < i < D, the cost ¢;(v) < s(v) +1if 4

is odd, and ¢;(v) < p(v) + 1 if ¢ is even. So

)< 35 (|5] o+ 0+ | 3] 6o+ )
= % <_§_ deg(v) + ([g-‘ — {§J> s(v) + D)
< % <_§_ deg(v) + D)
=1+ % deg(v)

By Theorem 6.2, a balanced 2-D vertex layout can be determined in O(m + n) time,
so algorithm BALANCED D-DIMENSIONAL GENERAL POSITION VERTEX LAYOUT takes

O(D(m +n)) time. O

For a D-dimensional general position vertex layout of K,, the upper bound provided

by Theorem 7.4 is

[D/2] (n+1)/2, if D is even;

clv) < 1+ D deg(v) =

1+ (n—1)(D+1)/2D, if D is odd.

For even D, the difference between this upper bound and the lower bound of
Lemma 7.9 is at most 1. For odd D, the difference between the upper and lower
bounds is at least n/2D. It is an open problem to establish tight bounds on max, c(v)
in the case of odd D. We now derive results for general position orthogonal graph

drawing based on a balanced vertex layout.

Algorithm 7.6. BALANCED GENERAL POSITION D-DIMENSIONAL BOX-DRAWING

Input: graph G.

Output: D-dimensional orthogonal box-drawing of G.




CHAPTER 7. GENERAL POSITION BOX-DRAWING 167

1. Determine a general position vertex layout with the BALANCED D-DIMENSIONAL

GENERAL POSITION VERTEX LAYOUT algorithm.

2. Determine an arc-routing with Algorithm 7.3 D-DIMENSIONAL GENERAL PoOsI-

TION ARC-ROUTING.

3. Apply Algorithm 7.1 D-DIMENSIONAL GENERAL POSITION BOX-DRAWING.

Theorem 7.5. The algorithm BALANCED GENERAL POSITION D-DIMENSIONAL BOX-
DRAWING determines a D-dimensional orthogonal boz-drawing of G in O(mnA) time

such that:

e Fach edge route has D — 1 bends.

e Each vertex is 3/2-degree-restricted if D is even,

and (3/2 4+ 1/2D)-degree-restricted if D is odd.
e The aspect ratio of each vertex v is 2 + o (deg(v)).
e The bounding box volume is O((nD_Qm)D/(Dfl))

Proof. By Lemma 7.8, and since in a D-dimensional balanced vertex layout (Theo-

rem 7.4), for every vertex v, c(v) <1+ % deg(v), it follows that

2ZMZ~(v) < (1+%> deg(v) + O(1) .

By (7.17),

o(1) 2(D—2) (D-2)/(D-1)
surface (v) < QZMi + <2+ deg( )> (ZMJ
- v -

So surface (v) is at most

(- 5+ (0 285" (14 4 )

(1 + %) deg(v) + O(deg(v)(D_Q)/(D_1)>

_ (1+%> deg(v) + o(deg(v))

So v is 3/2-degree-restricted if D is even, and 3/2 + 1/2D-degree-restricted if D is odd.

IA

The bounding box volume, aspect ratio and time bounds follow from Theorem 7.3. [J
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7.2.4 Diagonal Vertex Layout Drawings

We now present two algorithms for producing orthogonal box-drawings with a diagonal

general position vertex layout.

Algorithm 7.7. DIAGONAL GENERAL POSITION D-DIMENSIONAL CUBE-DRAWING

Input: graph G.
Output: D-dimensional orthogonal hypercube-drawing of G.

1. Determine a D-dimensional diagonal vertex layout of G with corresponding vertex
ordering determined by Algorithm 4.1 MEDIAN PLACEMENT ORDERING (with

insertion ordering determined by the Algorithm 4.2 INSERTION ORDERING).

2. Determine an arc-routing with Algorithm 7.3 D-DIMENSIONAL GENERAL PoOsI-

TION ARC-ROUTING.

3. Apply Algorithm 7.1 D-DIMENSIONAL GENERAL POSITION BOX-DRAWING.

Theorem 7.6. The algorithm DIAGONAL GENERAL POSITION D-DIMENSIONAL CUBE-
DRAWING determines a D-dimensional hypercube-drawing in O(D(m + n)) time such

that:

e Fach edge route has D — 1 bends.
e FEach vertex is 2-degree-restricted.

e The bounding box volume is at most

D
D2 o\ /(0=
(TL+( 2D (3m+§)>

Proof. By Theorem 7.3 for arbitrary D-dimensional general position vertex layouts,

each vertex is 2-degree-restricted.
For each vertex v and dimension ¢, 1 < ¢ < D, when applying the algorithm D-

DIMENSIONAL GENERAL POSITION BOX-DRAWING,

i(v) = {(max{s(v),p(u)}y/wuw

D



CHAPTER 7. GENERAL POSITION BOX-DRAWING 169

Hence v is a cube, and for each dimension 7, the side length of the bounding box is

max {s(v), p(v 1/(b=1)
Zadv):Z{( {s(0).p >}> w

<nty (max{s%»p(v)})”“’—”
poa g~ max {s(0), p()}y | 7

<n+|(n Z D (by Cauchy-Schwarz)
D-2 1/(D-1)

<n+ (nD <37m + g)) (by Theorem 4.2)

The result for the bounding box volume follows.

For a diagonal layout, it is easily seen that there are no edge crossings (see Sec-
tion 7.1.3), so there is no need to apply Algorithm BOX-DRAWING REMOVE EDGE
CROSSINGS. Hence the algorithm DIAGONAL GENERAL POSITION D-DIMENSIONAL

CUBE-DRAWING takes O(D(m + n)) time. O

We now present an algorithm for producing D-dimensional orthogonal line-drawings

using a diagonal layout.

Algorithm 7.8. DIAGONAL GENERAL POSITION D-DIMENSIONAL LINE-DRAWING

Input: graph G.

Output: D-dimensional orthogonal line-drawing of G.

1. Determine a diagonal D-dimensional general position vertex layout of G with the
corresponding vertex ordering determined by Algorithm 4.1 MEDIAN PLACEMENT
ORDERING (with insertion ordering determined by Algorithm 4.2 INSERTION OR-

DERING).

2. Determine a (D — 1)-dimensional arc-routing with Algorithm 7.3 GENERAL Po-

SITION ARC-ROUTING.

3. Representing each vertex by a D-axis-parallel line, apply Algorithm 7.1

D-DIMENSIONAL GENERAL POSITION BOX-DRAWING.
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Theorem 7.7. The algorithm DIAGONAL GENERAL POSITION D-DIMENSIONAL LINE-
DRAWING determines a D-dimensional orthogonal line-drawing of G in O(D(m + n))

time such that:
e Fach edge route has D — 1 bends.
e FEach vertex has aspect ratio at most deg(v)/(D — 1) + O(1).
e FEach vertex is a 2-degree-restricted D-axis parallel line.

e The bounding box volume is at most

o ()

Proof. This proof is similar to that of Theorem 7.6. Algorithm D-DIMENSIONAL GEN-
ERAL POSITION ARC-ROUTING determines a (D —1)-dimensional arc-routing such that,

foreach i, 1 <: <D —1,

My(o) < [max {;(i)lp(v)w

We represent each vertex v by a line of length

_ [max{s(v),p(v)}
ap(v) = [ D—1 ]
max {s(v),p(v)} + D — 2
D-1 '

IN

The aspect ratio bound follows, and
surface (v) = 2((D —1Dap(v) +1) < 2(max{s(v),p(v)} +D —1) .

Since max {s(v),p(v)} < deg(v), the drawing is 2-degree-restricted and has height

Z max {s(v),p(v)} + D — 2

EU:O‘D(”) < . D—1
D -2 6m +n
—_— —_ by Th 4.2
< (D—1>n+4(D—1) (by Theorem 4.2)
P 4(D —2)n+6m+n
- 4(D —1)

(4D — T)n + 6m
4(D —1)

IA



CHAPTER 7. GENERAL POSITION BOX-DRAWING 171

The bounding box volume bound follows.

As was the case for cube-drawings with a diagonal layout, there is no need to
apply Algorithm 7.2 Box-DrRAWING REMOVE EDGE CROSSINGS. Hence the algorithm
DIAGONAL GENERAL POSITION D-DIMENSIONAL CUBE-DRAWING takes O(D(m + n))

time. O

7.3 3-D Routing-Based Algorithm

In this section we describe a routing-based approach to 3-D orthogonal box-drawing
in the general position model. The following algorithm determines a general position
vertex layout with respect to a predetermined arc-routing. Recall that for a given arc-
routing of a graph G, for each dimension 7 € {X,Y, Z}, the subgraph of ‘@ induced by
the arcs coloured i is denoted ﬁ[z]

Algorithm 7.9. 3-D GENERAL POSITION ROUTING-BASED LAYOUT

Input: e graph G

e 3-D general position arc-routing of A(G)

Output: 3-D general position vertex layout of V(G).

for i € {X,Y,Z} do
Determine the i-ordering
by applying Algorithm 4.1 MEDIAN PLACEMENT ORDERING to ﬁ[i].

end-for

If ﬁ[z] is acyclic for each dimension i € {X,Y, Z}, we say the arc-routing is acyclic,
and by Theorem 4.1, Algorithm 4.1 MEDIAN PLACEMENT ORDERING determines min-
imum cost orderings. We now describe algorithms for finding 2- and 3-colour acyclic

arc-routings.
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7.3.1 Acyclic Arc-Routing

To determine a 2-colour acyclic arc-routing of G, start with a vertex ordering < of
G, and for each edge vw € E(G) (v < w), colour the arc 5w with colour X and wo
with colour Y. Clearly <ﬁ[X] and <?[Y] are both acyclic. This approach is used
by Biedl and Kaufmann [30] for 2-D orthogonal graph drawing. Biedl [27] uses this
2-colour acyclic arc-routing method to determine the X- and Y-orderings of a 3-D
general position vertex layout; each vertex is then represented by a line parallel to the
Z-axis. The 3-D drawings produced have small volume (O(an)) but are inherently

two-dimensional. The following algorithm determines a 3-colour acyclic arc-routing

and is illustrated in Figure 7.6.

Algorithm 7.10. 3-CoLOUR AcycLIC ARC-ROUTING

Input: A graph G.

Output: A 3-colour acyclic arc-routing of G.

Determine a 1-balanced vertex ordering < of G using
Algorithm 4.3 1-BALANCED VERTEX ORDERING.
for each vertex v € V(G) do
for k=1,2,...,]c(v)/2] do
assign the arc W the colour Z
end-for
end-for
for each uncoloured arc 7% do

if v < w then assign to 9w the colour X else assign to 7w the colour Y

end-for

Lemma 7.10. Algorithm 3-COLOUR ACYCLIC ARC-ROUTING determines a 3-colour

routing of G.

Proof. Obviously if 97 is coloured X (respectively, Y) then the reversal arc w9 cannot

be coloured X (Y'). If 7 is coloured Z then @@ cannot also be coloured Z, as otherwise
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Figure 7.6: Routing arcs at a positive vertex v; k = [c(v)/2].

w would be opposite to v, and v could move past w under rule M1. By Lemma 4.5,
reversal arcs are coloured differently and the colouring is an arc-routing. Clearly <ﬁ[X ]
and ﬁ[Y] are acyclic. A positive vertex v cannot have an incoming arc wo € <?[Z]
with v < w as otherwise w could move past v under rule M1 (see Corollary 4.2).

Similarly for negative vertices. Hence ﬁ[Z] is also acyclic. O

Algorithm 7.11. ROUTING-BASED 3-D GENERAL POSITION BOX-DRAWING

Input: graph G.
Output: 3-D orthogonal box-drawing of G.

1. Determine a 3-D arc-routing of A(G) with Algorithm 7.10 3-COLOUR ACYCLIC

RoOUTING.

2. Determine a layout with Algorithm 7.9 3-D GENERAL POSITION ROUTING-

BASED LAYOUT.

3. Apply Algorithm 7.1 3-DIMENSIONAL GENERAL POSITION BOX-DRAWING.

Theorem 7.8. The algorithm ROUTING-BASED 3-D GENERAL PoSITION BoxX-

DRAWING determines a 3-D orthogonal boz-drawing in O(mnA) time such that
e FEach edge route has 2 bends.
e FEach vertex v is 2-degree-restricted and has aspect ratio at most deg(v)/4.

e The bounding box volume is
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Proof. For a positive vertex v,

dege 7 (v) = {CE—U)J , degizpy(v) = min{s(v),p(v)}, and degy(v) = "deg2(v)'| .

For each i € {X,Y,Z}, since ﬁ[X] is acyclic, by Theorem 4.1, in each of the
orderings of ﬁ[X ], ﬁ[Y] and ﬁ[Z] the cost ¢;(v) < 1, for every vertex v.

M) < [ |5 )H = )y o),

mln{s }-‘ mln{s ) p(v)} +0(1).

Malo) < [2 [%H - W0 .

So, for each positive vertex v and similarly for negative vertices,

Mx (v) + My (v) + Mz(v)
< deglv) | min{s().p)} | <)

4 o2 T ,
< ) + i {x(0).p(0) + dog(o) =2 (501600} 1 1y .1
_ degj;(v) +0(1)
By Lemma 7.3,

surface (v) < 2deg(v) +O(1) ,

and v is 2-degree-restricted. A vertex v has maximum aspect ratio if, in the locally
balanced vertex ordering, c(v) = 0, s(v) = 0 or p(v) = 0, in which case v is a line of

length deg(v)/4. Applying Theorem 7.2 we have

3/2
volume ( bounding box ) < # <n (gm + @ n))

Applying Algorithm D-DIMENSIONAL GENERAL POSITION BOX-DRAWING, which
takes O(mnA) time, is the most time-consuming step of the algorithm. So Algorithm

ROUTING-BASED 3-D GENERAL POSITION BOX-DRAWING takes O(mnA) time. [

The drawings produced by the above algorithm have smaller aspect ratio, on av-
erage, than those produced by the algorithm based on a 2-colour acyclic routing [27].
Furthermore, edges can be routed on all sides of a vertex. Hence the drawings are

orientation-independent.
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Chapter 8

Equitable Edge-Colouring

In this chapter we present and analyse a greedy algorithm for determining
a (non-proper) edge-colouring of a multigraph such that for each vertex the
colours are evenly distributed about the edges incident to that vertex. Such
a colouring is called an equitable edge-colouring. This algorithm is used
in subsequent graph drawing algorithms presented in Chapters 9 and 10 to

assign ports to edge routes.

8.1 Simple Graphs

We initially recall a result due to Hilton and de Werra [117] concerning equitable edge-
colourings of graphs. An edge-colouring of a graph G with k colours is said to be
equitable if for each vertex v € V(G) and each pair of colours i and j, the number of

edges incident to v coloured ¢ and j differ by at most one.

Theorem 8.1 ([117]). If k > 2 and G is a graph such that no vertex degree is a

multiple of k, then G has an equitable edge-colouring with k colours.
We have the following result.

Corollary 8.1. Ifk > 2 and G is a graph, then there is an edge-colouring of G with k
colours such that for each vertex v € V(G) and colour i, the number of edges incident

with v coloured i is at most [(deg(v) + 1)/k].

176
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Proof. For each vertex v € V(G) with degree a multiple of k, add a new vertex v’ and
a new edge vv’' to G to create a graph G'. G’ has no vertex with degree a multiple
of k, so G’ has an equitable edge-colouring with k colours. At each vertex v € V(G')

and colour i the number of edges incident to v coloured i is at most [degq (v)/k] <

[(degg(v) +1)/k]. m

8.2 Multigraphs

The result of Hilton and de Werra is dependent on the graph being simple. We now
present a greedy heuristic for edge-colouring multigraphs with k& colours. Given a partial
edge-colouring col : E(G) — {1,2,...,k} of a multigraph G we define
N(v) = [{vw € E(G) : vw is coloured} |
M(v) = max|{vw € E(G) : col(vw) =i} |
(3
Cv) = {ie{l,2,....k}: M(v) =|{vw € E(G) : col(vw) =i} |} .

M (v) is the maximum number of edges incident with v assigned the same colour,

and C(v) is the set of colour(s) most abundant at v.

Algorithm 8.1. QUASI-EQUITABLE EDGE-COLOUR

Input: multigraph G, positive integer k.

Output: edge-colouring of G with at most & colours.

for each edge vw € E(G) do
if C(v)UC(w) # {1,2,...,k} then Choose i € {1,2,...,k}\ (C(v) UC(w)).
else if C(v) = C(w) then Choose i € {1,2,...,k}.
else if |C(v)| > |C(w)| then Choose i € C(v) \ C(w).
else (|C(w)| > |C(v)|) Choose i € C(w) \ C(v).
Set the colour of vw to be 7.

end-for
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Theorem 8.2. The algorithm QUASI-EQUITABLE EDGE-COLOUR will determine, in
O(mQ) time, a edge k-colouring of a multigraph G, such that for every vertez v € V(G),

M(v)gmeTg(v)—l-l.

Proof. Firstly, observe that
N(v) > |C()] - M(v) . (8.1)

At each step of the algorithm the only vertex u for which M (u) can possibly increase
isv and w. So, for each vertex v we apply induction on N (v) with the following inductive

hypothesis.

if N(v) <t then M(v) < +1. (8.2)

The basis for the induction is trivial. Now, suppose that for N(v) = ¢, M(v) <
2N (v)/k + 1 and the next edge incident to v to be coloured is vw.

In the first case of the algorithm vw is coloured with a colour not in C'(v), so M (v)
does not increase. By (8.2) for N(v) = ¢, (8.2) holds for N(v) =1+ 1.

In the second case, C(v) = C(w) = {1,2,...,k}. By (8.1), N(v) > |C(v)|- M(v) =
k-M(v). So M(v) < N(v)/k <2(N(v)+1)/k + 1, and (8.2) holds for N(v) = ¢+ 1.

In the third case, C'(v)UC(w) = {1,2,...,k} and |C(v)| > |C(w)|. So |C(v)| > k/2.
By (8.1) N(v) > kM (v)/2, so M(v) < 2N(v)/k, and (8.2) holds for N(v) =¢+ 1.

In the fourth case, the edge vw is coloured with a colour not in C'(v), so M (v) does
not increase. By (8.2) for N(v) = t, (8.2) holds for N(v) =t + 1.

Upon termination of the algorithm N (v) = deg(v), so for every vertex v € V(G),
M (v) < 2deg(v)/k + 1.

We now analyse the time complexity of the algorithm. It is easily seen that
the iteration of the algorithm corresponding to the colouring of the edge vw takes

O(deg(v) + deg(w) + k) time. So the algorithm takes

Z O(deg(v) + deg(w) + k) = O| mk + Z deg(v)?
vweE(Q) veV(QG)

time. We now prove that for non-negative numbers dy, do, ..., d,,

n n 2
dd < (Z di) . (8.3)
=1 =1
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The result will follow. We proceed by induction on n. For n = 1, equality holds in

(8.3). Assume that (8.3) holds for all ny < n. Then

n n—1
Yodi = di +d,
i=1 i=1

IN

n—1 2

Z di> + d2 (by induction)
i=1

n—1 2 n—1
Z di) + d2 +2d, (Z di)
i=1 i=1

(159

=1

IA

So the time taken by the algorithm is

2
O| mk + (Z deg(v)) = O(mk + 4m?)
If & > m then trivially there is an edge m-colouring of G with the required properties,

so we can assume that & < m. Hence the algorithm takes O(mQ) time. O

Finally, we present a well-known algorithm for the case of k& = 2, which provides
an improvement on the previous result. This technique has been employed for graph

drawing in [30, 31] for example.

Algorithm 8.2. 2-EDGE-COLOUR

Input: multigraph G.
Output: edge 2-colouring of G.

1. Pair the odd degree vertices of GG, and add an edge to G between the paired

vertices. All vertices now have even degree.

2. Follow an Eulerian tour of G, and colour the edges alternately with different

colours.
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Theorem 8.3. The algorithm 2-EDGE-COLOUR will, in O(m) time, determine a edge

2-colouring of a multigraph G, such that for every vertex v € V(G),

]y

M) < [

Proof. In any graph there is an even number of vertices with odd degree, so the first
step of the algorithm is valid. An undirected graph has an Eulerian tour if and only
if every vertex has even degree. See Even [90] for an algorithm for finding an Eulerian
tour in O(m) time.

At each vertex v, there is at most one ‘extra’ edge incident with v added in Step 1.
If the Eulerian tour has odd length then the first and last edges in the tour will receive
the same colour. Therefore, at every vertex v, there will be at least [deg(v)/2] — 1
pairs of edges incident with v receiving different colours. The remaining (< 2) edges
incident to v may receive the same colour, so the maximum number of edges incident

with v and receiving the same colour is [deg(v)/2] + 1. O



Chapter 9

The Coplanar Vertex Layout
Model for Three-Dimensional

Orthogonal Graph Drawing

In this chapter we present algorithms for producing 3-D orthogonal draw-
ings in the coplanar verter layout model; i.e., there exists a single grid-
plane intersecting every vertex. We present three algorithms, for producing
(1) 1-bend line-drawings, (2) drawings with optimal volume, and (3) cube-
drawings with optimal volume. A disadvantage of this model is that the

drawings produced are inherently orientation-dependent.

In this chapter we present algorithms for determining coplanar 3-D orthogonal
drawings; i.e., there exists a grid-plane intersecting every vertex. Section 9.1 describes
an algorithm which represents the vertices by Z-lines positioned in a 2-D diagonal, and
produces 1-bend line-drawings based on a book embedding of the graph.

The algorithms in the remainder of the chapter are a product of joint research with
Therese Biedl and Torsten Thiele [34]. In Section 9.2 we present an algorithm which
positions the vertices in O(y/n) x O(y/n) grid, and produces line-drawings with optimal
volume for regular graphs, and four bends per edge route. A variation of this algorithm
produces 3-bend drawings with an increase in the volume. Our algorithm presented in

Section 9.3 positions the vertices in a O(\/m + n) X O(\/m + n) grid, and determines

181
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degree-restricted cube-drawings with O((m + n)3/ 2) volume, which is optimal. This
algorithm, which can be considered a generalisation of the CoMPACT algorithms of
Eades et al. [86, 87] for 3-D point-drawing, is an improvement on the line-drawing

algorithm of Wood [223].

9.1 1-Bend Box-Drawing Algorithm

Biedl et al. [32, 33] construct 3-D orthogonal drawings of K,,, and hence for any simple
graph, with O(n3) volume and one bend per edge route. This construction, called the
LIFTING-EDGES algorithm by Biedl [27], represents the vertices as Z-lines of length
n positioned in a 2-D diagonal layout. Each edge is routed with one bend in some
Z-plane. As mentioned in [32, 33], the assignment of Z-planes to edge routes is closely
related to the assignment of pages to edges in book embeddings. The following algo-
rithm, illustrated in Figure 9.1, exploits a book embedding to construct 3-D orthogonal

drawings with one bend per edge route.

Algorithm 9.1. COPLANAR 1-BEND DRAWING

Input: n-vertex m-edge multigraph G' with genus g.

Output: 3-D orthogonal drawing of G.

1. Find a book-embedding of G using the algorithm of Malitz [150] (see Section 1.3).
Suppose (v1,v2,...,vy,) is the spine ordering and page : F(G) — {1,2,...,P} is
the page numbering with P = O(\/g)

2. Orient each edge v;v; € E(G) from left to right in the ordering (vi,va,...,vp);

i.e., if : < j then the edge v;v; is directed from v; to v;.

3. Denote by GF the subgraph of G consisting of the edges in any page p €
{1,2,...,[P/2]}, and by G the subgraph of G consisting of the edges in the
remaining pages. (Edges in G will be routed through grid-points (z,y, z) with

x >y, and edges in G will be routed through grid-points (z,y, z) with y > .)

4. Determine edge-colourings of G and of G, each with [2m/n] colours, us-

ing Algorithm 8.1 QUASI-EQUITABLE EDGE-COLOUR. Suppose col : E(G) —
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Figure 9.1: Coplanar 1-bend drawing with a diagonal vertex layout.

{1,2,...,[2m/n]} is the resulting edge-colouring of G.

5. For each vertex v € V(G), suppose M t%(v) (respectively, M*1(v)) is the max-
imum number of outgoing edges o € E(GF) (v € E(G")) on the same page
and receiving the same colour. Similarly, M ~%(v) (respectively, ML (v)) is the
maximum number of incoming edges W € E(GY) (wo € E(G")) on the same

page and receiving the same colour.
6. For each vertex v; € V(G), set

Mx (v;) = max {M*"(v;), M %(v;)}, and

My (v;) = max{M+R(vi),M_L(vi)} .
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Represent v; by the
Pl[2
Mx(’vi) X My(vi) X ’V—-‘ ’V—m-|

box with maximum corner at

St Yowmvton, |5 |22

J<i J<i

(Note that for vertices v with degree at most the average degree 22, M (v) and

My-(v) will probably be 1, and hence v will be represented by a line.)

7. For each vertex v € V(G), for each page p € {1,2,...,[P/2]}, and for each colour
c€{1,2,...,[2m/n]}, suppose {91, 013, ..., 0w} } are the outgoing edges at v
in G® which are coloured ¢ and appear in page p, where w; < wy < --- < wy, in
the spine ordering. As illustrated in Figure 9.1, assign the X T-ports at v with
Z-coordinates of (p — 1) [2m/n] + ¢ to these edges, such that, if ¢ < j then the
Y-coordinate of the port assigned to ¥0; is less than the Y-coordinate of the port
assigned to Wj. Now suppose {Wi0, W0, . .., W0} are the incoming edges at v in
G which are coloured ¢ and appear in page p, where wy, < wj,_; < -+ < wj in the
spine ordering (taking care to consistently order parallel edges {vw} at v and w;
see Figure 9.1). Assign the Y -ports at v with Z-coordinates of (p—1) [2m/n]+c
to these edges, such that, if ¢ < j then the X-coordinate of the port assigned to
w;0 is less than the X-coordinate of the port assigned to W

8. For each edge o € E(GT), if 7 has been assigned ports at v and w with
coordinates of (2, ¥y, 20) and (T, yw, 20) respectively, then route ¥ with one

bend as follows:
(x’uay’UaZO) — (x’w’y’UaZO) — (xunyuHZO)

9. In an analogous manner to the case for edges in G%, route edges vw € E(G")

using Y "-ports at v and X -ports at w, as illustrated in Figure 9.1.




CHAPTER 9. COPLANAR 3-D DRAWING 185

Theorem 9.1. The algorithm COPLANAR 1-BEND DRAWING determines an orthog-
onal box-drawing of G with one bend per edge and O(nm\/g) volume, where g is the
genus of G.

Proof. By construction each edge has one bend, and edge routes are assigned unique
ports, so two X-segments do not intersect, and two Y-segments do not intersect. An
X-segment and a Y-segment can only intersect if they have the same Z-coordinate.
Two edges have the same Z-coordinate if and only if they are on the same page of the
book embedding and they receive the same colour in Step 4. Hence the X-segment
and the Y-segment of edges on different pages of the book embedding or receiving a
different colours, will not intersect. By the method used in Step 7 for assigning ports
to edges on the same page and receiving the same colour, such edge routes will not
intersect. Hence no two edges routes intersect.

In the edge-colouring of G, the maximum number of edges incident to a vertex
v receiving the same colour, by Theorem 8.2, is at most 2deggr(v)/ [2m/n] +1 <
ndegs(v)/m + 1. So each of MTE(v), M~R(v), M+ (v) and M~L(v) is at most
ndegq(v)/m+1, and hence Mx (v) and My (v) are at most n degq(v)/m+1. The width
and depth of the bounding box is therefore at most ), (ndegg(v)/m +1) = 3n. The
height of the bounding box is [P/2] [2m/n] = O(m./g/n). So the bounding box has
volume O(nm\/g) O

Note that smaller drawings can be produced in practice by the following modifi-
cation to algorithm COPLANAR 1-BEND DRAWING. For each page p, determine an
edge-colouring (still with [2m/n] colours) of the subgraph of G consisting of the edges
in page p such that, for each vertex v, there at at most deg(v)n/m edges incident to v
receiving the same colour. Then we need only allocate as many layers for the routing
of edges in page p, as there are used colours.

Since the genus of a multigraph is the same as the genus of the underlying simple
graph, and since the genus of a graph is at most m, our volume bound is
O(min {an,nm?’/Q}). Note that, for the complete graph K,,, this volume bound
is O(n4), which is more than the volume of the construction of K, due to Biedl et al.

[32, 33]. For sparse graphs with m = O(n4/ 3) the above algorithm produces drawings
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with less volume than the K,, construction. The following open problem is of interest.

Open Problem 9.1. Does every graph have an orthogonal box-drawing with one bend
per edge and O(n?\/m) volume?
9.2 Optimal Volume Line-Drawing Algorithm

The following algorithm for producing coplanar orthogonal line-drawings represents
the vertices by Z-lines in a O(y/n) x O(y/n) grid. Edges are routed with four bends in

layers, each consisting of two Z-planes, as illustrated in Figure 9.2.

7

Figure 9.2: 4-bend edge routes.

Algorithm 9.2. OPTIMAL VOLUME LINE-DRAWING

Input: n-vertex m-edge multigraph G with maximum degree A.

Output: 3-D orthogonal line-drawing of G.

1. Assign to each vertex v € V(G) a unique pair

(zosyw) € {1,2,...,[v/n]} x {1,2,..., [v/n]} .
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2. Pair the odd degree vertices of G and add an edge between the paired vertices.
Orient the edges of G' by following an Eulerian tour of G. Remove the inserted

edges.

3. Construct a graph H with V(H) = E(G), and add an edge to H between the
vertices corresponding to oriented edges 7% and Z7 if v is in the same column as

z, or w is in the same row as y.

4. Vertex-colour the graph H using the algorithm GREEDY VERTEX-COLOUR with
colours {0,1,...,A(H)} (see Section 2.2). For each edge vw € E(G), if the
vertex of H corresponding to vw is coloured 7 € {0,1,...,A(H)} then set the

height h(vw) < 2i. Suppose M = max,,ecp(q) h(vw) + 1.
5. Represent each vertex v by the line

(224, 2y, 0) — (234, 2yy, M) .

6. For each oriented edge v € F(G), construct the following edge route for vw, as
illustrated in Figure 9.2.
(224, 2y0, h(m)) — (21, + 1,2y, h(m)) — 27y + 1,2y, + 1, h(m)) -
(27 + 1,2y, + 1, h(970) + 1) — (224, 2yy + 1, h(570) + 1) — (274, 2y, h(0) + 1)

Theorem 9.2. The algorithm OPTIMAL VOLUME LINE-DRAWING determines a 3-D
orthogonal line-drawing of G in O(mAy/n) time with O(An3/2) volume and four bends

per edge route.

Proof. In each edge route the first, third and fifth segments have unit length. An edge
crossing involving a unit-length segment must also involve one of the adjacent segments
in the edge route, so to show that the drawing is crossing-free, we need only consider
potential intersections between the second and the fourth segments of the edge routes.
These segments are parallel to the Y- and X-axes, respectively. Such Y-segments have
even Z-coordinate, and such X-segments have odd Z-coordinate, so an X-segment does

not intersect a Y-segment. For two X-segments to intersect, they must have the same
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height and be routed in the same row. Since oriented edges destined for vertices in
the same row receive different heights, no two X-segments intersect. Similarly, for two
Y -segments to intersect, they must have the same height and be routed in the same
column. Since oriented edges starting at vertices in the same column receive different
heights, no two Y-segments intersect.

The vertex in H corresponding to an edge v € E(G) has degree

Z deg(z) + Z deg(y) .

z in row(v) y in row(w)

So the maximum degree of H is at most 2A [y/n]. Hence the maximum height of an
edge route is 4A [{/n] +1 = O(Ay/n). Since the width and depth of the drawing are
both 2 [y/n], the bounding box has O(An?/?) volume.

The greedy vertex-colouring of H takes O(|E(H)|) time. Since |V (H)| = m and
A(H) < 2A[y/n], the algorithm takes O(mAy/n) time. O

For regular graphs, the above algorithm produces drawings with O(m+/n) volume,
which by Theorem 3.2 is optimal for any 3-D orthogonal graph drawing. By drawing
vertices of large degree separately, and using a particular layout of the remaining ver-
tices, a modification of the above algorithm achieves this optimal bound for all graphs
(see [34]).

If we eliminate the middle segment from each edge route used in Algorithm 9.2
OPTIMAL VOLUME LINE-DRAWING, and assign each edge a unique height then we

obtain the following result.

Theorem 9.3. A 3-D orthogonal line-drawing of a multigraph G can be determined in

O(m) time with O(nm) volume and three bends per edge route. O

This algorithm is particularly appropriate for multilayer VLSI as there are no ver-
tical edge segments, which are called cross-cuts; see [2].
9.3 Optimal Volume Cube-Drawing Algorithm

In the following algorithm for producing coplanar orthogonal drawings, vertices are

initially represented by squares in the (Z = 0)-plane, and their positions are determined
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by an O(\/m + n) X O(\/m + n) square-packing. Vertices are then extended in the Z
dimension to form cubes, and edges are routed either above or below the vertices.
By Theorem 3.2, the bounding box volume of O((m +n)3/ 2) is optimal for degree-

restricted orthogonal box-drawings with bounded aspect ratio (assuming m = Q(n)).

Algorithm 9.3. OpPTIMAL VOLUME CUBE-DRAWING

Input: n-vertex m-edge multigraph G.

Output: 3-D orthogonal cube-drawing of G.

1. Determine an edge 2-colouring of G using Algorithm 8.2 2-EDGE-COLOUR. Sup-

pose the induced subgraphs are G™ and G~, and for each vertex v € V(G) set
M (v) = max {degg+(v),degg- (v)} -
Orient the edges of G by following the Kulerian tour used in Algorithm 8.2.

2. For each vertex v € V(@G), initially represent v by a square S, of size
(2 [\/M(v)-| +2) X (2 [\/M(v)-| +2)

3. Position the squares {S,:v € V(G)} in the (Z = 0)-plane with the square-

packing algorithm of Kleitman and Krieger [127].

= Unused
space in square-
packing.

= Vertices after
Step 4.

Figure 9.3: Square packing.
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4. For each vertex v € V(G), let (xo,y0,0) be the grid-point in S, with minimum

even X-coordinate and minimum even Y-coordinate. Replace S, by the

(o [V 1) o [T 1) o ] -1
cube with minimum corner at (:1:0, Yo0,2 — 2 [ M(v)-|> (see Figure 9.3).

5. Assign each edge vw € F(G") unique Z"-ports at v and w both with even X-

coordinate and even Y-coordinate.

6. Construct a graph H with V(H) = E(G™), and add the edge {vw,zy} to F(H)
if the port assigned to vw at v is in the same column as the port assigned to zy
at x, or the port assigned to vw at w is in the same row as the port assigned to

zy at y.

7. Vertex-colour the graph H using the algorithm GREEDY VERTEX-COLOUR with
colours {1,2,...,A(H) + 1} (see Section 2.2). For each vertex v € V(H) coloured

i corresponding to an edge vw, set the height h(vw) + 1.

8. For each oriented edge vw € E(GT), construct an edge route for vw as follows.
Suppose the ports on v and w assigned to vw have coordinates (vx,vy,0) and
(wx,wy,0), respectively. Route the edge vw with one of the following four or six

bend routes, as illustrated in Figure 9.4.

e Ux = wy:
(vx,vy,0) = (vx,vy,2h(vw)) = (vx + 1, vy, 2h(vw)) —
(vx + L, wy, 2h(vw)) — (vx,wy,2h(vw)) — (vx,wy,0)
o vy = wy:
(vx,vy,0) = (vx,vy,2h(vw) + 1) = (vx,vy + 1, 2h(vw) + 1) —
(wx,vy + 1,2h(vw) + 1) = (wx, vy, 2h(vw) + 1) = (wx, vy, 0)
e vx # wx and vy # wy:
(vx,vy,0) = (vx,vy,2h(vw)) — (vx + 1,vy, 2h(vw)) —
(vx + 1, wy + 1,2h(vw)) = (vx + 1,wy + 1,2h(vw) + 1) —

(wx,wy + 1,2h(vw) + 1) = (wx,wy, 2h(vw) + 1) = (wx,wy,0)
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Figure 9.4: Routing edges above the plane Z = 0.

9. Repeat Steps 5-8 for the edges in F(G™), assigning Z~-ports and constructing

edge routes below the vertices.

Theorem 9.4. The algorithm OPTIMAL VOLUME CUBE-DRAWING determines an or-
thogonal cube-drawing of G in O(m+/m +n) time, with O((m+n)3/2) bounding box

volume and at most siz bends per edge. Each vertex is 12-degree-restricted.

Proof. After step 3, vertices are disjoint with Z*-faces in the (Z = 0)-plane, and with
corners at grid-points with even coordinates. So, for each vertex v, the the number of
Z7T-ports on S, with even X- and even Y-coordinate is [ M(v)-|2 > M(v), so there
are enough ports on v for the routing of edges in G* on the Z'-face, and for edges in
G~ on the Z~-face.

In each edge route, there are no consecutive unit length segments. Therefore to show
that the drawing is crossing-free, we need only show that non-unit length edge segments
do not intersect. Vertical segments cannot intersect because unique ports are assigned
to the edges. X-parallel segments have odd Z-coordinate and Y-parallel segments have
even Z-coordinate, so an X-parallel segment cannot intersect a Y-parallel segment.

A vertical segment has even X and Y coordinate, a X-parallel segment has odd Y-



CHAPTER 9. COPLANAR 3-D DRAWING 192

coordinate, and a Y-parallel segment has odd X-coordinate, so a vertical segment
cannot intersect a X- or Y-parallel segment. Two Y -parallel segments can only intersect
if they overlap. Since edges originating in the same column have different heights,
two Y-parallel segments cannot intersect. Similarly, two X-parallel segments can only
intersect if originating in the same row and in this case they have different heights, so
they cannot intersect. So no two edges can intersect.

For each vertex v, the surface (v) is

6 (2{ M(v)-| - 1)23 6 (MJrO(l))Q: 12 deg (v) +O( deg(v))

Thus v is 12-degree-restricted.
2
The total area of the squares {S, : v € V(G)} (before Step 3) is >, (2 [ M(v)-| + 1) .
By Theorem 8.3, M (v) < [deg(v)/2] + 1, thus the total area is at most

(2[ [deg(v '|+1-|+1>2
<\/2deg + O(l))2
(2 deg(v ( deg(v )) + O(l))

<4dm + O (n + Z Vdeg(v))

<4dm+0O|n+  [n Z deg(v) (by Cauchy-Schwarz)

<4m + O(n-l— \/nm)

The algorithm of Kleitman and Krieger [127] packs squares with a total area of 1

in a % x v/2 rectangle. So the squares {S, : v € V(G)} can be packed in a rectangle

with size

(%\/@n O+ m)) ‘ (\/5\/4m oM+ m))

< (5 -0y (35

The maximum degree of H is thus

A(H) < (%Jrz\/i) \/E+O(\/n+\/ﬁ>
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A greedy vertex-colouring of H requires at most A(H) + 1 colours; hence the height of
the drawing above the (Z = 0)-plane, and the height below the vertices, which is twice

the number of colours, is

<%+4\/§> \/E+O(W>

The height of the vertices is max, 2 L/M(v)-| — 1 < max,/2deg(v) + O(1) =
V2A(G) +0O(1) < v2m + O(1). Thus the total height of the drawing is at most

<%+9\/§>\/r_n+0( n+\/r%>

We have shown that each of the height, width and depth of the drawing is

O(ﬁ+\/n+m> ) (9.1)

If n = O(m) then (9.1) is O(y/m), and if m = O(n) then (9.1) is O(y/n). Hence the
height, width and depth of the drawing are each O(y/m + y/n), which is O(y/m + n)
by the Cauchy-Schwarz inequality. The volume of the bounding box is therefore
O((m + n)3/2). Note that in most applications n < m, hence the volume is

4 16
~ — -2/2. —+9\/§> m3? < 144m3/? .
V3 (x/ﬁ

The time-consuming stage of the algorithm is the vertex-colouring of H. This can

be computed in

o) = oV DIAEm) = 0(m (Vi + -+ vim) ) |

which is O(m m + n) by the same argument used above. By construction there are

at most six bends per edge. O

If we remove the middle segment from each edge and assign each edge a unique

height then the overall height is O(m) and we obtain the following result.

Theorem 9.5. Every graph has an orthogonal cube-drawing, which can be computed
in O(m) time, with O(m(m + n)) bounding box volume and five bends per edge. Each

vertex is 12-degree-restricted. [
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Note that if we reduce the length in the Z-direction of the box representing a
vertex then the surface of the box can be reduced at the expense of an increase in the
aspect ratio. In particular, for aspect ratio r, it is easily seen that a vertex will be

4(1 4 2/r)-degree-restricted.



Chapter 10

The Non-Collinear Vertex Layout
Model for Three-Dimensional

Orthogonal Graph Drawing

In this chapter we present an algorithm for producing 3-D orthogonal box-
drawings in the non-collinear model. The boz-drawings produced have op-
timal volume for regular graphs. We use this algorithm as the basis for
another algorithm to generate 3-D orthogonal point-drawings with optimal
volume. The advantage of this model over the coplanar vertezx layout model
is that the drawings are orientation-independent, which for point-drawings

comes at the cost of one more bend per edge route.

10.1 Box-Drawing Algorithm

The algorithm to follow determines a 3-D non-collinear vertex layout by lifting the
vertices from a plane grid into 3-D space in an orientation-independent manner. We call
the box surrounding the vertices the inner boz. For each direction d € {X* Y+, Z*},
the box extending out from the d-face of the inner box is called the d-outer boz, as
shown in Figure 5.18 (page 114). Each edge is routed in an outer box determined by

an equitable edge-colouring. Within each outer box, the routing of edges resembles the

195
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method employed in Algorithm 9.3 OPTIMAL VOLUME CUBE-DRAWING.

Algorithm 10.1. NON-COLLINEAR BOX-DRAWING

Input: multigraph G with maximum degree A.

Output: 3-D orthogonal cube-drawing of G.

1. Assign each vertex v € V(@) a unique pair (z(v),y(v)) with
0 <w(v),y(v) < [Va] -1 .

2. For each vertex v € V(G), set z(v) < z(v) +y(v) (mod [y/n]) (see Figure 10.1).

N N AN
OT\" ‘f\ 3\ N X

Figure 10.1: Determining z(v).

3. Define the ‘vertex spacing’ A = 2 ({ [A(G)/31-| + 1).
4. Represent each vertex v € V(G) by the
(2 [ fdeg(v) /31] + 1) x (2 [ [deg(v) /31] + 1) X (2 [ fdeg(v) /31] + 1)
cube with minimum corner at (Az(v), Ay(v), Az(v)), as shown in Figure 10.2.

5. Apply Algorithm 8.1 QUASI-EQUITABLE EDGE-COLOUR to G with & = 6. Sup-
pose the edge-colouring determines an assignment of directions {X*,Y*, Z*} to

E(G).
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]
Qo
el
=
Q
=]
=
—

P

Figure 10.2: Non-Collinear Vertex Layout.

6. For each edge vw € FE(G) in direction d € {X*,Y*, Z*}, arbitrarily assign

unique ports at v and w in direction d with even j-coordinate and odd k-coordinate,

where 7, 7 and k are defined in Table 10.1 as functions of d. Call these the usable

ports, as shown in Figure 10.3.

Table 10.1: Definition of 7, 7, k

XY Z

Y 7 X

Z XY

Xi

Y:i:

Z:I:

7. Arbitrarily orient the edges of GG.

8. For each direction d € {X T, Y, Z*} apply the following steps.

(a) Construct a graph H with V(H) corresponding to the edges of G in direction

d. Add the edge {vw, 77} to E(H) if the port assigned to ¥ at v has the
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/ / Y

Figure 10.3: Usable ports on near-by vertices.

same j-coordinate as the port assigned to Z% at z, or the port assigned to

oW at w has the same k-coordinate as the port assigned to z7 at .

Vertex-colour the graph H using the algorithm GREEDY VERTEX-COLOUR
with colours {1,2,...,A(H) 4+ 1} (see Section 2.2). For each vertex v €
V(H) coloured « corresponding to an edge 91, set the height h(DW) < o

For each oriented edge 70 € E(G) in direction d, construct the edge route
with (i, 7, k) coordinates as follows. Suppose 1w is assigned the port at
(vi,vj,v;) on v and the port at (w;, wj, wy) on w. If v = wy then use the
following 4-bend edge route, which extends a distance of 2h(7%) into the

d-outer box, as illustrated in Figure 10.4 (and similarly if v; = w;).

(vivvjvvk) = (A([vn] —1) + 2h(m)vvjvvk) -
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\/ﬁ-| - 1) +2h(m)avjavk + 1) —
(A ([V/A] = 1) + 2h(F), wy, v + 1) —
\/’ﬁ-| — 1) + 2h(W),wj,vk) — (wi,wj,vk)

[ J
v .
]

Figure 10.4: Edge route for vw if vy, = wy.

Otherwise use the following 6-bend edge route illustrated in Figure 10.5.

(viyv5,05) = (A ([v/n] = 1) + 2h0(T0), vj, v) —

(A ([vn] = 1) + 2h(TW), vj, v +1) —

(A([vn] = 1) + 2h(00), w; + 1,0 + 1) —

(A ([v/n] = 1) + 20(080) + 1,wj + 1,0 + 1) —
(A([v/n] = 1) + 2h(00) + 1,w; + 1, wg) —

(A ([vn] = 1) + 20(T0) + 1, wj, wy,) — (w;, wj, w)

9. Repeat Step 8 for directions X, Y~ and Z~, routing edges in the X~, Y~ and

7~ outer boxes, respectively.

Theorem 10.1. For every multigraph G, the algorithm NON-COLLINEAR BOX-
DRAWING determines a 3-D orthogonal cube-drawing in O(m2) time, with O((nA)3/2)

bounding box volume and six bends per edge route. Each vertexr is 8-degree-restricted.

Proof. The number of usable ports on a face of a vertex v is

| V/Taeg()/37] ([v/Tdeg@)/3T| +1) > [deg(v)/3] +1

By Theorem 8.2, there are at most [deg(v)/3] + 1 edges incident to v in a given
direction so there are enough usable ports at v. It is easily seen that no two vertices

are intersected by a single grid-line.
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e

U i

/| Y

Figure 10.5: Edge routes vw in the non-collinear model.

In all edge routes, there are no consecutive unit length segments, and an edge cross-
ing involving a unit-length segment must also involve the adjacent non-unit-length
segment, so to show that the drawing is crossing-free, we need only consider intersec-
tions between non-unit-length segments. We distinguish between segments contained
within the outer boxes, and the segments incident with vertices.

Clearly, segments contained in different outer boxes cannot intersect, and in an -
outer box, the j-parallel segments have even i-coordinate and the k-parallel segments
have odd i-coordinate. Hence no two segments contained in an outer box can intersect.

Consider a segment contained in an ¢-outer box and a segment incident to a vertex.
If the segment incident to a vertex is not in direction ¢ then no intersection can occur.
If this segment is in direction ¢ then it has even j-coordinate and odd k-coordinate,
whereas a j-parallel segment in the i-outer box has even k-coordinate, and a k-parallel
segment in the i-outer box has odd j-coordinate. So a segment incident to a vertex
and a segment contained in an outer box cannot intersect.

Now consider two segments incident to different vertices. (Segments incident to the

same vertex are assigned unique ports so no intersection can occur.) If one such segment
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is in a positive direction and the other is in a negative direction then no intersection
can occur. If the two segments are in the same direction then they are parallel so no
intersection can occur. If the two segments are in directions ¢ and j then one will have
even k-coordinate and the other will have odd k-coordinate, so they cannot intersect.
Therefore no two edge routes intersect.

The inner box has corners at

(0,0,0) and (A ([Vn] = 1), A([vn] =1),A([vn] - 1)),

so the width, depth and height of the inner box is A (y/n). The graph H has A(H) =
2A [y/n], so the height of an edge is at most 4A [{/n]. Hence the bounding box has
width, depth and height 8A [y/n]. Since A = O(\/K), the bounding box volume is
O((nA)3/?).

For each vertex v € V(G), the surface (v) is

6 (2 { fdeg(v)/3'|-| + 1)2 = 8deg(v) + o(deg(v))

So the drawing is 8-degree-restricted.

By Theorem 8.2, Step 5 of the algorithm takes O(m2) time. The six vertex-
colourings of H each take O(|E(H)|) = O(|V (H)|A(H)) = o(m nA) time. Now,
A < m, so assuming m < n, we have A < m2/n. So vnA < m and mvnA < m2.
Hence Step 5 is most time-consuming step of the algorithm, and the total time taken

is O(m?). O

For simple graphs we can use an equitable edge-colouring of G (see Corollary 8.1)
instead of Algorithm QUASI-EQUITABLE EDGE-COLOUR in Step 5 of the above algo-
rithm. The ‘vertex spacing’ is defined as A = 2 ([\/ [A(G)/Gﬂ + 1) and each vertex

(2{ (deg(u)/m] + 1) X (2[ (deg(u)/ﬁﬂ + 1) x (2{ [deg(v)/sﬂ + 1)
cube. We obtain the following result.

Corollary 10.1. For every graph with mazimum degree A there exists a 3-D orthogonal
cube-drawing with O((nA)3/2) bounding boxr volume and at most six bends per edge

route. Each vertex is 4-degree-restricted.
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For regular (multi)graphs the bounding box volume bound in Theorem 10.1 is
@) (m3/ 2), which, by Theorem 3.2 is optimal for degree-restricted orthogonal box-drawings

with bounded aspect ratio.

Open Problem 10.1. Can the algorithm NON-COLLINEAR BOX-DRAWING be modi-

fied to produce box-drawings with bounding box volume O ((m + n)?/2)? This amounts

to finding a non-collinear vertex layout with an O (\/m + n) X O(\/m + n) X O(\/m + n)

inner box.

10.2 Point-Drawing Algorithm

We now present our algorithm for producing 3-D orthogonal point-drawings in the non-
collinear model. This algorithm follows a similar approach as the previous box-drawing
algorithm except that only the X, Y™ and Z* outer boxes are used, and a cycle cover

decomposition determines the port assignment instead of an equitable edge-colouring.

Algorithm 10.2. NON-COLLINEAR POINT-DRAWING

Input: multigraph G with A(G) <6.

Output: 3-D orthogonal point-drawing of G.

1. Assign each vertex v € V(@) a unique pair (z(v),y(v)) with
0 < 5(v),y(®) < [Va] — 1 .

2. For each vertex v € V(G), set z(v) «+ z(v) + y(v) (mod [y/n]), and place v at
(42(v), 4y(v), 42(v)).

3. Determine a cycle cover decomposition of G (see Theorem 2.1) and assign direc-
tions X, Y and Z* to the edges appearing in the first, second and third cycle

covers, respectively.

4. Considering v to be represented by the 3 x 3 x 3 box centred at v, determine
edge routes as described in Steps 6-8 of Algorithm 10.1 NON-COLLINEAR BoOX-

DRAWING.
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5. For each vertex v € V(@) connect the edges incident with v from the surface of

the 3 x 3 x 3 box to the point representing v, as shown in Figure 10.6.

Y

7 )

Figure 10.6: A vertex inside a 3 x 3 box.

Theorem 10.2. The algorithm NON-COLLINEAR POINT-DRAWING determines in
O(n3/2) time a 3-D orthogonal point-drawing of the given graph G, with O(n3/2) bound-

g box volume and at most 8 bends per edge route.

Proof. This result follows immediately from Theorem 10.1 and the observations that
edges will be routed by algorithm NON-COLLINEAR BOX-DRAWING as indicated in

Figure 10.6, and one extra bend is added to each end of an edge route. O



Chapter 11

Multi-Dimensional Orthogonal

Point-Drawing

In this chapter we study multi-dimensional orthogonal point-drawings of
graphs, as suggested by Liu [1]5, Note 8.5.2]. In particular, we present an
algorithm for generating minimum-dimensional orthogonal point-drawings
of arbitrary degree graphs in the non-collinear coplanar vertez layout model
with at most siz bends per edge. We also construct minimum-dimensional
orthogonal point-drawings of K, with at most two bends per edge, a result

first presented in [219].

We say a D-dimensional orthogonal point-drawing of a graph G is minimum-
dimensional if there does not exist a (D — 1)-dimensional orthogonal point-drawing
of G. Consider an orthogonal point-drawing of an arbitrary degree graph G. At a
vertex in the D-dimensional orthogonal grid there are 2D ports, so an orthogonal
point-drawing of G requires at least [A(G)/2] dimensions. We shall show that only a
few graphs G do not have an orthogonal point-drawing in [A(G)/2] dimensions. We
define the bend number of G to be the minimum integer b such that there exists a
minimum-dimensional point-drawing of G with at most b bends per edge route.

Trivially K1 and K2 have minimum-dimensional orthogonal point-drawings without
any bends (in the 0- and 1-dimensional grids, respectively). Kj is our first example

of a graph G which does not have an orthogonal point-drawing in [A(G)/2] (= 1)

204



CHAPTER 11. MULTI-DIMENSIONAL POINT-DRAWING 205

dimensions. The 1-bend 2-D orthogonal point-drawing of K3 establishes that the bend
number of K3 is one. In fact, all cycles C,, (n > 3) do not have an orthogonal point-
drawing in [A(C))/2] (= 1) dimensions. C,, does have a 1-bend 2-D orthogonal point-
drawing so the bend number of C,, is one.

If we define ‘minimum-dimensional” so that edge-crossings are allowed in 2-D or-
thogonal point-drawings, by the algorithms of Biedl and Kant [28] and Papakostas and
Tollis [165], all maximum degree four graphs have bend number at most two. If 2-D
drawings must be crossing-free, then by the algorithm of Biedl and Kant [28], the bend
number of a planar graph with maximum degree at most four is at most two (except
the octahedron graph which requires a 3-bend edge route [91]).

By Theorem 5.4, graphs with maximum degree at most five have a 2-bend 3-D
orthogonal point-drawing, so the bend number of such graphs is at most two. Maximum
degree six multigraphs have a 3-bend 3-D orthogonal point-drawing (see Section 5.5),
so maximum degree six multigraphs have bend number at most three.

In Section 11.1 we shall show that the bend number of K, is two. To do so, we
initially prove a tight bound for the number of dimensions required for a 1-bend orthog-
onal point-drawing of K,,. We then construct minimum-dimensional point-drawings of
K,, with at most two bends per edge route, a result which establishes the bend number
of K, to be two except for some isolated cases. The algorithm presented in Section 11.2

establishes an upper bound of six for the bend number of an arbitrary multigraph.

11.1 Drawings of K,

We now prove a lower bound for the number of dimensions required for a 1-bend

orthogonal point-drawing of K.

Theorem 11.1. For n > 3, a 1-bend orthogonal point-drawing of K, requires at least

n — 1 dimensions.

Proof. To construct a 1-bend (n — 1)-dimensional point-drawing of K,,, for each dimen-
sion 7, 1 <7 < n — 1, place a vertex v; at 1 on the ¢-axis, and place the remaining

vertex at the origin. Connect each v; to the origin by a 0-bend edge route, and connect
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vertices v; and v; by a 1-bend edge route through (0,...,0,1,0,...,0,1,0,...,0) where
the 1’s appear in the - and j-coordinates.

Suppose there is a (n — 2)-dimensional orthogonal point-drawing of K, with at
most one bend per edge route. Let v be some vertex of K,,. Define T to be the set of
dimensions i, 1 < i < n — 2, such that no edge route uses port(v,+i) or port(v,—i).
Let Ty be the set of dimensions with exactly one port at v in use, and let T5 be the
set of dimensions with both ports at v in use. Clearly |Ty| + |T1| + |T2| = n — 2 and
0|To| + 1|T1| + 2|T5| = n — 1, implying |To| = |T2| — 1 and |T3| > 1.

Let 1 € Ty and let va and vb be the edges assigned port(v, —i) and port(v,+i),
respectively. Now, va and vb cannot both be 0-bend edge routes, as otherwise ab would
have to be a 2-bend edge route. Suppose one of va or vb is a 0-bend edge route and
the other is a 1-bend edge route, as shown in Figure 11.1. Let 5 be the direction of the
second segment of the 1-bend edge. Clearly, no edge vz could be routed with port(v, 5)
as otherwise there would be no possible 0- or 1-bend edge route for za nor xb. If vz is

routed with port(v, —j) then za or xb would need two bends, so j € Ty.

b

S
o~
<
e ———- 9 ---

e

Figure 11.1: A 0-bend and a 1-bend edge

If the edge routes va and vb both have one bend then, as in Figure 11.2, for ab to
have a 0- or 1-bend edge route, the second segments of va and vb must point in the
same direction j, as in cases (c¢) and (d). By the same argument as before, this implies
that 5 € Tp.

Suppose |T>| > 1 and dimension k € T \ {i}. Let vc and vd be the edges routed
using port(v,+k) and port(v, —k), respectively. For ac, ad, bec and bd to have 1-bend
edge routes, the edges va, vb, vc and vd all must have one bend and their second
segments must point in the same direction and have the same length, as in Figure 11.3.
Therefore ab and ed must intersect, so [T»| = 1.

|T2| = 1 implies |Ty| = 0, but j € Tp, which is a contradiction. Therefore K,, does
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i (d)

Figure 11.3: i,k € Ty

not have a (n — 2)-dimensional orthogonal point-drawing with at most one bend per

edge route. O

A minimum-dimensional orthogonal point-drawing of K, has at least [A(K,,)/2] =
|n/2| dimensions. For n > 4, we have n — 1 > |n/2], so a minimum-dimensional
orthogonal point-drawing of K,, (n > 4) requires at least two bends in some edge route.
There is a 2-D 2-bend orthogonal point-drawing of Ky, so the bend number of K is
two. Kj also has a 2-D 2-bend orthogonal point-drawing (of course, with crossings),
so it too has bend number two. If we do not allow crossings in 2-D drawings then Kj5
requires three dimensions. By Theorem 11.1 a 3-D orthogonal point-drawing of Kj
still requires an edge route with at least two bends. A 2-bend 3-D orthogonal point-
drawing of K35 is provided in Figure 2.3(b) (on page 28). We now construct 2-bend

minimum-dimensional orthogonal point-drawings of K,, for n > 6.
Theorem 11.2. For every n > 6, the bend number of K, is 2.

Proof. We initially consider the case of odd n. In Figure 3.6 there is a 2-bend 3-D
orthogonal point-drawing of K7, so the result is true for n = 7. We now construct a

((n —1)/2)-dimensional 2-bend point-drawing of K,, for odd n > 9. Let the vertex set
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of K,, be
V(Ky) = {v1,vg,...,07} U {a;,b;:4<i<(n—1)/2} .

The K7 subgraph induced by the vertices {v1,vs,...,v7} is drawn with two bends

per edge route as in Figure 3.6 (on page 53). In particular we place the {vi,ve,...,v7}
as follows.

vt (2,0,0,0,...,0) w2t (=2,0,0,0,...,0)

v3: (0,2,0,0,...,0) vi: (0,-2,0,0,...,0)

vs: (0,0,2,0,...,0) ve: (0,0,-2,0,...,0)

vr: (1,1,1,0,...,0) .

For each i, 4 <1i < (n —1)/2, place a; and b; at
a;: (1,0,0,...,2,0,0,...,0) b : (1,0,0,...,-2,0,0,...,0)

(with the 2 and —2 at coordinate i). The edge a;v; and bvj, 4 < i < (n —1)/2,

1 <75 <7, are routed according to Figure 11.4.

Y Z

U3 U5

s | z

L.b' a; ! ! ! .
' / b; X a; /|7__/F__ 7
——

v7 |
Y a;

—_— Ve
V4 ;

(a) In the Z = 0 hyperplane (b) In the Y = 0 hyperplane (c) In the X = 1 hyperplane

Figure 11.4: Edge routes a;v; and b;v;.

The edges a;b;, aja;t1, bjait1, aibiy1 and bibii1, 4 < i < (n — 3)/2, are routed
according to Figure 11.5(a). The edges a;a;, ba;, a;b;, and bib;, 4 < i < (n — 3)/2,
i+2<j<(n-1)/2 are routed according to Figure 11.5(b).

A straight line edge route from a(,_1)/2 to by_1)/2 passing through the vacant

grid-point (1,0,0,...,0) completes the drawing.
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Ai+1

a;

(a) bit1 (b)

Figure 11.5: Edge routes in the X = 1 hyperplane.

It is easily seen that a unique port assignments are determined by this edge routing
scheme. The grid-points contained in edge routes described in Figure 11.4 only contain
grid-points with a non-zero i coordinate (except for the vertices themselves). So such
edge routes cannot cross an edge route in the K7 subgraph induced by {v1,va,...,v7}.

Similarly, an edge route a;vy or b;vy cannot cross an edge route a vy, or bjuy, (1 <k < 7).

Except for the grid-points (1,0,...,0,4,0,...,0) (in edge a;b;), (1,0,...,0,1,
0,...,0) (in edge a;a;+1) and (1,0,...,0,—1,0,...,0) (in edge b;a;+1), the edge routes
described in Figure 11.5 only contain grid-points with non-zero 4 and j coordinates.
They will therefore not cross other edges. By checking grid-points in the X = 1
hyperplane it is easily seen that these particular grid-points are not in any other edge

routes. So no two edge routes cross.

Hence there is a 2-bend minimum-dimensional orthogonal point-drawing of K, for
odd n > 7. In fact there are O(n?) 1-bend edge routes and only O(n) 2-bend edge
routes. For even n > 6, removing a single vertex from the drawing of K, provides a
minimum-dimensional 2-bend orthogonal point-drawing of K,,. By Theorem 11.1, n—1
dimensions are required for a 1-bend point-drawing of K, so the bend number of K,

is 2, for n > 6. U
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11.2 Algorithm

As mentioned by Eades et al. [87], their 3-BENDS algorithm easily generalises to give an
algorithm for producing a minimum-dimensional orthogonal point-drawing of a graph
G with at most [A(G)/2] bends per edge route. This algorithm places the vertices
along the main diagonal of a [A(G)/2]-dimensional hypercube. Here we place the
vertices along a 2-D diagonal within [A(G)/2]-dimensional space, and use at most six

bends per edge route'.

Algorithm 11.1. MINIMUM-DIMENSIONAL POINT-DRAWING

Input: A multigraph G with maximum degree A(G) > 5.

Output: A minimum-dimensional orthogonal point drawing of G.

1. Determine G’ and its cycle covers C1,Cy,...,Cq where d = [A(G)/2] (see The-

orem 2.1).

2. Arbitrarily assign the numbers {1,2,...,n} to the vertices of G.

(We shall refer to a vertex by its number.)
3. Position vertex a at (2a,3a,0,...,0) € Z%
4. Construct edge routes for each arc in G’, as described below.

5. For each edge of G, draw the edge route of the corresponding arc in G'.

The following method used to classify arcs according to a vertex ordering is due to
Eades et al. [86, 87]. Consider an arc ab € E(G’) in cycle cover C7, and suppose be is
the next arc in the cycle containing ab. We route the arc ab depending on the relative
values of a, b and c. In the following figures, the arrow head indicates the port at b to

be assigned to the arc be.

"Tn [219] it was erroneously stated that using a 3-D diagonal vertex layout, five bends per edge route

was possible.
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Case 1.1: If a < b < ¢ then we say ab is normal increasing. As in Figure 11.6(a),
route ab with the 4-bend edge:
(2a,3a,0,0,...,0) = (2b— 1,3a,0,0,...,0) = (2b—1,3a,1,0,...,0)
— (2b—1,3b,1,0,...,0) — (2b—1,3b,0,0,...,0) — (2b,3b,0,0,...,0)

Case 1.2: If a > b > ¢ then we say ab is normal decreasing. As in Figure 11.6(b),
route ab with the 4-bend edge:

(2a,3a,0,0,...,0) = (2b+ 1,3a,0,0,...,0) = (2b+ 1,3a,1,0,...,0)
— (2b+1,3b,1,0,...,0) = (2b+1,3b,0,0,...,0) = (2b,3b,0,0,...,0)

(a) Increasing (b) Decreasing

Figure 11.6: Normal arcs ab in Cf.

Case 1.3: If a < b > ¢ then we say ab is increasing to a local mazimum. As in

Figure 11.7(a), route ab with the 4-bend edge:

(2a,3a,0,0,...,0) = (2b+ 1,3a,0,0,...,0) = (2b+ 1,3a,1,0,...,0)
— (2b+1,3b,1,0,...,0) = (2b+1,3b,0,0,...,0) — (2b,3b,0,0,...,0)

Case 1.4: If a > b < c¢ then we say ab is decreasing to a local minimum. As in

Figure 11.7(b), route ab with the 4-bend edge:

(2a,3a,0,0,...,0) = (2b— 1,3a,0,0,...,0) = (2b— 1,3a,1,0,...,0)
— (2b—1,3b,1,0,...,0) = (2b— 1,3b,0,0,...,0) — (2b,3b,0,0,...,0)

Observe that all arcs ab in C] are routed using the X-ports at a and b. Now consider
an arc ab € E(G’) in cycle cover Co and, as before, suppose bc is the next arc in the

cycle containing ab.

Case 2.1: If ab is normal increasing then, as in Figure 11.8(a), route ab with the

5-bend edge:
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(b) Increasing to a local maximum (b) Decreasing to a local minimum

Figure 11.7: Local min/max arcs ab in C.

(2a,3a,0,0,...,0) = (2a¢,3a + 1,0,0,...,0) = (2a,3a + 1,1,0,...,0) —
(2a,3b —1,1,0,...,0) — (2a,3b — 1,0,0,...,0) —
(2b,3b — 1,0,0,...,0) — (2b,3,0,0,...,0)

Case 2.2: If ab is normal decreasing then, as in Figure 11.8(b), route ab with the

5-bend edge:

(2a,3a,0,0,...,0) = (2a¢,3a¢ — 1,0,0,...,0) = (2a,3a¢ — 1,1,0,...,0) —
(2a,3b+1,1,0,...,0) — (2a,3b + 1,0,0,...,0) —

(2b,3b+ 1,0,0,...,0) — (2b,3b,0,0,...,0)

(a) Increasing (b) Decreasing

Figure 11.8: Normal arcs ab in Cs.

Case 2.3: If ab is increasing to a local maximum then, as in Figure 11.9(a), route ab
with the 5-bend edge:
(2a,3a,0,0,...,0) = (2a¢,3a + 1,0,0,...,0) = (2a,3a + 1,1,0,...,0) —
(2a,3b+1,1,0,...,0) = (2a,3b+ 1,0,0,...,0) —
(2b,3b 4+ 1,0,0,...,0) — (2b,3b,0,0,...,0)

Case 2.4: If ab is decreasing to a local minimum then, as in Figure 11.9(b), route ab

with the 5-bend edge:

(2a,3a,0,0,...,0) = (2a,3a — 1,0,0,...,0) = (2a,3a — 1,1,0,...,0) —
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(2a,3b—1,1,0,...,0) = (2a,3b — 1,0,0,...,0) —
(2b,3b — 1,0,0,...,0) = (2b,3b,0,0,...,0)

(a) Increasing to a local maximum (b) Decreasing to a local minimum

Figure 11.9: Local min/max arcs ab in Cs.

Observe that arcs in Cy are assigned the Y-ports at both ends. We now describe
how to route arcs in cycle cover C}, 3 < j < [A(G)/2]. Suppose (ai,as2,...,a;) is a
cycle in Cj. As illustrated in Figure 11.10, the incoming arc at a vertex a; uses the

—j/ + j port and the outgoing arc uses the +j/ — j port, for odd/even i.

Figure 11.10: Port assignment for a cycle in Cj}, j > 3.

e For each odd i, 1 <7 < k—1, as in Figure 11.11(a), route the arc a;a;11 with the
4-bend edge:

(2a2~,3a¢,0,...,0) — (2ai,3ai,0,...,2,0,...,0) —
(2az~,3az~+1,0,...,0,2,0,...,0) — (2ai,3ai+1,0,...,0,3,0,...,0) —
(2ai+1,30i41,0,...,0,3,0...,0) = (2ai11,3a:+1,0...,0)

e For each even 7, 2 < i < k, as in Figure 11.11(b), route the arc a;a;11 (or a;aq if

i = k) with the 4-bend edge:
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(Zai,3az~,0,...,0) — (2ai,3ai,0,...,0, —-2,0,... ,0) —
(2a;,3a;+1,0,...,0,—2,0,...,0) — (2a;,3a;4+1,0,...,0,-3,0,...,0) —
(2ai+1,3az~+1,0,... ,0,-3,0,... ,0) — (2az~+1,3az~+1,0,... ,0)

Figure 11.11: Arc a;a;11 in cycle cover Cj, j > 3.

e If £ is odd then, as in Figure 11.12, route the arc aia; with the following 6-bend
edge. If j = D(= [A(G)/2]) then dimension j + 1 is 3.

(2ay, 3ax, 0, ...,0) = (2ag, 3ax,0,...,0,2,0,0,...,0) =

(2ay, 3ax,0,...,0,2,2,0,...,0) = (2ax,3a1,0,...,0,2,2,0,...,0) =
(2ay,3a1,0,...,0,-3,2,0,...,0) = (2a,3a1,0,...,0,-3,0,0,...,0) =
(2a1,3a1,0,...,0,—3,0,0,...,0) = (3a1,3a1,0,...,0,...,0)

j+1] v

Figure 11.12: Arc agai (k odd) in cycle cover Cj, j > 3.

Theorem 11.3. The algorithm MINIMUM-DIMENSIONAL POINT-DRAWING determines

a minimum-dimensional 6-bend orthogonal point-drawing of G, which can be computed

in O(A2n) time.

Proof. The cycle cover decomposition gives for each vertex exactly one incoming arc
and one outgoing arc in each of the d cycle covers. Observe that arcs in cycle cover C}

use the j-ports at each vertex. Hence a valid port assignment has been determined,
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and the first segments of edges incident to a particular vertex do not intersect (except
at the vertex itself).

Consider edge routes in cycle covers C; and Cy. The X-parallel segments lie in the
(Z = 0)-plane and Y-parallel segments lie in the Z = 1 plane, so a X-parallel segment
cannot intersect a Y-parallel segment. Note that the X-parallel segments of an arc ab
in C1 lie in the Y Z-plane containing a, and the X-parallel segments of an arc ab in Cs
lie in the Y Z-plane offset from b by a distance of 1. Similarly for Y-parallel segments,
so by the spacing between the vertices, no two edge routes in C] or C5 can intersect.

Now consider edge routes in a cycle cover Cj, 7 > 3. Apart from the point
(2ag,3a1,0,...,0,2,0,...,0) for some arc aga; in C; (k odd) with the 2 in coordi-
nate j + 1, grid-points in edge routes in C); have non-zero j-coordinate and a zero
k-coordinate for each k& > 3 (k # j). Hence edge routes in C; and Cy, (j # k, 7,k > 3)
do not intersect. X-parallel segments of an edge route in C; have a j-coordinate of £3,
and Y-parallel segments of edge routes in C; have j-coordinate of +2, so no two edges
in a cycle cover C; can intersect. The grid-point (2ay, 3a1,0,...,2,0,...,0) with the 2
in coordinate j + 1 can only be in the arc aga; (k odd) in cycle cover Cj, so it too does
not intersect any other edge routes.

Hence the drawing is crossing-free, and each edge route has at most six bends. By
Theorem 2.1, the cycle cover decomposition and hence the whole drawing can computed

in O(A%n) time. O
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Chapter 12

Conclusion

In this conclusion we summarise the main achievements of this thesis, the
open problems in 3-D orthogonal graph drawing which have been identified,

and discuss avenues for future work in 3-D graph drawing.

This thesis has investigated problems related to the automatic generation of 3-D
orthogonal graph drawings. Orthogonal graph drawing has applications in VLSI circuit
design and software engineering, for example. The methods developed have also been

applied to 2-D orthogonal graph drawing and generalised to multi-dimensional space.

12.1 Models and Algorithms

The following models for 3-D orthogonal graph drawing have either been introduced
or extended in this thesis. The algorithms in this thesis, which typically have polyno-
mial time complexity, explore tradeoffs between the established aesthetic criteria for

measuring the quality of the produced drawings.

General Position Vertex Layout Model:

A 3-D orthogonal graph drawing is in the general position model if no two vertices
are intersected by a single grid-plane; e.g., by positioning the vertices along the main
diagonal of cube. We have presented algorithms for producing orientation-independent
drawings in the general position model with few bends. A disadvantage of this model

is that the volume of drawings is necessarily large.

217
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We have described an algorithm which, given a fixed general position vertex layout
of an arbitrary degree graph, constructs a general position drawings with bounded
degree-restriction and bounded aspect ratio (Algorithm 7.4). This algorithm is also
applicable in a 2-D or multi-dimensional setting. Using a balanced vertex layout, our
algorithm produces drawings with the smallest known bounds for the degree-restriction
of vertices (Algorithm 7.6).

Our algorithm for producing 3-D orthogonal point-drawings of maximum degree
six graphs establishes the best known upper bound for the total number of bends in
3-D orthogonal point-drawings (Algorithm 5.8). Another algorithm establishes the best
known upper bound for the volume of 3-D orthogonal point-drawings with three bends

per edge route (Algorithm 5.11).

Coplanar Vertex Layout Model:

A 3-D orthogonal graph drawing is in the coplanar vertex layout model if there exists
a grid-plane which intersects all vertices. We have considered two variations of this
model, namely the non-collinear coplanar model and the coplanar grid model. Our
algorithms produce orthogonal drawings in these models with few bends and small
volume, respectively. A disadvantage of the coplanar vertex layout model is that the
drawings produced are necessarily orientation-dependent.

Our algorithm for orthogonal drawing in the non-collinear coplanar model exploits
a book embedding to obtain 1-bend drawings, which for sparse graphs have less volume
than existing methods for 1-bend drawing (Algorithm 9.1).

We have presented two algorithms for producing 3-D orthogonal box-drawings in
the coplanar grid model. The first algorithm produces drawings with optimal volume
for regular graphs (Algorithm 9.2). The second algorithm produces degree-restricted
3-D orthogonal cube-drawings with optimal volume (Algorithm 9.3).

Non-Collinear Vertex Layout Model:

A 3-D orthogonal graph drawing is in the non-collinear vertex layout model if no two
vertices are intersected by a single grid-line. In this model, we present an algorithm

for producing 3-D orthogonal box-drawings with optimal volume for regular graphs
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(Algorithm 10.1). This algorithm is then used as the basis for producing 3-D orthogo-
nal point-drawings with optimal volume (Algorithm 10.2). These are the only known
algorithms for producing orientation-independent 3-D orthogonal graph drawings with

optimal volume.

12.2 Methods

As part of our investigation into orthogonal graph drawings, we have developed and

extended existing methods which may be of independent interest. These include:

e algorithms for the balanced vertex ordering problem, which we use as the basis

for determining general position vertex layouts;

e an algorithm for equitable edge-colouring of multigraphs, which we use to deter-

mine port assignments;
e an approach to port assignment based on arc-colouring;
e the use of vertex-colouring to determine the heights of edge routes; and

e an exact algorithm for the maximum clique problem, which we use for searching

for 2-bend point-drawings.

12.3 Open Problems

In the course of this thesis we have raised many open problems, including the following.

e Does every graph have a degree-restricted 3-D orthogonal box-drawing with at
most one bend per edge route? Does every graph have a 3-D orthogonal box-
drawing with O(n?\/m) volume and at most one bend per edge route? (See

Sections 3.5.2 and 9.1.)

e Does every graph have a 3-D orthogonal box-drawing with O(m+/n) volume and

at most three bends per edge route? (See Sections 3.5.2 and 9.2.)
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e Does every graph have a degree-restricted 3-D orthogonal cube-drawing with
O((m +n)?/?) volume and at most five bends per edge route? (See Sections 3.5.2

and 9.3.)

e Does every graph with maximum degree six have a 3-D orthogonal point-drawing

with at most two bends per edge route? [86, 87] (See Sections 3.5.1 and 5.6.1.)

e Does every graph with maximum degree six have a 3-D orthogonal point-drawing

with O(n3/2) volume and at most six bends per edge route? (See Section 3.5.1.)

e Can the Topology-Shape-Metrics approach be applied to 3-D orthogonal graph
drawing? For example, given a (linkless) 3-D embedding of a graph with max-
imum degree six, can an embedding-preserving 3-D orthogonal point-drawing
with the minimum number of bends be determined in polynomial time? (See
Section 3.2.2.) Note that a 3-D graph embedding can be represented by a 2-D

projection for which ‘over/under’ crossings are specified.

e Develop bounds for the aesthetic criteria, besides bounding box volume and the
number of bends, of 3-D orthogonal graph drawings. For example, the total edge

length and the maximum edge length could be studied.

12.4 Future Work

The development of three-dimensional graph drawing is in its infancy. While algorithms
for 3-D orthogonal graph drawing have been developed which optimise certain aesthetic
criteria, most notably the bounding box volume, it is reasonable to ask whether the
drawings produced are feasible for visualisation purposes. We now outline avenues of
research aimed at producing more readable 3-D graph drawings.

Firstly, the question of what are the properties of 3-D graph drawings which are
most appropriate for visualisation purposes has not been addressed in any scientific
manner. It is unrealistic to assume that the aesthetic criteria for 2-D graph drawings
automatically apply in a three-dimensional setting. In particular, the experiments of
Purchase et al. [176] and Purchase [175] confirm that the minimisation of crossings is

an important aesthetic criterion for 2-D graph drawings, however in three dimensions
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all graphs can be drawn without crossings. Also, it would be interesting to determine
if 3-D graph drawings are better for visualisation purposes than their two-dimensional

counterparts (see Ware and Franck [213] for a preliminary study).

A critical issue in 3-D graph visualisation is the question of how to display a graph
drawing on a computer screen. Many issues from computer graphics, such as rendering
and shading, immediately arise. A system for displaying, and interacting with, 3-D
graph drawings needs to be developed. Such a system could incorporate methods for
finding viewpoints of 3-D drawings with few occlusions (see Kamada and Kawai [123],

Bose et al. [39], Eades et al. [81] and Houle and Webber [120]).

As well as solving the open problems discussed in Section 12.3, we now propose
a number of research directions to be be pursued with the goal of producing better
3-D orthogonal drawings. Firstly, heuristic improvements can be made to many of the
algorithms proposed in the literature and those presented in this thesis. For example, in
Section 5.5.2 we discuss the use of a vertex-colouring method to determine the heights
of edge routes in Algorithm GENERAL POSITION THREE-BEND POINT-DRAWING, thus
reducing the volume of the drawings produced. Secondly, a set of refinements could
be developed, which given an arbitrary 3-D orthogonal graph drawing, modify the
drawing to improve particular aesthetic qualities. Such refinements could form the
basis of a post-processing step in any 3-D orthogonal graph drawing algorithm, as
has been done for 2-D orthogonal graph drawing by FoBmeier et al. [101] and Six
et al. [197]. An experimental evaluation of the performance of 3-D orthogonal graph
drawing algorithms, measuring the relative improvements gained through heuristics and
refinements, could be carried out. A first step in this direction, was the experiment
of Di Battista et al. [T4] measuring the performance of a number of 3-D orthogonal

point-drawing algorithms.

To produce 3-D graph drawings which are potentially more readable than 3-D or-
thogonal drawings a more flexible model could be employed. It is expected that for 3-D
polyline graph drawings (see Section 1.4.3), considerably fewer bends will be needed
to produce drawings with small volume. The tradeoff between angular resolution and
the number of bends in such drawings is an interesting area for research. Of theo-

retical interest is the development of algorithms for drawing graphs in non-orthogonal
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three-dimensional grids.
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Appendix A

Lower Bounds for
Three-Dimensional Orthogonal

Point-Drawing

In this Appendix we establish lower bounds for the number of bends in 3-D orthogonal
point-drawings of simple graphs and multigraphs. Firstly, we show that a 3-D orthog-
onal point-drawing of K35 has at least seven bends. This is the only known non-trivial
lower bound for the total number of bends in a 3-D orthogonal point-drawing of a sim-
ple graph. Theorem 11.1 shows that a 3-D orthogonal point-drawing of K5 has an edge
route with at least two bends. We then provide a formal proof of the well-known result
that the multigraph with two vertices and six edges has an edge route with at least
three bends in any 3-D orthogonal point-drawing. Finally, we show this multigraph has
at least 12 bends in any 3-D orthogonal point-drawing, and we provide such a drawing.
Throughout this appendix we implicitly use obvious symmetries to reduce the number

of cases to consider.

A.1 Simple Graphs

Our result for K5 depends on the following results concerning 3-D orthogonal point-
drawings of small cycles. Figure A.1 shows 3-D orthogonal point-drawings of the 4-cycle

Cy and of the 5-cycle (5, each with no bends.
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¥
T
(a) (b)

Figure A.1: 0-bend 3-D orthogonal point-drawings of (a) C4 and (b) Cs.

Lemma A.1. The only 0-bend 3-D orthogonal point-drawings of Cy and of Cs are

those shown in Figure A.1.

Proof. We shall prove this result for C's. The proof for Cy is similar. Suppose k is the
number of edges in the longest straight-line path in a 0-bend 3-D orthogonal point-
drawing of C5. Obviously k < 4. If k = 4 then, as in Figure A.2(a), there must be a
2-bend edge route. If k = 3 then, as in Figure A.2(b), there are two possible place for

the final vertex, and in either case there must be a 1-bend edge route.

(a) (b)

Figure A.2: The cases (a) k =4 and (b) k = 3.

If £ = 2 then, as in Figure A.3, the edges connecting to the ends of the 2-path, may
be (a) perpendicular, (b) in opposite directions, or (c) in the same direction. In case
(a) there must be a 2-bend edge route. In case (b) there must be a 3-bend edge route,

and case (c) produces the 0-bend drawing of C5 shown in Figure A.1(b).

1
(a) (b)

Figure A.3: The case k = 2.
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If kK = 1 then, as in Figure A.4, the edges connecting to the ends of the 1-path
(which is drawn parallel to the X-axis), may be (a) perpendicular, (b) in the same
direction, or (¢) in opposite directions. In each case there are no 1-bend edge routes
connecting the end-points of the resulting 4-path which do not introduce a straight-line
path with two edges. So it is impossible to add the remaining vertex to make a 0-bend

5-cycle with k = 1.

_% o * Z ) )
(a) (b) (c)

Figure A.4: The case k = 1.

Hence the only drawing of the 5-cycle with no bends is that shown in Figure A.1(b)
with k = 2. U

In Figure 2.3(b) (page 28) there is a 3-D orthogonal point-drawing of K5 with seven

bends. We now show that this is optimal.
Theorem A.1l. Every 3-D orthogonal point-drawing of K5 has at least seven bends.

Proof. Suppose, to the contrary, that there is a 3-D orthogonal point-drawing of Kj
with a total of six bends.

Our proof proceeds by considering the structure of the subgraph of Ks consisting
of the 0-bend edges. It is easily verified that in any subgraph of K5 with at least
seven edges there is a K3 subgraph. Since K3 does not have a 0-bend 3-D orthogonal
point-drawing, the number of 0-bend edge routes in the drawing of K3 is at most six.

Clearly, in any Kj3-free 6-edge subgraph of Ky there is a 4-cycle. Given a 4-cycle,
the only way to add a fifth vertex and two more edges without creating a triangle is
to connect the fifth vertex to the non-adjacent vertices of the 4-cycle. Hence, the only
6-edge K3-free subgraph of K3 is that shown in Figure A.5(a), which we call H.

Note that H contains C4. By Lemma A.1 the only 0-bend 3-D orthogonal point-
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(a) (b)

Figure A.5: (a) K3-free 6-edge subgraph H of K5; (b) H does not have a 0-bend 3-D

point-drawing

drawing of C}y is a rectangle. It is not possible to connect the non-adjacent vertices of
a rectangle by two 0-bend edges (see Figure A.5(b)). Hence H does not have a 0-bend
3-D orthogonal point-drawing. So the number of 0-bend edge routes in the drawing of
K5 is at most five. By Theorem 11.1, any 3-D point-drawing of K5 has an edge route
with at least two bends. It follows that in a point-drawing of K5 with six bends there

is precisely one 2-bend edge, four 1-bend edges and five O-bend edges.

A Kj-free subgraph of K5 with five edges is C5 or contains Cy. By Lemma A.1,
the only 0-bend drawings of C5 and Cj4 are the rectangles shown in Figure A.1. As
illustrated in Figure A.6, the diagonally opposite vertices of the rectangles must be

connected by a 3-bend edge route, which is a contradiction. The result follows. O

(a) (b)

Figure A.6: 3-bend edge ‘across’ the 4- and 5-cycle.



APPENDIX A. LOWER BOUNDS FOR 3-D POINT-DRAWING 228

A.2 Multigraphs

In Figure A.7 we show 3-D orthogonal point-drawings of the multigraph with two

vertices and six edges.

x—A

Figure A.7: Drawings of the 2-vertex 6-edge multigraph with (a) a maximum of three

(a) (b)

bends per edge route, and (b) a total of twelve bends.
We now prove that the maximum number of bends per edge route in the drawing
in Figure A.7(a) is optimal.

Lemma A.2. The multigraph with two vertices and siz edges has a 3-bend edge route

in every 3-D orthogonal point-drawing.

Proof. Since the graph is 6-regular every port at the vertices v and w must be used.
The two vertices can be (a) collinear, (b) coplanar but not collinear, or (c) not coplanar,

as illustrated in Figure A.8.
a %

(a) (b) ()

Figure A.8: The 2-vertex 6-edge multigraph needs a 3-bend edge route.

In each case a port at vertex v pointing away from w requires at least three bends

to reach w. O

We now prove that the total number of bends in the drawing in Figure A.7(b) is

optimal.
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Lemma A.3. The multigraph with two vertices and siz edges has at least 12 bends in

any 3-D orthogonal point-drawing.

Proof. If the vertices are not coplanar then at one of the vertices, three of the ports
need at least two bends to reach the other vertex, and the other three ports need at
least three bends to reach the other vertex. So a non-coplanar drawing has at least 15
bends.

If the vertices are coplanar but not collinear then at one of the vertices, two of the
ports need at least one bend to reach the other vertex, two of the ports need at least
two bends to reach the other vertex, and the remaining two ports need at least three
bends to reach the other vertex. So a non-collinear coplanar drawing has at least 12
bends.

If the vertices are collinear then at one of the vertices, four of the ports need at
least two bends to reach the other vertex, and one of the ports needs at least three
bends to reach the other vertex. So a non-collinear coplanar drawing has at least 11
bends. Suppose, without loss of generality, that the vertices are in an X-line, and there
is such a drawing with 11 bends. Then there must be four 2-bend edge routes, and
one 3-bend edge route. These four 2-bend edge routes must use the Y* and Z* ports
at each vertex. Therefore, the edge routed using the X~ and X port must have four

bends, which is a contradiction. The result follows. O



Appendix B

3-D Orthogonal ‘Cage’ Drawings

As discussed in Chapter 3, the 2-bends problem (Problem 3.3) is one of the most
interesting open problems in the field of 3-D orthogonal graph drawing. This problem
asks whether every maximum degree six graph has a 3-D orthogonal point-drawing with
at most two bends per edge route. We now present 3-D orthogonal point-drawings of
the 6-regular multi-partite graphs K7, K292, K333 and Kgg with two bends per edge
route, thus providing evidence for the conjecture that every maximum degree six graph

has a 2-bend 3-D orthogonal point-drawing.

Wood [219] presented the first 2-bend 3-D orthogonal point-drawing of K7. This
drawing is less symmetric than the drawing presented here. In a 2-bend 3-D orthogonal
point-drawing the edge routes assigned an ‘extreme’ port must be planar. The 2-bend
point-drawings which follow consist of two parts. The outer ‘cage’ includes planar
and non-planar 2-bend edge routes (see Figure 5.25). The ‘interior’ consists solely of

non-planar 2-bend edge routes.

2-Bend Drawing of K7:

Figures B.1 and B.2 respectively show a K¢ cage drawing and a K ¢ interior drawing
which combine to give the 8 x 8 x 8 2-bend point-drawing of K7 from Figure 3.6. The
vertices are positioned at (2,0,0), (—=2,0,0), (0,2,0), (0,—2,0), (0,0,2), (0,0,—2) and
(1,1,1).

230
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Figure B.1: Kg cage.

2-Bend Drawings of Ky222 and K33 3:

Our 2-bend 3-D point-drawings of K2292 and K333 both use the octahedron graph

cage shown in Figure B.3.

Combining the octahedron cage with the K g interior drawing shown in Figure B.4
gives a 9 x 9 x 9 2-bend 3-D orthogonal point-drawing of K229 .

Combining the octahedron cage with the interior drawing shown in Figure B.5 gives

a 10 x 10 x 10 2-bend 3-D orthogonal point-drawing of K33 3.
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s a

Figure B.2: K g drawing forming the interior of K7.

Figure B.3: Octahedron cage
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-

Figure B.4: K¢ drawing forming the interior of K222 9.

E

///

Figure B.5: Interior of K33 3.
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2-Bend Drawing of Kjgg:

Our 2-bend 3-D orthogonal point-drawing of K¢ g consists of the ‘bipartite cage’ shown
in Figure B.6, and the interior drawing of Figure B.7 drawn three times with:
WWI=X,J=Y,K=Z, 2)I=Y,J=Z,K=X, 3)I=Z,J=X,K=Y.
We position the vertices of Kgg as indicated in Table B.1, obtaining a 12 x 12 x 12
2-bend 3-D orthogonal point-drawing of K¢ . This drawing was found using the search
technique presented in Section 5.2.2, which is based on the algorithm in Appendix C

for the maximum clique problem.

Yy . X3
jll X Wi /
Pad

Zp

Figure B.6: Bipartite cage.
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e
K

Figure B.7: Interior of Kgg.

Table B.1: Coordinates of V (Kgg).

X (4,-2,0) Y (0,4,-2) Z% (-2,0,4)
X5 (3,2,0) Yy (0,3,2) 7z} (2,0,3)
X (-4,1,-1) Yy (-1,-4,1) Zyr (1,-1,-4)
Xg (-5,-3,-1) Yy, (-1,-5,-3) 7y (-3,-1,-5)




Appendix C

Maximum Clique Algorithm

In this appendiz we describe an algorithm for finding a mazimum clique in a
graph and compare its performance with leading algorithms for this problem
in an experimental study. In Section 5.2.2 we describe how this algorithm
can be used for searching for 2-bend 3-D orthogonal point-drawings. For
example, it was used to find the 2-bend drawing of Keg presented in Ap-
pendixz B. This algorithm and the experimental results were published in

[218].

C.1 Introduction

As defined in Section 2.2, a clique of an undirected graph G is a set of pairwise adjacent
vertices. A set of pairwise non-adjacent vertices is called an independent set. In this
appendix we address the Mazimum Clique Problem; i.e., for a given undirected graph
G find a maximum cardinality clique of G (whose cardinality we denote by w(QG)).

Clearly the maximum clique problem is equivalent to that of finding a maximum
independent set in the complementary graph. Applications for this problem exist in
signal processing, computer vision and experimental design for example (see Balas and
Yu [13]). Unfortunately, not only is the exact problem NP-hard (see Garey and Johnson
[105]), but Arora et al. [7] show that approximating the maximum clique problem within
a factor of |V for some € > 0 is NP-hard .

Early algorithms included the branch and bound algorithm of Bron and Kerbosch

236
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[46] to generate all the cliques of a graph and the recursive algorithm of Tarjan and
Trojanowski [206] to determine a maximum independent set of an m-vertex graph in
0(2”/ 3) time. Recent approaches to the maximum clique problem have included the
branch and bound algorithms of Carraghan and Pardalos [52], Pardalos and Rodgers
[170], Balas and Yu [13], Balas and Xue [11, 12], Babel and Tinhofer [9], and Babel
[8]. In their survey paper, Pardalos and Xue [171] identify the following key issues in a

branch and bound algorithm for the maximum clique problem.

1. How to find a good lower bound, i.e., a clique of large size?
2. How to find a good upper bound on the size of a maximum clique?

3. How to branch, i.e., break a problem into smaller subproblems?

In Section C.2 we address the first two of these questions. In Section C.3 we present
our branch and bound algorithm, and in Section C.4 we discuss computational results of

our algorithm in comparison with leading algorithms for the maximum clique problem.

C.2 Heuristics

The algorithm of Balas and Yu [13] concentrates on the determination of lower bounds
using an algorithm to find a maximum clique of a maximal triangulated induced sub-
graph at selected search tree nodes. This method is extended to the maximum weight
clique problem by Balas and Xue [11]. The algorithm to follow and the algorithm of
Balas and Xue [12] determine a lower bound at the root node of the search tree, using
the algorithm of Balas [10] to find a maximum clique of an edge-maximal triangulated
subgraph. To provide lower bounds at non-root search tree nodes we use the following
well-known heuristic which we call GREEDY CLIQUE. Given a graph G, maintain a set
S (initially S + V(G)) of candidate vertices to be added to the current clique. Add a
vertex v € S to the current clique, set S < (S\ {v}) NV (v), and continue until S = ().

We now turn our attention to the determination of upper bounds. The algorithms
of Carraghan and Pardalos [52] and Pardalos and Rodgers [170] use the size of a given
subgraph as an upper bound for the size of a clique in that subgraph. Vertex-colourings

provide much tighter upper bounds. A vertex k-colouring of a graph G partitions V (G)
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into k£ independent sets (Ci,Cs,...,Cy) called colour classes. Each vertex of a clique
must be coloured differently, so k is an upper bound for w(G). As discussed in Sec-
tion 2.2, the algorithm GREEDY VERTEX-COLOUR is a simple heuristic for determining

a vertex-colouring of a graph.

In [8, 9, 12] upper bounds for the maximum clique problem are determined using
the DSATUR vertex-colouring heuristic of Brelaz [43]. Brelaz defines the saturation
degree of an uncoloured vertex v to be the number of colours assigned to the vertices
adjacent to v. While uncoloured vertices remain, the DSATUR heuristic chooses an
uncoloured vertex v with maximum saturation degree (breaking ties by higher degree),

and colouring v with the minimum colour not already assigned to an adjacent vertex.

This method colours the connected components of G in turn, and within each con-
nected component the initial vertices chosen form a clique. So DSATUR provides both
a lower and upper bound for w(G). Comparisons of GREEDY VERTEX COLOUR and
DSATUR in [12, 217] show that for all but a few of the tested graphs DSATUR requires
(up to 27.5%) fewer colours than GREEDY VERTEX COLOUR, although DSATUR is
considerably slower. For very sparse and very dense graphs, DSATUR is an order of

magnitude more expensive than colour [12].

A fractional colouring of a graph G is a set C' of (possibly intersecting) weighted
colour classes (i.e., independent sets), such that for each vertex v € V(G) the sum of
the weights of the colour classes containing v is at least one. Since a colour class can
contain at most one vertex of a clique, in a fractional colouring the sum of the weights
of those colour classes intersecting a clique @ is at least |@|. Therefore the total weight
of a fractional colouring of a graph G is an upper bound for w(G). The upper bound
from a minimum weight fractional colouring is in general tighter than that provided by
a minimum vertex-colouring [12]; unfortunately determining such a fractional colouring
is NP-hard [112] .

Balas and Xue [12] use the following heuristic FCP for the fractional colouring
problem to provide upper bounds for the maximum clique problem. After 7 iterations
of FCP, each vertex is coloured exactly 4 times, and each colour class is assigned weight
1/i, so t; = |C|/i is an upper bound for w(G). Initially C' < (), i + 1 and &y + 0.

Iteration ¢ of FCP executes the following algorithm.
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For each vertex v, include v in the first colour class C; € C, if one exists, such that
CjU{v} remains an independent set. Suppose U is the set of vertices not included in a
colour class. Find a vertex-colouring (Cy,Cy,...,C) of G[U] (using GREEDY VERTEX
COLOUR or DSATUR), and set C < C U{C1,Cy,...,Cr} and t; « |C|/i. If t; < t;—1
then set 7 < i + 1 and repeat, otherwise return the upper bound |#; 1.

To prove a time complexity result for FCP, the authors amend the stopping rule so
that the number of colour classes |C| does not exceed the number of vertices |V|. Our
implementation also includes this feature. Note that for many graphs a tighter upper
bound can be calculated by reiterating the algorithm after either stopping condition is
satisfied.

By FCP and FCPp, we refer to algorithm FCP with GREEDY VERTEX COLOUR
and DSATUR determining vertex-colourings, respectively. The comparison of these
heuristics in [12, 217] show that the improvements in upper bound by FCP, over
GREEDY VERTEX COLOUR range from 0-21 colours, and for FCPp over DSATUR the

improvements range from 0-7 colours.

C.3 Maximum Clique Algorithm

We now present our branch and bound algorithm MC for the maximum clique problem,
which uses the FCP heuristic to determine upper bounds, and, like the algorithms in [52,
170], activates exactly one new search tree node at each branching stage. Other branch
and bound algorithms for the maximum clique problem activate many search tree nodes
at each branching step. This is inefficient as new bounds need to be determined for each
subgraph considered. A lower bound (i.e., a large maximum clique) is only determined
at the root node of the search tree. To do so we use the linear-time algorithm of Balas
and Yu [13] (also see Xue [225]) for finding a maximum clique in an edge-maximal
triangulated subgraph of the input graph.

Given a graph G, algorithm MC maintains the following conditions:

e If h is the current depth of the search tree then the set of vertices

{v1,v2,...,uh-1} CV(G) is a clique of G.

e M is the current largest clique found by the algorithm; h — 1 < |M| < w(G).
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i—1
e For 1 <i < h, the vertex set S; C (] Viz(v;) consists of candidates for enlarging

j=1
{7)1, V2y.nn 7'Ui—1}-

e For each i, 1 < i < h, (C},C%, .. .,C,ii) is a vertex-colouring of G[S;]. Both k;
and k] (determined by FCP) are upper bounds for w(G[S,]), with &} < k;.

e An active node of the search tree corresponds to the subproblem of finding a
maximum clique larger than M of the subgraph:
G; = G[{v1,v9,...,v;—1} US|, for 1 <i < h.
Clearly w(G;) <i—14+k, <i—-1+k,.

Algorithm C.1. MAXCLIQUE

Input: graph G

Output: maximum clique of G

Step 0: Initialisation
Find a maximum clique M of an edge-maximal triangulated subgraph of G [13, 225].
Set h + 1, S, + V(G) and go to Step 2.

Step 1: Calculate Lower Bound

() <+ GREEDY CLIQUE(G[S}]).

if h—1+4+1|Q| > |M| then set M < {vy,ve,...,v, 1} UQ.
Go to Step 2.

Step 2: Calculate Upper Bound

Find a vertex-colouring (C, C%, ..., C,’;h) of G[Sh].

if h — 14k, < |M] then go to Step 4.

Apply FCP to G[S}] to obtain a further upper bound &} > w(G[Sh]).
if h — 14k, <|M| then go to Step 4.

Go to Step 3.

Step 3: Branching

Choose a vertex vy, € C,’g‘h with maximum deggq(vp,).
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Set Sp11 « SN Va(vn), Sh < S\ {vn}, C’,’:h — C’,’:h \ {vn}

if Cf =0 then set ky, < kj — 1 and if kj, < kj, then set kj, < ky.
Set h < h + 1.

Go to Step 1.

Step 4: Backtracking

if h =1 then stop: M is a maximum clique of G.
Set h < h — 1.

if h — 14k, <|M| then go to Step 4.

Go to Step 3.

In the second line of Step 3, the problem of finding a maximum clique of Gy, is
divided into two sub-problems. If v, is a vertex of G[S}] then a clique @ of G}, will be
contained in either:

Ghi1 = G[{vi,ve, ..., U (S, NVg(vy))]  (if v, € Q)
or G, = G{vi,va,...,op—1} U (Sp \ {vn})] (ifvp € Q).

We choose v, from the final colour class C,’c‘h, as the latter colour classes generated
by GREEDY VERTEX COLOUR and by DSATUR tend to be smaller than the initial ones.
Therefore the upper bound ky, is reduced more quickly than if an arbitrary vertex in Sj
was chosen. Note that, since |M| > h—1 and h —1+kj, > |M| whenever the algorithm

goes to Step 3, we have kj, > 1 at this stage, and hence the colour class C,i’h must exist.

Theorem C.1. Given an undirected graph G, algorithm MC finds a mazimum clique

M of G.

Proof. This result follows immediately from the observation that algorithm MC main-
tains the abovementioned conditions throughout the algorithm. O
C.4 Experimental Results

See [217] for a complete description of the implementation of our algorithms in GAP

[193] on a Sun Sparcstation 10.
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To evaluate the effectiveness of the FCP heuristic as an upper bounding device
for the maximum clique problem, we have also developed an algorithm MC’ which
skips the third and fourth lines of Step 2, thus not using FCP to calculate a further
upper bound. MC, (respectively, MC{;) uses GREEDY CLIQUE to determine a clique in
Step 1, and FCP (GREEDY VERTEX COLOUR) to determine upper bounds in Step 2.

MCypy (respectively, MCpy) uses FCPpy (DSATUR) for these purposes.

We now compare the performance of algorithms MCg, MCp,, MCy, and MC}, with
existing algorithms for the maximum clique problem. By BXB we refer to a combina-
tion of the algorithms of Babel [8] and Balas and Xue [12], the most efficient known
algorithms for the maximum clique problem. BXB uses FCPp, to calculate lower and
upper bounds at each search tree node, and uses branching rule IT in [8], their best
performing branching rule. The branching rules in [8] and [12] (which is stated for

weighted graphs) both generally activate more than one new search tree node.

Table C.1 shows the average size of the lower bound determined at the root node
(LB), the average size of a maximum clique (|M]), the average CPU time taken by
each of the algorithms, and the average number of search tree nodes generated by each
algorithm, for 10 uniform random graphs with n. = |V (G)| vertices and % edge density
d =200|E|/n(n —1).

In Table C.2 we compare the algorithms for a selection of the DIMACS benchmark
graphs which were developed as part of the 1993 DIMACS Challenge (see Johnson
and Trick [122]). They include non-uniform random graphs with relatively large clique
sizes, and graphs which have arisen in coding theory, the Steiner Triple Problem, tiling
of hypercubes, vertex cover problems and fault diagnosis. Table B.2 shows the size n
and % density d of the graph, the CPU time taken by each algorithm, and the number
of search tree nodes generated by each algorithm. Column BX refers to the number of
search tree nodes for the algorithm of Balas and Xue [12], as stated in their paper. To
accurately compare algorithms we use the values presented in [12] for the lower bound

at the root node for each of the tested algorithms.

In most cases the algorithms MCp, BXB and BX, which use the upper bound
heuristic FCPy,, generate the least number of search tree nodes. MCp on average

generates less search tree nodes than BXB for 12 of the 16 sets of random graphs. For
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Table C.1: Performance of Maximum Clique Finding Algorithms on Uniform Random

Graphs

CPU Time (seconds) Search Tree Nodes

n d LB |M| , , , ,
MCg MCp MCy MCj BXB  MCg MCp MCy MC, BXB

100 10 3.7 3.9 0.222 0.428 0.160 0.280 0.432 24.3 18.7 24.8 18.7 23.1
100 20 4.7 5.1 0.363 0.755 0.277 0.523 0.752 38.1 33.9 40.6 34.7 39.2
100 30 5.6 6.3 0.959 1.590 0.422 0.883 1.390 53.4 45.6 79.2 52.9 50.3
100 40 69 7.6 1.325 3.148 0.613 1.508 3.020 109.8 824 1656 1028 89.1
100 50 81 9.1 2515 6.894 1.478 3.780 6.458 2541 198.7 3445 2349 2019
100 60 10.4 11.6 5.497 14.18 1.932 6.860 14.87 468.4  328.7 707.5 405.8 3654
100 70 12.8 14.8 14.31 36.85 3.445 18.08 38.38 1,048 672.7 1,705 893.4  698.1
100 80 18.0 20.0 3543 92.84 6.525 46.46 88.62 1,786 1,253 2,961 1,696 1,160
100 90 28.0 30.7 73.84 150.1 12.12 71.30 134.1 2,126 1,109 4,043 1,523 974.3
200 10 4.0 4.3 1.013 2.498 0962 1.715 2.705 92.3 83.5 98.2 83.7 91.2
200 20 5.1 59 2.708 5.810 1.548 4.217 5.965 140.3  120.7 2022 137.6 126.9
200 30 6.1 7.3 7.030 17.71 3.187 9.095 18.56 519.9 396.2 699.5 476.8 386.0
200 40 7.6 9.0 16.04 47.64 5.510 26.04 49.85 1,539 1,162 2,011 1,279 1,317
200 50 10.0 11.1 57.49 161.5 12.68 81.31 168.1 4,295 2,810 6,846 3,622 2,889
200 60 12.1 14.0 249.9 755.6 45.66 380.4 820.4 17,461 11,704 26,857 14,712 13,109
200 70 15.3 18.1 1,993 5,830 3419 2,945 5,829 102,122 64,430 173,810 88,354 63,972

12 of the DIMACS benchmark graphs, the lower bound and upper bound calculated at
the root node by these algorithms are equal, and therefore only one search tree node
is generated. Of the other 26 DIMACS benchmark graphs, MCp, uses the least search
tree nodes of these algorithms 15 times, BXB 10 times, and BX 8 times.



Table C.2: Performance of Maximum Clique Finding Algo-

rithms on the DIMACS Benchmark Graphs

CPU Time (seconds)

Search Tree Nodes

DIMACS

Graph nod M MCy MCp MC; MC, BXB MCy  MCp MC,, MC), BXB BX
brock200_1 200 75 21 4911 15186 8052 7,951 16,320 218,853 149,153 379,810 211,013 163,348 113,244
brock200_2 200 50 12 2672 149.7 3.833 7422 1584 1,790 3,018 2,594 3593 3018 2965
brock200_3 200 61 15 2301 573.6 3850 281.0 8159 15354 7,818 24,113 10,113 12,717 8,155
brock200_4 200 66 17 5682 1,926 92.95 9315 1,530 31,751 25,105 52,332 33,693 19,316 25,705
c-fat200-1 200 8 12 0283 2200 0017 0150 2.133 8 1 8 4 1 1
c-fat200-2 200 16 24 0317 0183 0017 0183  0.167 7 1 7 1 1 1
c-fat200-5 200 43 58 0.683 3.467 0133 2217  3.284 27 27 27 27 27 29
c-fat500-1 500 4 14 0534 0616 0017 0617 2217 13 1 13 1 1 1
c-fat500-2 500 7 26 1417 0700 0.083  0.700  0.750 23 1 23 1 1 1
c-fat500-5 500 19 64 1450 0.984 0.166  0.950  0.983 23 1 23 1 1 1
c-fat500-10 500 37 126 0.017 1400 0.033  1.400  1.450 1 1 1 1 1 1
hamming6-2 64 90 32 0017 0050 0001 0067  0.066 1 1 1 1 1 1
hamming6-4 64 35 4 0133 0850 0067 0300  0.800 81 29 81 58 29 48
hamming8-2 256 97 128 0017 0733 0001 0750  0.717 1 1 1 1 1 1

continued on next page
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Table C.2: continued

DIMACS CPU Time (seconds) Search Tree Nodes

n d |M
Graph 1| MCG MCp MCyq MCh BXB MCG MCp MC¢, MCp BXB BX

hamming8-4 256 64 16 344.2 155.7 79.15 137.6 156.5 28,593 357 36,441 2,045 357 373

hammingl0-2 1,024 99 512 0.050 10.57 0.066 10.47 12.28 1 1 1 1 1 1
johnson8-2-4 28 56 4 0.050 0.050 0.017 0.083 0.033 20 1 23 26 1 1
johnson8-4-4 70 77 14 0533  0.300 0.183 0.534 0.300 115 1 115 19 1 1
johnsonl6-2-4 120 76 8 770.8 0417 195.8 2,046 0.384 190,084 1 256,099 355,522 1 1
keller4 171 65 11 1131  256.5 18.45 137.5 256.7 6,543 3,700 12,829 5,195 3,700 4,164
MANN_a9 45 93 16 0.617 1.033 0.100 0.384 1.017 46 19 60 20 19 23
MANN_a27 378 99 126 23,286 26,524 704.3 9,753 25,549 39,087 8,704 47,264 9,874 8,714 14,145
p-hat300-1 300 24 8 8.800 38.93 1.467 20.12 37.53 1,032 819 1,310 928 819 832
p-hat300-2 300 49 25 75.05 225.6 10.05 129.2 225.5 1,888 1,304 2,801 1,579 1,304 1,613
p-hat500-1 500 25 9 7648 384.8 13.72 231.4 389.5 7,454 6,179 9,772 6,724 6,179 6,105
p-hat500-2 500 50 36 2,695 9,790 267.1 5,796 6,320 35,657 27,182 59,393 34,787 17,019 31,746
p-hat700-1 700 25 11 2728 1,915 40.32 1,060 1,408 17,629 19,337 25,805 23,150 15,310 14,040

p-hat1000-1 1,000 24 10 1,883 13,060 283.2 6,974 13,150 122,182 90,607 179,082 111,897 91,159 93,004
san2000.7_1 200 70 30 6.617 36.37 0.917 18.85 95.73 93 231 206 348 645 635

continued on next page
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Table C.2: continued

CPU Time (seconds)

Search Tree Nodes

DIMACS

Graph nood M MCy MCp MCq MCp BXB MCgq MCp MCq¢, MCp BXB BX
san200.0.7_2 200 70 18 3.700 20.80 0.466 10.65 36.53 110 154 195 182 363 852
san200.0.9_1 200 90 70 7375 45.72 11.48 24.92 255.4 715 121 2,069 201 631 10
san200.0.9-2 200 90 60 5,988 612.6 1,052 348.0 2,036 71,114 1,553 211,889 2,365 9,655 1,825
san400.0.5_1 400 50 13 51.03 81.73 11.22 64.83 247.7 1,223 378 3,465 923 1,689 1,194
san400.0.7_1 400 70 40 1,681 2,455 198.7 1,430 10,263 15,903 5,604 38,989 8,507 30,707 20,913
san400.0.7_2 400 70 30 36,486 39,100 6,228 24,285 66,579 690,806 139,092 1,591,030 231,593 295,314 75,773
san1000 1,000 50 15 2,281 32,630 653.9 40,814 9,277 43,623 44,408 106,823 78,698 12,996 21,897
sanr200.0.7 200 70 18 1,711 4,608 338.2 2,372 4,076 87,012 51,610 150,861 71,799 44,278 40,496
sanr400.0.5 400 50 13 2,352 9,094 350.9 4,955 8,617 155,285 115,210 233,381 136,636 114,208 112,932
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Those algorithms which use the vertex-colouring heuristic GREEDY VERTEX
COLOUR, while generating the most search tree nodes, are generally the fastest. In
particular, for the random graphs, MCy; is the fastest of the tested algorithms, using
on average only 18.41% of the CPU time used by BXB. MCy, is again the fastest for all
but four of the DIMACS benchmark graphs (and for two of these the difference is only
a few microseconds). We have also implemented a variant MC2g of MCy; which only
finds a lower bound at the root node of the search tree. For the random graphs (DI-
MACS benchmark graphs) this algorithm uses 0.65% (0.20%) more search tree nodes
than MCy,, yet is on average 4.34% (12.04%) faster than MC{,. This indicates that the
determination of lower bounds at non-root nodes is not time-efficient.

We have observed that for graphs with fixed size and density the difficulty of the
maximum clique problem is generally inversely correlated to the size of a maximum
clique in the graph. This is apparent for the san graphs with equal n and d. Similar
results occur with the random graphs. For example, the 10 uniform random graphs
(used in Table C.1) with n = 100 and d = 90% have a maximum clique of size 29(2),
30(3), 31(2), 32(2) or 33(1). For each maximum clique size, Table C.3 shows the
average CPU time taken, and the average number of search tree nodes generated by

each algorithm.

Table C.3: Performance of Maximum Clique Finding Algorithms on Uniform Random

Graphs with n = 100 and d = 90%

CPU Time (seconds) Search Tree Nodes

M
IM] MCq MCp MG, MC, BXB  MCg MCp MC, MC, BXB

29 160.0 263.1 26.34 1225 285.8 4,957 2,014 9,854 2,721 2,216
30 66.09 158.2 10.38 74.80 1344 1,885 1,183 3,259 1,620 966
31 53.27 9434 9.740 4592  79.52 1,392  643.5 2,815 938.5 5922
32 50.80 138.0 7.809 6697 92.19 1,323 1,006 2,465 1,372 623
33 1203 36.32 2300 1790 22.80 256 217 391 307 123
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