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Abstra
t

The visualisation of relational information has many appli
ations in diverse domains

su
h as software engineering and 
artography. Relational information is typi
ally mod-

elled by an abstra
t graph, where verti
es are entities and edges represent relationships

between entities. The aim of graph drawing is to automati
ally produ
e drawings of

graphs whi
h 
learly re
e
t the inherent relational information.

Numerous graph drawing styles have been proposed in the literature. Orthogonal

graph drawings have been widely studied due to their appropriateness in a variety of

visualisation appli
ations and in the design of VLSI 
ir
uitry. Most of the resear
h


ondu
ted in graph drawing, in
luding orthogonal drawings, has dealt with drawings

in the plane. With the widespread availability of graphi
s workstations and the de-

velopment of software systems for three-dimensional graphi
s, there has been re
ent

interest in the design and analysis of algorithms for three-dimensional graph drawing.

This thesis is primarily 
on
erned with problems related to the automati
 generation

of three-dimensional orthogonal graph drawings. Our methods also have appli
ation to

two-dimensional orthogonal graph drawing and generalise to higher dimensional spa
e.

In parti
ular, we develop a number of models for three-dimensional orthogonal graph

drawing, and within ea
h model, algorithms are presented whi
h explore trade-o�s be-

tween the established aestheti
 
riteria. The main a
hievements in
lude (1) an algo-

rithm for produ
ing three-dimensional orthogonal box-drawings with optimal volume

for regular graphs, (2) an algorithm for produ
ing degree-restri
ted three-dimensional

orthogonal 
ube-drawings with optimal volume, (3) an algorithm whi
h establishes the

best known upper bound for the total number of bends in three-dimensional orthogonal

point-drawings, and (4) an algorithm whi
h establishes the best known upper bound

for the volume of 3-D orthogonal point-drawings with three bends per edge route.

As a by-produ
t of this investigation, we develop methods for a number of 
om-

binatorial problems of independent interest, in
luding the balan
ed vertex ordering

problem, equitable edge-
olouring of multigraphs, and the maximum 
lique problem.
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Chapter 1

Introdu
tion

In this 
hapter we provide a broad overview of graph drawing appli
ations

and 
onventions, surveying the theoreti
al ba
kground to the development of

algorithms for drawing graphs. This provides the setting and motivation for

the results presented in the remainder of the thesis.

1.1 Graph Drawing

Graph drawing is 
on
erned with the automati
 generation of geometri
 representations

of relational information, often for visualisation purposes. The typi
al data stru
ture

for modelling relational information is a graph whose verti
es represent entities and

whose edges 
orrespond to relationships between entities. Most appli
ations of graph

drawing 
all for two-dimensional drawings, although with the widespread availability of

graphi
s workstations, there has been 
onsiderable re
ent interest in three-dimensional

graph drawing. As 
an be seen in the three-dimensional representation of network traÆ


in Figure 1.1, drawing graphs in three dimensions allows for more 
exible drawings than

if we restri
t the drawing to the plane.

Software engineering has provided 
onsiderable motivation for the development of

graph drawing algorithms. The method for laying out data-
ow diagrams due to Knuth

[128℄ was one of the �rst graph drawing algorithms for visualisation purposes. More

re
ently, methods for drawing in three-dimensional spa
e have been developed for vi-

sualising obje
t-oriented 
lass stru
tures by Robertson et al. [180℄, Koike [131℄, Ware

2
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Figure 1.1: A 3-D drawing representing NSFNET traÆ
, 
ourtesy of the NCSA.

(http://www.n
sa.uiu
.edu)

et al. [214℄ and Reiss [179℄. Batini et al. [15℄ present an algorithm for the display of

entity-relationship diagrams in database systems. Munzner and Bur
hard [158℄ have

explored the use of graph drawing te
hniques for visualising the world wide web in

three dimensions, In Figure 1.2 we present a three-dimensional representation of the

organisation of an internet site.

An important area for the appli
ation of graph drawing te
hniques is the automati


layout of VLSI 
ir
uit s
hemati
s. In two dimensions su
h algorithms have been de-

veloped by Quinn Jr. and Breuer [177℄, Leiserson [141℄, Bhatt and Leighton [22℄ and

S
hlag et al. [191℄ (see also Lengauer [143℄). Three-dimensional VLSI layouts have

been investigated by Preparata [173℄, Rosenberg [185, 186℄, Leighton and Rosenberg

[140℄ and Aboelaze and Wah [1℄. Three-dimensional �eld-programmable gate arrays

(FPGAs) have been designed by Veretenni
o� et al. [210℄, and in the Rothko proje
t

at Northeastern University, Leeser et al. [138, 139℄ and Meleis et al. [153℄ 
onstru
t

three-dimensional FPGAs with inter
onne
tions between layers of a
tive devi
es.
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Figure 1.2: A 3-D drawing representing the organisation of part of the

web site for the journal Nature Neuros
ien
e, 
ourtesy of Dynami
 Diagrams

(http://www.dynami
diagrams.
om).

Other s
ienti�
 appli
ations for graph drawing in
lude biology (evolutionary trees),


hemistry (mole
ular drawings), ar
hite
ture (
oor plan maps) and 
artography (map

s
hemati
s). The drawing of graphs whi
h arise in mathemati
s, su
h as 
ommutativity

diagrams, is an often overlooked appli
ation domain for graph drawing.

1.2 Algorithmi
 Graph Theory

Algorithms for drawing graphs are typi
ally based on some graph-theoreti
 de
om-

position or insight into the stru
ture of the graph. We now survey the development

of algorithmi
 graph theory, highlighting the algorithmi
 approa
hes employed in this

thesis.

For many years in the shadow of topology, abstra
t graph theory is now a well-

developed theory with important 
onne
tions to number theory, logi
, algebra, knot

theory and probability (see Beineke and Wilson [18℄). Re
ent deep stru
tural results,
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most notably the minor theorem of Robertson and Seymour [182℄ (see Diestel [76℄ for a


omprehensive overview), have pla
ed graph theory at the forefront of 
ombinatori
s.

Furthermore, graph theory is now providing new insights into topology in
luding the

simple graph-theoreti
 proof due to Thomassen [207℄ of the notoriously diÆ
ult Jordon-

S
h�on
ies Curve Theorem. Re
ent highlights in topologi
al graph theory in
lude a

new proof of the four-
olour theorem by Robertson et al. [181℄, and the dis
overy of

forbidden minor 
hara
terisations of graphs admitting 
ertain topologi
al embeddings,

as dis
ussed below.

Graph theory is often used to model real world algorithmi
 problems, su
h as

s
heduling and transportation. Furthermore many important issues in 
omputational


omplexity theory are illustrated with graph-theoreti
 problems. For example, three of

the six basi
 NP-
omplete problems in Garey and Johnson [105℄ deal with graphs. The

theory of 
omputational 
omplexity dates from the study of the fundamental 
apabil-

ities and limitations of 
omputation by logi
ians su
h as G�odel, Chur
h and Turing.

Our understanding of 
omputational 
omplexity made great advan
es with the devel-

opment of the theory of NP-
ompleteness (see Garey and Johnson [105℄) in the 1970s.

The explosion of interest in the theory of algorithms in the past three de
ades has

motivated mu
h resear
h in the �eld of graph theory. The growth of graph drawing as

a dis
ipline of Computer S
ien
e is a natural byprodu
t of this development.

As we shall see many graph drawing problems are NP-
omplete. Exa
t solutions to

NP-
omplete problems, using integer programming formulations or bran
h and bound

te
hniques, have exponential time 
omplexity. An example of this approa
h is given in

Appendix C, where we provide a bran
h and bound algorithm for the maximum 
lique

problem, whi
h 
ombined with eÆ
ient heuristi
s to provide lower and upper bounds,

solves relatively small instan
e of the maximum 
lique problem in a realisti
 amount

of time.

Unless P=NP, exa
t polynomial time algorithms 
annot be obtained for NP-
omplete

problems. Mu
h re
ent resear
h has fo
used on 
lassifying the approximability of prob-

lems, and the development of approximation algorithms whi
h guarantee near-optimal

solutions or at least have tight worst 
ase performan
e bounds. For many of the graph

drawing problems investigated in this thesis, we present approximation algorithms and
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heuristi
s with tight worst 
ase bounds. Graph algorithms, su
h as topologi
al order-

ing, mat
hing and vertex- and edge-
olouring form the basis of the many of the methods

presented in this thesis.

1.3 Graph Embeddings and Representations

Many approa
hes to graph drawing, for example the topology-shape-metri
s approa
h

dis
ussed in Se
tion 3.2.2, and the algorithms presented in Se
tions 9.1 and 5.5, are

based on graph embeddings. A graph embedding des
ribes the essential topologi
al

features of a graph drawing. We now provide a review of the prin
ipal results from the

theory of graph embeddings, 
on
entrating on three-dimensional graph embeddings.

Planar Embeddings

One of the most famous result in graph theory is Kuratowski's 
hara
terisation of planar

graphs. Kuratowski [137℄ showed that a graph is is planar if and only if it 
ontains

neither K

5

nor K

3;3

as a topologi
al minor. The result was extended to general minors

by Wagner [212℄. Sin
e these early results, the theory of planar graphs has been widely

studied. Notable are the linear time algorithms for re
ognising planar graphs, for

example that of Hop
roft and Tarjan [119℄.

Re
ently, relationships between graph embeddings and an algebrai
 graph invariant

� introdu
ed by Colin de Verdi�ere [61, 62℄ have been dis
overed. Colin de Verdi�ere

shows that �(K

n

) = n � 1 and 
hara
terises those graphs G with �(G) � k for ea
h

k � 3. In parti
ular, �(G) � 1 if and only if G is a disjoint union of paths; �(G) � 2

if and only if G is outerplanar; and �(G) � 3 if and only if G is a planar. For ea
h

�xed k, the 
lass of graphs with � � k is 
losed under taking minors, so by the minor

theorem there is a �nite forbidden minor 
hara
terisation of su
h graphs. Note that

Colin de Verdi�ere 
onje
tures that �(G) � �(G)�1, a result whi
h implies the 4-
olour

theorem.



CHAPTER 1. INTRODUCTION 7

Surfa
e Embeddings

Embeddings of graphs in surfa
es provide a natural generalisation of plane graphs.

Informally, the genus of a graph G is the minimum k su
h that there is a embedding

of G in the surfa
e 
onstru
ted from the sphere with k `handles'. The sphere with

one handle, 
alled the torus, 
an be thought of as a re
tangle whose sides have been

identi�ed. The drawing in Figure 1.3 ofK

7

embedded in the torus is an elegant example

of a surfa
e embedding.

Figure 1.3: A straight-line drawing of K

7

on the `square' torus.

A signi�
ant 
orollary of the minor theorem is that for every surfa
e S there is a

�nite forbidden minor 
hara
terisation of those graphs embeddable in S [183℄. Apart

from the plane, the only surfa
e where the 
omplete list of forbidden minors is known is

the proje
tive plane, where the 35 minor-minimal graphs were dis
overed by Ar
hdea-


on [6℄. Mohar [155℄ presents a linear time algorithm, whi
h for a �xed surfa
e S,

�nds an embedding of a given graph in S or identi�es a subgraph homeomorphi
 to a

forbidden minor for S.

Linkless Embeddings

A spatial embedding of a graph is an embedding in R

3

. A spatial embedding is linkless

if there is no pair of disjoint linked 
y
les. A graph with a linkless embedding is said to

be linkless, otherwise it is self-linked. Conway and Gordon [63℄ and Sa
hs [188℄ showed

that K

6

is self-linked (see Figure 1.4).

A �Y -ex
hange in a graph repla
es a triangle by a 3-star, while a Y�-ex
hange
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Figure 1.4: Linked spatial embedding of K

6

.

repla
es a 3-star by a triangle. Sa
hs [188℄ establishes that the six graphs obtained from

K

6

by a sequen
e of �Y -ex
hanges and Y�-ex
hanges, 
alled the Petersen Family (as

the Petersen graph is a member), are also self-linked. Robertson et al. [184℄ show

that these graphs 
omprise a forbidden minor 
hara
terisation of the 
lass of linkless

graphs

1

. Furthermore they show that a linkless graph has � � 4. Their 
onje
ture that

the 
onverse is also true was established by Lov�asz and S
hrijver [149℄.

Knotless Embeddings

A spatial embedding of a graph is said to knotted if there is a 
y
le whi
h forms a

non-trivial knot. We 
all a graph knotless if it has a spatial embedding whi
h is not

knotted, and self-knotted otherwise. Conway and Gordon [63℄ and Shimabara [196℄

respe
tively showed that K

7

and K

5;5

are self-knotted.

Up until the proof of the minor theorem it was unknown if there is an algorithm

for de
iding the knotlessness of a given graph. The 
lass of knotless graphs is 
losed

under taking minors, so by the minor theorem, remarkably there is an O(n

3

) algorithm

to de
ide if a given graph is knotless, although no one knows what the algorithm is. It

is a tantalising open problem to determine whether the knotless graphs are pre
isely

those graphs with � � 5.

1

The proof of this result announ
ed by Motwani et al. [157℄ was refuted by Kohara and Suzuki [130℄.
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Book Embeddings

A book 
onsists of a line in 3-spa
e, 
alled the spine, and some number of pages (ea
h

a half-plane with the spine as boundary). A book embedding of a graph is a spatial

embedding 
onsisting of an ordering of the verti
es, 
alled the spine ordering, along the

spine of a book and an assignment of edges to pages so that edges assigned to the same

page 
an be drawn on that page without 
rossings; i.e., for any two edges vw and xy,

if v < x < w < y in the spine ordering then vw and xy are assigned di�erent pages.

The minimum number of pages in whi
h a graph 
an be embedded is its pagenumber.

Figure 1.5: A 3-page book embedding of a graph

Yannakakis [226℄ showed that the maximum pagenumber of a planar graph is four.

By the four-
olour theorem [4, 5, 181℄, the maximum pagenumber and maximum 
hro-

mati
 number are equal for planar graphs. Similarly, Endo [88℄ showed that the pa-

genumber of a toroidal graph is at most seven. Sin
e ea
h toroidal graph is vertex

7-
olourable [116℄, the maximum pagenumber is no more than the maximum 
hromati


number. It is a fas
inating open problem (see [88℄) to determine if the maximum

pagenumber and maximum 
hromati
 number are equal for all surfa
es.

Heath and Istrail [115℄ proved that the pagenumber of a genus g graph is O(g),

and 
onje
tured the 
orre
t bound is O(

p

g). This 
onje
ture was 
on�rmed by Malitz

[150℄. As a 
orollary of this result, and proved independently by Malitz [151℄, the

pagenumber of a graph with m edges is O(

p

m). These results are non-deterministi


in nature, and Las Vegas algorithms are presented to 
ompute book embeddings with

O

�

p

g

�

pages. Book embeddings, and in parti
ular these results of Malitz, form the

basis of our algorithms presented in Se
tions 5.5 and 9.1.
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Graph Representations

A representation of a graph, loosely speaking, des
ribes the verti
es by some set of

geometri
 obje
ts and the edges by some relationship between the obje
ts. Examples

in
lude the visibility representations des
ribed in Se
tion 3.2.1 and tou
hing 
ir
le and

sphere representations of graphs. Koebe [129℄ �rst proved that the verti
es of a pla-

nar graph 
an be represented by non-overlapping 
ir
les in the plane, so that verti
es

are adja
ent if and only if the 
orresponding 
ir
les are tangent. Kotlov et al. [134℄

have re
ently dis
overed relationships between the invariant � and the tou
hing sphere

representations of graphs in R

3

.

1.4 Graph Drawing Conventions

We now des
ribe the 
ommon 
onventions, or styles, of graph drawings for whi
h algo-

rithms have been developed. We 
on
entrate on those 
onventions that have been used

for three-dimensional graph drawing. For a 
omplete summary see Di Battista, Eades,

Tamassia, and Tollis [71℄. While the 
riteria for de
iding the quality of a given graph

drawing is somewhat dependent on the appli
ation domain, for ea
h graph drawing


onvention there is a 
ommonly a

epted set of aestheti
 
riteria by whi
h the quality

of a drawing is judged. For any graph and any style there is (typi
ally) an in�nite num-

ber of possible drawings. The goal of graph drawing algorithms is to produ
e drawings

whi
h satisfy the aestheti
 
riteria. More often than not we need to make a trade-o�

between the various aestheti
 
riteria. The study of trade-o�s between various aestheti



riteria is at the heart of the study of graph drawing algorithms.

1.4.1 Grid Drawings

So that the area (or volume in three dimensions) of a graph drawing 
an be measured

in a 
onsistent fashion, we often require verti
es to have integer 
oordinates. We say

the verti
es are pla
ed at grid-points and su
h a drawing is 
alled a grid drawing.

The smallest re
tangle (or box in three-dimensions) whi
h surrounds a grid drawing

is 
alled the bounding box. The area (or volume) of the bounding box is perhaps the

most 
ommonly used quantity to measure the aestheti
 quality of grid drawings. For
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example, drawings with small area 
an be drawn with greater resolution on a �xed-size

page. In some three-dimensional appli
ations, for example when visualising the drawing

on a 
omputer s
reen, it may be more important to minimise the `depth' of the drawing.

We therefore have the following possible aestheti
 
riteria for grid drawings.

� Minimise the bounding box volume.

� Minimise the minimum bounding box side length.

� Minimise the maximum bounding box side length.

An alternative to grid drawings is to stipulate that verti
es are at least unit distan
e

apart.

1.4.2 Straight Line Drawings

It is natural to draw ea
h edge of a graph as a straight line between its end-verti
es.

So-
alled straight-line graph drawings are one of the earliest graph drawing 
onventions

to be investigated. In Figure 1.6 we present examples of straight-line graph drawings.

(a) (b)

Figure 1.6: Straight-line drawings of the o
tahedron graph: (a) plane drawing, (b) 3-D

drawing.

Aestheti
 
riteria for straight-line graph drawings in
lude the following.

� Minimise edge 
rossings (in 2-D non-planar drawings).

� Maximise the angular resolution; i.e., the angle between edges in
ident at a 
om-

mon vertex.
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� Minimise the edge separation; i.e., the distan
e between edges not in
ident to a


ommon vertex.

� Minimise the total length of edge routes.

� Minimise the maximum length of an edge route.

� Preserve the symmetry of the graph.

Note that Pur
hase et al. [176℄ and Pur
hase [175℄ 
on
luded from their experimen-

tal study of the human per
eption of 2-D graph drawings that minimising the number

of edge 
rossings and minimising the number of bends were both signi�
ant aestheti



riteria for in
reasing the understandability of drawings of graphs.

That every planar graph has a straight-line plane drawing was proved indepen-

dently by Wagner [211℄, F�ary [94℄ and Stein [198℄. In a re
ent extension of this result,

Brightwell and S
heinerman [45℄ show that a planar graph and its dual 
an be simul-

taneously represented in the plane with straight-line edge routes su
h that the edges of

the graph 
ross the dual edges at right angles. These authors were only really interested

in proving the existen
e of straight-line embeddings and not with produ
ing algorithms

for graph drawing. In parti
ular, if we stipulate minimum unit distan
e between ver-

ti
es then exponential area may be required by these methods. de Fraysseix et al. [66℄

and S
hnyder [192℄ independently developed algorithms for planar straight-line grid

drawing with O(n

2

) area.

Every simple graph has a straight-line 3-D grid drawing with no 
rossings, and

for this reason we only 
onsider 
rossing-free 3-D graph drawings. To 
onstru
t su
h

a drawing of a graph with vertex set fv

1

; v

2

; : : : ; v

n

g, verti
es are positioned along a

moment 
urve; i.e., v

i

is at (i; i

2

; i

3

) 2 Z

3

. It is easily seen that no two straight lines

between verti
es 
an interse
t. This drawing has O(n

6

) bounding box volume. Cohen

et al. [60℄ showed that by pla
ing vertex v

i

at (i mod p; i

2

mod p; i

3

mod p) 2 Z

3

for

some prime p, n < p < 2n, no two edge routes 
ross and we obtain a grid drawing

with O(n

3

) bounding box volume. This result has been strengthened by Pa
h et al.

[161℄ who show that every k-
olourable graph, for some �xed k, has a 3-D straight-line

grid drawing with O(n

2

) volume. Instead of requiring verti
es to be at grid-points,

Garg et al. [108℄ stipulate that distin
t verti
es are at least unit distan
e apart in a
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3-D straight-line graph drawing. Their algorithm establishes bounds on the bounding

box volume, aspe
t ratio and edge separation of su
h drawings. Simulated annealing

te
hniques for generating 3-D straight-line graph drawings have been developed by Cruz

and Twarog [65℄ and Monien et al. [156℄.

One of the earliest graph drawing methods, namely the bary
entre method, was

developed by Tutte [208, 209℄. Here a �xed set of verti
es are pla
ed on a stri
tly


onvex polygon, and the remaining verti
es, said to be free, are repeatedly pla
ed at

the bary
entre of their neighbours until the 
oordinates of the free verti
es 
onverges.

If the input graph is tri
onne
ted and planar, then the drawing produ
ed is planar and

ea
h fa
e is a 
onvex polygon. The bary
entre method has been extended to produ
e

3-D straight-line graph drawings by Chilakamarri et al. [55℄.

The bary
entre method is an example of the for
e-dire
ted approa
h for graph

drawing. Here the graph is viewed as a physi
al system with for
es a
ting between

the 
onstituent bodies. For example, edges 
an be modelled as springs and verti
es as


harged parti
les whi
h repel ea
h other (see Di Battista et al. [71℄ for details and ref-

eren
es). For
e dire
ted methods for produ
ing 3-D graph drawings have been studied

by Ostry [160℄ and Bru� and Fri
k [48℄. As noted by Eades and Lin [83℄, an advantage

of for
e dire
ted algorithms is that symmetries of the graph are often preserved in the

drawing.

A relationship between the for
e-dire
ted approa
h to graph layout and graph 
on-

ne
tivity was dis
overed by Linial et al. [144℄, later extended to the 
ase of digraphs

by Cheriyan and Reif [54℄. They prove that a (di)graph G is k-
onne
ted (k � 2) if

and only if for any X � V (G) with jXj = k there is a 
onvex-X embedding of G; i.e.,

the verti
es of G 
an be represented by points in general position in R

k�1

(i.e., no k

verti
es are on a 
ommon hyperplane), so that ea
h vertex, ex
ept for the k spe
i�ed

verti
es in X, is in the 
onvex hull of its (out)neighbours. This result generalises the

notion of st-orderings (used extensively in graph drawing; see Se
tions 3.2.3 and 4.2) to

arbitrary dimensions. The proof is based on a physi
al model where the edges are ideal

springs and the verti
es settle into equilibrium. Although the authors do not note this,

for k � 4, edges drawn as straight lines 
annot 
ross sin
e the verti
es are in general

position.
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An interesting graph invariant related to multi-dimensional straight-line graph draw-

ing is that of the dimension of a graph. Erd}os, Harary, and Tutte [89℄ de�ne the dimen-

sion of a graph to be the minimum number of dimensions in whi
h it 
an be embedded

with ea
h edge a unit length straight-line (possibly with 
rossings). They showed that

the dimension of the 
omplete graph K

n

is n � 1, and the dimension of the 
omplete

bipartite graph K

a;b

is four, among other results.

1.4.3 Orthogonal Drawings

In a polyline graph drawing ea
h edge 
onsists of a sequen
e of 
ontiguous line segments.

Di Battista et al. [71℄ des
ribe algorithms for 
onstru
ting planar polyline drawings. In

a polyline grid drawing, the bends on edge routes as well as the verti
es are required to

be at grid points. If ea
h segment of an edge in a polyline grid drawing is parallel to some

axis then the drawing is 
alled orthogonal. (Pre
ise de�nitions are given in Chapter 2.)

A feature of the orthogonal drawing style is its very good angular resolution. For this

reason, it is 
ommonly used for many appli
ations in
luding data-
ow diagrams, and

in VLSI 
ir
uit design where ele
tri
al wires must be axis-parallel. Examples of `real-

world' orthogonal graph drawings in two and three dimensions are shown in Figures 1.7

and 1.2, respe
tively.

We say an orthogonal graph drawing is orientation-dependent if, loosely speaking,

the drawing is signi�
antly di�erent when viewed with respe
t to one parti
ular di-

mension; otherwise we say it is orientation independent. For example, the following

properties are indi
ative of orientation-independent drawings.

� The bounding box is a 
ube.

� The box surrounding the verti
es is a 
ube.

� It is equally likely that an edge in
ident with a parti
ular vertex, is routed using

any port on that vertex.

Whether or not orientation-dependen
e is a desirable quality in orthogonal draw-

ings is often an appli
ation-spe
i�
 question. We shall take the view that orientation-

independent orthogonal drawings are more aestheti
ally pleasing than orientation-

dependent orthogonal drawings. Orientation dependen
e is a parti
ularly appropriate
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Figure 1.7: An orthogonal drawing of a 
omputer network, 
ourtesy of Tom Sawyer

Software (http://www.tomsawyer.
om)


onsideration for 3-D orthogonal drawings. Biedl [27℄ des
ribes orientation independent

3-D orthogonal drawings as being `truly three-dimensional'.
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Orthogonal graph drawings with many bends appear 
luttered and are diÆ
ult

to visualise. Existing algorithms for two-dimensional orthogonal graph drawing have

bounds on the maximum number of bends per edge route as well as the total number of

bends. Up until now, algorithms for 3-D orthogonal graph drawing have 
on
entrated

only on the maximum number of bends per edge route. The algorithms for orthogonal

graph drawing presented in Chapter 5 initiate the study of the total number of bends

in 3-D orthogonal drawings. As well as the aestheti
 
riteria already dis
ussed in the

previous se
tion, orthogonal graph drawings should exhibit the following properties.

� Minimise the maximum number of bends per edge route.

� Minimise the total number of bends.

� Drawings should be orientation-independent.

For orthogonal graph drawings a number of tradeo�s between aestheti
 
riteria,

most notably between the maximum number of bends per edge route and the bounding

box volume, have been observed in existing algorithms [87℄. In this thesis we shall also

observe a tradeo� between orientation-independen
e and bounding box volume, and

between orientation-independen
e and the maximum number of bends per edge route.

In Figure 1.8 we present orthogonal drawings of the o
tahedron whi
h demonstrate

some of the aestheti
 
riteria for su
h drawings.

If we represent ea
h vertex by a point, as in the above examples, for a graph to

admit a two-dimensional orthogonal drawing ea
h vertex must have degree at most

four. In three dimensions ea
h vertex must have degree at most six. Over
oming this

restri
tion has motivated the 
onsideration of orthogonal box-drawing where verti
es

are represented by re
tangles in two dimensions and by boxes in three dimensions.

Box-drawings also have the advantage that a label 
an be atta
hed to ea
h vertex.

For orthogonal box-drawings the size and shape of the boxes representing the ver-

ti
es is also 
onsidered an important measure of aestheti
 quality. For the purposes of

visualisation, the ideal shape for a box is a small 
ube, as this most 
losely resembles

a point. How 
losely a vertex resembles a point 
an be measured by its aspe
t ratio

whi
h is de�ned to be the ratio of the length of the longest side to that of the shortest.
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(a) (b)

(c) (d)

Figure 1.8: Orthogonal drawings of the o
tahedron graph: (a) 3-bend plane, (b) 2-bend

planar with 
rossings, (
) 3-D with few bends and small volume, (d) 3-D orientation-

independent.

While other appli
ations, su
h as 3-D VLSI, may make di�erent demands on the size

and shape of verti
es, we shall take the view that the following 
riteria are desirable

features of orthogonal box-drawings.

� Vertex surfa
e area is proportional to vertex degree.

� Verti
es have bounded aspe
t ratio.

This thesis is 
on
erned with the development of algorithms for orthogonal graph

drawing. In Chapter 3 we survey existing algorithms and models for produ
ing orthog-

onal graph drawings.



CHAPTER 1. INTRODUCTION 18

1.4.4 Other 3-D Graph Drawing Conventions

Three-dimensional graph drawings in the following styles have also been 
onsidered.

� Convex drawings [56, 80℄.

� Spline 
urve drawings [110℄.

� Multilevel drawings of 
lustered graphs [79, 97℄.

� Upward drawings [160℄.

1.5 Contributions and Outline of this Thesis

In this thesis we present and analyse methods for the generation of orthogonal graph

drawings, 
on
entrating on algorithms for produ
ing 3-D drawings. We now outline

the stru
ture of this thesis and summarise the prin
ipal results obtained. Figure 1.9

illustrates this stru
ture, highlighting the relationships between various parts of this

thesis.

Part I: Orthogonal Graph Drawing

� Chapter 1 provides a broad overview of graph drawing, providing the motivation

for the results presented in the remainder of this thesis.

� Chapter 2 introdu
es de�nitions and the notation used in this thesis.

� Chapter 3 surveys the existing results for orthogonal graph drawing, and 
ompares

these results with those presented in this thesis.

Part II: General Position Orthogonal Graph Drawing

� Chapter 4 presents heuristi
 and lo
al minimum methods for solving the so-
alled

balan
ed ordering problem. This one-dimensional problem is used as a basis for

a number of 2-D and 3-D graph drawing algorithms presented in subsequent


hapters.
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1

Graph Drawing Models

Methods in

this Thesis

`External'

Methods

Book

Embed-

ding

Square

Pa
king

Vertex

Colouring

� Greedy

� Brook's

Cy
le

Cover

De
omp-

osition

Maximum

Clique

Equitable

k-Edge-

Colouring

Balan
ed

Vertex

Ordering

� Median

Pla
ement

� Lo
al-

Minimum

6. 2-D General Pos. Box-Drawing

� . . . . 6.2.3. Balan
ed Vertex Layout . . . .�

� . . 6.2.1. Layout-Based Ar
-Routing . . �

9. 3-D Coplanar Drawing

� . . . . . . . . 9.1. 1-Bend Algorithm . . . . . . . .�

� . . . . . . . . . . 9.2. Line-Drawing . . . . . . . . . . �

� . . . . . . . . . 9.3. Cube-Drawing . . . . . . . . . �

10. 3-D Non-Collinear Drawing

� . . . . . . . . . 10.1. Cube-Drawing . . . . . . . . . �

� . . . . . . . . . 10.2. Point-Drawing . . . . . . . . . �

5. 3-D Gen. Pos. Point-Drawing

� . . 5.5.3. Diagonal 3-Bend Algorithm . . �

� 5.2.1. Diagonal Bend-Min. Algorithm �

� 5.5.2. Arb. Layout 3-Bend Algorithm �

� . 5.2.2. Arb. Layout Bend-Min. Algor. .�

� . . . . 5.3. Routing-Based Algorithm . . . . �

� . . . . . . . . 5.4. D.L.M. Algorithm . . . . . . . .�

7. General Pos. Box-Drawing

� . . 7.2.1. Layout-Based Ar
-Routing . . �

� . . . . 7.2.3. Balan
ed Vertex Layout . . . .�

� 7.3. 3-D Routing-Based Vertex Layout �

� . . . . . . 7.3.1. A
y
li
 Ar
-Routing . . . . . .�

11. Min.-Dim. Point-Drawing

� . . . . . . . 11.1. K

n

Constru
tions . . . . . . . �

� . . . . . . . 11.2. 6-Bend Algorithm . . . . . . . �

Figure 1.9: Dependen
e between se
tions of this thesis.

� Chapter 5 develops the general position layout model for 3-D orthogonal point-

drawing. A
hievements in
lude an algorithm for minimising the total number of

bends in diagonal layout 3-D orthogonal point-drawing (Se
tion 5.2.1), establish-

ing the best known upper bound for the total number of bends in 3-D orthogonal

point-drawings (Se
tion 5.4), and proving the best known upper bound for the

volume of 3-bend 3-D orthogonal point-drawings (Se
tion 5.5.3).
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� Chapter 6 develops an algorithm for 2-D orthogonal graph drawing in the general

position model whi
h establishes the best known upper bound for the degree-

restri
tion of verti
es. This algorithm is generalised to multi-dimensional orthog-

onal graph drawing in Chapter 7.

� Chapter 7 develops the general position model for multi-dimensional orthogonal

box-drawing, establishing the best known bound for the degree-restri
tion of 3-D

orthogonal box-drawings.

Part III: Other Orthogonal Graph Drawing Models

� Chapter 8 provides an algorithm for equitable edge-
olouring of multigraphs. This

algorithm is used in the graph drawing algorithms presented in Se
tion 9.1 and

Chapter 10.

� Chapter 9 develops the 
oplanar vertex layout model for 3-D orthogonal draw-

ing, providing algorithms for produ
ing 3-D orthogonal box-drawings with one

bend per edge route (Se
tion 9.1), 3-D orthogonal box-drawings with optimal

volume for regular graphs (Se
tion 9.2), and degree-restri
ted 3-D orthogonal


ube-drawings with optimal volume (Se
tion 9.2).

� Chapter 10 introdu
es the non-
ollinear vertex layout model for produ
ing

orientation-independent 3-D orthogonal point-drawings with optimal volume, and

3-D orthogonal box-drawings with optimal volume for regular graphs.

� Chapter 11 presents an algorithm for multi-dimensional point-drawing with a

bounded number of bends per edge route.

Part IV: Con
lusion

� Chapter 12 summarises the main a
hievements of this thesis, the open problems in

3-D orthogonal graph drawing whi
h have been identi�ed, and dis
usses avenues

for future work in 3-D graph drawing.
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Part V: Appendi
es

� Appendix A provides the only known non-trivial lower bounds for the total num-

ber of bends in 3-D orthogonal point-drawings.

� Appendix B presents a number of 3-D orthogonal point-drawings with two bends

per edge route. Some of these drawings were found using the algorithm for �nding

maximum 
liques presented in Appendix C.

� Appendix C presents an algorithm for the maximum 
lique problem and provides

an extensive experimental analysis of its performan
e. This algorithm whi
h is

of independent interest, has been applied to the sear
h for 2-bend orthogonal

point-drawings (see Se
tion 5.2.2).

1.6 Publi
ations

Mu
h of the material in this thesis has appeared or will appear in the following publi-


ations.

Journal Publi
ations:

� An Algorithm for Finding a Maximum Clique in a Graph, Oper. Res. Lett., 21(5),

pages 211-217, 1997. [218℄

� (with T. Biedl and T. Thiele) Three-Dimensional Orthogonal Graph Drawing

with Optimal Volume, submitted. (see [34℄)

� (with T. Biedl and M. Kaufmann) Area-EÆ
ient Algorithms for Orthogonal

Graph Drawing, in preparation. (see [30, 222℄)

� (with T. Biedl) Three-Dimensional Orthogonal Graph Box-Drawing with Few

Bends, in preparation. (see [27, 222℄)

� Algorithms for Three-Dimensional Orthogonal Graph Drawing in the General

Position Model, in preparation. (see [220, 221℄)
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� Lower Bounds for the Number of Bends in Three-Dimensional Orthogonal Graph

Drawings, in preparation. (see [224℄)

Refereed Conferen
e Publi
ations:

� (with T. Biedl and T. Thiele) Three-Dimensional Orthogonal Graph Drawing

with Optimal Volume, In J. Marks (ed.), Pro
. 8th International Symposium on

Graph Drawing (GD'00), Le
ture Notes in Comput. S
i., to appear. [34℄

� Lower Bounds for the Number of Bends in Three-Dimensional Orthogonal Graph

Drawings, In J. Marks (ed.), Pro
. 8th International Symposium on Graph Draw-

ing (GD'00), Le
ture Notes in Comput. S
i., to appear. [224℄

� Multi-Dimensional Orthogonal Graph Drawing with Small Boxes, In J. Krato
hvil

(ed.), Pro
. 7th International Symp. on Graph Drawing (GD'99), Le
ture Notes

in Comput. S
i., vol. 1731, pages 311-322, Springer, 1999. [222℄

2

� A New Algorithm and Open Problems in Three-Dimensional Orthogonal Graph

Drawing, In R. Raman, J. Simpson (eds.), Pro
. 10th Australasian Workshop

on Combinatorial Algorithms (AWOCA'99), pages 157-167, Curtin University of

Te
hnology, Perth, 1999. [223℄

� An Algorithm for Three-Dimensional Orthogonal Graph Drawing, In S. White-

sides (ed.), Pro
. of Graph Drawing : 6th International Symp. (GD'98), Le
ture

Notes in Comput. S
i., vol. 1547, pages 332-346, Springer, 1998. [221℄

� Towards a Two-Bends Algorithm for Three-Dimensional Orthogonal Graph Draw-

ing, In V. Estivill-Castro (ed.), Pro
. 8th Australasian Workshop on Combinato-

rial Algorithms (AWOCA'97), pages 102-107, Queensland University of Te
hnol-

ogy, 1997. [220℄

� On Higher-Dimensional Orthogonal Graph Drawing, In J. Harland (ed.), Pro
. of

Computing: the Australasian Theory Symp. (CATS'97), pages 3-8, Ma
quarie

University, 1997. [219℄

2

Awarded the best student paper prize at GD'99.



Chapter 2

Preliminaries

In this 
hapter we introdu
e de�nitions and the notation used in this thesis.

Unde�ned terms from graph theory 
an be found in Chartrand and Lesniak

[53℄, and from graph drawing in Di Battista et al. [71℄.

2.1 Graphs

Throughout this thesis G = (V;E) is a graph with vertex set V (G) = V and edge

set E(G) = E. We assume G is undire
ted unless expli
itly 
alled a digraph. Graphs

and digraphs are simple; i.e., there are no parallel edges, although a digraph may have

a 2-
y
le. A multigraph allows parallel edges but no loops, while a pseudograph is a

multigraph possibly with loops. We denote the number of verti
es of a graph G by

n = jV (G)j and the number of edges of G by m = jE(G)j. For a (di)graph G, the

set of verti
es fw : vw 2 E(G)g adja
ent to a vertex v 2 V (G) is denoted by V

G

(v),

and the set of (outgoing) edges fvw 2 E(G)g in
ident with v is denoted E

G

(v). The

(out)degree jG(v)j of a vertex v 2 V (G) is denoted (out)deg (v). G has maximum

(out)degree �(G). The subgraph of G indu
ed by S � V (G) is denoted G[S℄.

Asso
iated with any graph G is the digraph

 !

G with vertex set V (

 !

G ) = V (G) and

ar
 set E(

 !

G ) = f(v; w); (w; v) : fv; wg 2 E(G)g. We denote E(

 !

G ) by A(G). The ar


(v; w) 2 A(G) is 
alled the reversal of (w; v). The set of outgoing ar
s f(v; w) 2 A(G)g

at a vertex v 2 V (G) is denoted by A

+

G

(v) or simply A

G

(v), and set of in
oming

ar
s f(w; v) 2 A(G)g at v is denoted by A

�

G

(v). For ease of notation, vw refers to

23
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the undire
ted edge fv; wg, and

�!

vw may refer to the dire
ted edge (v; w) or the ar


(v; w) 2 A(G) (for some graph G).

2.2 Cliques and Colourings

A 
lique of a graph is a set of pairwise adja
ent verti
es; i.e., a 
lique indu
es a 
omplete

subgraph. In Appendix C we present an algorithm for �nding a 
lique of maximum

size in a given graph.

A (proper) vertex-
olouring of a graph is an assignment of 
olours, usually repre-

sented by positive integers, to the verti
es su
h that adja
ent verti
es re
eive di�erent


olours. A vertex-
olouring with k 
olours is 
alled a vertex k-
olouring.

A sequential greedy strategy for vertex-
olouring a graph is to assign to ea
h vertex,

in turn, the minimum 
olour not assigned to an adja
ent vertex (see for example Biggs

[35℄). This is equivalent to assigning the �rst 
olour to every vertex available; repeating

for the se
ond 
olour, and so on, until all the verti
es are 
oloured. This algorithm,

whi
h we 
all Greedy Vertex-Colour, applied to a graph G uses at most �(G)+ 1


olours.

An edge-
olouring of a graph is an assignment of 
olours to the edges. If all edges

in
ident to a 
ommon vertex re
eive di�erent 
olours then the edge-
olouring is proper.

Suppose 
ol : X ! C is a 
olouring of some 
lass of obje
ts X, e.g., verti
es, edges

or ar
s. We denote the 
olour 
lass of obje
ts re
eiving some 
olour 
 2 C by X[
℄; i.e.,

X[
℄ = fx 2 X : 
ol(x) = 
g. In parti
ular, if A(G) is 
oloured, then

 !

G [i℄, for some


olour i, denotes the subgraph of

 !

G indu
ed by the ar
s 
oloured i.

2.3 Orthogonal Grid

The D-dimensional orthogonal grid (D � 2) is the D-dimensional 
ubi
 latti
e, 
on-

sisting of grid-points in Z

D

, together with the 
oordinate-axis-parallel grid-lines deter-

mined by these points. A positive integer i, 1 � i � D, used to index the 
oordinates

of a grid-point in Z

D

, is 
alled a dimension, and a non-zero integer d, 1 � jdj � D, is


alled a dire
tion, as illustrated in Figure 2.1. For D = 2 and D = 3, we also refer to the

dimensions as fX;Y g and fX;Y;Zg, and dire
tions as fX

�

; Y

�

g and fX

�

; Y

�

; Z

�

g,



CHAPTER 2. PRELIMINARIES 25

respe
tively.

2

1

3

Y

X

Z

(a) Dimensions

+2

+1

+3

�2

�1

�3

Y

+

X

+

Z

+

Y

�

X

�

Z

�

(b) Dire
tions

Figure 2.1: Dimensions and dire
tions in the 3-D orthogonal grid.

The (i = K)-hyperplane, for some dimension i, 1 � i � D, and integer K 2 Z,

is 
alled a grid-hyperplane. For D = 3 a grid hyperplane is 
alled a grid-plane. For

ea
h dimension i, 1 � i � D, a grid-line parallel to the i-axis is 
alled an i-line, and a

grid-(hyper)plane perpendi
ular to the i-axis is 
alled an i-(hyper)plane.

A grid-box B in the D-dimensional orthogonal grid is a region

�

(a

1

; a

2

; : : : ; a

D

) 2 R

D

: l

i

(B) � a

i

� r

i

(B); 1 � i � D

	

:

for some l

i

(B); r

i

(B) 2 Z, 1 � i � D. The grid-points (l

1

(B); l

2

(B); : : : ; l

D

(B)) and

(r

1

(B); r

2

(B); : : : ; r

D

(B)) are referred to as the minimum 
orner and maximum 
orner

of B, respe
tively. The size of B is �

1

(B) � �

2

(B) � � � � � �

D

(B) where �

i

(B) =

r

i

(B)� l

i

(B) + 1. Note that �

i

(B) is the not the a
tual side length of B in dimension

i. This 
onvention enables us to 
onsistently speak of the volume (and area in two

dimensions) of a possibly degenerate grid-box as the number of grid-points in the box;

i.e.

volume (B) =

Y

1�i�D

�

i

(B) :

For a two-dimensional �

X

� �

Y

box, the side lengths �

X

and �

Y

are 
alled the

width and height of the box, respe
tively. For a three-dimensional �

X

� �

Y

� �

Z

box,

the side lengths �

X

, �

Y

and �

Z

are 
alled the width, depth and height of the box,

respe
tively.

For ea
h dire
tion d, 1 � jdj � D, the set of grid-points in a grid-box B whi
h are

extremal in dire
tion d is 
alled the d-fa
e of B. At ea
h grid-point on the d-fa
e of a
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box we say there is a port. A port is 
onsidered to extend out from the surfa
e of the

box in dire
tion d, as illustrated in Figure 2.2.

(a) (b) (
) (d)

Figure 2.2: Ports on grid-boxes:

(a) 1� 1 2-D point with volume 1 and surfa
e 4,

(b) 3� 2� 1 3-D re
tangle with volume 6 and surfa
e 22,

(
) 3� 2� 2 3-D box with volume 12 and surfa
e 32,

(d) 2� 2� 2� 2 4-D hyperbox with volume 16 and surfa
e 64.

A port in dire
tion d, 1 � jdj � D, is 
alled a d-port, and for any dimension i,

1 � i � D, a (�i)-port is also 
alled an i-port. The number of ports on the (i

+

)-fa
e of

B (whi
h obviously equals the number of ports on the (i

�

)-fa
e) is referred to as the

surfa
e

i

(B); i.e.,

surfa
e

i

(B) =

Y

1�j�D

j 6=i

�

j

(B) :

The total number of ports on B is the surfa
e (B); i.e.,

surfa
e (B) = 2

X

1�i�D

surfa
e

i

(B) :

2.4 Orthogonal Graph Drawing

A D-dimensional orthogonal drawing of a graph G, 
alled an orthogonal drawing, rep-

resents ea
h vertex v 2 V (G) by a grid box B

v

su
h that

8v; w 2 V (G); v 6= w ) B

v

\B

w

= ; :

The graph-theoreti
 term `vertex' will also refer to the 
orresponding box. Allowing

verti
es to degenerate to re
tangles or lines is the approa
h taken in [27, 32, 33, 222,
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223℄, but not in [166, 168℄; enlarging verti
es to remove this degenera
y in
reases the

volume by a multipli
ative 
onstant.

A grid-polyline in the D-dimensional orthogonal grid is a polyline 
onsisting of


ontiguous segments of grid-lines, possibly bent at grid-points. An orthogonal drawing

of G represents ea
h edge vw 2 E(G) by a grid-polyline, 
alled an edge route, between

grid-points on the boundaries of B

v

and B

w

, not interse
ting any verti
es ex
ept at

these boundary points. The interior of edge routes are pairwise non-overlapping, and

only for D = 2 are edge routes allowed to 
ross. A segment of an edge route parallel

to the i-axis, for some dimension i, is 
alled an i-segment.

Two-dimensional and three-dimensional orthogonal drawings are 
alled 2-D and 3-

D orthogonal drawings, respe
tively. A 2-D orthogonal drawing without edge 
rossings

is a plane 2-D orthogonal drawing.

Port Assignment and Routings

An orthogonal drawing of a graph G assigns ea
h ar


�!

vw 2 A(G) a unique port at v,

referred to as the port(

�!

vw). The set of ports at a vertex v is denoted by ports(v), and

we de�ne ports(G) to be the set of ports of a graph G; i.e.,

ports (G) =

[

v2V (G)

ports (v) :

If, in a D-dimensional orthogonal drawing of a graph G, for some verti
es v; w 2

V (G) and dimension i, 1 � i � D, the (i

+

)-fa
e of v has i-
oordinate less than the i-


oordinate of the (i

�

)-fa
e of w then we say w is in dire
tion i

+

from v, v is in dire
tion

i

�

from w, an (i

+

)-port at v points toward w, and an (i

�

)-port at v points away from

w.

If for some ar


�!

vw 2 A(G) and dimension i, 1 � i � D, the port(

�!

vw) is an i-port

then we 
onsider

�!

vw to be 
oloured i. In this manner a D-dimensional orthogonal

drawing of a G determines a D-
olouring of A(G). We 
all a D-
olouring of A(G) a

(D-dimensional) routing of A(G). An orthogonal drawing is routing-preserving if the

drawing determines a given routing.

For point-drawings, at ea
h vertex v and dire
tion d, there is exa
tly one port at

v in dire
tion d. We denote this port by port(v; d). We say port(v; d) is opposite to
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port(v;�d), for ea
h vertex v and dire
tion d. A D-dimensional orthogonal point-

drawing of G determines a routing with at most two outgoing ar
s at ea
h vertex

re
eiving the same 
olour; i.e., jA

G

(v)[i℄ j � 2 for every vertex v and dimension i,

1 � i � D. We 
all a routing with this property a (D-dimensional) point-routing of

A(G).

Note that a routing of a graph G does not fully des
ribe the edge routes in an

orthogonal drawing of G. It merely des
ribes the axes whi
h the �rst and last segments

of ea
h edge route are parallel to. In the general position model (see Chapters 6, 5 and

7), we show that a routing suÆ
es as a data stru
ture for representing the edge routes.

Aestheti
 Criteria

We now make pre
ise de�nitions for the 
riteria by whi
h we measure the aestheti


quality of an orthogonal box-drawing. The minimum-sized box en
losing an orthogo-

nal drawing is 
alled the bounding box of the drawing. We refer to the volume of the

bounding box as the volume of the drawing. An orthogonal drawing with a maximum

of b bends per edge route is 
alled a b-bend orthogonal drawing. An orthogonal draw-

ing with a parti
ular \shape" of grid-box representing every vertex, e.g., point, line,

re
tangle, square, 
ube or hyper
ube, is 
alled an orthogonal shape-drawing for ea
h

parti
ular \shape", as illustrated in Figure 2.3.

(a) (b) (
)

Figure 2.3: Orthogonal drawings of K

5

: (a) 1-bend 2-D square-drawing, (b) 2-bend

3-D point-drawing, (
) 0-bend 3-D line-drawing.

A D-dimensional orthogonal drawing of a graph G is said to be stri
tly �-degree-
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restri
ted if there exists a 
onstant � su
h that for every vertex v 2 V (G),

surfa
e (v) � � � deg(v) :

Su
h a drawing is said to be stri
tly degree-restri
ted.

For some orthogonal graph drawing algorithm, the minimum � su
h that the draw-

ings produ
ed by the algorithm are stri
tly �-degree-restri
ted does not ne
essarily

re
e
t the asymptoti
 relationship between the surfa
e and the degree of the verti
es.

We therefore say that in an orthogonal drawing of a graph G, a vertex v 2 V (G) is

�-degree-restri
ted if

surfa
e (v) � � � deg(v) + o (deg(v)) :

If for some 
onstant �, every vertex v 2 V (G) is �-degree-restri
ted, then the

drawing is said to be (�)-degree-restri
ted. This de�nition enables us to 
ompare the

asymptoti
 behaviour of � for various algorithms.

Clearly, if a drawing is stri
tly degree-restri
ted then it is also degree-restri
ted.

Conversely, it is easily seen that all degree-restri
ted drawings produ
ed by algorithms

presented in this thesis are also stri
tly degree-restri
ted. Hen
e for our purposes the

two notions 
oin
ide, although one 
an 
ontrive examples where this is not the 
ase.

It is ne
essary to distinguish the two terms as the lower bound in Theorem 3.2 is for

stri
tly degree-restri
ted drawings.

The aspe
t ratio of a vertex v is:

aspe
t ratio (v) =

�

max

1�i�D

�

i

(v)

�

.

�

min

1�i�D

�

i

(v)

�

:

A hyper
ube has aspe
t ratio one, while a k � 1� 1 � � � � � 1 line has aspe
t ratio

equal to k.

2.5 Cy
le Cover De
omposition

A 
y
le 
over of a digraph is a spanning subgraph 
onsisting of dire
ted 
y
les. We

now des
ribe an algorithm for the de
omposition of a graph into 
y
le 
overs. This

algorithm will often form the prepro
essing step in the graph drawing algorithms to


ome. This step was �rst used by Eades et al. [86℄ in their 3-D orthogonal point-drawing
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algorithm for maximum degree six graphs. The following generalisation to arbitrary

degree graphs 
an be found in [87, 219℄. The result 
an be 
onsidered as repeated

appli
ation of the 
lassi
al result of Petersen that \every regular graph of even degree

has a 2-fa
tor" [172℄.

Theorem 2.1. If G is a multigraph and d = d�(G)=2e then there exists a dire
ted

multigraph G

0

su
h that:

1. G is a subgraph of the underlying undire
ted multigraph of G

0

.

2. Ea
h vertex of G

0

has in-degree d and out-degree d.

3. The ar
s of G

0


an be partitioned into d edge-disjoint 
y
le 
overs.

G

0

and the edge-disjoint 
y
le 
overs 
an be 
omputed in O(�

2

n) time.

Proof. Initially let G

0

= G. The number of verti
es of odd degree in any multigraph

must be even. So that ea
h vertex of G

0

has even degree we pair the odd degree verti
es

and add an edge between ea
h pair. For ea
h vertex v 2 V (G

0

), add d� deg(v)=2 self-

loops to v, to 
reate a 2d-regular pseudograph. Sin
e ea
h vertex of G

0

has even degree

it is Eulerian. Dire
t the edges of G

0

by following an Eulerian tour through G

0

. Ea
h

vertex of G

0

now has in-degree d and out-degree d.

For ea
h vertex v 2 V (G

0

), de�ne V

out

= fv

out

: v 2 V (G

0

)g, V

in

= fv

in

: v 2 V (G

0

)g,

where v

out

= fw 2 V (G

0

) :

�!

vw 2 E(G

0

)g and v

in

= fu 2 V (G

0

) :

�!

uv 2 E(G

0

)g. Now


onstru
t an undire
ted bipartite graph H with V (H) = V

out

[ V

in

, and E(H) =

ffu

out

; v

in

g : (u; v) 2 E(G

0

)g.

Sin
e H is d-regular and bipartite, by Hall's Theorem [114℄, H 
ontains a perfe
t

mat
hing; 
olour its edges 1 and remove them. The remaining graph is (d� 1)-regular

and bipartite, so it also 
ontains a perfe
t mat
hing; 
olour its edges 2 and remove them.

Continue this pro
ess, to 
reate d edge-disjoint perfe
t mat
hings in H. Colouring

ea
h ar


�!

uv 2 E(G

0

) the same 
olour given to fu

out

; v

in

g in H gives ea
h node of G

0

exa
tly one in
oming ar
 and one outgoing ar
 for ea
h 
olour. Hen
e the ar
s of G

0

are partitioned into d distin
t subgraphs C

1

; C

2

: : : ; C

d

, 
orresponding to ea
h 
olour

1; 2; : : : ; d, ea
h of whi
h is a 
y
le 
over for G

0

. This partition into perfe
t mat
hings

is sometimes referred to as K�onig's Theorem [133℄.
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S
hrijver [194℄ des
ribes an algorithm for determining all perfe
t mat
hing of a k-

regular n-vertex bipartite graph in O(k

2

n) time. H is d-regular with 2n verti
es, so the


al
ulation of the perfe
t mat
hings whi
h form the partition of H, whi
h is the most

time-
onsuming stage of the algorithm, takes O(�

2

n) time.



Chapter 3

Approa
hes to Orthogonal Graph

Drawing

In this 
hapter we survey existing results for orthogonal graph drawing,

des
ribing the models and algorithms employed for the produ
tion of su
h

drawings, and 
ompare these results with those presented in this thesis.

This 
hapter is organised as follows. Se
tion 3.1 reviews the known NP-hardness

results for the optimisation of various aestheti
 
riteria in orthogonal graph drawings.

2-D orthogonal graph drawing is surveyed in Se
tion 3.2, in
luding an introdu
tion

to the general position model for 2-D orthogonal graph drawing whi
h is the model

employed in Chapter 6. Table 3.1 summarises the known bounds, in
luding those

presented in this thesis, for 2-D orthogonal drawings possibly with 
rossings. We then


onsider orthogonal graph drawing on surfa
es (other than the plane) in Se
tion 3.3.

Se
tion 3.4 surveys models and algorithms for 3-D orthogonal graph drawing, and

introdu
es the algorithms presented in this thesis. In Se
tion 3.5 we 
on
lude with a

dis
ussion of the known bounds and prin
ipal open problems for 3-D orthogonal graph

drawing. Tables 3.2 and 3.3 summarise the known bounds for aestheti
 
riteria of 3-D

orthogonal point-drawings and 3-D orthogonal box-drawings, respe
tively.

32
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3.1 Complexity

It is NP-hard to optimise many of the aestheti
 
riteria for orthogonal graph drawings

dis
ussed in Chapter 1. In parti
ular, for a given maximum degree four graph, minimis-

ing ea
h of the following aestheti
 
riteria is NP-hard for 2-D orthogonal point-drawing.

� Total number of bends (Garg and Tamassia [106℄).

� Bounding box area

(Dolev et al. [78℄, Storer [199℄, Kramer and van Leeuwen [135℄).

� Maximum edge length (Bhatt and Cosmadakis [21℄, Gregori [111℄).

Garg and Tamassia [106℄ establish that it is NP-hard to even approximate the

minimum number of bends in a planar graph withO

�

n

1��

�

error, for any � > 0. Shermer

[195℄ shows that it is NP-
omplete to re
ognise weak re
tangle visibility graphs (see

Se
tion 3.2.1), and hen
e it is NP-hard to minimise the number of bends in a 2-D

orthogonal box-drawing of a given graph.

Using straightforward extensions of the 
orresponding 2-D NP-hardness results,

Eades et al. [85℄ show that it is NP-hard to minimise ea
h of the following aestheti



riteria in a 3-D orthogonal point-drawings.

� Bounding box volume.

� Total number of bends.

� Total edge length.

These methods 
an be applied with the NP-
ompleteness result of Shermer [195℄

dis
ussed above to show that it is NP-hard to minimise the total number of bends in a

3-D orthogonal box-drawing of a given graph.

3.2 2-D Orthogonal Drawings

Algorithms for produ
ing 2-D orthogonal drawings have been extensively studied in

the literature. We now dis
uss the prin
ipal approa
hes employed.
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3.2.1 Visibility Approa
h

Plane Drawings

Plane orthogonal drawings with straight-line edge routes (with no bends) are aestheti-


ally very pleasing sin
e the relational information represented in the graph is 
learly

expressed. A 
losely related idea to that of a straight-line orthogonal drawing is that

of a visibility representation. A (weak) visibility representation of a graph G represents

ea
h vertex v 2 V (G) by a horizontal segment in the plane, and represents ea
h edge

vw 2 E(G) by a verti
al segment between the horizontal segments representing v and

w and not interse
ting any other horizontal segments. A graph admitting a visibility

representation is 
learly planar. Tamassia and Tollis [202℄ and Rosenstiehl and Tarjan

[187℄ independently show that every planar graph has a visibility representation, and

hen
e a straight-line orthogonal drawing, whi
h 
an be 
omputed in linear time.

Various types of visibility representations 
an be de�ned, depending on whether ver-

ti
es are segments or intervals and whether visible verti
es must be adja
ent. Tamassia

and Tollis [202℄ and Wismath [216℄ 
hara
terise those planar graphs whi
h admit ea
h

possible type. The disadvantage of the visibility representation method for produ
ing

plane orthogonal drawings is that the verti
es are not ne
essarily degree-restri
ted and

have high aspe
t ratio.

Drawings with Crossings

In a (weak) re
tangle visibility representation of a graph, verti
es are represented by

re
tangles, and adja
ent verti
es 
an `see' ea
h other by some axis-aligned `band of

visibility' not interse
ting any other vertex (see Dean and Hut
hinson [67℄ for pre
ise

de�nitions). It follows that a graph has a straight-line 2-D orthogonal box-drawing if

and only if it has a weak re
tangle visibility representation. The subgraphs indu
ed by

the horizontal and verti
al edges of su
h a graph are planar, so the graph has thi
kness

at most two. Bose et al. [37℄ establish that numerous 
lasses of graphs with thi
kness

two admit straight-line 2-D orthogonal box-drawings. Sin
e K

9

has thi
kness three (see

Beineke [16℄), the straight-line 2-D orthogonal drawing of K

8

presented by Dean and

Hut
hinson [67℄ is the largest 
omplete graph admitting su
h a drawing. K

5;6

has a
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straight-line 2-D orthogonal box-drawing, as shown in Figure 3.1.

Figure 3.1: Straight-line 2-D orthogonal drawing of K

5;6

.

Even though K

5;n

(7 � n � 12) and K

6;n

(6 � n � 8) have thi
kness two [17℄,

it is unknown if these graphs admit 2-D straight-line orthogonal box-drawings. We


onje
ture that K

5;7

and K

6;6

do not admit su
h drawings. Bose et al. [37℄ show that

K

4;n

(n � 1) has a 2-D straight-line orthogonal box-drawing.

3.2.2 Topology-Shape-Metri
s Approa
h

A number of algorithms for 2-D orthogonal graph drawing 
an be grouped under the so


alled topology-shape-metri
s approa
h approa
h (see Di Battista et al. [71, 
hap. 5℄).

These methods 
onsist of the following three main steps.

Planarisation: Determine a planar embedding of the graph with few 
rossings, and

represent ea
h 
rossing by a dummy vertex.

Orthogonalisation: Determine the shape of the drawing.

Compa
tion: Determine the 
oordinates of the verti
es and bends to minimise the

area.

The development of these algorithms 
an be tra
ed to the 
lassi
al algorithm of

Tamassia [200℄ for determining a bend-minimum orthogonal point-drawing whi
h pre-
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serves a given planar embedding of a graph with maximum degree four (see also Batini

et al. [14℄). This algorithm models the bend-minimisation problem using network 
ow

te
hniques, and takes O

�

n

2

log n

�

time (subsequently improved to O

�

n

7=4

p

logn

�

by

Garg and Tamassia [107℄). Biedl [26℄ has sin
e obtained bounds on the area and the

number of bends for this algorithm.

Tamassia et al. [201℄ present the Giotto algorithm for orthogonal drawing of non-

planar graphs of arbitrary degree, whi
h is based on Tamassia's algorithm for planar

graphs. To 
ater for arbitrary degree verti
es, ea
h vertex v of degree d � 4 is repla
ed

by a 
y
le of d verti
es where ea
h vertex of the 
y
le is in
ident to one of the edges

formally in
ident to v, as illustrated in Figure 3.2. Experimental results 
on�rming the

su

ess of this approa
h are reported in Di Battista et al. [72℄.

v

=) =)

v

Figure 3.2: Repla
ing v by a 
y
le.

The Kandinsky model for 2-D orthogonal drawings, whi
h has been investigated

by F�o�meier and Kaufmann [103, 104℄ and F�o�meier et al. [102℄, 
onsists of a 2-D

(sparse) grid with uniform distan
e � between the grid lines. The verti
es have side

length less than �, and the 
entres of the verti
es are pla
ed at the interse
tion of

the grid lines; this ensures that no vertex is interse
ted by any grid line ex
ept those

de�ning its position, and 
ensequently no two verti
es interse
t. Edges are routed on

the underlying orthogonal grid. Under the assumption that verti
es are represented

by uniformly small squares and that ea
h fa
e is a non-empty region, the algorithm

in [103℄, given a planar graph embedding, minimises the number of bends in a 2-D

orthogonal drawing in the Kandinsky model. F�o�meier and Kaufmann [104℄ extend

the Kandinsky model to 
ater for non-planar graphs and to remove the requirement

in [103℄ that verti
es have the same size.
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In re
ent developments the algorithm of Di Battista et al. [70℄ determines an

embedding-preserving 2-D orthogonal drawing where the size of ea
h vertex is spe
-

i�ed by the user. The drawings produ
ed have the minimum number of bends among

a wide 
lass of drawings.

Di Battista et al. [73℄ introdu
e the notion of spirality of planar orthogonal point-

drawings and explore the 
onne
tion between spirality and the number of bends. In

parti
ular, they present polynomial time algorithms for determining bend-minimum

orthogonal point-drawings for series-parallel graphs and for planar graphs of maximum

degree three. Bertolazzi et al. [20℄ and Didimo and Liotta [75℄ use advan
ed data

stru
tures to represent all the planar embeddings of a given graph in their algorithms

to determine bend-minimum 2-D orthogonal drawing. Their algorithms run in time

exponential in the number of verti
es with degree greater than four.

3.2.3 Geometri
 Approa
h

We now des
ribe algorithms for orthogonal graph drawing whi
h are purely geometri
,

as opposed to the algorithms des
ribed above whi
h are based on topologi
al embed-

dings. Bertolazzi et al. [20℄ 
alls this the draw-and-adjust approa
h.

Plane Point-Drawings

Numerous algorithms have been proposed in the literature for drawing planar orthog-

onal point-drawings. Algorithms for drawing 
ubi
 graphs in
lude those of Papakostas

and Tollis [163℄, Rahman et al. [178℄, Calamoneri and Petres
hi [50, 51℄ and Biedl [23℄.

For maximum degree four graphs, algorithms in
lude those of Tamassia and Tollis [203℄,

Liu et al. [146℄, Kant [124℄, Biedl [24℄ and Biedl and Kant [29℄. We now outline two of

the approa
hes used by these algorithms.

The algorithm of Tamassia and Tollis [203℄ for 2-D orthogonal point-drawing of

planar graphs, is based on a visibility representation of the given graph. The horizontal

segments representing verti
es in the visibility representation are repla
ed by points and

bends are added to the edge routes. The algorithm, whi
h runs in linear time, produ
es

2-D orthogonal plane drawings with O

�

n

2

�

area, at most four bends per edge route,

and a total of at most 12n=5 + 2 bends.
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The algorithm of Biedl and Kant [29℄, for a bi
onne
ted graph G of maximum de-

gree four, determines in linear time an orthogonal point-drawing with at most 2n+ 2

bends and n � n bounding box. Every edge has at most two bends (unless G is

the o
tahedron graph whi
h is shown by Even and Granot [91℄ not to have a 2-bend

plane orthogonal point-drawing; see Figure 1.8(a)). This algorithm is based on an

st-ordering of the verti
es (see Se
tion 4.2). A modi�ed algorithm determines an

orthogonal point-drawing of a 
onne
ted graph G with at least one 
ut vertex with

(n � 1) � (n � 1) bounding box, at most two bends per edge, and at most m bends

in total. For tri
onne
ted graphs the algorithm of Kant [124℄, improved by Biedl [24℄,

establishes an upper bound on the number of bends of d4n=3e+ 4.

Point-Drawings with Crossings

Algorithms whi
h do not guarantee plane drawings even for planar graphs have been


onsidered by S
h�a�ter [190℄ and Papakostas and Tollis [165℄. The latter algorithm

determines in linear time an orthogonal point-drawing of a given maximum degree four

graph having area at most 0:76n

2

and at most 2n + 2 bends. Lower bounds for 2-D

orthogonal point-drawing have been established by Tamassia et al. [205℄ and Biedl [25℄.

Plane Box-Drawings

Motivated by the desire to over
ome the inherent restri
tion on the maximum degree

of graphs admitting orthogonal point-drawings, there has been re
ent interest in the

development of algorithms for 2-D orthogonal box-drawing.

Even and Granot [92℄ studied 2-D orthogonal box-drawings where the size of ea
h

vertex and the port assignments are given as part of the input. This approa
h is

parti
ularly appli
able to VLSI layout problems where the 
omponents of the 
ir
uit

have prede�ned sizes. They present two algorithms. The �rst, whi
h is for planar

drawings, is based on a visibility representation of the graph. The se
ond algorithm

employs a diagonal layout of the verti
es. The drawings produ
ed have at most four

bends per edge and (W +m)�(H+m) bounding box, whereW and H are respe
tively

the total width and height of the boxes representing verti
es.

Using the `
y
le of low degree verti
es' method illustrated in Figure 3.2, the al-
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gorithm of Biedl and Kant [29℄ is extended to produ
e planar drawings of arbitrary

degree planar graphs. The disadvantage of this approa
h is that the verti
es are not

ne
essarily degree-restri
ted. This algorithm 
an also 
ater for drawings of non-planar

graphs.

Box-Drawings with Crossings

We now dis
uss box-drawing algorithms whi
h are appli
able to arbitrary graphs but

do not guarantee a planar drawing even for planar graphs. This is the approa
h taken

by the 2-D orthogonal box-drawing algorithm presented in Chapter 6. (In Chapter 7

this algorithm is generalised to a multi-dimensional setting.) Table 3.1 summarises the

known upper bounds for this 
lass of 2-D orthogonal graph drawings.

Table 3.1: Upper Bounds for 2-D Orthogonal Box-Drawing

Box

Shape

Area

Max.

Bends

Degree-

Restri
tion

Aspe
t

Ratio

Referen
e

line (m� 1)� (

m+1

2

) 1 2 � deg(v)=2 [164, 169℄

line (

m+n

2

)� (

m+n

2

) 1 2 � deg(v)=2 [30℄

re
tangle

�

3m+2n

4

�

�

�

3m+2n

4

�

1 2 2 [30℄

re
tangle

�

3m+4n+2

4

�

�

�

3m+4n+2

4

�

1

3

2

2 Theorem 6.3

square

�

3m

4

+

5n

8

�

�

�

3m

4

+

5n

8

�

1 2 1 Theorem 6.4

The algorithms of Papakostas and Tollis [164, 169℄ and Biedl and Kaufmann [30℄

(whi
h is an example of the uni�ed approa
h to orthogonal graph drawing 
alled the

three-phase method [31℄) were the �rst to produ
e degree-restri
ted 2-D orthogonal

box-drawings. Ea
h vertex v has aspe
t ratio at most deg(v)=2 and ea
h edge route

has at most one bend. For sparse graphs (m < (1 +

p

2)n to be pre
ise), the algorithm

in [164, 169℄ requires less area than that in [30℄. A se
ond algorithm in [30℄ produ
es

drawings in whi
h ea
h vertex has aspe
t ratio at most two, at the expense of an

in
rease in area.
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The algorithm of Biedl and Kaufmann [30℄ produ
es drawings su
h that no two

verti
es are interse
ted by a single grid-line. We 
all su
h drawings general position

2-D orthogonal drawings. An introdu
tory version of the algorithm of Papakostas and

Tollis [164, 169℄ also produ
es general position 2-D orthogonal drawings; in a re�ned

version 
ertain pairs of verti
es share a row or 
olumn.

The algorithms presented in Chapter 6 also produ
e general position 2-D orthogonal

drawings. In Se
tion 3.4.4 we introdu
e the general position model for D-dimensional

orthogonal graph drawing and 
lassify algorithms for produ
ing su
h drawings as

layout- or routing-based. The algorithms in [30℄ and [164, 169℄ 
an be 
lassi�ed as

routing-based.

Maintaining the aspe
t ratio bound of two in [30℄, the layout-based algorithm pre-

sented in Se
tion 6.2.3 produ
es 3=2-degree-restri
ted 2-D orthogonal drawings. Using

a diagonal layout, our algorithm des
ribed in Se
tion 6.2.4 produ
es 2-degree-restri
ted

2-D orthogonal square-drawings. Note that 2-D diagonal layouts have been employed

by Even and Granot [91℄ and S
h�a�ter [190℄. Our bounding box area bounds are slightly

above those in [30℄.

Intera
tive Drawing

As well as 
onsidering the aestheti
 
riteria already dis
ussed for stati
 orthogonal

graph drawing, intera
tive graph drawing algorithms should `preserve the mental map'

of the viewer of the drawing when verti
es and edges are inserted or deleted (see Misue

et al. [154℄, for example). Intera
tive orthogonal point-drawing has been studied by

Papakostas et al. [162℄, F�o�meier [100℄, Bridgeman et al. [44℄, Brandes and Wagner

[42℄ and Papakostas and Tollis [167℄. Biedl et al. [31℄ also des
ribe how the three-phase

method 
an be extended to an intera
tive setting.

3.3 Orthogonal Drawings on Surfa
es

A natural, yet little studied generalisation of plane orthogonal drawings, is that of

orthogonal drawings on surfa
es. An embedding of a graph in an orientable surfa
e

other than the plane 
an be drawn in an orthogonal surfa
e, as illustrated in Figure 3.3
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(see Garrido and M�arquez [109℄). Consider the following open problem.

Problem 3.1. SURFACE POINT-DRAWING

Instan
e: An embedding � of a graph G (with maximum degree four) in the orientable

surfa
e of genus g, and a positive integer B 2 Z

+

.

Question: Is there an orthogonal point-drawing of G in the orthogonal surfa
e of genus

g whi
h preserves � and with at most B bends?

1 2

� � � g � 1

Figure 3.3: An orthogonal drawing of a graph in the surfa
e of genus g.

Garrido and M�arquez [109℄ sket
h proofs, that for any �xed orientable surfa
e S

(ex
ept the plane), it is NP-
omplete to test whether a given graph embedding in S

has an essentially equivalent

1

straight-line orthogonal point-drawing in an orthogonal

surfa
e 
orresponding to S. Hen
e minimising the number of bends in an orthogonal

drawing essentially equivalent to a given embedding is NP-hard.

3.4 Models for 3-D Orthogonal Graph Drawing

In this se
tion we survey models and algorithms for the generation of 3-D orthogonal

graph drawings, in
luding those presented in this thesis. We 
lassify models for vertex

layout by the minimum integers a and b, 1 � a; b � 2 su
h that

� all verti
es are interse
ted by a single a-dimensional orthogonal grid, and

� no two verti
es are interse
ted by a single b-dimensional orthogonal grid.

1

The term essentially equivalent is not pre
isely de�ned.
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Here a 1-dimensional (respe
tively, 2-dimensional) grid refers to a grid-line (grid-

plane) within the 3-dimensional orthogonal grid.

3.4.1 Visibility Representations

Visibility representations of graphs in the plane (see Se
tion 3.2.1) naturally extend

to three dimensions. In the so-
alled ZPR (Z-Parallel Representation) model for

straight-line 3-D orthogonal graph drawing, ea
h vertex is a re
tangle parallel to the

XY -plane, and edges are routed parallel to the Z-axis. Bose et al. [38℄ showed that

there does not exist a ZPR of K

n

for n > 56. The proof is based on deep results


on
erning unimaximal subsequen
es. They also found a ZPR of K

22

using simulated

annealing te
hniques. Representing verti
es by squares of the same size, Fekete et al.

[95℄ showed that K

7

has a ZPR, but K

n

for n � 8 does not. The ZPR model was

extended to arbitrary dimensions by Cobos et al. [59℄, establishing that every graph

has a ZPR in some number of dimensions.

In a straight-line D-dimensional orthogonal graph drawing, the axis ea
h edge is

parallel to de�nes a edge D-
olouring of the graph. As pointed out by Biedl et al.

[32, 33℄ in the 
ase of D = 3, ea
h 
olour 
lass indu
es a ZPR, so by the above K

56

ZPR

non-existen
e result, it follows that there does not exist a 3-D straight-line orthogonal

drawing of K

n

for n greater than the Ramsey number R(56; 56; : : : ; 56) (with D 56's).

In three dimensions this upper bound has been signi�
antly improved to K

184

by Fekete

and Meijer [96℄ (their proof is still based on the non-existen
e of a ZPR of K

56

). Based

on the ZPR ofK

22

mentioned above, Fekete and Meijer also 
onstru
t the largest known

straight-line 3-D orthogonal drawing of a 
omplete graph, namely K

56

, and establish

a number of bounds on the size of 
omplete graphs admitting su
h drawings when the

shape of the boxes and the number of di�erent sized boxes is restri
ted

2

.

This K

56


onstru
tion immediately generalises to multiple dimensions, providing a

straight-line D-dimensional orthogonal box-drawing of K

22(D�1)+12

. For D � 2 and

n � 1, the bipartite graph K

2D;n

has a D-dimensional orthogonal drawing without

2

The lower bound of K

56

for 3-D straight-line orthogonal drawings and the upper bound of K

56

for

ZPR's is a 
oin
iden
e. Hit
hhikers are disappointed that the previous best lower bound of K

42

due to

Bose et al. [40℄ is not optimal.
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bends. To 
onstru
t this drawing, pla
e the n verti
es along a D-dimensional diagonal,

and pla
e the remaining verti
es on the sides of the D-dimensional box surrounding the

interior verti
es. This 
onstru
tion is a generalisation of the 
ase D = 2 due to Bose

et al. [37℄.

We now provide a simple suÆ
ient 
ondition for the existen
e of a straight-line 3-D

orthogonal line-drawing.

Theorem 3.1. Every vertex 3-
olourable graph has a straight-line 3-D orthogonal line-

drawing.

Proof. We will 
onstru
t a straight-line 3-D orthogonal line-drawing of the 
omplete

tripartite graph K

n;n;n

. Consider the verti
es of K

n;n;n

to be 
oloured with 
olours

fX;Y;Zg with 
orresponding 
olour 
lasses fu

1

; u

2

; : : : ; u

n

g, fv

1

; v

2

; : : : ; v

n

g and

fw

1

; w

2

; : : : ; w

n

g. As illustrated in Figure 3.4, a vertex u

i

, v

j

or w

k

, 1 � i; j; k;� n is

represented by the following line parallel to the X-, Y or Z-axis, respe
tively.

� u

i

: (2; 2i + 1; 2i)! (2n+ 1; 2i + 1; 2i)

� v

j

: (2j; 2; 2j + 1)! (2j; 2n + 1; 2j + 1)

� w

k

: (2k + 1; 2k; 2) ! (2k + 1; 2k; 2n + 1)

A vertex u

i

has odd/even Y /Z-
oordinates, a vertex v

j

has even/oddX/Z-
oordinates,

and a vertex w

k

has odd/even X/Y -
oordinates, so no two verti
es interse
t.

The edge routes for the edges u

i

v

j

, u

i

w

k

and v

j

w

k

, 1 � i; j; k;� n, are respe
tively

parallel to the Z-, Y - and X-axes as follows.

� u

i

: (2j; 2i + 1; 2i)! (2j; 2i + 1; 2j + 1) :v

j

� u

i

: (2k + 1; 2i; 2i) ! (2k + 1; 2k; 2i) :w

k

� v

j

: (2j; 2k; 2j + 1)! (2k + 1; 2k; 2j + 1) :w

k

An edge route u

i

v

j

has even/oddX/Y -
oordinates, an edge route u

i

w

k

has odd/even

X/Z-
oordinates, and an edge route v

j

w

k

has even/odd Y /Z-
oordinates, so no two

edge routes interse
t.
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Figure 3.4: Vertex layout for a straight-line 3-D orthogonal line-drawing of a vertex

3-
olourable graph.

Suppose an edge route u

i

v

j

interse
ts some vertex x. Then x has a 
oordinate

(2j; 2i+1; Z

x

), whi
h implies that x = u

i

or x = v

j

, and similarly for edge routes u

i

w

k

and v

j

w

k

. Hen
e ea
h edge route only interse
ts its end-verti
es.

This result suggests the following open problem.

Open Problem 3.1. What is the maximum k 2 Z

+

su
h that every k-
olourable

graph has a straight-line 3-D orthogonal box-drawing? By Theorem 3.1 and sin
e K

184

does not have su
h a drawing we know 3 � k < 184.

3.4.2 Coplanar Vertex Layout Model

A 3-D orthogonal graph drawing is in the 
oplanar vertex layout model, 
alled a 
oplanar

3-D orthogonal graph drawing, if there exists a single grid-plane interse
ting every

vertex. Of 
ourse, su
h drawings are inherently orientation-dependent.
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Coplanar Grid Vertex Layout

One strategy for produ
ing 3-D orthogonal graph drawings in the 
oplanar vertex layout

model, is to position the verti
es in a plane grid. This model was �rst employed by

Hagihara et al. [113℄ for produ
ing degree-restri
ted 3-D orthogonal 
ube-drawings,

although it is understood that all subsequent resear
h in 3-D orthogonal graph drawing,

in
luding that presented in this thesis, was 
ompleted without knowledge of this paper.

The Compa
t algorithm of Eades et al. [86, 87℄ introdu
ed this model for 3-D

orthogonal point-drawing, and produ
ed drawings with optimal volume. Verti
es are

positioned in the (Z = 0)-plane in a O(

p

n)�O(

p

n) grid, and edges are routed either

within, above or below the (Z = 0)-plane. A sequen
e of re�ned algorithms in [87℄

explore the tradeo� between bounding box volume and the maximum number of bends

per edge route.

In Chapter 9 we present two algorithms for produ
ing 
oplanar 3-D orthogonal

drawings of arbitrary degree graphs. The �rst represents verti
es by Z-lines in an

O(

p

n)�O(

p

n) grid, and produ
es drawings with optimal volume for regular graphs.

The se
ond algorithm positions verti
es in the (Z = 0)-plane in a O(

p

m) � O(

p

m)

grid, and produ
es degree-restri
ted 
ube-drawings with optimal volume.

Non-Collinear Coplanar Vertex Layout

A se
ond approa
h to produ
ing 
oplanar 3-D orthogonal drawings is to position the

verti
es su
h that no two verti
es lie in the same grid-line. A 
ommonly used strategy

for produ
ing su
h drawings is to position the verti
es along a 2-D diagonal.

Biedl et al. [32, 33℄ 
onstru
t 
oplanar 3-D orthogonal line-drawings of K

n

(and

hen
e for any simple graph), using a 2-D diagonal layout with O

�

n

3

�

volume and

one bend per edge route

3

. Biedl [27℄ 
alls this the Lifting-Edges algorithm. This


onstru
tion represents the verti
es as Z-lines of length n positioned in a 2-D diagonal

layout, and routes ea
h edge with one bend in some Z-plane. In Chapter 9 we present

an algorithm for produ
ing 1-bend 3-D orthogonal drawings using a similar strategy

3

Biedl et al. [32, 33℄ also des
ribe 3-D orthogonal drawings of K

n

with O

�

n

3

�

volume and two bends

per edge route. Sin
e all the verti
es in this 
onstru
tion are interse
ted by a single grid-line, we say

this drawing is in the 
ollinear vertex layout model.
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based on book embeddings.

Biedl [27℄ introdu
ed an algorithm 
alled Lifting-Half-Edges, whi
h improves on

the Lifting-Edges algorithm, for produ
ing degree-restri
ted line-drawings with two

bends per edge route. This algorithm starts with a 1-bend 2-D general position point-

drawing possibly with overlapping edges (see Se
tion 3.2.3), and extends the verti
es to

form Z-lines. X-segments are routed above the (Z = 0)-plane, Y -segments are routed

below the (Z = 0)-plane, and Z-segments are added to the edges in su
h a way to avoid

edge route 
rossings. A modi�ed algorithm produ
es degree-restri
ted 
ube-drawings.

Closson et al. [58℄ present an algorithm for produ
ing 
oplanar 3-D orthogonal

point-drawings with a 2-D diagonal vertex layout, whi
h supports the on-line insertion

and deletion of verti
es and edges. In Chapter 11 we present an algorithm for multi-

dimensional orthogonal point-drawing with a bounded number of bends per edge whi
h

also positions the verti
es in a 2-D diagonal.

3.4.3 Non-Collinear Model

A 3-D orthogonal graph drawing is in the non-
ollinear vertex layout model, 
alled a

non-
ollinear 3-D orthogonal drawing, if no two verti
es lie in the same grid-line. The

spiral layout algorithm of Closson et al. [58℄ for 3-D orthogonal point-drawing was the

�rst for produ
ing drawings in this model. This algorithm starts with the verti
es in a

O(

p

n)�O(

p

n) grid, and then assigns ea
h vertex a unique height in a spiral manner.

The bounding box has volume O(

p

n)�O(

p

n)�O(n), so the drawings are somewhat

orientation-dependent.

In Chapter 10 we present algorithms for generating orientation-independent non-


ollinear orthogonal box- and point-drawings. Our vertex layout algorithm positions the

verti
es su
h that ea
h grid-plane interse
ts at most d

p

ne verti
es. The point-drawings

produ
ed have optimal volume, and for regular graphs, the box-drawings produ
ed also

have optimal volume. These are the only known algorithms for produ
ing orientation-

independent drawings with optimal volume. For point-drawings with optimal volume,

we observe a tradeo� between orientation-independen
e and the maximum number of

bends per edge.
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3.4.4 General Position Model

A D-dimensional orthogonal graph drawing (D � 2) is in the general position model,


alled a general position orthogonal drawing, if no two verti
es are interse
ted by a

single (D � 1)-dimensional grid-hyperplane

4

. In a general position 2-D orthogonal

drawing, no two verti
es are interse
ted by a single grid-line (see Se
tion 3.2.3), and in

a general position 3-D orthogonal drawing, no two verti
es are interse
ted by a single

grid-plane

5

. A simple general position vertex layout is 
onstru
ted by positioning the

verti
es along the main diagonal of a hyper
ube, 
alled a diagonal general position

vertex layout.

General position drawings typi
ally have few bends per edge route (but relatively

many bends in total) and are degree-restri
ted. Many algorithms for general position

orthogonal graph drawing produ
e orientation-independent drawings. The disadvan-

tage of this model is that the drawings ne
essarily have large volume 
ompared to the

other models.

Chapters 5, 6 and 7 des
ribe algorithms for produ
ing general position 3-D point-

drawings, general position 2-D box-drawings and general position D-dimensional (D �

3) box-drawings, respe
tively. Our algorithms for produ
ing general position orthogonal

drawings have the following three major steps, whi
h loosely 
orrespond to those in the

three-phase method [31℄.

Vertex Layout: Determine the relative positions of the verti
es.

Ar
 Routing: Determine the `shape' of ea
h edge route.

Port Assignment: Constru
t vertex boxes, assign ports for ea
h edge route, and

remove edge 
rossings.

We 
lassify algorithms for generating general position orthogonal graph drawings

as being layout- or routing-based. In a layout-based algorithm, the vertex layout stage

4

In 
omputational geometry a set of points in R

D

are in general position if no D+1 points are in a


ommon (D� 1)-dimensional hyperplane. Stri
tly speaking we should therefore say a general position

orthogonal drawing is in general grid position.

5

This is 
alled the Unique Coordinates Model in [221℄.
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is 
ompleted initially followed by the ar
 routing step. In a routing-based algorithm,

the vertex layout is determined with respe
t to a pre-determined ar
-routing. The port

assignment stage is always 
ompleted last.

Point-Drawings

A 3-D diagonal vertex layout is used by the 3-Bends algorithm of Eades et al. [86, 87℄

for orthogonal point-drawing. We present a layout-based algorithm for 3-D orthogonal

point-drawing in Se
tion 5.2.1, whi
h given a �xed diagonal layout, minimises the total

number of bends. A modi�
ation of the 3-bends algorithm of Eades et al. [86, 87℄

des
ribed in Se
tion 5.5.3, produ
es 3-bend point-drawings with the best known volume

upper bound.

A routing-based algorithm for 3-D orthogonal point-drawing is presented in Se
-

tion 5.3. The Diagonal Layout and Movement (Dlm in Table 3.2) algorithm

presented in Se
tion 5.4 
ombines the layout- and routing-based approa
hes, and es-

tablishes the best known upper bound for the total number of bends in 3-D orthogonal

point-drawings.

Box-Drawings

Algorithms for produ
ing general position 3-D orthogonal box-drawings with two bends

per edge route have been developed by Papakostas and Tollis [166, 168℄ and Biedl [27℄.

The in
remental algorithm in [166, 168℄ inserts ea
h new vertex as a 
ube, and as new

neighbours are inserted a vertex may grow in di�erent dire
tions, produ
ing drawings

whi
h one would expe
t in pra
ti
e to be orientation-independent. No bound on the

aspe
t ratio of a vertex is established. We refer to this algorithm as In
remental.

Our layout-based algorithm for multi-dimensional orthogonal box-drawing, pre-

sented in Se
tion 7.2, in the 
ase of three dimensions, establishes improved bounds

on the degree-restri
tion of verti
es 
ompared to the algorithms in [27, 166, 168℄. A

routing-based algorithm for general position 3-D orthogonal box-drawing is presented

in Se
tion 7.3.
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3.4.5 Ad-ho
 Methods for 3-D Point-Drawing

Other approa
hes for 3-D orthogonal point-drawing in
lude that of Papakostas and

Tollis [166, 168℄. Their algorithm, whi
h allows for the on-line insertion of verti
es in


onstant time, produ
es 3-D orthogonal point-drawings with at most three bends per

edge route. The split and push approa
h to 3-D orthogonal point-drawing, developed

by Di Battista et al. [74℄, starts with a degenerate drawing with all verti
es on one

point and repeatedly inserts planes splitting the drawing apart until all 
rossings are

removed. Experimental tests in [74, 168, 221℄ show this method works well only on

relatively small graphs, and no bounds on the number of bends or volume are presented.

3.5 Bounds for 3-D Orthogonal Graph Drawing

We now summarise the known bounds for the number of bends and the volume of 3-D

orthogonal drawings, initially for point-drawings and then for box-drawings.

3.5.1 Point-Drawings

Table 3.2 shows the tradeo� between the bounding box volume and the maximum

number of bends per edge apparent in algorithms for 3-D orthogonal point-drawing of

graphs of maximum degree � � 6.

Bounds on the volume

An early result in 3-D orthogonal point-drawing due to Kolmogorov and Barzdin [132℄

6

established a lower bound of 
(n

3=2

) for the bounding box volume. Rosenberg [186℄

independently proved the same result.

The Compa
t algorithm of Eades et al. [86, 87℄ determines orthogonal point-

drawings in the 
oplanar vertex layout model with O

�

n

3=2

�

bounding box volume and

at most seven bends per edge route. As dis
ussed above, this volume bound is asymp-

toti
ally best possible. The same bound is a
hieved by the orientation-independent

Non-Collinear algorithm presented in Chapter 10, at the expense of needing eight

6

This paper has been repeatedly 
ited in
orre
tly in the literature, with the word `set' repla
ing

`net' in the title.
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Table 3.2: Upper Bounds for 3-D Orthogonal Point-Drawing

Algorithm

Max.

(Avg.)

Bends

Volume

Orientation

Independent

Referen
e

Non-Collinear 8 �(n

3=2

) yes Theorem 10.2

Compa
t 7 �(n

3=2

) no [86, 87℄

Compa
t1 6 O

�

n

2

�

no [87℄

Dynami
 5 O

�

n

2

�

no [58℄

Compa
t2 5 O

�

n

5=2

�

no [87℄

Compa
t3 4 O

�

n

3

�

no [87℄

Dlm 4 (7/3) 2:37n

3

yes Theorem 5.4

3-Bends 3 8n

3

yes [86, 87℄

In
remental 3 4:63n

3

yes [166, 168℄

Modified 3-Bends 3 n

3

+ o

�

n

3

�

yes Theorem 5.6

Dlm (� � 5) 2 n

3

yes Theorem 5.4

Compa
t (� � 4) 3 O

�

n

2

�

no [86℄

bends for some edge routes. Improving the bound on the maximum number of bends

per edge route in an O

�

n

3=2

�

volume 3-D orthogonal point-drawing is an interesting

open problem.

Open Problem 3.2. Does every maximum degree six graph have a 6-bend 3-D or-

thogonal point-drawing with O

�

n

3=2

�

bounding box volume?

In a series of re�nements of the Compa
t algorithm, referred to as Compa
t1,

Compa
t2 and Compa
t3, the tradeo� between the bounding box volume and the

maximum number of bends per edge route is explored. For O

�

n

2

�

volume 3-D point-

drawings, the Dynami
 algorithm of Closson et al. [58℄ improves the upper bound for

the maximum number of bends per edge route from six [87℄ to �ve.



CHAPTER 3. APPROACHES TO ORTHOGONAL GRAPH DRAWING 51

Bounds on the maximum number of bends per edge

The 3-Bends algorithm of Eades et al. [86, 87℄ and the In
remental algorithm of

Papakostas and Tollis [166, 168℄ established an upper bound of three for the maximum

number of bends per edge route. Both algorithms take O(n) time

7

. Note that the

authors of the 3-Bends algorithm were not interested in improving the 
onstant in the

27n

3

bounding box volume bound| by deleting ea
h grid plane not 
ontaining a vertex

or a bend, it 
an easily be shown that the volume is at most 8n

3

. A modi�
ation of the

3-Bends algorithm presented in Se
tion 5.5.3 improves this bound to n

3

+o

�

n

3

�

. This

is the best known upper bound for the volume of 3-bend orthogonal point-drawings.

There are few non-trivial lower bounds for the number of bends in 3-D orthogonal

point-drawings. Obviously any orthogonal point-drawing of K

3

has at least one bend.

Less obvious is the result, proved in Theorem 11.1, that in any 3-D orthogonal point-

drawing of K

5

there is an edge route with at least two bends. In Appendix A we give

a formal proof of the well-known result that a 3-D orthogonal point-drawing of the

multigraph 
onsisting of two verti
es and six edges requires an edge route with at least

three bends.

The di�eren
e between the lower bound of two and the upper bound of three for

the maximum number of bends per edge route in 3-D orthogonal point-drawings of

maximum degree six graphs motivates the following 2-Bends Problem.

Open Problem 3.3. [86, 87℄ Does every maximum degree six graph admit a 2-bend

3-D orthogonal point-drawing?

The Diagonal Layout and Movement algorithm (Dlm in Table 3.2) presented

in Se
tion 5.4 solves the 2-Bends Problem in the aÆrmative for graphs of maximum

degree �ve. This result establishes the only known 
lass of graphs for whi
h 2-bend

3-D orthogonal point-drawings exist.

A natural 
andidate for a simple graph requiring an edge route with at least three

bends in every 3-D orthogonal point-drawing is K

7

, as 
onje
tured by Eades et al. [86℄.

A 
ounterexample to this 
onje
ture, namely a 3-D orthogonal point-drawing of K

7

7

In Eades et al. [86℄ an O(n

3=2

) time bound is stated. In Eades et al. [87℄ this is redu
ed to O(n) using

the algorithm of S
hrijver [194℄ in the 
al
ulation of the 
y
le 
over de
omposition (see Se
tion 2.5).
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with at most two bends per edge route, was �rst exhibited by Wood [219℄. A more

symmetri
 3-D orthogonal point-drawing

8

of K

7

with at most two bends per edge route

is shown in Figures 3.5 and 3.6 (see also Appendix B). This drawing has the interesting

feature of rotational symmetry about the line X = Y = Z.

X

Y

Z

Figure 3.5: Components of a 2-bend 3-D orthogonal point-drawing of K

7

.

8

A physi
al model of this drawing is on display at the S
hool of Computer S
ien
e and Software

Engineering, Monash University, Clayton.



CHAPTER 3. APPROACHES TO ORTHOGONAL GRAPH DRAWING 53

X

Y

Z

Figure 3.6: A 2-bend 3-D orthogonal point-drawing of K

7

.

One may 
onsider the other 6-regular 
omplete multi-partite graphs K

6;6

, K

3;3;3

and K

2;2;2;2

to be potential examples of simple graphs requiring an edge route with at

least three bends. In Appendix B we present 2-bend 3-D orthogonal point-drawings of

these graphs.

Bounds on the total number of bends

In 
ertain appli
ations it may be more important to minimise the total number of

bends in 3-D orthogonal point-drawings rather than to minimise the maximum number

of bends on any edge route. The Diagonal Layout and Movement algorithm

presented in Se
tion 5.4, whi
h solves the 2-Bends Problem for graphs of maximum

degree �ve, uses a total of at most 7m=3 bends for drawings of m-edge simple graphs
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with maximum degree six. A related algorithm presented in Se
tion 5.2.1 minimises the

total number of bends in a 3-D orthogonal point-drawing for a �xed diagonal layout.

Improving the upper bound for the total number of bends in a 3-D orthogonal point-

drawing is an interesting open problem.

Open Problem 3.4. Does every maximum degree six graph with m edges have a 3-D

orthogonal point-drawing with fewer than 7m=3 bends?

In Appendix A we establish the �rst non-trivial lower bounds for the total number of

bends in 3-D orthogonal point-drawings. In parti
ular, we prove that a 3-D orthogonal

point-drawing of K

5

has at least seven bends. (A drawing of K

5

with seven bends is

shown in Figure 2.3(b) on page 28.) We also show that a 3-D orthogonal point-drawing

of the multigraph 
onsisting of two verti
es and six edges has at least twelve bends.

(Su
h a drawing is shown in Figure A.7 on page 228.)

Open Problem 3.5. Are there better lower bounds than 7m=10 (for simple graphs)

and 2m (for multigraphs) on the total number of bends in a 3-D orthogonal point-

drawing of an m-edge graph with maximum degree six.

In Figure 3.7 we show a 3-D orthogonal point-drawing of K

7

with a total of 24

bends (
ompared with the total of 42 bends for the drawing shown in Figures 3.5 and

3.6). Most edge routes are straight-lines or have one bend, and three edge routes have

four bends. We 
onje
ture that there is no 3-D orthogonal point-drawing of K

7

with

fewer than 24 bends.

3.5.2 Box-Drawings

Lower Bounds

The �rst lower bounds for 3-D orthogonal box-drawings were due to Hagihara et al.

[113℄. They show that the volume of a degree-restri
ted 3-D orthogonal 
ube-drawing

of a simple graph is




�

max

n

�

2

n; (�n= log n)

3=2

o�

:

For an arbitrary graph G, let vol(G; r; �) denote the minimum bounding box volume

of the 3-D orthogonal drawings of G whi
h are stri
tly �-degree-restri
ted and every
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X

Y

Z

Figure 3.7: A 4-bend 3-D orthogonal point-drawing of K

7

with 24 bends.

vertex has aspe
t ratio at most r. Let vol(n;m; r; �) be the maximum of vol(G; r; �)

where G is a graph with n verti
es and m edges. Thus, vol(n;m; r; �) des
ribes a

volume bound within whi
h all graphs with n verti
es and m edges 
an be drawn su
h

that ea
h vertex v has aspe
t ratio at most r and surfa
e at most � � deg(v). Biedl,

Thiele, and Wood [34℄ establish the following results.

Theorem 3.2.

� vol (n;m;1;1) = 
 (m

p

n)

� vol (n;m; r;1) = 


�

m

3=2

=

p

r

�

� vol (n;m;1; �) = 


�

m

3=2

=�

�

Hen
e the volume of arbitrary 3-D orthogonal box-drawings is 
(m

p

n), and for

degree-restri
ted drawings or drawings with ea
h vertex having bounded aspe
t ratio,

the volume is 
(m

3=2

). This result in
ludes the lower bound of 
(n

5=2

) for the volume

of 3-D orthogonal drawings of K

n

due to Biedl et al. [32, 33℄. In fa
t, the proof is based
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on te
hniques developed in that paper generalised for sparse graphs. Biedl et al. [32, 33℄

also establish the lower bound of 
(n

2

) for the number of bends in a 3-D orthogonal

drawings of K

n

. For general position 3-D orthogonal drawings, Biedl [27℄ establishes

a lower bound of 


�

max

�

n

3

;m

2

	�

for the bounding box volume, and 
onje
tures the

lower bound of 
(n

2

m).

Upper Bounds

The algorithm presented in Se
tion 9.1, whi
h generalises the Lifting-Edges algo-

rithm of Biedl et al. [32, 33℄ for simple graphs, establishes that every multigraph

has a 1-bend 3-D orthogonal box-drawing. As dis
ussed in Se
tion 3.4.1, there exist

graphs with no straight-line 3-D orthogonal box-drawing, so these results are optimal

for the maximum number of bends per edge route. Sin
e the drawings produ
ed are

orientation-dependent and are not degree-restri
ted, the following open problem is of

interest.

Open Problem 3.6. Does every graph have an orientation-independent or degree-

restri
ted 3-D orthogonal box-drawing with at most one bend per edge route?

The algorithm of [34℄ produ
es 3-D orthogonal box-drawings with O(m

p

n) volume

and at most four bends per edge route. By Theorem 3.2 this bound is optimal. A

simpli�ed version of this algorithm, presented in Se
tion 9.2, produ
es drawings with

O

�

�n

3=2

�

volume, whi
h for regular graphs is the same as O(m

p

n). Redu
ing the

number of bends in optimal volume box-drawings is an important open problem.

Open Problem 3.7. Does every graph have a 3-D orthogonal box-drawing with

O(m

p

n) volume and at most three bends per edge route? (Note that K

n

does have a

3-bend box-drawing with O

�

n

5=2

�

= O(m

p

n) volume [32, 33℄.)

We now 
onsider upper bounds for the volume of degree-restri
ted 3-D orthogo-

nal box-drawings. The In
remental algorithm of Papakostas and Tollis [166, 168℄

�rst established that every graph has a 2-bend degree-restri
ted 3-D orthogonal box-

drawing. Their upper bound of O

�

m

3

�

for the bounding box volume has subsequently

been improved by the Lifting Half-Edges algorithm of Biedl [27℄ to O

�

n

2

�

�

.
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The algorithm presented in Se
tion 9.3 produ
es degree-restri
ted 
ube-drawings

with O

�

(m+ n)

3=2

�

volume. By Theorem 3.2 this upper bound is optimal for degree-

restri
ted drawings or drawings with ea
h vertex having bounded aspe
t ratio (assuming

m = 
(n), whi
h is true for most graphs). This algorithm uses at most six bends per

edge route. The following problem is therefore of interest.

Open Problem 3.8. Does every graph have a 5-bend degree-restri
ted 3-D orthogo-

nal box-drawing with O

�

(m+ n)

3=2

�

bounding box volume and bounded aspe
t ratio

verti
es?

Table 3.3 summarises the known bounds for 3-D orthogonal box-drawings (of n-

vertex m-edge graphs with maximum degree � and genus g (� m)). We 
onsider

four groupings of algorithms, depending on whi
h aestheti
 
riteria (out of orientation-

independent, bounded aspe
t ratio and degree-restri
ted) are satis�ed by the drawings

produ
ed. Within ea
h grouping a tradeo� between the bounding box volume and the

maximum number of bends per edge route is observed.
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Table 3.3: Bounds for 3-D Orthogonal Box-Drawings.

Volume

Bends Model Graphs Time Referen
e

orientation-independent / bounded aspe
t ratio / degree-restri
ted

O

�

(nm)

3=2

�

2 general position simple O(m) [27℄ (Thms. 7.5,7.6)

O

�

(n�)

3=2

�

6 non-
ollinear multigraphs O(m) Theorem 10.1

orientation-dependent / bounded aspe
t ratio / degree-restri
ted

O

�

nm

p

�

�

2 lifting

1

2

-edges multigraphs O(m) [27℄

O(m(m+ n))

5 
oplanar multigraphs O(m) Theorem 9.5

O

�

(n�)

3=2

�

10 
oplanar simple ? [113℄

�((m+ n)

3=2

)

6 
oplanar multigraphs O

�

m

p

m+ n

�

Theorem 9.4

orientation-dependent / no bounds on aspe
t ratio / degree-restri
ted

O

�

n

2

�

�

2 lifting

1

2

-edges simple O(m) [27℄

�((m+ n)

3=2

)

6 
oplanar multigraphs O

�

m

p

m+ n

�

Theorem 9.4

orientation-dependent / no bounds on aspe
t ratio / not degree-restri
ted

O

�

n

3

�

1 lifting edges simple O(m) [32, 33℄

O

�

nm

p

g

�

1 diagonal 
oplanar multigraphs - Theorem 9.1

O

�

n

5=2

�

3 lifting edges simple O(m) [32, 33℄

O(nm)

3 
oplanar multigraphs O(m) Theorem 9.3

�(m

p

n)

4 
oplanar multigraphs O

�

m

2

=

p

n

�

[34℄ (see Thm. 9.2)
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Tables 3.4, 3.5 and 3.6 provide pre
ise bounds on the aestheti
 
riteria for ea
h the

�rst three groups dis
ussed above.

Table 3.4: Orientation-independent, Degree-restri
ted 3-D Orthogonal Drawing with

Bounded Aspe
t Ratio.

Bends Volume Degree-

Restri
tion

Aspe
t

Ratio

Model Referen
e

2 O

�

(nm)

3=2

�

6 1 general position [27℄

2 O

�

(nm)

3=2

�

5=3 2 general position Theorem 7.5

2 O

�

(nm)

3=2

�

4 1 general position diagonal Theorem 7.6

6 O

�

(n�)

3=2

�

8 1 non-
ollinear

9

Theorem 10.1

Table 3.5: Degree-restri
ted 3-D Orthogonal Cube-Drawing Algorithms.

Bends Volume Degree

Restri
tion

Aspe
t

Ratio

Model Referen
e

2 O

�

n

2

m

�

6 1 lifting

1

2

-edges [27℄

5 O(m(m+ n)) 12 1 
oplanar layout Theorem 9.5

6 O

�

(m+ n)

3=2

�

12 1 
oplanar layout Theorem 9.4

Table 3.6: Degree-restri
ted 3-D Orthogonal Drawing with Unbounded Aspe
t Ratio.

Bends Volume Degree-

Restri
tion

Aspe
t

Ratio

Model Referen
e

2 O

�

m

3

�

6 - in
remental [166, 168℄

2 O

�

n

2

�

�

2 deg(v)=2 lifting

1

2

-edges [27℄

2 O

�

n

2

m

�

2 deg(v)=2 general position [27℄

2 O

�

n

2

m

�

2 deg(v)=2 general position diagonal Theorem 7.7

2 O

�

�(nm)

3=2

�

2 deg(v)=4 general position Theorem 7.8

9

4-degree-restri
ted for simple graphs.
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Chapter 4

Balan
ed Vertex Ordering

In this 
hapter we des
ribe and analyse methods for determining `balan
ed'

orderings of the verti
es of a graph. Here balan
ed means that the neigh-

bours of ea
h vertex v are evenly distributed to the left and right of v in the

ordering. This problem is of theoreti
 interest in its own right, and forms

an important part of the graph drawing algorithms to be presented in Chap-

ters 5, 6 and 7. In parti
ular, we de�ne the 
ost of a vertex ordering as

a measure of its imbalan
e, and present a linear time heuristi
 with tight

worst 
ase bounds for the 
ost of the vertex orderings produ
ed. Furthermore

we establish useful properties of vertex orderings whi
h lo
ally minimise the


ost.

4.1 Introdu
tion

A number of the algorithms for produ
ing general position orthogonal graph drawings

involve the manipulation of an ordering of the verti
es of a graph. Given a (di)graph

G, a total ordering < on V (G) indu
es a numbering (v

1

; v

2

; : : : ; v

n

) of V (G) and vi
e

versa. We shall refer to both < and (v

1

; v

2

; : : : ; v

n

) as a vertex ordering of G.

Consider a vertex ordering < of a graph G. For ea
h edge vw 2 E(G) with v < w,

we say the ar


�!

vw 2 A(G) is a su

essor ar
 of v and w is a su

essor of v; similarly

the ar


�!

wv is a prede
essor ar
 of w and v is a prede
essor of w. Now 
onsider a vertex

ordering < of a digraph G. For ea
h edge vw 2 E(G), if v < w we say

�!

vw is a su

essor

61
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ar
 of v and w is a su

essor of v, and if w < v we say

�!

vw is a prede
essor ar
 of v and

w is a prede
essor of v.

For ea
h vertex v 2 V (G), the number of su

essor and prede
essor ar
s of v are

denoted s

<

(v) and p

<

(v), respe
tively. Where the vertex ordering < is 
lear from the


ontext we use s(v) and p(v) instead of s

<

(v) and p

<

(v), respe
tively. Note that, for

digraphs, we only 
ount the outgoing edges at a vertex v in p(v) and s(v).

We say a vertex v in a given vertex ordering is positive if s(v) > p(v), negative

if p(v) > s(v) and balan
ed if s(v) = p(v). For positive and balan
ed verti
es v and

for k > 0 (respe
tively, k < 0), v

k

denotes the k

th

su

essor (prede
essor) of v to the

right (left) of v in the ordering. For negative v and for k > 0 (respe
tively, k < 0), v

k

denotes the k

th

prede
essor (su

essor) of v to the left (right) of v in the ordering. Two

adja
ent verti
es v; w with v < w are opposite if v is positive and w is negative.

As illustrated in Figure 4.1, we shall say a vertex v is ea
h of the following types.

� p(v)-s(v) vertex

� (minfp(v); s(v)g ;max fp(v); s(v)g)-vertex

� max fp(v); s(v)g-vertex.

v

v

�1

v

�2

v

1

v

2

v

3

v

4

Figure 4.1: In a vertex ordering, v is a 4-2 vertex, a (2; 4)-vertex, and a 4-vertex.

In a vertex ordering of a (di)graph G, we measure the imbalan
e of a vertex by

de�ning the 
ost of v to be 
(v) = js(v)� p(v)j. Note that a vertex has even 
ost if and

only if it has even (out)degree, and the 
ost of an odd (out)degree vertex is at least

one. We �rstly note that,

2 �min fs(v); p(v)g + 
(v) = (out)deg (v) = 2 �max fs(v); p(v)g � 
(v) (4.1)

The total 
ost of a vertex ordering is the sum of the 
osts of the verti
es. In a vertex

ordering of an undire
ted graph G, the total 
ost is equal to the total 
ost of the same
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vertex ordering of the digraph

 !

G . Hen
e we model a vertex ordering of an undire
ted

graph G by a vertex ordering of the digraph

 !

G . We are interested in the following

problem.

Problem 4.1. BALANCED VERTEX ORDERING

Instan
e : A (di)graph G, integer K � 0.

Question : Does G have a vertex ordering with total 
ost

X

v2V (G)


(v) � K?

We 
onje
ture that the BALANCED VERTEX ORDERING problem is NP-


omplete. To establish bounds for this problem we employ a heuristi
 approa
h in

Se
tion 4.3, and a lo
al minimum approa
h in Se
tion 4.4. Obviously any vertex order-

ing of the 
omplete graph has the same total 
ost, thus providing an important lower

bound for the balan
ed ordering problem.

Lemma 4.1. In any vertex ordering of the 
omplete graph K

n

, the total 
ost

X

v


(v) =

�

n

2

2

�

= m+

j

n

2

k

:

Proof. In a vertex ordering (v

1

; v

2

; : : : ; v

n

) the total 
ost is

X

1�i�n

js(v

i

)� p(v

i

)j = 2

X

1�i�bn=2


(n� 2i+ 1)

= 2

0

�

bn=2
 (n+ 1)� 2

X

1�i�bn=2


i

1

A

= 2

�

bn=2
 (n+ 1)� bn=2
 (bn=2
+ 1)

�

=

�

n

2

=2

�

= m+ bn=2
 :

4.2 st-Orderings

A vertex ordering (v

1

; v

2

; : : : ; v

n

) of a (di)graph G is an st-ordering if v

1

= s, v

n

= t,

and for every other vertex v

i

, 1 < i < n, with (out)deg (v

i

) � 2, we have p(v

i

) � 1 and

s(v

i

) � 1. Lempel et al. [142℄ show that for any bi
onne
ted undire
ted graph G and

for any s; t 2 V (G), there exists an st-ordering of G. Re
ently Cheriyan and Reif [54℄

extended this result to digraphs.
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Even and Tarjan [93℄ develop a linear time algorithm to 
ompute an st-ordering of an

undire
ted bi
onne
ted graph. It is an open problem to develop a linear time algorithm

for �nding an st-ordering of a bi
onne
ted digraph. To determine a vertex ordering

of a 
onne
ted graph based on st-orderings of its bi
onne
ted 
omponents (blo
ks),

number the blo
ks B

1

; B

2

; : : : ; B

k

a

ording to a depth-�rst-sear
h of the blo
k-tree,

and 
on
atenate s

i

t

i

-orderings of ea
h B

i

, where s

i

(respe
tively, t

i

) is 
hosen wherever

possible to be a 
ut-vertex with some blo
k B

j

, j < i (j > i). We obtain the following

easy result.

Lemma 4.2. Every graph G has a vertex ordering, whi
h 
an be 
omputed in O(n+m)

time, with at most 
+k verti
es v having p(v) = 0 or s(v) = 0, where 
 is the number of


onne
ted 
omponents of G, and k is the number of end-blo
ks in the blo
k de
omposition

of G. (An end-blo
k 
orresponds to a leaf of the blo
k-forest. Note that an isolated edge


ontributes one 
onne
ted 
omponent and one end-blo
k.)

4.3 Median Pla
ement Ordering

We now des
ribe a heuristi
 for the balan
ed vertex ordering problem whi
h provides

a tight upper bound for the total 
ost of the vertex orderings produ
ed, and forms

a 
riti
al part of many of the graph drawing algorithms presented in this thesis. The

algorithm inserts ea
h vertex, in turn, mid-way between its already inserted neighbours.

At any stage of the algorithm we refer to the ordering under 
onstru
tion as the 
urrent

ordering. Similar methods were introdu
ed by Biedl and Kaufmann [30℄ and Biedl et al.

[31℄.

Algorithm 4.1. Median Pla
ement Ordering

Input: � (di)graph G.

� vertex ordering (u

1

; u

2

; : : : ; u

n

) of G (
alled the insertion ordering).

Output: vertex ordering of G.

for i = 1; 2; : : : ; n do

Suppose the prede
essors of u

i

in the insertion ordering
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are ordered w

1

; w

2

; : : : ; w

k

in the 
urrent ordering.

if k = 0 then Insert u

i

arbitrarily into the 
urrent ordering.

else if k is even then Insert u

i

arbitrarily between w

k=2

and w

k=2+1

.

else (k is odd) Insert u

i

immediately before or after w

(k+1)=2

.

end-for

Output the 
urrent ordering.

It is easily seen that for undire
ted graphs the Median Pla
ement Ordering

algorithm, at ea
h iteration, inserts the vertex u

i

to minimise the total 
ost of the


urrent ordering. For digraphs this is not the 
ase, as the example in Figure 4.2

illustrates.

u v

1-1

w x

2-0

y

2-0

=

)

(a) median pla
ement insertion

u w x

1-1

y

1-1

v

2-0

=

)

(b) minimum 
ost insertion

Figure 4.2: Inserting vertex v into a vertex ordering of a digraph.

Lemma 4.3. The algorithm Median Pla
ement Ordering determines a vertex

ordering of a (di)graph G, in O(m+ n) time, with total 
ost

X

v2V (G)


(v) � k +

X

1�i�n

s(u

i

), and

X

v2V (G)

max fs(v); p(v)g � m+

1

2

0

�

k +

X

1�i�n

s(u

i

)

1

A

:

where, in the insertion ordering, s(u

i

) is the number of su

essors of u

i

and k is the

number of verti
es u

i

2 V (G) with odd p(u

i

).

Proof. When a vertex u

i

is inserted into the 
urrent ordering it has 
ost 
(u

i

) = 0 if

p(u

i

) is even and 
(u

i

) = 1 if p(u

i

) is odd. So, even if all the su

essors of u

i

(in the

insertion ordering) are inserted on the one side of u

i

, in the �nal ordering, the 
ost
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(u

i

) � s(u

i

) if p(u

i

) is even, and 
(u

i

) � s(u

i

) + 1 if p(u

i

) is odd. So the total 
ost is

at most k +

P

i

s(u

i

). By (4.1) we have

X

v

max fs(v); p(v)g �

X

v

deg(v) + 
(v)

2

= m+

1

2

 

k +

X

i

s(u

i

)

!

Using the median-�nding algorithm of Blum et al. [36℄, and the algorithm of Dietz

and Sleator [77℄ to maintain the vertex ordering and orderings of the adja
en
y lists of

G, the algorithm 
an be implemented in O(m+ n) time.

For an important 
lass of graphs, if the insertion ordering is 
hosen 
arefully, the

Median Pla
ement Ordering algorithm is optimal.

Theorem 4.1. A minimum-
ost vertex ordering of an a
y
li
 (di)graph 
an be deter-

mined in O(m+ n) time.

Proof. Using a reverse topologi
al ordering as the insertion ordering in the Median

Pla
ement Ordering algorithm, ea
h vertex v has s(v) = 0 in the insertion ordering,

so no neighbours of v are inserted into the 
urrent ordering after v. Hen
e 
(v) = 1 if

p(v) is odd, and 
(v) = 0 if p(v) is even. Sin
e p(v) = (out)deg (v) the ordering has

minimum 
ost. A topologi
al ordering 
an be determined in O(m+n) time [64℄, as 
an

the algorithm Median Pla
ement Ordering (see Lemma 4.3).

For undire
ted graphs,

P

i

s(u

i

) = m in any ordering, and sin
e k � n, we obtain

the following immediate 
orollary.

Corollary 4.1. The Median Pla
ement Ordering algorithm, with any insertion

ordering, determines a vertex ordering of an undire
ted graph G with total 
ost

X

v2V (G)


(v) � m+ n , and

X

v2V (G)

max fs(v); p(v)g �

3m+ n

2

:

If we 
hoose a parti
ular insertion ordering we 
an obtain improved upper bounds on

the total 
ost of the vertex orderings produ
ed by theMedian Pla
ement Ordering

algorithm. As indi
ated by Lemma 4.3, there are two approa
hes for determining a

`good' insertion ordering.

1. Determine an insertion ordering with a small number of verti
es with an odd

number of prede
essors. We present an algorithm for doing so in Se
tion 4.3.1.
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2. Determine an insertion ordering with small

P

i

s(u

i

). For undire
ted graphs,

P

i

s(u

i

) = m in any ordering, so this approa
h is only appli
able for digraphs.

We des
ribe methods for determining an insertion ordering with small

P

i

s(u

i

)

in Se
tion 4.3.2.

4.3.1 Verti
es with an Odd Number of Prede
essors

We now des
ribe an algorithm for determining a vertex ordering with few verti
es

having an odd number of prede
essors. The ordering is 
onstru
ted from right to left;

i.e., from v

n

to v

1

.

Algorithm 4.2. Insertion Ordering

Input: (di)graph G.

Output: vertex ordering of G.

Set i jV (G)j.

while E(G) 6= ; do

Choose an edge vw 2 E(G).

if (out)deg (v) is even then Set u

i

 v; u

i�1

 w; else Set u

i

 w; u

i�1

 v.

Remove v and w (and their in
ident edges) from G.

Set i i� 2.

end-while

while V (G) 6= ; do

Choose v 2 V (G).

Set u

i

 v.

Remove v from G.

Set i i� 1.

end-while

Output (u

1

; u

2

; : : : ; u

n

).

Lemma 4.4. The algorithm Insertion Ordering determines a vertex ordering

(u

1

; u

2

; : : : ; u

n

) of G with at most bn=2
 verti
es u

i

having odd p(u

i

).
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Proof. Consider an iteration of the �rst while-loop in the algorithm. If (out)deg (v) is

even then p(v) = (out)deg (v), otherwise if (out)deg (v) is odd then p(v) = (out)deg (v)�

1. In either 
ase, the vertex v will have an even number of prede
essors in (u

1

; u

2

; : : : ; u

n

).

So at least half of the verti
es added to the ordering in the �rst stage of the algorithm

have an even number of prede
essors. During the se
ond while-loop every vertex v has

p(v) = 0 and thus has an even number of prede
essors in (u

1

; u

2

; : : : ; u

n

). The result

follows.

Combining Lemma 4.3 and Lemma 4.4 we obtain the following result.

Theorem 4.2. Every undire
ted graph G has a vertex ordering, whi
h 
an be 
omputed

in O(n+m) time, with total 
ost

X

v2V (G)


(v) � m+

j

n

2

k

, and

X

v2V (G)

max fs(v); p(v)g �

3m

2

+

n

4

:

By Lemma 4.1, the vertex ordering of the undire
ted 
omplete graph K

n

has total


ost m+ bn=2
, so for K

n

we have a tight bound on the total 
ost.

4.3.2 Feedba
k Ar
 Set Problem

We now des
ribe the se
ond method for improving the bound on the total 
ost of

vertex orderings produ
ed by the Median Pla
ement Ordering algorithm. This

method is only appli
able for digraphs. We wish to determine an insertion ordering

(u

1

; u

2

; : : : ; u

n

) with small

P

i

s(u

i

).

A feedba
k ar
 set of a digraph G is a set of ar
s of G whose removal makes the

graph a
y
li
. A vertex ordering < of a digraph determines a feedba
k ar
 set 
onsisting

of the edges fvw 2 E(G) : v < wg. Conversely, given a feedba
k ar
 set F � E(G), a

topologi
al ordering < of G[F ℄ has j fvw 2 E(G) : v < wg j = jF j. So determining an

insertion ordering with minimum

P

i

s(u

i

) is equivalent to the problem of determining

a feedba
k ar
 set of minimum size. This problem, 
alled the FEEDBACK ARC SET

problem, is NP-hard [125℄. For any vertex ordering of a digraph,

min

(

X

v

s(v);

X

v

p(v)

)

� m=2 :
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So trivially every digraph has a vertex ordering with

P

i

s(u

i

) � m=2.

Berger and Shor [19℄ establish an asymptoti
ally tight bound for the FEEDBACK

ARC SET problem

1

. They show that, for digraphs of maximum degree � and without

2-
y
les, the minimum of

P

i

s(u

i

) (taken over all vertex orderings) ism=2��(m=

p

�),

and a vertex ordering with

P

i

s(u

i

) = m=2��(m=

p

�) 
an be determined in O(mn)

time. Using su
h an ordering as the insertion ordering in algorithm Median Pla
e-

ment Ordering, by Lemma 4.3 with k � n, we obtain the following result.

Theorem 4.3. Every digraph without 2-
y
les has a vertex ordering, whi
h 
an be


omputed in O(mn) time, with total 
ost

X

v


(v) � n+

m

2

��

�

m

p

�

�

:

Only for small values of � is the 
onstant in the �(m=

p

�) term evaluated. The

linear time greedy heuristi
 for the FEEDBACK ARC SET problem due to Eades et al.

[84℄ provides an exa
t bound on

P

i

s(u

i

), whi
h in a number of instan
es, provides a

tighter upper bound than that in [19℄. They show that every digraph without 2-
y
les

has a vertex ordering (u

1

; u

2

; : : : ; u

n

) with

P

i

s(u

i

) � m=2� n=6. Using this ordering

as the insertion ordering in algorithmMedian Pla
ement Ordering, by Lemma 4.3

with k � n, we obtain the following result.

Theorem 4.4. Every digraph without 2-
y
les has a vertex ordering, whi
h 
an be


omputed in O(m+ n) time, with total 
ost

X

v


(v) �

m

2

+

5n

6

:

In the 
ase of 
ubi
 graphs, the (more) greedy heuristi
 of Eades and Lin [82℄ de-

termines, in O(mn) time, a vertex ordering with

P

i

s(u

i

) � m=4. Using this ordering

as the insertion ordering in the Median Pla
ement Ordering algorithm produ
es

a vertex ordering with total 
ost at most n+m=4.

1

Berger and Shor a
tually 
onsider the 
orresponding maximisation problem 
alled the MAXIMUM

ACYCLIC SUBGRAPH problem.
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4.4 Lo
al Minimum Approa
h

We now des
ribe a method for the balan
ed ordering problem whi
h �nds a lo
al

minimum of the total 
ost. A vertex ordering (v

1

; v

2

: : : ; v

n

) of a graph G is k-balan
ed

if moving any k verti
es does not redu
e the total 
ost of the ordering.

4.4.1 Undire
ted Graphs

Consider the following rule for moving a vertex in a vertex ordering.

M1(v,w): If w = v

k

is opposite to v for some k, 1 � k � d
(v)=2e (ex
ept if 
(v) is

odd, k = d
(v)=2e and 
(w) = 1), then move v to immediately past w, as in Figure 4.3.

: : : : : : : : :

u

v

u

w = v

i

=)

: : : : : : : : :

u

w

u

v

Figure 4.3: The move M1 for a 1-5 vertex v and a 4-2 vertex w = v

2

.

Lemma 4.5. A vertex ordering is 1-balan
ed if and only if M1 
annot be applied.

Proof. Suppose a vertex v in a given vertex ordering, with 
(v) = s(v)� p(v), gains �

su

essors and loses � prede
essors in the ordering. Then 
(v) be
omes j(s(v) + �) �

(p(v)��)j = j
(v) + 2�)j, so the 
hange in 
(v), denoted 


�

(v), is j
(v) + 2�j � j
(v)j.

The following 
ases summarise the possible values of 


�

(v).

1. 
(v) + 2� � 0

(a) 
(v) � 0: 


�

(v) = 
(v) + 2�+ 
(v) = 2(
(v) + �)

(b) 
(v) < 0: 


�

(v) = 
(v) + 2�� 
(v) = 2�

2. 
(v) + 2a < 0

(a) 
(v) � 0: 


�

(v) = �
(v)� 2�+ 
(v) = �2�
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(b) 
(v) < 0: 


�

(v) = �
(v)� 2�� 
(v) = �2(
(v) + �)

Applying M1 redu
es 
(v) by at least 2k and for ea
h i, 1 � i � k � 1, 
(v

i

) is

in
reased by at most two. The 
ost of all other verti
es remains un
hanged. Thus the

total 
ost de
reases by at least two. So if M1 is appli
able then the vertex ordering is

not 1-balan
ed.

Now, suppose a given vertex ordering is not 1-balan
ed. Then there exists a vertex

v and a neighbour w = v

k

of v su
h that moving v past w redu
es the total 
ost. Ea
h

neighbouring vertex v

i

, 1 � jij � jkj (i the same sign as k), that v moves past will gain

one su

essor and lose one prede
essor if v moves to the right, or lose one su

essor and

gain one prede
essor if v moves to the left. In these respe
tive 
ases the 
ost 
hange at

ea
h v

i

is




1

(v

i

) =

8

>

>

>

>

>

<

>

>

>

>

>

:

�2; if 
(v

i

) � �2;

0; if 
(v

i

) = �1;

2; if 
(v

i

) � 0.




�1

(v

i

) =

8

>

>

>

>

>

<

>

>

>

>

>

:

2; if 
(v

i

) � �2;

0; if 
(v

i

) = 1;

�2; if 
(v

i

) � 0.

Suppose that v is balan
ed. Then the new 
ost of v will be 2jkj. The 
ost of ea
h

vertex v

i

will de
rease by at most 2, so the total 
ost 
annot de
rease. Hen
e v 
annot

be balan
ed.

Suppose k < 0. Moving v past w will in
rease the 
ost of v by 2jkj, while the

de
rease in 
ost for ea
h vertex v

i

, k � i < 0, is at most 2. Thus the in
rease in 
ost of

v 
annot be o�set by the de
rease in the 
ost of the neighbours of v. Hen
e k > 0.

We sele
t the minimum k � 1 su
h that moving v past w = v

k

redu
es the total


ost; i.e., moving v past any u = v

i

, 1 � i < k, does not redu
e the total 
ost. Sin
e

M1 does redu
e the total 
ost, ea
h of the neighbours v

i

, 1 � i � d
(v)=2e, must be

not opposite to v (unless 
(v

i

) = 1 and i = d
(v)=2e).

Suppose k > d
(v)=2e. Then moving v past w in
reases the 
ost of ea
h vertex v

i

,

1 � i � d
(v)=2e, by 2. The new 
ost 
(v) be
omes 2k � 
(v), so the 
hange in 
(v) is

2(k � 
(v)). The 
ost of v

i

, d
(v)=2e � i � k, 
an de
rease by at most 2. Adding up

the 
ost 
hanges, it follows that the total 
ost 
annot de
rease. So k � d
(v)=2e.

Suppose w is not opposite to v. Then the 
ost in
rease at w is 2 (unless 
(w) = 1),

so while 
(v) de
reases by 2k, the 
ost in
rease at v

i

, 1 � i � k, is 2. Hen
e the total
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ost 
hange is 0. So w is opposite to v and 1 � k � d
(v)=2e (ex
ept if 
(v) is odd,

k = d
(v)=2e and 
(w) = 1), and the result follows.

We have the following immediate 
orollary.

Corollary 4.2. For every vertex v in a 1-balan
ed vertex ordering, ea
h of the verti
es

v

1

; v

2

; : : : ; v

b
(v)=2


is not opposite to v.

We now present an algorithm for determining a 1-balan
ed vertex ordering. Let

M1(

�!

vw) be a fun
tion whi
h, for a given ar


�!

vw 2 A(G), returns true if and only if v

is moved past w by rule M1.

Algorithm 4.3. 1-Balan
ed Vertex Ordering

Input: undire
ted graph G.

Output: vertex ordering of G.

Determine an arbitrary vertex ordering of G.

Set A A(G).

while A 6= ; do

Choose an ar


�!

vw 2 A.

if M1(

�!

vw) then

for x 2 V

G

(v) do Set A A [A

+

G

(x) [A

�

G

(x).

else

Set A A n f

�!

vwg.

end-if

end-while

Output the 
urrent ordering.

Lemma 4.6. The algorithm 1-Balan
ed Vertex Ordering determines a 1-balan
ed

vertex ordering of G in O

�

�

2

m

�

time.

Proof. We shall prove that at all times the set A 
ontains all ar
s in A(G) for whi
h

M1 is possibly appli
able. At the start of the algorithm this is true, sin
e A = A(G).
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Consider an adja
en
y list representation of G where ea
h adja
en
y list is ordered

a

ording to the 
urrent vertex ordering.

Suppose the ar


�!

vw is 
hosen from A. If M1(

�!

vw) is not applied then, of 
ourse,

E n f

�!

vwg 
ontains all ar
s in A(G) for whi
h M1 is possibly appli
able.

SupposeM1(

�!

vw) is applied, and v moves past w in the 
urrent vertex ordering. The

only verti
es whose 
ost may 
hange are v and its neighbours, and only the adja
en
y

lists of v and its neighbours are 
hanged. For an ar


�!

pq 2 A(G) where p and q are

both not adja
ent to v or one of the neighbours of v, the adja
en
y lists of p and q do

not 
hange, and the 
ost of every vertex adja
ent to p or q does not 
hange. Hen
e if

M1(

�!

pq) is not appli
able before moving v past w then M1(

�!

pq) will not be appli
able

after moving v past w.

Therefore, by adding to A the sets of ar
s A

+

G

(x) and A

�

G

(x) for ea
h neighbour x of

v, we maintain the 
ondition that A 
ontains all ar
s in A(G) for whi
hM1 is possibly

appli
able. The algorithm 
ontinues until A = ;, at whi
h point there are no ar
s for

whi
h M1 is appli
able. By Lemma 4.5, the �nal vertex ordering is 1-balan
ed.

The total 
ost of a vertex ordering is at most 2m. M1 redu
es the total 
ost by at

least two, so M1 is applied at most m times. Whenever M1 is applied, O

�

�

2

�

ar
s

are added to A. Hen
e the algorithm inserts O

�

�

2

m

�

ar
s into A, so M1 is 
he
ked

O

�

�

2

m

�

times.

Using the order maintenan
e algorithm of Dietz and Sleator [77℄, the vertex order-

ing and adja
en
y lists of ea
h vertex 
an be maintained in 
onstant time under the

move operation. Hen
e M1 
an be 
he
ked in 
onstant time, so the algorithm runs in

O

�

�

2

m

�

time.

We now present rules for moving two verti
es in a vertex ordering.

M2: If v is opposite to w and v < w

j

< v

i

< w for some i; j (1 � i � d
(v)=2e,

1 � j � d
(w)=2e, 2i+ 2j < 
(v) + 
(w) + 2), then move v up to v

i

and move w up to

w

j

, as in Figure 4.4.
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: : : : : : : : : : : : : : :

t

v

t

w

1

t

v

2

t

w

=)
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Figure 4.4: The move M2 for a 1-5 vertex v and a 4-2 vertex w.

M3: If v is opposite to w and v < v

i

= w

j

< w for some i; j (1 � i � b
(v)=2
,

1 � j � b
(w)=2
, 2i+2j < 
(v)+ 
(w)) then move v to immediately past v

i

and move

w to immediately past w

j

, as in Figure 4.5.

: : :: : :: : :: : :

t

v

t

v

2

= w

1

t

w

=)

: : : : : : : : : : : :

t

w

t

v

t

v

2

= w

1

Figure 4.5: The move M3 for a 0-5 vertex v and a 5-1 vertex w.

ApplyingM2 orM3 redu
es 
(v) by at least 2i and for ea
h k, 1 � k � i�1, 
(v

k

)

is in
reased by at most two, 
(w) is redu
ed by at least 2j and for ea
h k, 1 � k � j�1,


(w

k

) is in
reased by at most two. The 
ost of all other verti
es remains un
hanged.

Thus the total 
ost de
reases by at least four.

Note that there are other rules for moving two verti
es in a vertex ordering to

redu
e the total 
ost, thus M1, M2 and M3 alone 
annot guarantee a 2-balan
ed

vertex ordering. For our purposes, however, these rules suÆ
e (see Algorithm 5.8

Diagonal Layout and Movement). Let M2(vw) and M3(vw) be fun
tions that,

given an edge vw 2 E(G), return true if and only if v and w move under rule M2 and

M3, respe
tively. The following algorithm determines a vertex ordering in whi
h M1,

M2 and M3 are not appli
able.
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Algorithm 4.4. Almost 2-Balan
ed Vertex Ordering

Input: undire
ted graph G.

Output: vertex ordering of G.

Determine an arbitrary vertex ordering of G.

Set E  E(G).

while E 6= ; do

Choose an edge vw 2 E.

if M1(

�!

vw) or M1(

�!

wv) or M2(vw) or M3(vw) then

for x 2 V

G

(v) [ V

G

(w) do Set E  E [E

G

(x).

else Set E  E n fvwg.

end-while

Output the 
urrent ordering.

Lemma 4.7. The algorithm Almost 2-Balan
ed Vertex Ordering determines

a vertex ordering of G in O

�

�

3

m

�

time in whi
h M1, M2 and M3 are not appli
able.

Proof. The proof is essentially the same as that for Lemma 4.6 ex
ept that M2 and

M3 take O(�) time.

4.4.2 Dire
ted Graphs

For a digraph without 2-
y
les and of maximum outdegree two, a lo
al minimum ap-

proa
h establishes the following bound for the total 
ost. We shall apply this result in

Se
tion 5.3.

Theorem 4.5. A 2-balan
ed vertex ordering of a maximum outdegree two digraph G

has total 
ost

X

v2V (G)


(v) � n :
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Proof. In a vertex ordering of a maximum outdegree two digraph, ea
h vertex is either

a (0,2)-vertex, a (1,1)-vertex or a (0,1)-vertex. Consider a (0,2)-vertex v in a 1-balan
ed

vertex ordering. If there is no ar


�!

xv with x between v and v

1

, or there is su
h an x

but x is opposite to v, then, as in Figure 4.6, we 
an move v past v

1

to redu
e the total


ost. (
(v) be
omes 0 and the 
ost of all other verti
es does not in
rease.) Hen
e, in

a 1-balan
ed vertex ordering, for every (0,2)-vertex v, there must be an ar


�!

xv from a

(1,1)-vertex x between v and v

1

. We say x blo
ks v.

v

0-2

x

v

1

v

2

)

x

v

1

v

1-1

v

2

Figure 4.6: Move v past v

1

.

Suppose a (1,1)-vertex x blo
ks distin
t verti
es v and w. x must be between v and

w, as otherwise x would be a (0,2)-vertex. Suppose v < x < w. As in Figure 4.7, if

we move v past v

1

and move w past w

1

then both v and w be
ome balan
ed and 
(x)

remains zero. The 
ost of all other verti
es does not 
hange. In parti
ular, 
(v

1

) and


(w

1

) do not 
hange sin
e the graph 
ontains no 2-
y
les.

v

0-2

w

1

x

1-1

v

1

w

2-0

=)

w

1-1

w

1

x

1-1

v

1

v

1-1

Figure 4.7: Move v past v

1

and move w past w

1

.

Hen
e in a 2-balan
ed vertex ordering a (1,1)-vertex 
an blo
k at most one (0,2)-

vertex. The total 
ost of the ordering is twi
e the number of (0,2)-verti
es plus the

number of (0,1)-verti
es. Sin
e every (0,2)-vertex has a blo
ker whi
h is a (1,1)-vertex,

and a (1,1)-vertex blo
ks at most one (0,2)-vertex, the number of (0,2)-verti
es is at

most the number of (1,1)-verti
es. So the total 
ost is at most the number of (0,2)-

verti
es plus the number of (0,1)-verti
es plus the number of (1,1)-verti
es, whi
h is at
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most n.

Using a similar analysis to that in Lemma 4.6, it is easily seen that the algorithm

des
ribed in the previous proof runs in O(n) time. We therefore have the following

result.

Corollary 4.3. A vertex ordering of a maximum outdegree two digraph with total 
ost

at most n 
an be determined in O(n) time.



Chapter 5

The General Position Model for

Three-Dimensional Orthogonal

Point-Drawing

In this 
hapter we des
ribe the general position model for produ
ing 3-D or-

thogonal point-drawings. We present a number of algorithms for produ
ing

orthogonal point-drawings in this model. Among other results we establish

the best known upper bound for the total number of bends in 3-D orthogonal

point drawings, and the best known upper bound for the volume of 3-bend

orthogonal point-drawings.

A 3-D orthogonal point-drawing is said to be a general position 3-D orthogonal

point-drawing if no two verti
es lie in a 
ommon grid plane. We are interested in the

following problem.

Problem 5.1. BEND-MINIMUM GENERAL POSITION 3-D

POINT-DRAWING

Instan
e: A graph G with �(G) � 6.

Output : A general position 3-D orthogonal point-drawing of G with the minimum

number of bends.

78
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This 
hapter is organised as follows. Se
tion 5.1 des
ribes a representation for gen-

eral position 3-D orthogonal point-drawings, thus forming a foundation for the main

algorithms to follow. We initially 
on
entrate on the problem of minimising the total

number of bends per edge in general position 3-D orthogonal point-drawings. As dis-


ussed in Se
tion 3.4.4, algorithms for produ
ing general position orthogonal drawings


an be 
lassi�ed as layout-based or routing-based.

In Se
tion 5.2 we present our layout-based approa
h for 3-D orthogonal point-

drawing. Firstly, we des
ribe an algorithm whi
h minimises the total number of bends

for a �xed diagonal vertex layout. We also des
ribe a method, based on a maximum-


lique formulation, for sear
hing for bend-minimum drawings given a �xed general

position vertex layout.

Our routing-based approa
h for produ
ing 3-D orthogonal point-drawings is de-

s
ribed in Se
tion 5.3. The Diagonal Layout and Movement algorithm des
ribed

in Se
tion 5.4 
ombines the layout- and routing-based approa
hes. It establishes the

best known upper bound for the total number of bends in 3-D orthogonal point-

drawings of simple graphs, and is a 7=6-approximation algorithm for the problem

BEND-MINIMUM GENERAL POSITION 3-D POINT-DRAWING. Furthermore, the

same algorithm produ
es 2-bend point-drawings for maximum degree �ve graphs.

In Se
tion 5.5 we 
onsider the problem of minimising the maximum number of

bends per edge route in a orthogonal point-drawing. We present two algorithms, both

of whi
h follow the layout-based approa
h. The �rst algorithm, given a �xed general

position vertex layout, determines an orthogonal point-drawing with three bends per

edge. We then des
ribe a modi�
ation of the 3-Bends algorithm of Eades et al. [86, 87℄

whi
h produ
es 3-D orthogonal point-drawings using a diagonal vertex layout with

n

3

+ O

�

n

5=2

�

volume. This is the best known upper bound for the volume of 3-bend

3-D orthogonal point-drawings.

Finally, in Se
tion 5.6 we present lower bounds for the number of bends in general

position orthogonal point-drawings. These results have important impli
ations for the

nature of any solution to the 2-bends problem (see Se
tion 3.5.1). Figure 5.1 provides

an overview of the algorithms presented in this 
hapter.
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Algorithm 5.1 General Position 3-D Point-Drawing

� Port Assignment � Constru
t Edge Routes � Remove Crossings � Remove Empty Planes

Max. Bends 3 3 4 4 4 4

Avg. Bends 3 3 2
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Figure 5.1: Algorithms for general position 3-D orthogonal point-drawing. The bounds are for 6-regular graphs.
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5.1 Representation

Consider a general position 3-D orthogonal point-drawing of a graph G with maximum

degree �(G) � 6. Sin
e no two verti
es share a 
ommon 
oordinate, this drawing

de�nes X-, Y -, and Z-vertex orderings of G, representing the relative 
oordinates of

the verti
es. The assignment of ports to edge routes de�nes a (non-proper) 3-
olouring

of A(G), where an ar


�!

vw 2 A(G) is 
oloured i 2 fX;Y;Zg if the edge route vw uses an

i-port at v. Clearly, for ea
h vertex v 2 V (G), there are at most two ar
s

�!

vw 2 A(G)

re
eiving the same 
olour. We therefore represent a general position 3-D orthogonal

point-drawing of G by:

� A (3-D general position) vertex layout, 
onsisting of X-, Y -, and Z-vertex order-

ings (x

1

; x

2

; : : : ; x

n

), (y

1

; y

2

; : : : ; y

n

) and (z

1

; z

2

; : : : ; z

n

) of G.

� A (3-D) point-routing, 
onsisting of a 3-
olouring of A(G) su
h that for ea
h

vertex v 2 V (G), there are at most two ar
s

�!

vw 2 A(G) re
eiving the same


olour; i.e., �

�

 !

G [i℄

�

� 2, for ea
h 
olour i 2 fX;Y;Zg.

In a general position vertex layout, for an edge vw to have a 2-bend edge route, it

is ne
essary for the reversal ar
s

�!

vw;

�!

wv 2 A(G) to be 
oloured di�erently. If for every

edge vw 2 E(G), the reversal ar
s

�!

vw;

�!

wv 2 A(G) are 
oloured di�erently, then we 
all

the point-routing a 2-bend point-routing.

As dis
ussed in Se
tion 3.4.4, algorithms for produ
ing general position 3-D or-

thogonal drawings 
an be 
lassi�ed as layout-based or routing-based. Our layout-based

algorithms determine a vertex layout initially, followed by the 
omputation of a point-

routing. Our routing-based algorithm determines the vertex layout with respe
t to a

pre-determined point-routing.

The following algorithm forms the �nal step of all our algorithms. Given a ver-

tex layout and a point-routing, it 
onstru
ts a layout- and routing-preserving general

position 3-D orthogonal point-drawing (possibly with 
rossings) in linear time. By a

sequen
e of port assignment swaps, the algorithm then removes all edge route 
rossings

from the drawing in quadrati
 time in the worst 
ase.

Algorithm 5.1. General Position 3-D Point-Drawing
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Input: � graph G with �(G) � 6.

� general position 3-D vertex layout of V (G).

� point-routing of G (with 3 
olours).

Output: general position 3-D orthogonal point-drawing of G

1. For ea
h vertex v 2 V (G),

if v = x

i

= y

j

= z

k

then initially position v at (3i; 3j; 3k).

2. Apply Algorithm 5.2 Determine Port Assignment.

3. Apply Algorithm 5.3 Constru
t Edge Routes.

4. Apply Algorithm 5.4 Point-Drawing Remove Edge Crossings.

5. Delete ea
h grid-plane not 
ontaining a vertex or a bend.

In what follows we des
ribe the details of the 
omponents of Algorithm General

Position 3-D Point-Drawing.

5.1.1 Edge Routes

As a �rst step in 
onstru
ting edge routes for a given vertex layout and point-routing of

a graph, we determine the assignment of ports to ar
s. The following algorithm assigns

ports to ar
s so that, whenever possible, the port at a vertex v assigned to an ar


�!

vw

points toward w. Re
all that A

G

(v)[i℄ is the set of outgoing ar
s at a vertex v 2 V (G)

whi
h are 
oloured i 2 fX;Y;Zg.

Algorithm 5.2. Determine Port Assignment

Input: � graph G with �(G) � 6

� general position 3-D vertex layout of G

� point-routing of G (with 3 
olours)

Output: routing-preserving assignment of ports to A(G)
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for ea
h vertex v 2 V (G), for ea
h 
olour i 2 fX;Y;Zg do

if A

G

(v)[i℄ = f

�!

vwg then

Assign to

�!

vw the i-port at v pointing towards w.

else if A

G

(v)[i℄ = f

�!

vu;

�!

vwg (u 6= w) then

if v is between u and w in the i-ordering then

Assign to

�!

vu and

�!

vw the i-ports at v pointing towards u and w.

else if

�!

uv 2 A

G

(u)[i℄ then

Assign to

�!

vu the i-port at v pointing away from u.

Assign to

�!

vw the i-port at v pointing towards w.

else if

�!

wv 2 A

G

(w)[i℄ then

Assign to

�!

vw the i-port at v pointing away from w.

Assign to

�!

vu the i-port at v pointing towards u.

else

Arbitrarily assign the i-ports at v to

�!

vu and

�!

vw.

end-if

end-if

end-for

The following algorithm, for a given port assignment, determines ea
h edge route

with the minimum number of bends.

Algorithm 5.3. Constru
t Edge Routes

Input: � graph G with �(G) � 6

� general position 3-D vertex layout of G

� port assignment for G

Output: general position 3-D point-drawing of G (possibly with 
rossings)

For ea
h edge vw 2 E(G),

1. If port(

�!

vw) is perpendi
ular to port(

�!

wv), port(

�!

vw) points toward w, and port(

�!

wv)

points toward v then route vw with the 2-bend edge route shown in Figure 5.2.
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w

Figure 5.2: 2-bend edge route vw.

2. If exa
tly one of port(

�!

vw) or port(

�!

wv) points away from w or v respe
tively then,

supposing

�!

vw does, use a 3-bend edge route for vw, said to be an
hored at v, as

illustrated in Figure 5.3.
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1

(b) parallel ports
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1
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1

(b) anchored at w
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1

1

(a) perpendicular ports

v

w

1

1

(b) parallel ports

v

w

Figure 5.3: 3-bend edge routes vw an
hored at v.

3. If port(

�!

vw) points toward w, port(

�!

wv) points toward v, and port(

�!

vw) is parallel

to port(

�!

wv), then 
hoose v or w arbitrarily and, as in Figure 5.4, route vw with

the 3-bend edge route said to be an
hored at the 
hosen vertex.
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1
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1
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1

1

(b) parallel ports

v

w

Figure 5.4: 3-bend edge routes.
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4. If port(

�!

vw) points away from w and port(

�!

wv) points away from v then use a

4-bend edge route for vw as in Figure 5.5. We say the edge route vw is an
hored

at v and at w.

v

w

1

v

w

(a) perpendicular ports

1

(b) parallel ports

v

w

1

(a) anchored at v

v

w

1

(b) anchored at w

v

w

1

1

(a) perpendicular ports

v

w

1

1

(b) parallel ports

v

w

Figure 5.5: 4-bend edge routes vw an
hored at v and at w.

For a given assignment of ports, ea
h edge route uses the minimum number of bends,

so in a general position 3-D orthogonal point-drawing the only edge routes needed are

those des
ribed above (assuming that edge 
rossings are allowed). If the edge route vw

is an
hored at v then we say the ar


�!

vw has been an
hored. Note that if for some edge

vw, the ar
s

�!

vw and

�!

wv are 
oloured the same, then the edge route vw needs at least

three bends; i.e., at least one of

�!

vw and

�!

wv is an
hored. The drawings produ
ed have

pre
isely 2m+ k bends where k is the number of an
hored ar
s.

Lemma 5.1. The algorithms Determine Port Assignment and Constru
t Edge

Routes 
onstru
t a general position 3-D orthogonal point-drawing (possibly with edge


rossings) with pre
isely one an
hored ar
 for ea
h instan
e of the following 
onditions

(see Figure 5.6).

� For some vertex v and 
olour i 2 fX;Y;Zg,

(a)

�!

vu;

�!

vw 2 A

G

(v)[i℄ (u 6= w), and

(b) v is not between u and w in the i-ordering.

(5.1)
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� For some edge vw 2 E(G) and 
olour i 2 fX;Y;Zg,

(a)

�!

vw;

�!

vu 2 A

G

(v)[i℄ (w 6= u),

(b)

�!

wv;

�!

wx 2 A

G

(w)[i℄ (v 6= x),

(
) v is between u and w in the i-ordering, and

(d) w is between v and x in the i-ordering.

(5.2)

Proof. In Algorithm Constru
t Edge Routes, there is one an
hored ar
 in Cases

2 and 3, and two an
hored ar
s in Case 4. Case 3 o

urs pre
isely when (5.2) o

urs.

If Case 2 o

urs there is one instan
e of (5.1), and if Case 4 o

urs then there are

two instan
es of (5.1). Hen
e there is one an
hored ar
 for ea
h instan
e of (5.1) and

(5.2).

(a) Case (5.1)

v u w

(b) Case (5.2)

u v w x

Figure 5.6: Cases with an
hored ar
s (with verti
es in the i-ordering and ar
s 
oloured

i).

5.1.2 Removing Edge Crossings

We now 
hara
terise all possible interse
tions between edge routes 
onstru
ted by the

previous algorithm. As illustrated in Figure 5.7, ea
h edge route 
an be 
onsidered to


onsist of a 2-bend edge route possibly with unit length segments atta
hed at either

end. The segments of the 2-bend 
omponent of an edge route vw in order from v to w

are 
alled the v-segment, the middle segment, and the w-segment of vw.

For a vertex v = x

i

= y

j

= z

k

, we say that the (X = 3i � 1)-plane, the (X = 3i)-

plane and the (X = 3i+ 1)-plane belong to v, and similarly for Y - and Z-
oordinates.

Note that the middle segment of an edge route vw 
ontains grid-points belonging to

v and w and no other verti
es. Grid-points 
ontained in the v-segment of vw, ex
ept

for the grid-point at the interse
tion of the v-segment of vw and the middle segment

of vw, only belong to v.
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Figure 5.7: Segments of the 2-bend 
omponent of an edge route.

Suppose in a drawing produ
ed by the algorithm Constru
t Edge Routes the

edge routes vw and xy interse
t. If vw and xy are non-adja
ent then the grid-point

of interse
tion must belong to ea
h of v, w, x and y, whi
h implies that two of these

verti
es are 
oplanar. Sin
e the verti
es are in general position, two of fv; w; x; yg are

equal. Hen
e interse
ting edge routes must be in
ident to a 
ommon vertex. Suppose

the edge routes vu and vw interse
t.

In all edge routes, there are no 
onse
utive unit length segments, and an edge


rossing involving a unit-length segment must also involve the adja
ent non-unit-length

segment, so we need only 
onsider interse
tions between non-unit-length segments.

Case 1 | The v-segments of vu and vw interse
t: Clearly both of vu and

vw must be an
hored at v, and they must interse
t as in Figure 5.8. Swapping the

ports assigned to

�!

vu and

�!

vw, and removing both an
hors eliminates the edge 
rossing.

Doing so introdu
es no new edge 
rossings.
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Figure 5.8: Case 1 | Rerouting interse
ting v-segments (whi
h must be an
hored).

Case 2 | The v-segment of vw interse
ts the middle segment of vu:

Case 2(a) | vw is not an
hored: Clearly vu must be an
hored. Sin
e the

middle segment of vu is parallel with the port assigned to

�!

vu, the ports assigned to

�!

vu

and

�!

uv must be perpendi
ular. As shown in Figure 5.9, by swapping the ports assigned
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to

�!

vu and

�!

vw, an
horing

�!

vw, and unan
horing

�!

vu, the edge 
rossing is removed. Note

that the new edge routes 
ontain no new grid points belonging to u or w, so there are

no new edge 
rossings introdu
ed by this operation.
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Figure 5.9: Case 2(a) | Rerouting interse
ting v-segment of vw and middle segment

of vu if vw is not an
hored.

Case 2(b) | vw is an
hored (see Figure 5.10): The edge route vu may be

an
hored at v, and if it is, then as in Case 2(a), the ports assigned to

�!

vu and

�!

uv must

be perpendi
ular. By swapping the ports at v assigned to

�!

vu and

�!

vw the edge 
rossing

is removed. The ar


�!

vu is now not an
hored, if

�!

vu was an
hored then

�!

vw is now

an
hored, and if

�!

vu was unan
hored then

�!

vw is now unan
hored. Hen
e an an
hor, and

thus a bend, is eliminated. Note that this operation may introdu
e new edge 
rossings

between uv and some other edge in
ident to u.
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Figure 5.10: Case 2(b) | Rerouting interse
ting v-segment of an
hored vw and middle

segment of vu.

Case 3 | The middle segments of vu and vw interse
t (See Figure 5.11):

Note that

�!

vu and

�!

vw may or may not be an
hored. If

�!

vu is an
hored then the edge

route vu must use perpendi
ular ports at v and u, and similarly, if

�!

vw is an
hored then

the edge route vw must be assigned perpendi
ular ports at v and w. Swapping the

ports assigned to

�!

vu and

�!

vw, and swapping any an
hors, removes the edge 
rossing.

Note that the sum of the lengths of the new middle segments of vu and vw is stri
tly
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Figure 5.11: Rerouting interse
ting middle-segments.

less than the previous sum. This operation may introdu
e new edge 
rossings between

uv and some other edge at u, or between wv and some other edge at w.

The following algorithm summarises the 
rossing removal phase of our algorithm.

Algorithm 5.4. Point-Drawing Remove Edge Crossings

Input: � graph G with �(G) � 6

� general position 3-D orthogonal point-drawing of G (possibly with 
rossings)

generated by the Constru
t Edge Routes algorithm.

Output: general position 3-D orthogonal point-drawing of G (without 
rossings).

V  V (G)

while V 6= ; do

Choose v 2 V , and set V  V n fvg.

for ea
h Case 2(b) or Case (3) 
rossing between edges vu and vw do

Swap the ports at v assigned to

�!

vu and

�!

vw.

Reroute the edge routes vu and vw a

ording

to Algorithm 5.3 Constru
t Edge Routes.

Set V  V [ fv; u; wg.

end-for

end-while

for ea
h vertex v 2 V (G) do

for ea
h Case (1) or Case 2(a) 
rossing between edges vu and vw do

Swap the ports at v assigned to vu and vw.

end-for

end-for
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Lemma 5.2. The algorithm Point-Drawing Remove Edge Crossings removes

all 
rossings from the given 3-D orthogonal point-drawing in O

�

n

2

�

time.

Proof. In Case 3 and Case 2(b), but not Cases 2(a) and Case 1, swapping ports may


reate new edge route 
rossings between uv and some other edge route in
ident to u,

or similarly at w. Therefore removing all Case 3 and Case 2(b) 
rossings in the �rst

phase of the algorithm, and removing all Cases 2(a) and Case 1 edge 
rossings in the

se
ond phase of the algorithm, removes all 
rossings from the drawing.

In Case 3 the sum of the lengths of the middle segments of vu and vw is redu
ed

(see the segments in bold). The length of ea
h middle segment is O(n) and there are

at most 3n middle segments in total, so the sum of the lengths of the middle segment

is O

�

n

2

�

.

In Case 2(b) (and also in Case 1) at least one an
hored ar
 (and thus a bend) is

eliminated. The number of an
hored ar
s is at most 6n.

Hen
e the sum of the lengths of the middle segments plus the number of an
hored

ar
s is O

�

n

2

�

, and every Case 3 or Case 2(b) port swap redu
es this number by at least

one. Therefore the algorithm exe
utes O

�

n

2

�

Case 3 or Case 2(b) port swaps. With

ea
h su
h port swap three verti
es are added to V for re-
he
king. Hen
e, Case 2(b)

and Case 3 needs to be 
he
ked for some vertex O

�

n

2

�

times. To 
he
k Case 2(b) and

Case 3 for a parti
ular vertex v involves 
omparing the 
oordinates of a O(1) number

of pairs of edge routes in
ident to v. Hen
e the �rst phase of the algorithm takes O

�

n

2

�

time.

Similarly, for a parti
ular vertex, Case 1 and Case 2(a) 
an be 
he
ked in 
onstant

time. So the se
ond phase of the algorithm takes O(n) time, and the algorithm removes

all edge 
rossings in O

�

n

2

�

time.

We 
an now prove the main result of this se
tion.

Theorem 5.1. Suppose G is a graph with �(G) � 6, and we are given a general posi-

tion vertex layout and point-routing of G with k instan
es of (5.1) and (5.2). Then the

algorithm General Position 3-D Point-Drawing will, in O

�

n

2

�

time, 
onstru
t a

layout-preserving 3-D orthogonal point-drawing of G with at most four bends per edge

route and at most 2m+k bends in total. The bounding box volume is at most (n+k=3)

3

.
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Proof. As dis
ussed earlier there is one an
hored ar
 for ea
h o

urren
e of (5.1) and

(5.2). Clearly, a grid-plane not 
ontaining a vertex or a bend 
an be removed without

a�e
ting the drawing. The (X = 3i� 1)-plane belonging to a vertex v = x

i


ontains a

bend if and only if there is an an
hored ar


�!

vw assigned an X-port (i.e., 
oloured X)

with its v-segment lying in this plane. Similarly for Y -planes and Z-planes. Therefore,

after removing grid-planes not 
ontaining a vertex or a bend, the bounding box is

(n + k

X

) � (n + k

Y

) � (n + k

Z

), where k

i

is the number of an
hored ar
s 
oloured i,

i 2 fX;Y;Zg. It is well-known that of the boxes with �xed sum of side length the 
ube

has maximum volume (see for example Kazarino� [126℄). So if k is the total number of

an
hored ar
s then the bounding box volume is maximised when k

X

= k

Y

= k

Z

= k=3,

so the bounding box volume is at most (n+ k=3)

3

.

5.2 Layout-Based Algorithms

We now des
ribe our layout-based approa
h for produ
ing general position 3-D orthog-

onal point-drawings. Here we are 
on
erned with the following problem.

Problem 5.2. LAYOUT-BASED GENERAL POSITION 3-D POINT-

DRAWING

Instan
e: A general position 3-D vertex layout of a graph G with �(G) � 6.

Output : A layout-preserving 3-D orthogonal point-drawing of G with the minimum

number of bends.

This problem amounts to �nding a point-routing of G with the minimum number

of instan
es of (5.1) and (5.2). We 
onje
ture that it is NP-hard.

5.2.1 Diagonal General Position Vertex Layout

We initially 
onsider layout-based algorithms with a diagonal layout of the verti
es.

A diagonal layout was �rst used for 3-D orthogonal point-drawing by the 3-BENDS

algorithm of Eades et al. [86, 87℄. Consider a diagonal layout of a maximum de-

gree six graph G with 
orresponding vertex ordering <. A vertex v 2 V (G) has

max fmax fs

<

(v); p

<

(v)g � 3; 0g ar
s in
ident to v whi
h must be assigned a port at v

whi
h point away from their destination. Su
h ar
s must be an
hored. Ea
h edge route
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has at least two bends and ea
h an
hored ar
 
ontributes one further bend. Therefore

the total number of bends in a diagonal layout 3-D orthogonal point-drawing is at least

2m +

X

v2V (G)

max fmax fs

<

(v); p

<

(v)g � 3; 0g : (5.3)

The following algorithm determines a diagonal layout 3-D orthogonal point-drawing

with pre
isely this number of bends, thus solving the LAYOUT-BASED GENERAL

POSITION 3-D POINT-DRAWING problem in the 
ase of a diagonal layout.

Algorithm 5.5. Diagonal General Position 3-D Point-Drawing

Input: � graph G with �(G) � 6

� vertex ordering < of G

Output: diagonal layout 3-D point-drawing of G

1. Constru
t a graph H with V (H) = A(G).

2. For ea
h vertex v 2 V (G), add 
liques

�

vv

A

; vv

B

; vv

C

	

and

�

vv

D

; vv

E

; vv

F

	

to

E(H), a

ording to Table 5.1. (Refer to Se
tion 4.1 for the relevant de�nitions.

If deg(v) < 6 then some of vv

A

, vv

B

, vv

C

, vv

D

, vv

E

and vv

F

will not be de�ned,

so the above-mentioned 
liques may be empty or 
onsist of a single edge.)

Table 5.1: De�nition of vv

A

, vv

B

, vv

C

, vv

D

, vv

E

and vv

F

v vv

A

vv

B

vv

C

vv

D

vv

E

vv

F

�-vertex (� � 3) vv

�3

vv

�2

vv

�1

vv

1

vv

2

vv

3

4-vertex vv

�2

vv

�1

vv

1

vv

2

vv

3

vv

4

5-vertex vv

�1

vv

1

vv

2

vv

3

vv

4

vv

5

6-vertex vv

1

vv

2

vv

3

vv

4

vv

5

vv

6

3. For ea
h edge vw 2 E(G), add the edge f

�!

vw;

�!

wvg to E(H) (
alled an `r'-edge),

as illustrated in Figure 5.12.

4. Determine a point-routing of G from a vertex 3-
olouring of H.
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vv

1

vv

�1

vv

�2

`r'

`r'

`r'

vv

2

vv

3

vv

4

`r'

`r'

`r'

Figure 5.12: The subgraph of H 
orresponding to a 2-4 vertex v.

5. Apply Algorithm 5.1 General Position 3-D Point Drawing.

Lemma 5.3. The algorithm Diagonal General Position 3-D Point-Drawing

determines, in O(n) time, a diagonal layout 3-D orthogonal point-drawing of G with

2m +

X

v2V (G)

max fmax fs

<

(v); p

<

(v)g � 3; 0g :

bends and at most four bends per edge route. The volume is

0

�

n +

1

3

X

v2V (G)

max fmax fs

<

(v); p

<

(v)g � 3; 0g

1

A

3

:

Proof. A vertex of H is in
ident with one `r'-edge and at most two unlabelled edges,

so the graph H has maximum degree �(H) � 3, and is not K

4

, so by Brooks' The-

orem [47℄, H is vertex 3-
olourable. The proof of Brook's Theorem due to Lov�asz

[147℄ and simpli�ed by Bryant [49℄ des
ribes an algorithm for vertex 3-
olouring H in

O(jE(H)j) = O(n) time. The 3-
olouring of V (H) determines a 3-
olouring of A(G).

The unlabelled edges ensure that at most two ar
s at a vertex v 
an re
eive the same


olour, so the 
olouring is a point-routing of G.

Applying Theorem 5.1 with the given diagonal layout and this point-routing de-

termines a 3-D orthogonal point-drawing with 2m + k bends where k is the number

of instan
es of (5.1) and (5.2). Sin
e all pairs of reversal ar
s are 
oloured di�erently

there are no instan
es of (5.2).

Suppose

�!

vu;

�!

vw 2 A

G

(v)[i℄ (u 6= w) for some vertex v and 
olour i 2 fX;Y;Zg.

Then we 
an assume

�!

vu 2

�

vv

A

; vv

B

; vv

C

	

and

�!

vw 2

�

vv

D

; vv

E

; vv

F

	

. An instan
e of
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(5.1) o

urs if v is not between u and w in the i-ordering. This o

urs if and only if

vu = vv

i

for some i, 1 � i � max fmax fs

<

(v); p

<

(v)g � 3; 0g. So there are

k =

X

v2V (G)

max fmax fs

<

(v); p

<

(v)g � 3; 0g :

an
hored ar
s. By Theorem 5.1 the volume bound holds.

Consider the algorithm Point-Drawing Remove Edge Crossings applied with

a diagonal layout. Clearly Case 3 
annot o

ur. If Case 2(b) o

urs then

�!

vw must

be an
hored and port(

�!

vw) points towards w. However, in Algorithm Diagonal Gen-

eral Position 3-D Point-Drawing if an ar


�!

vw is an
hored then port(

�!

vw) points

away from w. Hen
e Cases 3 and 2(b) 
annot o

ur when we apply Point-Drawing

Remove Edge Crossings, so it takes O(n) time. Therefore ea
h step of Diagonal

Layout 3-D Point-Drawing takes O(n) time. The result follows.

Combining (5.3) and Lemma 5.3 we obtain the following result.

Theorem 5.2. The problem LAYOUT-BASED GENERAL POSITION 3-D POINT-

DRAWING 
an be solved in O(n) time in the 
ase of a diagonal layout.

We now 
an 
hara
terise those 2-bend 3-D orthogonal point-drawings with a diag-

onal layout, a result �rst established by Wood [220℄.

Corollary 5.1. A diagonal layout of a graph G admits a 2-bend 3-D orthogonal point-

drawing if and only if every vertex v in the 
orresponding vertex ordering has s(v) � 3

and p(v) � 3.

Proof. By Theorem 5.2, a diagonal layout admits a 2-bend point-drawing if and only

if, for every vertex v, max fmax fs(v); p(v)g � 3; 0g = 0; i.e., max fs(v); p(v)g � 3; i.e.,

s(v) � 3 and p(v) � 3.

If we apply algorithmDiagonal General Position 3-D Point-Drawing with a

diagonal layout whose vertex ordering is determined using st-orderings (see Se
tion 4.2)

we obtain the following result.

Corollary 5.2. If a graph G with maximum degree �(G) � 6 has 
 
onne
ted 
ompo-

nents and k end-blo
ks, then there exists a diagonal layout 3-D orthogonal point-drawing
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of G, whi
h 
an be determined in O(n) time, with at most 3m � n+ 
 + k bends and

at most ((2n +m + 
 + k)=3)

3

volume. If G is 6-regular and has a 
onstant number

of bi
onne
ted 
omponents then the number of bends is at most 8m=3 + O(1) and the

volume is at most (5n=3)

3

+O

�

n

5=2

�

.

Proof. Firstly, remove ea
h vertex with degree one and its in
ident edge from G. Sup-

pose the remaining graph, 
alled G

0

, has n

0

verti
es, m

0

edges, 


0


onne
ted 
omponents

and k

0

end-blo
ks. Let n

i

be the number of verti
es v 2 V (G

0

) with deg

G

0

(v) = i. By

Lemma 4.2, G

0

has a vertex ordering < with 


0

+ k

0

verti
es having zero prede
essors

or zero su

essors. For su
h a vertex v, max fs(v); p(v)g = deg(v), so

max fmax fs(v); p(v)g � 3; 0g =

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

0; if deg

G

(v) � 3;

1; if deg

G

(v) = 4;

2; if deg

G

(v) = 5;

3; if deg

G

(v) = 6.

For all other verti
es v we have

max fmax fs(v); p(v)g � 3; 0g �

8

>

>

>

>

>

<

>

>

>

>

>

:

0; if deg

G

(v) � 4;

1; if deg

G

(v) = 5;

2; if deg

G

(v) = 6.

Hen
e

X

v2V (G

0

)

max fmax fs(v); p(v)g � 3; 0g � n

5

+ 2n

6

+ 


0

+ k

0

:

If we determine a 3-D orthogonal point-drawing of G

0

with Algorithm 5.5 Diago-

nal General Position 3-D Point-Drawing using the vertex ordering <, then by

Lemma 5.3 there is at most

2m

0

+

X

v2V (G

0

)

max fmax fs(v); p(v)g � 3; 0g � 2m

0

+ n

5

+ 2n

6

+ 


0

+ k

0

bends. Now,

0 � n

3

+ 2n

4

+ n

5
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2n

5

+ 4n

6

� n

3

+ 2n

4

+ 3n

5

+ 4n

6

2n

5

+ 4n

6

� (2n

2

+ 3n

3

+ 4n

4

+ 5n

5

+ 6n

6

)� 2n

0

2n

5

+ 4n

6

� 2m

0

� 2n

0

n

5

+ 2n

6

� m

0

� n

0

2m

0

+ n

5

+ 2n

6

+ 


0

+ k

0

� 3m

0

� n

0

+ 


0

+ k

0

:

So the number of bends in the drawing of G

0

is at most 3m

0

�n

0

+


0

+k

0

. It is easily

seen that the verti
es with degree one 
an be reinserted into the diagonal layout, and

ea
h in
ident edge routed with two bends. Hen
e the number of bends in the drawing

of G is 3m

0

� n

0

+ 


0

+ k

0

+ 2(m�m

0

) = m

0

� n

0

+ 


0

+ k

0

+ 2m.

Now, (n�n

0

) = (
� 


0

) + (k� k

0

). So (n�n

0

) � (m�m

0

) + (
� 


0

) + (k� k

0

), and

hen
e m

0

� n

0

+ 


0

+ k

0

� m� n+ 
+ k. So the number of bends in the drawing of G

is at most 3m� n+ 
+ k.

The number of an
hored ar
s is at most m�n+ 
+k, so the volume of the drawing

of G is at most (n+ (m� n+ 
+ k)=3)

3

= ((2n+m+ 
+ k)=3)

3

.

If G is 6-regular and has a 
onstant number of bi
onne
ted 
omponents then the

number of bends is 8m=3 +O(1) and the volume is (5n=3)

3

+O

�

n

5=2

�

.

By Lemmas 4.2 and 5.3, the st-orderings and the drawing itself 
an be determined

in O(n) time, respe
tively.

If we use Algorithm 4.1 Median Pla
ement Ordering to determine the vertex

ordering of a diagonal layout, we obtain the following result.

Corollary 5.3. A graph G with maximum degree �(G) � 6 has a diagonal layout

3-D orthogonal point-drawing, whi
h 
an be determined in O(n) time, with at most

5m=2 + n=4 bends and at most (m=6 + 13n=12)

3

volume. For 6-regular graphs the

number of bends is at most 31m=12 and the volume is at most (19n=12)

3

.

Proof. Let < be a vertex ordering of G determined by Algorithm 4.1 Median Pla
e-

ment Ordering (with insertion ordering determined by Algorithm 4.2 Insertion

Ordering). Suppose G has n

i

verti
es with degree i. Determine a diagonal layout

3-D point-drawing, with 
orresponding vertex ordering <, using the algorithm Di-

agonal General Position 3-D Point-Drawing. By Lemma 5.3, the number of
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an
hors is

X

v2V (G)

max fmax fs

<

(v); p

<

(v)g � 3; 0g :

A degree one or two vertex v has max fs

<

(v); p

<

(v)g � 1, so

max fmax fs

<

(v); p

<

(v)g � 3; 0g � (max fs

<

(v); p

<

(v)g � 3) + 2 :

A degree three or four vertex v has max fs

<

(v); p

<

(v)g � 2, so

max fmax fs

<

(v); p

<

(v)g � 3; 0g � (max fs

<

(v); p

<

(v)g � 3) + 1 :

A degree �ve or six vertex v has max fs

<

(v); p

<

(v)g � 3, so

max fmax fs

<

(v); p

<

(v)g � 3; 0g = max fs

<

(v); p

<

(v)g � 3 :

Hen
e the number of an
hored ar
s is at most

X

v2V (G)

(max fs

<

(v); p

<

(v)g � 3) + 2n

1

+ 2n

2

+ n

3

+ n

4

�

3m

2

+

n

4

� 3n+ 2n

1

+ 2n

2

+ n

3

+ n

4

(by Theorem 4.2)

�

m

2

+

1

2

(n

1

+ 2n

2

+ 3n

3

+ 4n

4

+ 5n

5

+ 6n

6

)�

11

4

(n

1

+ n

2

+ n

3

+ n

4

+ n

5

+ n

6

)

+ 2n

1

+ 2n

2

+ n

3

+ n

4

=

m

2

+

1

4

(�n

1

+ n

2

� n

3

+ n

4

� n

5

+ n

6

)

�

m

2

+

n

4

:

By Lemma 5.3 the total number of bends is at most 5m=2 + n=4, and volume is at

most (n + (m=2 + n=4)=3)

3

= (m=6 + 13n=12)

3

. For 6-regular graphs the number of

bends is at most 31m=12 and the volume is at most (19n=12)

3

.

By Theorem 4.2 and Lemma 5.3, the vertex ordering and the drawing itself 
an be

determined in O(n) time, respe
tively.

For graphs with average degree at least �ve, using the Median Pla
ement Or-

dering algorithm to determine the diagonal layout produ
es drawings with fewer bends

and less volume than the algorithm based on st-orderings.
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5.2.2 Arbitrary General Position Vertex layout

In this se
tion we 
onsider the layout-based approa
h for minimising the number of

bends in 3-D orthogonal point-drawings given a �xed general position layout. Although

the methods developed run in exponential time, they have proved to be e�e
tive in

sear
hing for 2-bend drawings of reasonably small graphs.

Maximum Clique Formulations

We now present a method for sear
hing for solutions to LAYOUT-BASED GENERAL

POSITION 3-D POINT-DRAWING using a maximum weight 
lique formulation. Con-

sider the edge route graph R 
onsisting of a vertex for every possible edge route. For

ea
h edge vw 2 E(G) there are 36 possible edge routes, one for ea
h 
ombination of

ports at v and w. Verti
es are adja
ent in R if and only if their 
orresponding edge

routes 
an 
o-exist in the drawing; i.e., verti
es of R 
orresponding to edge routes for

the same edge are non-adja
ent, and verti
es 
orresponding to edge routes whi
h use

the same port are non-adja
ent. All other pairs of verti
es in R are adja
ent. A ver-

tex is in a 
lique of R if and only if the 
orresponding edge route is in the drawing.

The weight of the vertex 
orresponding to an edge route vw is 4�#bends (vw). So a

maximum weight 
lique will de�ne a bend-minimum drawing.

Lemma 5.4. A general position vertex layout of a graph G has a layout-preserving

3-D orthogonal point-drawing with B bends if and only if the graph R has a 
lique of

weight 4m�B.

In Appendix C we review the existing 
lique �nding algorithms and present a simple

algorithm whi
h performs well in 
omparison to the established methods. The graph R

has 36m verti
es and is quite dense, so even for relatively small graphs G, this method

for solving LAYOUT-BASED GENERAL POSITION 3-D POINT-DRAWING is not

pra
ti
al. We shall now introdu
e a related problem whose maximum 
lique formulation


an be solved for relatively small instan
es.

Problem 5.3. LAYOUT-BASED 2-BEND 3-D POINT-DRAWING

Instan
e: A general position vertex layout of a graph G with �(G) � 6.
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Output : A layout-preserving 2-bend 3-D orthogonal point-drawing of a subgraph G

1

�

G with the maximum number of edges.

We 
onje
ture that this problem is also NP-hard. The problem LAYOUT-BASED

2-BEND 3-D POINT-DRAWING suggests an approa
h for produ
ing 3-D orthogonal

point-drawings where we �nd a partial 2-bend point-routing and then arbitrarily extend

it to a point-routing of G. We shall des
ribe two methods for the solution of LAYOUT-

BASED 2-BEND 3-D POINT-DRAWING, the �rst in terms of a maximum 
lique

formulation and the se
ond involving hypergraph mat
hing.

Consider the ar
 route graph R with vertex set V (R) = A(G) � fX;Y;Zg. There

is an edge in R between `
ompatible' ar
 routes. We de�ne the (
omplement of the)

edge set of R as follows. Sin
e ea
h ar


�!

vw 2 A(G) 
an be 
oloured at most on
e,

for ea
h pair of distin
t 
olours i; j 2 fX;Y;Zg, the edge f(

�!

vw; i); (

�!

vw; j)g 62 E(R).

For a 2-bend edge route vw, reversal ar
s must be 
oloured di�erently, so for ea
h


olour i 2 fX;Y;Zg, the edge f(

�!

vw; i); (

�!

wv; i)g 62 E(R). Sin
e di�erent ar
s must

be assigned di�erent ports, for ea
h vertex v 2 V (G), for ea
h pair of ar
s

�!

vu;

�!

vw 2

A

G

(v) and for ea
h 
olour i 2 fX;Y;Zg, if v <

i

u;w or u;w <

i

v, then the edge

f(

�!

vu; i); (

�!

vw; i)g 62 E(R). All other pairs of verti
es of R are adja
ent. The next result

follows immediately from the de�nition of R, where in
luding a vertex (

�!

vw; i) 2 V (R)

in a 
lique of R 
orresponds to 
olouring the ar


�!

vw with 
olour i.

Lemma 5.5. For a �xed general position vertex layout of a maximum degree six graph

G, there is a layout-preserving 2-bend 3-D orthogonal point-drawing of a subgraph G

1

�

G if and only if R has a 
lique of size 2jE(G

1

)j.

Given a 
lique Q of R, to determine a point-routing of G n G

1

, 
olour those ar
s

�!

vw 2 A(G) without a 
orresponding vertex inQ, with whatever spare 
olour is available,

so that there are at most two outgoing ar
s at ea
h vertex v re
eiving the same 
olour.

Clearly, the ar
 route graph 
an be used if a partial routing of the ar
s is spe
i�ed.

Moreover, if we relax the general position model so that some verti
es share a 
om-

mon 
oordinate, we 
an spe
ify a partial routing of the edges by 2-bend non-planar

edge routes, and use the ar
 route graph formulation to sear
h for 2-bend general po-

sition point-drawings in the remainder of the graph. This approa
h was used to �nd
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some of the 2-bend point-drawings of the 
omplete multi-partite graphs presented in

Appendix B.

Hypergraph Mat
hing Formulation

We now formulate the LAYOUT-BASED 2-BEND 3-D POINT-DRAWING problem

as a hypergraph mat
hing problem. Consider the hypergraph P with vertex set

V (P ) = A(G) [ ports (G) [ (E(G) � fX;Y;Zg) ;

and edge set 
onsisting of two edges ea
h of size three, for ea
h edge

�!

vw 2 E(G) and


olour i 2 fX;Y;Zg. If v <

i

w then

(

�!

vw;port(v;+i); (fv; wg ; i)); (

�!

wv;port(v;�i); (fv; wg ; i)) 2 E(P ) ;

and if w <

i

v then

(

�!

vw;port(v;�i); (fv; wg ; i)); (

�!

wv;port(v;+i); (fv; wg ; i)) 2 E(P ) :

P is 3-uniform and 3-
olourable. The vertex 
orresponding to an ar


�!

vw 2 A(G)

has degree three, the vertex 
orresponding to a positive (respe
tively, negative) i-port

at a vertex v 2 V (G) has degree s

i

(v) (p

i

(v)), and the vertex 
orresponding to a pair

(

�!

vw; i) has degree two.

Lemma 5.6. There is a layout-preserving 2-bend 3-D orthogonal point-drawing of a

subgraph G

1

� G if and only if P has a mat
hing M with jM j = 2jE(G

1

)j.

Proof. In
luding an edge (

�!

vw;port(v;�i); (fv; wg ; i)) in a mat
hing M of P 
orre-

sponds to assigning the ar


�!

vw 2 A(G) the 
olour i in a point-routing of G. By


onstru
tion the ar
 vw will be assigned the i-port at v pointing towards w when edge

routes are determined.

Given a mat
hing M of P , for ea
h ar


�!

vw 2 A(G) there is at most one edge

in M in
ident to the vertex 
orresponding to vw, so ea
h ar
 is 
oloured at most

on
e. For ea
h (i

�

)-port at a vertex v there is at most one edge in M in
ident to

the vertex 
orresponding to port(v;�i), so ea
h port is used at most on
e. Sin
e

the edges (

�!

vw;port(v;�i); (fv; wg ; i)) and (

�!

wv;port(v;�i); (fv; wg ; i)) have a 
ommon
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vertex, namely (fv; wg ; i), they 
annot both be in M . So reversal ar
s are 
oloured

di�erently, and a 2-bend point-routing of G is determined. By the reverse argument, a

layout-preserving 2-bend 3-D orthogonal point-drawing of a subgraph G

1

determines a

mat
hing of size 2jE(G

1

)j.

A mat
hing of the hypergraph P de�nes a mat
hing in the graph P

0

formed from P

by removing the verti
es (fv; wg ; i) and their in
ident edges. Hall's marriage theorem

[114℄ thus provides the following ne
essary 
ondition for the existen
e of a mat
hing

in P , and thus a ne
essary 
ondition for the LAYOUT-BASED 2-BEND 3-D POINT-

DRAWING problem.

At ea
h vertex v 2 V (H), for any set S � A

G

(G

1

) v, the number of ports

at v whi
h point toward a vertex w for some ar


�!

vw 2 S is at least jSj.

(5.4)

This implies that the number of neighbours of a vertex v in a single o
tant relative

to v is at most three, in a single quadrant is at most four, in half-spa
e must be at

most �ve. The following example illustrates why (5.4) is not suÆ
ent for our problem.

Consider adja
ent verti
es v and w, su
h that s

Z

(v) = 5, p

Z

(w) = 5, and w <

Z

v.

Both vw and

�!

wv must be 
oloured Z, as in Figure 5.13.

v

w

Figure 5.13: A layout satisfying (5.4) but without a 2-bend routing.

The Gallai-Edmonds mat
hing stru
ture theorem (see [148℄) provides a me
hanism

des
ribing all maximum mat
hings of any (bipartite or non-bipartite) graph. We 
an

use this te
hnique to evaluate all the maximum mat
hings of P

0

su
h that reversal ar
s
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re
eive di�erent 
olours, thus providing a method for the solution of LAYOUT-BASED

2-BEND 3-D POINT-DRAWING. Unfortunately there may be an exponential number

of su
h mat
hings, so this algorithm is not polynomial.

5.3 Routing-Based Algorithm

We now des
ribe a routing-based algorithm for produ
ing general position 3-D orthog-

onal point-drawings. This method determines a general position vertex layout with

respe
t to a pre-determined point-routing. Our aim is to produ
e drawings with as

many 2-bend edge routes as possible. Hen
e the routing whi
h is determined is a

2-bend point-routing. Initially we present two algorithms for determining a 2-bend

point-routing of a given graph. The routing-based vertex-layout algorithm itself is

des
ribed in Se
tion 5.3.2.

5.3.1 2-Bend Routing Algorithms

Cy
le Cover De
omposition

Our �rst method for determining a 2-bend point-routing is based on the algorithm for

determining a disjoint 
y
le 
over de
omposition des
ribed in Se
tion 2.5.

Algorithm 5.6. 2-Bend 3-D Point-Routing

Input: graph G with �(G) � 6

Output: 2-bend 3-D general position point-routing of G.

1. Determine a 
y
le 
over de
omposition of G with red, green and blue 
y
le 
overs.

2. For ea
h edge vw in the red 
y
le 
over, set 
ol(

�!

vw) X and 
ol(

�!

wv) Y .

3. For ea
h edge vw in the green 
y
le 
over, set 
ol(

�!

vw) Y and 
ol(

�!

wv) Z.

4. For ea
h edge vw in the blue 
y
le 
over, set 
ol(

�!

vw) Z and 
ol(

�!

wv) X.
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Lemma 5.7. The algorithm 2-Bend 3-D Point-Routing determines a 2-bend point-

routing in O(n) time.

Proof. There are at most two ar
s at ea
h vertex v 
oloured i 2 fX;Y;Zg and reversal

ar
s are 
oloured di�erently, so the 
olouring is a 2-bend point-routing. By Theorem 2.1,

the 
y
le 
over de
omposition and hen
e the 2-bend point-routing 
an be found in O(n)

time.

Systems of Transitions

We now des
ribe a se
ond method for determining a 2-bend point-routing based on

systems of transitions. Suppose G is an Eulerian graph. (A non-Eulerian graph of

maximum degree six 
an be augmented to a 6-regular graph, as in Theorem 2.1.) A

transition at a vertex v is a pair of distin
t edges in
ident with v. A system of transitions

at v is a partition of fvw 2 E(G)g into transitions at v. A system of transitions of G

is a family T

G

= fT

v

: v 2 V g where T

v

is a system of transitions at v [98, 121℄.

A k-
olouring of the transitions in T

G

su
h that transitions at a 
ommon vertex and

transitions with a 
ommon edge re
eive di�erent 
olours determines a k-
olouring of

A(G) su
h that reversal ar
s are 
oloured di�erently and �(

 !

G [i℄) = 2 for ea
h 
olour

i; i.e., a point-routing. We therefore vertex-
olour the graph T (G) whose vertex set


onsists of all transitions in T

G

, with verti
es of T (G) being adja
ent if their 
orre-

sponding transitions in G are (1) at a 
ommon vertex of G, or (2) 
ontain a 
ommon

edge of G.

These two types of edges de
ompose the graph T (G) into (1) a 
olle
tion of vertex-

disjoint 
liques fC

v

: v 2 V (G)g where jC

v

j = deg

G

(v)=2, and (2) a 2-regular spanning

subgraph. If the system of transitions is determined by following an Eulerian tour of

G, this 2-regular spanning subgraph is, in fa
t, a Hamiltonian 
y
le.

Hen
e, for a 6-regular graphG, if we determine the system of transitions by following

an Eulerian tour of G, the graph T (G) has an edge-de
omposition into a Hamiltonian


y
le and a set of edge-disjoint triangles. Ea
h triangle represents a vertex of G and

the edges around the Hamiltonian 
y
le 
orrespond to the Eulerian tour of G.

That a 4-regular graph with su
h a `
y
le plus triangles' de
omposition is vertex

3-
olourable was 
onje
tured by Erd}os and �rst proved by Fleis
hner and Stiebitz [99℄



CHAPTER 5. GENERAL POSITION 3-D POINT-DRAWING 104

using a non-
onstru
tive and non-elementary 
olouring result of Alon and Tarsi [3℄.

Sa
hs [189℄ has sin
e developed a 
onstru
tive and elementary proof. So T (G) is vertex

3-
olourable, thus determining a 2-bend point-routing of G.

5.3.2 Determining a Layout

For a �xed routing of a graph G, in a general position 3-D orthogonal point-drawing

with the minimum number of bends, ea
h i-ordering, i 2 fX;Y;Zg, is an optimal

solution to the balan
ed ordering problem on the subgraph

 !

G [i℄. In the following

algorithm, to determine ea
h i-ordering, we use the lo
al minimum approa
h for the

balan
ed ordering problem developed in Chapter 4.

Algorithm 5.7. Routing-Based General Position 3-D Point-Drawing

Input: graph G with �(G) � 6

Output: general position 3-D orthogonal point-drawing of G.

1. Determine a 2-bend point-routing of G using Algorithm 5.6 2-Bend 3-D Point-

Routing.

2. For ea
h i 2 fX;Y;Zg, set the i-ordering to be a 2-balan
ed ordering of

 !

G [i℄

(see Theorem 4.5).

3. Apply Algorithm 5.1 General Position 3-D Point-Drawing.

Theorem 5.3. The algorithm Routing-Based General Position 3-D Point-

Drawing determines, in O

�

n

2

�

time, a 4-bend 3-D orthogonal point-drawing of G

with at most 2m+ 3n=2 bends and at most (3n=2)

3

bounding box volume.

Proof. In a 2-bend point-routing, reversal ar
s are 
oloured di�erently, so

 !

G [i℄ has

no 2-
y
les, for ea
h 
olour i 2 fX;Y;Zg.

 !

G [i℄ has maximum outdegree two, so by

Theorem 4.5, a 2-balan
ed vertex ordering of

 !

G [i℄ has total 
ost at most n. Applying

Theorem 5.1, sin
e reversal ar
s are 
oloured di�erently, there will be no instan
es of

(5.2), and in ea
h i-ordering there will be at most n=2 instan
es of (5.1). Hen
e there
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will be at most n=2 an
hored ar
s 
oloured i, for ea
h i 2 fX;Y;Zg. In total there will

be at most 3n=2 an
hored ar
s, so the total number of bends is at most 2m + 3n=2,

and the bounding box volume is at most (n + n=2)

3

= (3n=2)

3

. By Theorem 2.1


al
ulating the 
y
le 
overs and by Theorem 4.5 ea
h vertex ordering takes O(n) time.

The �nal step of the algorithm, whi
h by Theorem 5.1 takes O

�

n

2

�

time, is the most

time-
onsuming. So the overall algorithm takes O

�

n

2

�

time.

5.4 Diagonal Layout and Movement Algorithm

In this se
tion we des
ribe an algorithm for 3-D orthogonal point-drawing whi
h, in

some sense, 
ombines the layout- and routing-based approa
hes. Initially the verti
es

are pla
ed along the main diagonal of a 
ube, and a point-routing is determined. This

routing also de�nes the movement of verti
es away from the diagonal. This algorithm

establishes the best known upper bound for the total number of bends in 3-D orthogonal

point-drawings.

Algorithm 5.8. Diagonal Layout and Movement

Input: graph G with �(G) � 6.

Output: general position 3-D orthogonal point-drawing of G.

1. Determine a vertex ordering< of V (G) using Algorithm 4.4Almost 2-Balan
ed

Vertex Ordering. Call a vertex v balan
ed if max fs(v); p(v)g � 3, and unbal-

an
ed otherwise.

2. Initialise the X-, Y - and Z-orderings of a general position vertex layout to be the

vertex ordering <.

3. For ea
h unbalan
ed vertex v 2 V (G), depending on the number of prede
essors

and su

essors of v in the vertex ordering< (see Se
tion 4.1), label ar
s

�!

vw 2 A(G)

as movement or spe
ial ar
s, a

ording to Table 5.2.

4. Determine a point-routing of G with Algorithm 5.9 Dlm | Determine Point-

Routing, des
ribed in Se
tion 5.4.2.



CHAPTER 5. GENERAL POSITION 3-D POINT-DRAWING 106

Table 5.2: De�nition of movement and spe
ial ar
s at an unbalan
ed vertex v.

v (0,4) (1,4) (0,5) (2,4) (1,5) (0,6)

vv

1

movement movement movement spe
ial movement movement

vv

2

- - movement - spe
ial movement

vv

3

- - - - - spe
ial

5. For ea
h movement ar
 vw 
oloured i 2 fX;Y;Zg, move v to immediately past

w in the i-ordering.

6. Apply Algorithm 5.1 General Position 3-D Point-Drawing

5.4.1 Movement of Verti
es

The general stratgey of theDiagonal Layout and Movement algorithm is to an
hor

at most one ar


�!

vw at ea
h vertex v. The port at a vertex v assigned to an unan
hored

ar


�!

vw must point toward w. In the initial diagonal layout, there are three positive

ports whi
h 
an be assigned to unan
hored su

essor ar
s, and three negative ports

whi
h 
an be assigned to unan
hored prede
essor ar
s. So, at a balan
ed vertex v (i.e.,

max fs(v); p(v)g � 3), all of the ar
s

�!

vw need not be an
hored.

If s(v) > 3 (respe
tively, p(v) > 3) the positive (negative) ports 
an be assigned to

at most three su

essor (prede
essor) ar
s of v. The remaining su

essor (prede
essor)

ar
s

�!

vw must be assigned a negative (positive) port at v. These are pre
isely the

movement and spe
ial ar
s de�ned in Table 5.2. Note that there is one spe
ial ar


�!

vw

at ea
h unbalan
ed degree six vertex v. We shall prove that spe
ial ar
s will be
ome

an
hored when algorithm General Position 3-D Point-Drawing is applied.

If vw is a movement ar
 
oloured i, then v is moved to immediately past w in the

i-ordering (Step 5 of the algorithm), thus allowing vw to be assigned the port(v;�i) for

positive v and the port(v;+i) for negative v. In Figure 5.14 we illustrate the movement

and an
horing pro
ess in the 
ase of a positive (0,6)-vertex.

For a vertex v with max fs(v); p(v)g > 3, if vw = vv

k

is a movement or spe
ial
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Figure 5.14: v is a positive (0,6)-vertex, vv

1

is a movement ar
 
oloured X, vv

2

is a

movement ar
 
oloured Y , vv

3

is an spe
ial ar
 
oloured Z; move v to v

0

.

ar
 then k � b


v

=2
, so rule M1 is appli
able. Therefore w 
annot be opposite to v,

and hen
e

�!

wv 
annot also be a movement or spe
ial ar
. (Consequently when edges are

routed no 4-bend edge routes are 
onstru
ted immediately. It is only through swapping

ports to remove 
rossings that a 4-bend edge route 
an be introdu
ed.) Furthermore,

if vv

k

is a movement ar
 then k � b(


v

� 1)=2
, so by rules M2 and M3, if v and w are

opposite unbalan
ed verti
es then the movement ar
s of v do not `
ross over' or have

the same destination vertex as the movement ar
s of w.

5.4.2 Determining a Point-Routing

To determine a point-routing we 
onstru
t a graph H with vertex set V (H) = A(G).

Verti
es are adja
ent in H if the 
orresponding ar
s must use perpendi
ular ports. A

3-vertex-
olouring of H then determines a point-routing of A(G).

Algorithm 5.9. Dlm | Determine Point-Routing

Input: � graph G with �(G) � 6.

� vertex ordering of G determined in Step 1

of Algorithm Diagonal Layout and Movement.

� 
lassi�
ation of movement and spe
ial ar
s from Step 3
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of Algorithm Diagonal Layout and Movement.

Output: point-routing of A(G).

1. Constru
t a graph H with vertex set V (H) = A(G). We distinguish four types

of edges of H as follows.

(a) The �rst type of edge ensures that ar
s whi
h `
ompete' for the same ports

are 
oloured di�erently. In Table 5.3 the ar
s vv

A

, vv

B

, vv

C

, vv

D

, vv

E

and

vv

F

are de�ned for ea
h type of vertex. (If v is a balan
ed or a positive

(respe
tively, negative) unbalan
ed vertex then vv

A

, vv

B

and vv

C

will be

assigned the negative (positive) ports at v. The ar
s vv

D

, vv

E

and vv

F

will

be assigned the positive (negative) ports at v.) For ea
h vertex v 2 V (G),

add a triangle

�

vv

A

; vv

B

; vv

C

	

and

�

vv

D

; vv

E

; vv

F

	

to E(H).

Table 5.3: De�nition of vv

A

, vv

B

, vv

C

, vv

D

, vv

E

and vv

F

v vv

A

vv

B

vv

C

vv

D

vv

E

vv

F

balan
ed vv

�3

vv

�2

vv

�1

vv

1

vv

2

vv

3

(0,4)-vertex vv

1

- - vv

2

vv

3

vv

4

(1,4)-vertex vv

�1

vv

1

- vv

2

vv

3

vv

4

(2,4)-vertex vv

�2

vv

�1

vv

1

vv

2

vv

3

vv

4

(0,5)-vertex vv

1

vv

2

- vv

3

vv

4

vv

5

(1,5)-vertex vv

�1

vv

1

vv

2

vv

3

vv

4

vv

5

(0,6)-vertex vv

1

vv

2

vv

3

vv

4

vv

5

vv

6

(b) If neither the ar


�!

vw not its reversal ar


�!

wv are spe
ial then add the edge

f

�!

vw;

�!

wvg (labelled `r') to E(H).

(
) If

�!

vw and

�!

wx are both movement ar
s for some verti
es v, w and x, then

add the edge f

�!

vw;

�!

wxg (labelled `�') to E(H). (This ensures that v and w

do not move in the same ordering.)

(d) If vv

2

is a movement ar
 
oloured i then v will move past v

1

in the i-

ordering. To ensure that v

1

v does not use the in
orre
t i-port at v

1

, add the
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edge

�

vv

2

; v

1

v

	

(labelled `��') to E(H). (Observe that in Figure 5.14, v

1

v


annot use the port (v

1

; Y

+

).)

2. Repeatedly remove verti
es ofH with degree at most two, and merge non-adja
ent

verti
es v; w 2 V (H) in a K

4

n vw subgraph (and repla
e any parallel edges by a

single edge).

3. Determine a proper vertex-
olouring of H with three 
olours.

4. Colour the removed verti
es v 2 V (H) in reverse order of their removal, with a


olour di�erent from the (� 2) neighbours of v.

5. Determine a 3-
olouring of A(G) from the 
olouring of V (H).

Lemma 5.8. The graph H is vertex 3-
olourable in O(n) time.

Proof. If K

4

n vw is a subgraph of H for some non-adja
ent verti
es v and w, then in

any proper 3-
olouring of V (H), v and w must re
eive the same 
olour, so merging

these verti
es preserves the 3-
olourability of H. We now show that after repeatedly

removing verti
es with degree at most two, and merging pairs of verti
es in a K

4

n vw

subgraph, H has maximum degree three, and is not K

4

, so by Brooks' Theorem [47℄,

is 3-
olourable.

For an unbalan
ed vertex v, let H

v

be the subgraph of H 
onsisting of the verti
es

vv

A

, vv

B

and vv

C

and their in
ident edges. We shall initially show that H

v

`redu
es'

to a maximum degree three subgraph.

For a degree six unbalan
ed vertex v, the vertex of H 
orresponding to the spe
ial

ar
 vv

C

is in
ident with at most two (unlabelled) edges, and therefore 
an be removed

from H. Sin
e a (0,6)-vertex and a (0,5)-vertex v both have vv

A

and vv

B

as movement

ar
s, H

v

is the same for a (0,6)-vertex v (after removing vv

C

) and for a (0,5)-vertex v

(see Figures 5.15 and 5.16). Similarly, for (1,5)- and (2,4)-verti
es, H

v

is the same as

for (1,4)- and (2,3)- verti
es respe
tively. We therefore need only 
onsider (0,5)-, (1,4)-

or (0,4)- unbalan
ed verti
es. Thus the result for graphs with unbalan
ed degree six

verti
es in the vertex ordering redu
es to the result for vertex orderings without su
h

verti
es.
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Consider a (0,5)-vertex v. v

1

may be balan
ed or a (1,4)-vertex. If v

1

is balan
ed

then, as in Figure 5.15, vv

1

has degree two and 
an be removed. In the remaining

graph, vv

2

and v

1

v have degree three.
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Figure 5.15: The subgraph H

v

for a (0,5)-vertex or a (0,6)-vertex v with v

1

balan
ed.

Now, if v

1

is a (1,4)-vertex then, as in Figure 5.16, vv

2

and v

1

(v

1

)

1

are the non-

adja
ent verti
es in a K

4

n feg subgraph. If we merge these verti
es then v

1

v and

vv

1

have degree two and 
an be removed. If v

2

is balan
ed then there is no edge

fvv

2

; v

2

(v

2

)

1

g. If v

2

is unbalan
ed then v

2

must be a (1,4)-vertex, and therefore v

2

v

and the edge fvv

2

; v

2

vg (labelled `r') will be removed (see Figure 5.17). In either 
ase

vv

2

(=v

1

(v

1

)

1

) has degree three.
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Figure 5.16: The subgraph H

v

for a (0,5)-vertex or a (0,6)-vertex v with v

1

a (1,4)-

vertex.

Consider a (1,4)-vertex v, and assume that v

�1

is not a (0,5)-vertex with (v

�1

)

1

= v

(we have already 
onsidered this 
ase). As in Figure 5.17, the vertex vv

�1

has degree

two and 
an be removed. vv

1

now has degree at most three. For a (0,4)-vertex v, H

v

simply 
onsists of the degree one vertex vv

1

, whi
h 
an be removed.

Consider a vertex vv

j

2 V (H) for some j 2 fD;E; Fg, or j 2 fA;B;Cg if v is

balan
ed. vv

j

is in
ident with at most two unlabelled edges and to at most one edge

labelled `r'. Unless v

j

is a (0,5)- or (0,6)-vertex and (v

j

)

1

= v (in whi
h 
ase vv

j

is

in
ident with an edge labelled `��' and has already been 
onsidered), vv

j

has degree at
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Figure 5.17: The subgraph H

v

of H for a (1,4)-vertex or a (1,5)-vertex v.

most three.

We have shown that all remaining verti
es in H have degree at most three, and it

is easily seen that H is not K

4

, so by Brooks' Theorem [47℄, H is 3-
olourable. The

proof of Brook's Theorem due to Lov�asz [147℄ and simpli�ed by Bryant [49℄ des
ribes

an algorithm for �nding a vertex 3-
olouring of H in O(jE(H)j) = O(n) time.

The 3-vertex-
olouring of H determines a 3-
olouring of A(G). The unlabelled edges

in H ensure that at most two outgoing ar
s at ea
h vertex v re
eive the same 
olour. So

the 3-
olouring of H determines a point-routing of G (Step 4 of Algorithm Diagonal

Layout and Movement), and hen
e Algorithm General Position 3-D Point-

Drawing is appli
able (Step 6 of Algorithm Diagonal Layout and Movement).

Theorem 5.4. For a given graph G with maximum degree six, the Diagonal Layout

and Movement algorithm will, in O

�

n

2

�

time, determine a 4-bend 3-D orthogonal

point-drawing of G with bounding box volume (4n=3)

3

= 2:37n

3

and at most 7m=3

bends. If G has maximum degree �ve then the bounding box has volume n

3

and ea
h

edge route has two bends.

Proof. We now 
al
ulate the number of bends and the volume of the drawing whi
h will

result when we apply algorithm General Position 3-D Point-Drawing. To do so,

we 
ount the number of instan
es of (5.1). Suppose the ar
s

�!

vu;

�!

vw 2 A

G

(v)[i℄ (u 6= w)

for some vertex v and 
olour i 2 fX;Y;Zg. We 
an assume that

�!

vu 2 fvv

A

; vv

B

; vv

C

g

and

�!

vw 2 fvv

D

; vv

E

; vv

F

g.

Suppose

�!

vu is a movement ar
. Then u is not between v and w in the initial

ordering. v moves past u in the i-ordering, and sin
e the movement ar
s originating at

w (if any) do not 
ross over u, w 
annot move past u in any ordering. Therefore v is

between u and w in the �nal i-ordering.
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Suppose

�!

vu is neither a movement ar
 nor a spe
ial ar
. Then v is between u and

w in the initial ordering, and v does not move past u or w in any ordering. If u moves

past v then it does so in the same ordering as the 
olour assigned to the movement ar


�!

uv. Sin
e f

�!

vu;

�!

uvg 2 E(H) in this 
ase,

�!

uv is not 
oloured i, so u does not move in the

i-ordering. Similarly w does not move in the i-ordering, and hen
e, v is between u and

w in the i-ordering.

So, the only 
ase where v is not between u and w in the i-ordering is if

�!

vu or

�!

vw is

spe
ial. Sin
e every vertex is in
ident to at most one spe
ial ar
, every instan
e of (5.1)


orresponds to a unique spe
ial ar
. Hen
e there are at most k instan
es of (5.1) where

k is the number of spe
ial ar
s, whi
h is pre
isely the number of unbalan
ed degree six

verti
es.

Now suppose there is an instan
e of (5.2); i.e., there is a pair of reversal ar
s

�!

vw;

�!

wv 2 A(G) re
eiving the same 
olour i,

�!

vu 2 A

G

(v)[i℄ (w 6= u),

�!

wx 2 A

G

(w)[i℄

(v 6= x), v is between u and w in the i-ordering, and w is between v and x in the

i-ordering. The `r' edges in H ensure that one of

�!

vw and

�!

wv, say

�!

vw, must be spe
ial.

However, in this 
ase v will not be between u and w in the i-ordering. So there are no

instan
es of (5.2).

If k is the number of spe
ial ar
s then Theorem 5.1 asserts G has a 4-bend 3-D

orthogonal point-drawing with bounding box volume (n + k=3)

3

and 2m + k bends.

Sin
e k � n the bounding box volume is at most (n + n=3)

3

= (4n=3)

3

. If d is the

average degree of those verti
es without spe
ial ar
s then 6k + d(n� k) = 2m and the

number of bends is 2m + k = 2m + (2m � d(n � k))=6 = 7m=3 � d(n � k)=6. Sin
e

n � k the drawing has at most 7m=3 total bends.

For maximum degree �ve graphs, no spe
ial ar
s are introdu
ed by the algorithm

and reversal ar
s are 
oloured di�erently, so the point-routing is a 2-bend point-routing.

By the same argument as above, if

�!

vu;

�!

vw 2 A

G

(v)[i℄ (u 6= w) then v is between u and

w in the i-ordering. Hen
e, the 
onditions (5.1) and (5.2) do not o

ur. So there are

no an
hored ar
s in the point-drawing produ
ed. With no an
hored edge routes, no

new an
hors 
an be introdu
ed by the edge 
rossing removal stage. So the 
rossing-free

drawing has two bends per edge route and bounding box volume n

3

.

The 3-
olouring of H takes O(jE(H)j)=O(n) time, and by Theorem 5.1, algorithm
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General Position 3-D Point-Drawing takes O

�

n

2

�

time, so the algorithm Diag-

onal Layout and Movement takes O

�

n

2

�

time.

Corollary 5.4. The algorithm Diagonal Layout and Movement is a

7=6-approximation algorithm for the BEND-MINIMUM GENERAL POSITION 3-D

POINT-DRAWING problem.

Proof. Sin
e every general position 3-D orthogonal point-drawing has at least 2m bends,

and the Diagonal Layout and Movement algorithm determines a general position

3-D orthogonal point-drawing with at most 7m=3 bends, the approximation fa
tor is

at most (7m=3)=(2m) = 7=6.

5.5 3-Bend Algorithms

We now 
onsider the problem of minimising the maximum number of bends on any edge

route in 3-D orthogonal point-drawings. As dis
ussed in Se
tion 3.5.1, K

5

provides a

lower bound of two for the maximum number of bends per edge route in 3-D orthogonal

point-drawings. Eades et al. [86, 87℄ �rst established that every maximum degree six

graph has an orthogonal point-drawing with a maximum of three bends per edge route.

Their 3-Bends algorithm is based on an arbitrary diagonal layout of the verti
es, and a


y
le 
over de
omposition of the edges. As stated in their paper the drawings produ
ed

have 27n

3

volume; by simply deleting grid-planes not 
ontaining a vertex or a bend the

volume is easily seen to be at most 8n

3

.

The In
remental algorithm of Papakostas and Tollis [166, 168℄, using an ad-ho


vertex layout and edge routing strategy, also produ
es orthogonal point-drawings with

at most three bends per edge. The volume of the drawings produ
ed is at most 4:63n

3

.

This algorithm has the advantage of supporting the on-line insertion of verti
es in


onstant time.

In this se
tion we des
ribe an algorithm, whi
h given an arbitrary 3-D general po-

sition vertex layout of graph, determines a 3-bend layout-preserving orthogonal point-

drawing. We then present an algorithm, whi
h is a modi�
ation of the 3-Bends al-

gorithm of Eades et al. [86, 87℄, for produ
ing 3-D orthogonal point-drawings with
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n

3

+O

�

n

5=2

�

volume and at most three bends per edge. This is the best known upper

bound for the volume of 3-bend 3-D orthogonal point-drawings.

5.5.1 Edge Routes

In this se
tion we employ a modi�ed version of Algorithm General Position 3-D

Point-Drawing as the basis for our main algorithms. Given a maximum degree

six graph G, a general position vertex layout and a point-routing of G we position the

verti
es as in Algorithm General Position 3-D Point-Drawing, however our algo-

rithms dire
tly spe
ify the port assignment. We again employ Algorithm Constru
t

Edge Routes, although we only use 2-bend edge routes (see Figure 5.2) and 3-bend

edge routes with parallel ports (see Figures 5.3(b) and 5.4). Furthermore, 3-bend edge

routes using ports pointing in the same dire
tion are 
onstru
ted somewhat di�erently,

as we now des
ribe.

The minimal box 
ontaining all verti
es is 
alled the inner box. For ea
h dire
tion

d 2 fX

�

; Y

�

; Z

�

g, the box extending out from the d-fa
e of the inner box is 
alled the

d-outer box , as shown in Figure 5.18.

X

Y

Z

Y

�

-outer box

X

�

-outer box

Z

�

-outer box

Z

+

-outer box

X

+

-outer box

Y

+

-outer box

Figure 5.18: Inner and Outer Boxes.
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2-bend edge routes and 3-bend edge routes vw using opposite ports at v and w are

routed entirely within the inner box exa
tly as was the 
ase previously. We 
all these

edge routes inner. If, for some dire
tion d, an edge is assigned d-ports at both end-

verti
es, instead of the edge route shown in Figure 5.3(b), we use the edge route shown

in Figure 5.19, whi
h is routed to a height h(vw) in the d-outer box. The algorithms

to follow spe
ify the value of h(vw).

h(vw)

v

w

inner box

Figure 5.19: Outer 3-bend edge route.

This approa
h has the advantage that some edges routed in a parti
ular outer

box 
an have the same height, thus redu
ing the volume. Also, given a drawing only

using the above-mentioned edge routes, we shall prove that the Algorithm 5.4 Point-

Drawing Remove Edge Crossings will not introdu
e any 4-bend edge routes. A

disadvantage of this approa
h is that the edge routes are longer.

5.5.2 Arbitrary Layout 3-Bend Algorithm

The following algorithm for produ
ing 3-bend 3-D orthogonal point-drawings whi
h

preserve a given general position vertex layout, is based on a 
y
le 
over de
omposition

of the graph. Edges in the 
y
le 
over C

i

, i 2 fX;Y;Zg, are routed using i-ports at

both end-verti
es. All edges are outer 3-bend edge routes ex
ept in the 
ase of an odd
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y
le where one edge of the 
y
le is an inner 3-bend edge route. Edges in a parti
ular

outer box are routed with unique height.

Algorithm 5.10. General Position 3-Bend 3-D Point-Drawing

Input: � multigraph G with �(G) � 6

� general position 3-D vertex layout of V (G)

Output: layout-preserving 3-bend 3-D orthogonal point-drawing of G

1. Suppose the X-, Y - and Z-vertex orderings are (x

1

; x

2

; : : : ; x

n

), (y

1

; y

2

; : : : ; y

n

)

and (z

1

; z

2

; : : : ; z

n

), respe
tively.

2. For ea
h vertex v 2 V (G), if v = x

i

= y

j

= z

k

then position v at (3i; 3j; 3k).

3. Determine a 
y
le 
over de
omposition C

X

, C

Y

, C

Z

of G (see Se
tion 2.5).

4. For ea
h i 2 fX;Y;Zg, and for ea
h 
y
le C = (v

1

; v

2

; : : : ; v

k

) of C

i

:

� If k is even, then traverse the 
y
le and assign to ea
h edge alternately the

i

+

/i

�

ports at both end-verti
es.

� If k is odd, then assign to the edge v

k

v

1

the i-ports at v

k

and v

1

whi
h point

toward ea
h other. Traverse the remainder of the 
y
le and assign to ea
h

edge alternately i

+

/i

�

ports at both end-verti
es, as shown in Figure 5.20.

v

k

v

1

v

2

v

3

v

k�2

v

k�1

(a) v

k

<

i

v

1

i

+

i

�

i

+

i

+

i

�

i

�

i

+

i

�

i

+

i

+

i

�

i

�

v

k

v

1

v

2

v

3

v

k�2

v

k�1

(b) v

1

<

i

v

k

i

�

i

+

i

�

i

�

i

+

i

+

i

�

i

+

i

�

i

�

i

+

i

+

Figure 5.20: Port assignment for an odd 
y
le in C

i

.

5. For ea
h d 2 fX

�

; Y

�

; Z

�

g, for ea
h edge vw assigned d-ports at v and w, assign

to vw a unique height h(vw) � 1.
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6. For ea
h edge vw 2 E(G) assigned d-ports, for some dire
tion d, at both v and

w, route vw with the 3-bend edge route shown in Figure 5.19 in the d-outer box.

Route edges assigned opposite ports as in Figure 5.4.

7. Apply Algorithm 5.4 Point-Drawing Remove Edge Crossings.

8. Remove ea
h grid-plane not 
ontaining a vertex or a bend.

Theorem 5.5. The algorithm General Position 3-Bend 3-D Point-Drawing

determines, in O

�

n

2

�

time, a layout-preserving 3-D orthogonal point-drawing of G with

8n

3

bounding box volume and three bends per edge route.

Proof. By 
onstru
tion, ea
h edge is assigned unique ports at its end-verti
es, and

only 3-bend edge routes are used. We now prove that given a general position 3-D

orthogonal point-drawing only using 2-bend edge routes and 3-bend edge routes with

parallel ports (routed as des
ribed above), the algorithm Point-Drawing Remove

Edge Crossings will not introdu
e a 4-bend edge route.

For the edge route shown in Figure 5.19, both of the segments in the outer box are


alled middle segments. The segment of su
h an edge route in
ident to the end-vertex

v is 
alled a v-segment.

Sin
e middle segments on outer edge routes have unique height, they 
annot inter-

se
t. A v-segment parallel to the i-axis has an i-
oordinate belonging to v and no other

vertex, so v-segments 
an only interse
t as in Case 1 of Algorithm 5.4 Point-Drawing

Remove Edge Crossings. Swapping ports, in this 
ase, does not introdu
e any new

edge route 
rossings, so 
annot introdu
e a 4-bend edge route. Therefore the only

possible interse
tion is between the middle segments of 2-bend edge routes (Case 3 of

Algorithm 5.4 Point-Drawing Remove Edge Crossings). Swapping ports removes

the 
rossing, and both edge routes remain two bend edge routes.

The inner box is initially 3n � 3n � 3n. Every edge in 
y
le 
over C

i

either adds

one i-plane in the outer box or o

upies one of the i-planes belonging to one of its

end-verti
es. Sin
e there are at most m=3 edges in ea
h 
y
le 
over, after removing

grid-planes not 
ontaining a vertex or a bend, the bounding box volume is at most
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(n+m=3)

3

� 8n

3

. The most time-
onsuming step of the algorithm is the removal of

edge 
rossings whi
h takes O

�

n

2

�

time.

We now des
ribe a heuristi
 for determining sets of edge routes in the same outer box

whi
h 
an be routed with the same height, thus redu
ing the volume of the drawing.

Constru
t a graph H with vertex set 
orresponding to the edges of G routed in a

parti
ular outer box, with edges between verti
es of H 
orresponding to edge routes

whi
h will interse
t if routed with same height. Then if we determine the heights of the

edge routes from a vertex-
olouring of H, then we obtain an interse
tion-free drawing.

In general, this method does not provide improved worst 
ase volume bounds. In the

next se
tion we des
ribe an algorithm whi
h does provide improved volume bounds, by

allowing 
ertain edges routed in a parti
ular outer box to have the same height.

5.5.3 Diagonal Layout 3-Bend Algorithm

We now des
ribe a modi�
ation to the 3-Bends algorithm of Eades et al. [86, 87℄,

whi
h provides the best known upper bound for the volume of 3-bend 3-D orthogonal

point-drawings.

Algorithm 5.11. Diagonal General Position 3-Bend Point-Drawing

Input: multigraph G with �(G) � 6

Output: 3-bend 3-D orthogonal point-drawing of G

1. Determine a book-embedding of G using the algorithm of Malitz [151℄ (See

Se
tion 1.3). Suppose (v

1

; v

2

; : : : ; v

n

) is the spine ordering, and p : E(G) !

f1; 2; : : : ; Pg is the page numbering where P = O(

p

n).

2. Apply the 3-Bends algorithm of Eades et al. [86, 87℄ using (v

1

; v

2

; : : : ; v

n

) as the

ordering of the verti
es along the diagonal, and route ea
h 3-bend edge route vw

as shown in Figure 5.19 with h(vw) = p(vw).

3. Remove ea
h grid-plane not 
ontaining a vertex or a bend.
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Theorem 5.6. The algorithm Diagonal General Position 3-Bend Point-

Drawing determines a 3-D orthogonal point-drawing of G with n

3

+O

�

n

5=2

�

bounding

box volume and three bends per edge route.

Proof. Note that the only types of edge routes used in the 3-Bends algorithm of Eades

et al. [86, 87℄ are 2-bend edge routes and 3-bend edge routes with both ports pointing

in the same dire
tion. So, by the proof of Theorem 5.5, edge routes 
an only interse
t

if they are routed with the same height in the same outer box; i.e., they are in the same

page of the book embedding. However, if edges routed at the same height interse
t in

the outer box, then they would also interse
t in the book embedding (see Figure 5.21).

Hen
e there are no edge route 
rossings.

Figure 5.21: Edges in the same page and routed in the same outer box.

The bounding box is (P + n+ P )� (P + n+ P ) � (P + n+ P ). By Malitz [151℄,

P = O(

p

m) = O(

p

n), so the volume is (n+O(

p

n))

3

= n

3

+O

�

n

5=2

�

.

5.6 Lower Bounds

Sin
e every edge route in a general position 3-D orthogonal drawing has at least

two bends, there is an obvious lower bound of 2m for the BEND-MINIMUM GEN-

ERAL POSITION 3-D POINT-DRAWING problem. We now present in�nite families
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of graphs whi
h require more than two bends per edge in any general position 3-D

orthogonal point-drawing. Our results are based on the observation that if an edge is

routed using the X

+

port at the vertex x

n

, then this edge route must be an
hored, and

similarly for other `extreme' ports, as in Figure 5.22.

�

�

�

�

�

�

Figure 5.22: Edge routes using `extreme' ports are ne
essarily an
hored.

For 6-regular graphs all ports must be used, so su
h a graph requires at least 2m+6

bends in a general position 3-D orthogonal point-drawing. Hen
e the graph 
onsisting

of some number of disjoint 
opies of K

7

provides the following lower bound. Note that

general position 3-D orthogonal point-drawings of K

7

with 2m+ 6 bends do exist.

Lemma 5.9. There exists an in�nite family of graphs, ea
h with at least 2m + 6n=7

bends in any general position 3-D orthogonal point-drawing.

Note that this lower bound di�ers from our upper bound of 7m=3 (see Theorem 5.4)

by only n=7. For bi
onne
ted graphs we have the following lower bound

1

.

Lemma 5.10. There exists an in�nite family of bi
onne
ted graphs, ea
h with at least

2m+ 4n=7 bends in any general position 3-D orthogonal point-drawing.

Proof. Consider the 6-regular graph G

a

(a � 2) formed from a 
opies of K

7

n e (for

some edge e) with a 
y
le added between the 
opies, as illustrated in Figure 5.23.

Clearly G

a

is bi
onne
ted. Removing an edge from K

7


an save at most two an-


hored ar
s, so a general position 3-D orthogonal point-drawing of K

7

n e has at least

1

This result was dis
overed in 
onjun
tion with Therese Biedl.
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K

7

n e K

7

n e K

7

n e

� � �

8 > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > < > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > :

a copies

Figure 5.23: The graph G

a

.

2jE(K

7

n e)j + 4 bends. The `
y
le' edges of G

a

ea
h have at least two bends, so G

a

has at least 2m+ 4n=7 bends.

Lemma 5.11. There exists an in�nite family of 4-
onne
ted graphs, ea
h with at least

2m+ 2n=7 bends in any general position 3-D orthogonal point-drawing.

Proof. Consider the 6-regular graph G

a;b

(a; b � 2) formed from the a � b 4-regular

`torus grid' graph repla
ing ea
h vertex by K

7

n fe

1

; e

2

g (for some non-in
ident edges

e

1

, e

2

), as shown in Figure 5.24.

Removing any three verti
es from G

a;b


annot dis
onne
t the graph, but removing

four verti
es 
an, so G

a;b

is 4-
onne
ted. Removing two edges from K

7


an save at most

four an
hored ar
s, so a general position 3-D orthogonal point-drawing of K

7

n fe

1

; e

2

g

has at least 2jE(K

7

n fe

1

; e

2

g)j + 2 bends. Edges not in a K

7

n fe

1

; e

2

g have at least

two bends, so G

a;b

has at least 2m+ 2n=7 bends.

This sequen
e of lower bounds suggests the following open problem.

Open Problem 5.1. Does every 6-
onne
ted 6-regular graph have a general position

3-D orthogonal point-drawing with at most 2m+ 6 bends?

5.6.1 2-Bends Problem

We now look at the rami�
ations of the above lower bounds for the 2-bends problem

dis
ussed in Se
tion 3.5.1. Edge routes with at most two bends 
an be 
lassi�ed as

0-bend, 1-bend, 2-bend planar or 2-bend non-planar, as illustrated in Figure 5.25.

Lemma 5.12. Suppose in a given 2-bend 3-D orthogonal point-drawing of an m-edge

graph G the number of 0-bend edge routes is k

0

and the number of 2-bend planar edge
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Figure 5.24: The graph G

a;b

.

v w

(a) 0-bend

v

w

(b) 1-bend

v

w

(c) 2-bend

planar

v

w

(d) 2-bend

planar

v

w

(e) 2-bend

non-planar

Figure 5.25: Edge routes vw with at most two bends.
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routes is k

2

. Then there exists a general position 3-D orthogonal point-drawing of G

with 2m+ k

0

+ k

2

bends.

Proof.

2

We now show that by inserting planes and adding bends to the edge routes that

the given 2-bend drawing 
an be transformed into a drawing with a general position

vertex layout and the stated number of bends.

Consider a grid-plane P 
ontaining k verti
es (k > 1). As illustrated in Figure 5.26,

repla
e the plane by k adja
ent planes, and position ea
h of the k verti
es in a unique

plane.

a

b

d

c

=)

a

b

c

d

Figure 5.26: Removing a plane 
ontaining many verti
es.

A 0-bend edge route is split in the middle and repla
ed by the 2-bend planar edge

route shown in Figure 5.25(
). (If the 0-bend edge has length one then an extra plane

perpendi
ular to the original plane is also inserted.)

Edge segments from an edge with at least one bend and in
ident to a vertex v are

routed in the plane 
ontaining v. For a 1-bend edge route vw in the original plane, an

extra segment is inserted perpendi
ular to P , running between the planes 
ontaining v

and w. Hen
e vw is repla
ed by a 2-bend non-planar edge route.

For a 2-bend edge route vw in the original plane, the middle segment of vw is routed

arbitrarily in the plane 
ontaining v or w, and a third segment is inserted perpendi
ular

2

This proof was developed in 
onjun
tion with Antonios Symvonis.
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to P , running between the planes 
ontaining v and w. Hen
e vw is repla
ed by a 3-bend

non-planar edge route.

For a 2-bend non-planar edge route vw in
ident to one of the k verti
es, the segment

of vw perpendi
ular to P is extended in the obvious manner. Similarly, an edge passing

through the original plane and not in
ident to any of the k verti
es, is extended so that

it passes through all k planes.

This pro
ess is 
ontinued until there are no grid-planes 
ontaining more than one

vertex. Note that a 0-bend edge route will �rstly be repla
ed by a 2-bend planar edge,

and in a se
ond transformation will be repla
ed by a 3-bend edge route (as shown

in Figure 5.26 for edge ab). The resulting drawing has no 
rossings, has a general

position vertex layout, and every edge has two bends ex
ept for the 0-bend and 2-bend

planar edge routes in the original drawing, whi
h now have three bends. Hen
e the

new drawing has 2m+ k

0

+ k

2

bends.

Corollary 5.5. There exists an in�nite family of 6-regular n-vertex graphs, su
h that

in any 2-bend 3-D orthogonal point-drawing of any one of the graphs, k

0

+ k

2

� 6n=7.

Proof. By Lemma 5.9, there exists an in�nite family of graphs, ea
h with at least

2m + 6n=7 bends in any general position 3-D orthogonal point-drawing. If there is a

2-bend point-drawing of su
h a graph, then by Lemma 5.12 there is exists a general

position point-drawing with 2m+ k

0

+ k

2

bends. Hen
e 2m+ k

0

+ k

2

� 2m+6n=7, so

k

0

+ k

2

� 6n=7.

The following two results are obtained using the same argument applied with Lem-

mas 5.10 and 5.11, respe
tively.

Corollary 5.6. There exists an in�nite family of 6-regular bi
onne
ted n-vertex graphs,

su
h that in any 2-bend 3-D orthogonal point-drawing of any one of the graphs, k

0

+k

2

�

4n=7.

Note that a 1-fa
tor has n=2 edges, and n=2 < 4n=7, so there exists bi
onne
ted

graphs for whi
h any 2-bend 3-D orthogonal point-drawing has more than a 1-fa
tor of

0-bend and 2-bend planar edge routes.
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Corollary 5.7. There exists an in�nite family of 6-regular 4-
onne
ted n-vertex graphs,

su
h that in any 2-bend 3-D orthogonal point-drawing of any one of the graphs, k

0

+k

2

�

2n=7.



Chapter 6

The General Position Model for

Two-Dimensional Orthogonal

Box-Drawing

In this 
hapter we present algorithms for produ
ing 2-D orthogonal box-

drawings whi
h establish improved degree-restri
tion results 
ompared to ex-

isting algorithms. The methods and results presented in this 
hapter were

published in Wood [221℄.

A 2-D orthogonal graph drawing is said to be in the general position model if no two

verti
es are interse
ted by a single grid-line. We 
all su
h a drawing a general position

2-D orthogonal drawing. This 
hapter, whi
h des
ribes algorithms for produ
ing gen-

eral position 2-D orthogonal drawings, is organised as follows. In Se
tion 6.1 we present

a framework for the main algorithms to follow. As dis
ussed in Se
tion 3.4.4 we 
lassify

su
h algorithms as layout- or routing-based. Se
tion 6.2 des
ribes our layout-based al-

gorithm. The vertex layout algorithm is based on methods developed in Chapter 4 for

the balan
ed vertex ordering problem. The ar
-routing algorithm, whi
h 
an be applied

to an arbitrary general position 2-D vertex layout, 
onstru
ts and 
olours the verti
es

of a 
ertain graph. The drawings produ
ed have the smallest known degree-restri
tion

bound for bounded aspe
t ratio drawings. This strategy is generalised to a multi-

dimensional setting in Chapter 7. Routing-based approa
hes to 2-D general position

126
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box-drawing are given by Papakostas and Tollis [164, 169℄ and Biedl and Kaufmann

[30℄.

6.1 Representation

Consider a general position 2-D orthogonal box-drawing of a graph G. Sin
e no two

verti
es share a 
ommon 
oordinate, this drawing indu
es X- and Y -vertex orderings

of G, representing the relative 
oordinates of the verti
es. The assignment of ports to

edge routes indu
es a (non-proper) 2-
olouring of A(G), where an ar


�!

vw 2 A(G) is


oloured i 2 fX;Y g if the edge route vw uses an i-port at v.

Sin
e ea
h pair of verti
es di�er in both 
oordinates, an edge route has at least one

bend. Our algorithms use exa
tly one bend per edge route. The ports used by a 1-bend

edge route must be perpendi
ular and point toward the other vertex (see Figure 6.1);

i.e., reversal ar
s are 
oloured di�erently. We therefore represent a general position 2-D

orthogonal box-drawing of G by:

� A (2-D general position) vertex layout 
onsisting of vertex orderings (<

X

; <

Y

) of

G, whi
h represent the relative 
oordinates of the verti
es in ea
h dimension.

� A (2-D general position) ar
-routing of G 
onsisting of a 2-
olouring of A(G) su
h

that for every edge vw 2 E(G), the reversal ar
s

�!

vw 2 A(G) and

�!

wv 2 A(G) are


oloured di�erently

1

.

In the X-ordering a prede
essor (respe
tively, su

essor) ar
 of a vertex v is 
alled

a X-prede
essor (X-su

essor) ar
 of v. We denote the number of prede
essor and

su

essor ar
s of v in the X-ordering by p

X

(v) and s

X

(v) respe
tively. The 
ost of a

vertex v 2 V (G) in the X-ordering, de�ned in Se
tion 4.1 to be js

X

(v)� p

X

(v)j, is

denoted by 


X

(v). Similarly de�nitions are made for the Y -ordering.

For ea
h vertex v 2 V (G) and dire
tion d 2 f�X;�Y g, the set of outgoing ar
s

�!

vw 2 A(G) with w in dire
tion d from v, is denoted by A

G

(v)hdi. We represent a

1

A 2-D ar
-routing 
an simply be represented by an orientation of the edges. For an edge vw

oriented from v to w, the ar
s

�!

vw and

�!

wv are 
oloured X and Y , respe
tively. This is the approa
h

taken by Biedl and Kaufmann [30℄. We use the 2-
olouring representation for 
onsisten
y with our

representation for multi-dimensional ar
-routings used in Chapters 5 and 7.
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3� 3

3� 2

3� 2

Figure 6.1: 2-D 1-bend edge routes

quadrant relative to v by the 
orresponding pair of non-opposite dire
tions. The set of

ar
s

�!

vw 2 A(G) with w in some quadrant Q relative to v is denoted by A

G

(v)hQi; i.e.,

A

G

(v)hQi =

\

d2Q

A

G

(v)hdi :

Using the notation introdu
ed in Se
tion 2.1, for some dimension i 2 fX;Y g,

A

G

(v)hi

�

i i refers to the ar
s in A

G

(v)hi

�

i 
oloured i. If an ar
 vw 2 A

G

(v)hX

�

iX,

for example, then the edge route vw will leave v on the left. A vertex v 
learly must

have width at least

M

X

(v) = max

n

�

�

A

G

(v)




Y

+

�

[Y ℄

�

�

;

�

�

A

G

(v)




Y

�

�

[Y ℄

�

�

o

;

and height

M

Y

(v) = max

n

�

�

A

G

(v)




X

+

�

[X℄

�

�

;

�

�

A

G

(v)




X

�

�

[X℄

�

�

o

:

We now present an algorithm, whi
h given a 2-D general position vertex layout and

ar
-routing of a graph G, determines a general position 2-D orthogonal box-drawing of

G. This algorithm will form the �nal step in our graph drawing algorithms to follow.

Algorithm 6.1. General Position 2-D Box-Drawing

Input: � graph G

� 2-D general position vertex layout of V (G)

� 2-D general position ar
-routing of A(G)

Output: general position 2-D box-drawing of G
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1. Represent ea
h vertex v 2 V (G) by a M

X

(v) �M

Y

(v) re
tangle with maximum


orner at

0

�

X

w�

X

v

M

X

(w);

X

w�

Y

v

M

Y

(w)

1

A

:

2. For ea
h vertex v 2 V (G) and i 2 fX;Y g, assign ports on the (�i)-fa
e of v to the

ar
s

�!

vw 2 A

G

(v)hi

�

i[i℄. To redu
e the number of 
rossings we assign parti
ular

ports on v to these ar
s in order of the distan
e from v to w in the i-ordering, as

illustrated in Figure 6.2.

X

Y

�

A

f

X

+

;Y

+

g

(v)[X℄

�

A

f

X

+

;Y

�

g

(v)[X℄

n

A

f

X

�

;Y

+

g

(v)[X℄

8

>

<

>

:

A

f

X

�

;Y

�

g

(v)[X℄

9 > = > ;

A

f

X

�

;Y

+

g

(v)[Y ℄

�

A

f

X

+

;Y

+

g

(v)[Y ℄

�

A

f

X

�

;Y

�

g

(v)[Y ℄

8 > < > :

A

f

X

+

;Y

�

g

(v)[Y ℄

v

Figure 6.2: Port assignments at a vertex v.

3. For ea
h edge vw 2 E(G), if the ar
s

�!

vw and

�!

wv have been assigned an X-port

and a Y -port at v and at w with 
oordinates of (x

v

; y

v

) and (x

w

; y

w

) respe
tively,

then the edge vw is routed from v to w with one bend as follows.

(x

v

; y

v

)! (x

w

; y

v

)! (x

w

; y

w

)

The next result follows immediately from the above 
onstru
tion.

Lemma 6.1. The algorithm General Position 2-D Box-Drawing determines a
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general position 2-D orthogonal box-drawing of G with bounding box

 

X

v

M

X

(v)

!

�

 

X

v

M

Y

(v)

!

:

Ea
h vertex v has surfa
e

2 (M

X

(v) +M

Y

(v)) :

6.2 Layout-Based Approa
h

In a 2-D general position vertex layout of a graph G, the 
ost of a vertex v 2 V (G) is

de�ned to be the average

2


ost of v over the X- and Y -orderings; i.e.,


(v) =

1

2

(


X

(v) + 


Y

(v)) :

We are interested in the following problem.

Problem 6.1. 2-D GENERAL POSITION VERTEX LAYOUT

Instan
e : Graph G, integer K � 0.

Question : Does G have a 2-D general position vertex layout with max

v


(v) � K ?

We 
onje
ture that this problem is NP-
omplete. In Se
tion 6.2.3, we provide an

algorithm whi
h determines a vertex layout with a tight bound on max

v


(v).

6.2.1 Ar
-Routing Algorithm

The following algorithm, given an arbitrary 2-D general position vertex layout of a graph

G, determines a 2-D general position ar
-routing of G. To represent the 
olouring of

A(G) we vertex-
olour a graph H with vertex set V (H) = A(G).

Algorithm 6.2. 2-D General Position Ar
-Routing

Input: 2-D general position vertex layout of a graph G.

Output: 2-D general position ar
-routing of A(G).

2

We use the `average' here rather than the `sum' sin
e this de�nition will be extended to a multi-

dimensional setting in Chapter 7.
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1. For ea
h edge vw 2 E(G), add the edge fvw;wvg to E(H) (
alled an r-edge).

2. For ea
h vertex v 2 V (G) and for ea
h quadrant Q relative to v,

(a) Arbitrarily partition the ar
s in A

G

(v)hQi into pairs

f

�!

vu

1

;

��!

vw

1

g ; : : : ; f

�!

vu

k

;

��!

vw

k

g, with at most one leftover ar
 in A

G

(v)hQi not

in
luded in a pair.

(b) Add an edge (
alled a q-edge) to E(H) between the verti
es 
orresponding

to the ar
s

�!

vu

j

and

�!

vw

j

, 1 � j � k.

3. Split those verti
es in v 2 V (G) with at least three leftover ar
s in A

G

(v) into

two groups V

X

and V

Y

of equal size (or di�ering by one).

4. For ea
h vertex v 2 V (G):

(a) If there are exa
tly two leftover ar
s

�!

vu;

�!

vw 2 A

G

(v) then add an edge (
alled

an l-edge) between the verti
es in H 
orresponding to

�!

vu and

�!

vw.

(b) If v 2 V

i

(i 2 fX;Y g) has exa
tly three leftover ar
s then add an edge, 
alled

an l-edge, between the verti
es of H 
orresponding to the two leftover ar
s at

v whi
h are both i-su

essor ar
s or both i-prede
essor ar
s (see Figure 6.3).

(
) If v 2 V

i

(i 2 fX;Y g) has four leftover ar
s then add edges (
alled l-edges)

between the verti
es of H 
orresponding to the two leftover i-su

essor ar
s

of v, and between the verti
es of H 
orresponding to the two leftover i-

prede
essor ar
s of v (see Figure 6.3).

5. Determine a 2-
olouring of A(G) from a vertex-
olouring of H with two 
olours.

Lemma 6.2. The algorithm 2-D General Position Ar
-Routing determines a

2-D general position ar
-routing of G in O(m+ n) time su
h that for ea
h vertex v,

2(M

X

(v) +M

Y

(v)) � deg(v) + 
(v) + 4 ;
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(a) v 2 V

X

X

Y

v

(b) v 2 V

Y

X

Y

v

Figure 6.3: Conne
ting leftover ar
s at v.

and for ea
h i 2 fX;Y g,

X

v

M

i

(v) �

m

2

+

1

4

 

3n+ 1 +

X

v




i

(v)

!

:

Proof. A 
y
le in H 
onsists of alternating r- and (q- or l-) edges and is therefore of

even length. So H is bipartite, and a 2-
olouring of H 
an be 
omputed in O(jE(H)j) =

O(m) time, thus determining a 2-
olouring of A(G). Sin
e the verti
es 
orresponding to

reversal ar
s

�!

vw and

�!

wv are adja
ent in H, this 2-
olouring of A(G) is a 2-D ar
-routing

of A(G).

For ea
h quadrant q relative to a vertex v and in ea
h pair of the partition of

A

G

(v)hQi, the ar
s

�!

vu

i

and

�!

vw

i

are 
oloured di�erently, so we have the following

bounds on, for example, the number of X-su

essor ar
s

�!

vw 
oloured X.

$

�

�

A

G

(v)hfX

+

; Y

+

gi

�

�

2

%

+

$

�

�

A

G

(v)hfX

+

; Y

�

gi

�

�

2

%

�

�

�

A

G

(v)




X

+

�

X

�

�

�

&

�

�

A

G

(v)hfX

+

; Y

+

gi

�

�

2

'

+

&

�

�

A

G

(v)hfX

+

; Y

�

gi

�

�

2

'

:

So,

s

X

(v)

2

� 1 �

�

�

A

G

(v)




X

+

�

X

�

�

�

s

X

(v)

2

+ 1 :

Similarly, we have the following bound on the number of X-prede
essor ar
s 
oloured
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X.

p

X

(v)

2

� 1 �

�

�

A

G

(v)




X

�

�

X

�

�

�

p

X

(v)

2

+ 1 :

Re
all that M

Y

(v) = max fjA

G

(v)hX

+

iXj; jA

G

(v)hX

�

iXjg. So

1

2

max fs

X

(v); p

X

(v)g � 1 �M

Y

(v) �

1

2

max fs

X

(v); p

X

(v)g+ 1

1

4

(deg(v) + 


X

(v))� 1 �M

Y

(v) �

1

4

(deg(v) + 


X

(v)) + 1 (by (4.1))

Using the same argument for the number of Y -su

essors and Y -prede
essors 
oloured

Y , for ea
h i; j 2 fX;Y g (i 6= j),

1

4

(deg(v) + 


j

(v)) � 1 � M

i

(v) �

1

4

(deg(v) + 


j

(v)) + 1 : (6.1)

So

2 (M

X

(v) +M

Y

(v)) � 2

�

1

4

(2 deg(v) + 


X

(v) + 


Y

(v)) + 2

�

= deg(v) +




X

(v) + 


Y

(v)

2

+ 4

= deg(v) + 
(v) + 4 :

Now, in ea
h quadrant relative to a vertex v, there is at most one leftover ar
 at v.

A vertex v with at most two leftover ar
s has, for ea
h i 2 fX;Y g,

M

i

(v) �

�

max fs

i

(v); p

i

(v)g

2

�

:

A vertex v 2 V

i

with at least three leftover ar
s has

M

i

(v) �

�

max fs

i

(v); p

i

(v)g

2

�

, and

M

j

(v) �

max fs

j

(v); p

j

(v)g

2

+ 1 (j 6= i; j 2 fX;Y g) :

So, for ea
h i 2 fX;Y g,

X

v

M

i

(v) =

X

v 62V

j

M

i

(v) +

X

v2V

j

M

i

(v)

�

X

v 62V

j

max fs

i

(v); p

i

(v)g+ 1

2

+

X

v2V

j

�

max fs

j

(v); p

j

(v)g

2

+ 1

�

=

n

2

+

jV

j

j

2

+

X

v

max fs

i

(v); p

i

(v)g

2
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=

n

2

+

dn=2e

2

+

X

v

deg(v) + 


i

(v)

4

(by (4.1))

�

n

2

+

n+ 1

4

+

m

2

+

X

v




i

(v)

4

�

m

2

+

1

4

 

3n+ 1 +

X

v




i

(v)

!

:

6.2.2 Fixed Vertex Layout Drawings

We now derive results for a �xed general position vertex layout.

Algorithm 6.3. Fixed General Position 2-D Box-Drawing

Input: � graph G

� 2-D general position vertex layout of V (G)

Output: layout-preserving 2-D orthogonal box-drawing of G.

1. Determine an ar
-routing with Algorithm 6.2 2-D General Position Ar
-

Routing.

2. Apply Algorithm 6.1 General Position 2-D Box-Drawing.

Theorem 6.1. For an arbitrary 2-D general position vertex layout, Algorithm Fixed

General Position 2-D Box-Drawing determines a 2-D orthogonal box-drawing of

G in O(m+ n) time su
h that:

� Ea
h edge route has 1 bend.

� Ea
h vertex is 2-degree-restri
ted.

� The aspe
t ratio of a vertex v is at most 2 + o (deg(v)).

� The bounding box is at most

�

m+

3n+ 1

4

�

�

�

m+

3n+ 1

4

�

:
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Proof. By Lemma 6.2, for every vertex vertex v, surfa
e (v) � deg(v)+ 
(v)+4. Sin
e


(v) � deg(v), v is 2-degree-restri
ted.

For ea
h i 2 fX;Y g, 0 � 


i

(v) � deg(v), so by (6.1),

1

4

deg(v)� 1 � M

i

(v) �

1

2

deg(v) + 1 : (6.2)

Hen
e,

max

�

M

X

(v)

M

Y

(v)

;

M

Y

(v)

M

X

(v)

�

�

deg(v)=2 + 1

deg(v)=4 � 1

= 2 + o (deg(v))

So v has aspe
t ratio at most 2 + o (deg(v)). The bounding box is

 

X

v

M

X

(v)

!

�

 

X

v

M

Y

(v)

!

Sin
e 


i

(v) � deg(v) and by Lemma 6.2, the bounding box is

 

m

2

+

1

4

 

3n+ 1 +

X

v

deg(v)

!!

�

 

m

2

+

1

4

 

3n+ 1 +

X

v

deg(v)

!!

=

�

m+

3n+ 1

4

�

�

�

m+

3n+ 1

4

�

:

6.2.3 Balan
ed Vertex Layout Drawings

We now des
ribe how the methods developed for the balan
ed ordering problem in

Se
tion 4.3 
an be applied to �nd `balan
ed' 2-D general position vertex layouts. By

balan
ed we mean that there is an upper bound on the 
ost 
(v) for ea
h vertex v.

The following algorithm, whi
h is similar to the vertex layout te
hnique of Biedl and

Kaufmann [30℄, is illustrated in Figure 6.4.
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Algorithm 6.4. Balan
ed 2-D General Position Vertex Layout

Input: graph G.

Output: 2-D general position vertex layout of G.

1. Determine an arbitrary vertex ordering (v

1

; v

2

; : : : ; v

n

) of G.

2. Determine the X-ordering using Algorithm 4.1Median Pla
ement Ordering

with insertion ordering (v

1

; v

2

; : : : ; v

n

).

3. Determine the Y -ordering using Algorithm 4.1 Median Pla
ement Ordering

with insertion ordering (v

n

; v

n�1

; : : : ; v

1

).

v

1

v

3

v

5

v

6

v

4

v

2

Figure 6.4: Balan
ed 2-D vertex layout of K

6

.

Theorem 6.2. The algorithm Balan
ed 2-D General Position Vertex Layout

determines a 2-D general position vertex layout of G in O(m+ n) time su
h that for

ea
h vertex v,


(v) � 1 +

1

2

deg(v) :

Proof. For ea
h vertex v, by Lemma 4.3 
on
erning the performan
e of the algorithm

Median Pla
ement Ordering with arbitrary insertion orderings, 


X

(v) � s(v) + 1

and 


Y

(v) � p(v)+1, where s(v) and p(v) are the number of su

essors and prede
essors

of v respe
tively in the vertex ordering (v

1

; v

2

; : : : ; v

n

). So 
(v) � (s(v) + p(v) + 2)=2 =

deg(v)=2 + 1.
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Note that the above bound is tight up to the additive 
onstant, sin
e an extremal

vertex in the X-ordering has 


X

(v) = deg(v), so 
(v) � deg(v)=2. We now present

our algorithm for 2-D orthogonal box-drawing using a balan
e general position vertex

layout.

Algorithm 6.5. Balan
ed General Position 2-D Box-Drawing

Input: graph G.

Output: 2-D orthogonal box-drawing of G.

1. Determine a general position vertex layout with Algorithm 6.4 Balan
ed 2-D

General Position Vertex Layout.

2. Determine an ar
-routing with Algorithm 6.2 2-D General Position Ar
-

Routing.

3. Apply Algorithm 6.1 General Position 2-D Box-Drawing.

Theorem 6.3. The algorithm Balan
ed General Position 2-D Box-Drawing

determines a 2-D orthogonal box-drawing of G in O(m+ n) time su
h that:

� Ea
h edge route has 1 bend.

� Ea
h vertex is

3

2

-degree-restri
ted.

� The aspe
t ratio of a vertex v is 2 + o (deg(v)).

� The bounding box area is

�

3m+4n+2

4

�

�

�

3m+4n+2

4

�

.

Proof. For any vertex v, by Lemma 6.2, surfa
e (v) = 2(M

X

(v) +M

Y

(v)) � deg(v) +


(v) + 4. By Theorem 6.2, in a 2-D balan
ed vertex layout, for every vertex v 2 V (G),


(v) � 1 + deg(v)=2. So surfa
e (v) �

3

2

deg(v) + 5, and ea
h vertex is 3=2-degree-

restri
ted. By Lemma 6.2, the bounding box is

 

X

v

M

X

(v)

!

�

 

X

v

M

Y

(v)

!
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�

 

1

4

X

v




X

(v) +

m

2

+

3n+ 1

4

!

�

 

1

4

X

v




Y

(v) +

m

2

+

3n+ 1

4

!

:

The X- and Y -orderings are determined by algorithm Median Pla
ement Order-

ing, so by Corollary 4.1, the bounding box is at most

�

m+ n

4

+

m

2

+

3n+ 1

4

�

�

�

m+ n

4

+

m

2

+

3n+ 1

4

�

=

�

3m+ 4n+ 2

4

�

�

�

3m+ 4n+ 2

4

�

:

6.2.4 Diagonal Vertex Layout Drawings

We now present an algorithm for produ
ing 2-D orthogonal square-drawings using a

diagonal layout.

Algorithm 6.6. Diagonal General Position 2-D Square-Drawing

Input: graph G.

Output: 2-D orthogonal square-drawing of G.

1. Determine a 2-D diagonal layout of G with the 
orresponding vertex ordering

determined by Algorithm 4.1 Median Pla
ement Ordering (with insertion

ordering determined by Algorithm 4.2 Insertion Ordering).

2. Determine a 2-D ar
-routing with Algorithm 6.2 2-D General Position Ar
-

Routing.

3. Apply Algorithm 6.1 General Position 2-D Box-Drawing.

Theorem 6.4. The algorithm Diagonal General Position 2-D Square-Drawing

determines a diagonal layout 2-D square-drawing in O(m+ n) time su
h that:

� Ea
h edge route has one bend.

� Ea
h vertex is 2-degree-restri
ted.
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� The bounding box volume is

�

3m

4

+

5n

8

�

�

�

3m

4

+

5n

8

�

Proof. We represent a vertex v by the max fM

X

(v);M

Y

(v)g � max fM

X

(v);M

Y

(v)g

square. Algorithm 2-D General Position Ar
-Routing determines a 2-D ar
-

routing su
h that,

M

X

(v);M

Y

(v) �

�

max fs(v); p(v)g

2

�

:

Hen
e

surfa
e (v) = 4

�

max fs(v); p(v)g

2

�

� 2 (max fs(v); p(v)g + 1)

� 2 deg(v) + 2 :

So ea
h vertex v is 2-degree-restri
ted. The bounding box side length is at most

X

v

�

max fs(v); p(v)g

2

�

�

X

v

�

1

2

(max fs(v); p(v)g + 1)

�

�

1

2

�

3m

2

+

n

4

+ n

�

(by Theorem 4.2)

�

3m

4

+

5n

8

:

The bounding box volume bound follows.



Chapter 7

The General Position Model for

Multi-Dimensional Orthogonal

Box-Drawing

In this 
hapter we present and analyse algorithms for produ
ing general

position D-dimensional orthogonal box-drawings (D � 3) of arbitrary degree

graphs. For D = 3, our results establish improved bounds for the degree-

restri
tion of verti
es. This 
hapter was published in Wood [222℄.

A D-dimensional orthogonal drawing is in the general position model, 
alled a gen-

eral position orthogonal drawing, if no two verti
es are interse
ted by a single (D� 1)-

dimensional grid-hyperplane. This 
hapter presents algorithms for determining general

position D-dimensional orthogonal drawings, for some 
onstant D � 3. These algo-

rithms generalise those for general position 2-D orthogonal box-drawing presented in

Chapter 6.

This 
hapter is organised as follows. Se
tion 7.1 provides a framework for the

development of the main algorithms to follow. As dis
ussed in Se
tion 3.4.4, algorithms

for general position orthogonal graph drawing 
an be 
lassi�ed as layout- or routing-

based. We present layout-based algorithms in Se
tion 7.2 and a routing-based algorithm

for general position 3-D drawing in Se
tion 7.3.

140
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7.1 Framework

Consider a general position D-dimensional orthogonal drawing of a graph G. Sin
e no

two verti
es share a 
ommon 
oordinate, this drawing indu
es D vertex orderings of G,

representing the relative 
oordinates of the verti
es in ea
h dimension. The assignment

of ports to edge routes, indu
es a (non-proper) D-
olouring of A(G), where an ar


�!

vw 2 A(G) is 
oloured i 2 f1; 2; : : : ;Dg if the edge route vw uses an i-port at v. Sin
e

ea
h pair of verti
es di�er in all D 
oordinates, ea
h edge route has at least D�1 bends.

The ports used by a (D� 1)-bend edge route must be perpendi
ular and point toward

the other vertex, as in Figure 7.1, so for ea
h edge vw the reversal ar
s

�!

vw;

�!

wv 2 A(G)

are 
oloured di�erently.

Figure 7.1: (D � 1)-bend edge routes in D = 3 dimensions.

We therefore represent a general position D-dimensional orthogonal drawing of G

by:

� A (D-dimensional general position) vertex layout of V (G), 
onsisting of D vertex

orderings (<

1

; <

2

; : : : ; <

D

) of G. We 
all <

i

, 1 � i � D, the i-ordering of the

layout, and for D = 3 we will refer to the 1-, 2-, and 3-orderings as the X-, Y -

and Z-orderings.

� A (D-dimensional general position) ar
-routing of A(G), 
onsisting of aD-
olouring

of A(G) su
h that for ea
h edge vw 2 E(G) the reversal ar
s

�!

vw;

�!

wv 2 A(G) are


oloured di�erently.
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Consider a D-dimensional general position vertex layout of a graph G. In ea
h

i-ordering, 1 � i � D, a prede
essor (respe
tively, su

essor) ar
 of a vertex v is 
alled

an i-prede
essor (i-su

essor) ar
 of v (see Se
tion 4.1). We denote the number of

prede
essor and su

essor ar
s of v in the i-ordering by p

i

(v) and s

i

(v), respe
tively. The


ost of a vertex v 2 V (G) in the i-ordering, de�ned in Chapter 4 to be js

i

(v)� p

i

(v)j, is

denoted 


i

(v). The 
ost of v is de�ned to be the average 
ost of v over the D orderings;

i.e.,


(v) =

1

D

X

1�i�D




i

(v)

The following problem is of interest.

Problem 7.1. D-DIMENSIONAL GENERAL POSITION VERTEX LAY-

OUT

Instan
e : graph G, integer K � 0.

Question : Does G have a D-dimensional general position vertex layout with 
(v) � K

for every vertex v 2 V (G)?

We 
onje
ture that this problem is NP-
omplete. In Se
tion 7.2.3 we provide lower

and upper bounds for this problem. The methods to be des
ribed in this se
tion are

summarised in the following algorithm.

Algorithm 7.1. D-Dimensional General Position Box-Drawing

Input: � graph G

� D-dimensional general position vertex layout of V (G)

� D-dimensional general position ar
-routing of A(G)

Output: general position D-dimensional box-drawing of G

1. For ea
h vertex v 2 V (G), determine the size �

1

(v) � �

2

(v)� � � � � �

D

(v) of the

box representing v (see Se
tion 7.1.1).

2. Position ea
h vertex v 2 V (G) at the grid-point with maximum i-
oordinate of

X

w�v

�

i

(w) :
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Note that the bounding box has size

 

X

v

�

1

(v)

!

�

 

X

v

�

2

(v)

!

� � � � �

 

X

v

�

D

(v)

!

:

3. Assign ports to edges, as des
ribed in Se
tion 7.1.2. (An ar


�!

vw 2 A

G

(v)[i℄ will

be assigned a port on the i-fa
e of v pointing towards w.)

4. For ea
h edge vw 2 E(G) 
onstru
t a (D�1)-bend edge route as follows. Suppose

the ar


�!

vw 2 A(G) is 
oloured i 2 f1; 2; : : : ;Dg and its reversal ar


�!

wv is 
oloured

j > i. The edge route vw 
onsists of D 
ontiguous grid-line segments whi
h

traverse the sides of the hyper
ube with 
orners at port(

�!

vw) and port(

�!

wv). These

segments are respe
tively parallel to the i; (i � 1); : : : ; 1; (i + 1); (i + 2); : : : ; (j �

1);D; (D � 1); : : : ; j axes.

5. Remove edge 
rossings using Algorithm 7.2 Box-Drawing Remove Edge Cross-

ings.

For a given general position vertex layout, A

G

(v)hdi denotes the set of outgoing

ar
s at some vertex v 2 V (G) in the dire
tion d; i.e.,

A

G

(v)hdi =

8

>

<

>

:

f

�!

vw 2 A

G

(v) : v <

d

wg ; if d > 0;

f

�!

vw 2 A

G

(v) : w <

�d

vg ; if d < 0.

For ea
h dire
tion d 2 f1; 2; : : : ;Dg and vertex v 2 V (G), the set of ar
s in

A

G

(v)hdi, whi
h are 
oloured i is denoted A

G

(v)hdi[i℄. If an ar


�!

vw 2 A

G

(v)hi

�

i[i℄

then the edge route vw uses an (i

�

)-port at v. The maximum of the number of edges

routed on the (i

+

)-fa
e and (i

�

)-fa
e of v is denoted M

i

(v); i.e.,

M

i

(v) = max

n

�

�

A

G

(v)hii[i℄

�

�

;

�

�

A

G

(v)




i

�

�

[i℄

�

�

o

:

Clearly surfa
e

i

(v) must be at least M

i

(v).

7.1.1 Determining Vertex Size

We now des
ribe how to determine the size of the grid-box representing a vertex v given

the number of edges routed on ea
h fa
e of v. For ea
h vertex v we wish to determine
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positive integers �

i

(v), 1 � i � D, su
h that surfa
e

i

(v) is at least M

i

(v); i.e.,

determine �

i

(v); 1 � i � D su
h that 8i

Y

1�j�D

j 6=i

�

j

(v) �M

i

(v): (7.1)

Our aim is to minimise the surfa
e (v) su
h that (7.1) is satis�ed. For ea
h i with

M

i

(v) = 0 we repla
e M

i

(v) by 1. A solution to the new problem with

surfa
e (v) � k

 

X

i

2M

i

(v)

!

+ k

0

is a solution to the original problem with

surfa
e (v) � k

 

X

i

2M

i

(v)

!

+

�

k

0

+D

�

:

So we now assume that M

i

(v) � 1.

We de�ne M

�

(v) to be the geometri
 mean of fM

i

(v) : i = 1; 2; : : : ;Dg; i.e.,

M

�

(v) =

 

Y

i

M

i

(v)

!

1=D

:

Lemma 7.1. A real-valued exa
t solution to (7.1) 
an be obtained with �

i

(v) = r

i

(v)

where we de�ne

r

i

(v) =

M

�

(v)

D=(D�1)

M

i

(v)

(7.2)

Proof. For ea
h i, 1 � i � D,

surfa
e

i

(v) =

Y

1�k�D

k 6=i

r

k

(v)

=

Y

1�k�D

k 6=i

�

M

�

(v)

D=(D�1)

.

M

k

(v)

�

=

Y

1�k�D

k 6=i

0

B

�

0

�

Y

1�j�D

M

j

(v)

1

A

1=(D�1)

.

M

k

(v)

1

C

A

=

Y

1�k�D

k 6=i

0

B

B

�

 

Y

1�j�D

j 6=k

M

j

(v)

!

.

M

k

(v)

D�2

1

C

C

A

1=(D�1)
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=

0

B

B

�

Y

1�k�D

k 6=i

0

B

B

�

 

Y

1�j�D

j 6=k

M

j

(v)

!

.

M

k

(v)

D�2

1

C

C

A

1

C

C

A

1=(D�1)

=

0

B

B

�

 

M

i

(v)

D�1

Y

1�j�D

j 6=i

M

j

(v)

D�2

!, 

Y

1�k�D

k 6=i

M

k

(v)

D�2

!

1

C

C

A

1=(D�1)

=

�

M

i

(v)

D�1

�

1=(D�1)

=M

i

(v)

This result suggests to obtain an integer-valued solution to (7.1), set �

i

(v) = dr

i

(v)e

for ea
h i. We now present a te
hni
al lemma whi
h will be applied in the analysis of

the algorithms to follow. It essentially says that if the ratios among fM

1

;M

2

; : : : ;M

D

g

are bounded then surfa
e (v) is asymptoti
ally 2

P

i

M

i

(v), whi
h is the obvious lower

bound.

Theorem 7.1. If for ea
h i; j, 1 � i; j � D, M

i

(v)=M

j

(v) � f(v), for some fun
tion

f : V (G)! R, then setting �

i

(v) = dr

i

(v)e,

surfa
e (v) � 2

X

i

M

i

(v) + O

�

f(v)

D�2

�

 

X

i

M

i

(v)

!

(D�2)=(D�1)

Proof. We initially show that M

i

(v)=M

j

(v) � f(v) implies r

i

(v)=r

j

(v) � f(v) for all

i; j, 1 � i; j � D.

max

i

r

i

(v) = min

j

r

j

(v) �

 

max

i

M

�

(v)

D=(D�1)

M

i

(v)

!

Æ

 

min

i

M

�

(v)

D=(D�1)

M

i

(v)

!

= M

j

(v)=M

i

(v) ;

where M

i

(v) and M

j

(v) are maximum and minimum of fM

1

(v);M

2

(v); : : : ;M

D

(v)g.

Hen
e r

i

(v)=r

j

(v) � f(v) for all i; j, 1 � i; j � D.

For ea
h i, 1 � i � D,

surfa
e

i

(v) =

Y

j 6=i

�

j

(v) <

Y

j 6=i

(r

j

(v) + 1)



CHAPTER 7. GENERAL POSITION BOX-DRAWING 146

Sin
e

Q

j 6=i

r

j

(v) = M

i

(v), our aim to is to show that adding one to r

j

(v) does not

in
rease surfa
e

i

(v) by too mu
h. To this end, we establish the following result, whose

proof we defer until Lemma 7.2.

If x

1

; x

2

; : : : ; x

n

> 0 with x

i

; x

j

� �(� 1), for all i; j, 1 � i; j � D, then

n

Y

i=1

(x

i

+ 1) =

n

Y

i=1

x

i

+ O

�

�

n�1

�

 

n

Y

i=1

x

i

!

(n�1)=n

(7.3)

Applying (7.3), with fx

1

; x

2

; : : : ; x

n

g = fr

j

: j 6= ig and � = f(v), we obtain

Y

j 6=i

(r

j

+ 1) �

Y

j 6=i

r

j

+ O

�

f(v)

D�2

�

0

�

Y

6=i

r

j

1

A

(D�2)=(D�1)

:

Hen
e

surfa
e

i

(v) � M

i

(v) + O

�

f(v)

D�2

�

M

i

(v)

(D�2)=(D�1)

Therefore

surfa
e (v)

� 2

X

i

M

i

(v) +

X

i

O

�

f(v)

D�2

�

M

i

(v)

(D�2)=(D�1)

� 2

X

i

M

i

(v) + O

�

f(v)

D�2

�

X

i

M

i

(v)

(D�2)=(D�1)

� 2

X

i

M

i

(v) + O

�

f(v)

D�2

�

 

D

1=(D�1)

X

i

M

i

(v)

!

(D�2)=(D�1)

(by Cau
hy-S
hwarz)

� 2

X

i

M

i

(v) + O

�

f(v)

D�2

�

 

X

i

M

i

(v)

!

(D�2)=(D�1)

Lemma 7.2. If x

1

; x

2

; : : : ; x

n

> 0 (n � 2) with x

i

=x

j

� �, for all i; j, 1 � i; j � D,

then

n

Y

i=1

(x

i

+ 1) �

n

Y

i=1

x

i

+ O

�

�

n�1

�

 

n

Y

i=1

x

i

!

(n�1)=n

(7.4)

Proof. Suppose x

1

� x

2

� � � � � x

n

. Denote

Q

k

i=1

x

i

by P

k

. We pro
eed by indu
tion

on k with the following indu
tion hypothesis.

k

Y

i=1

(x

i

+ 1) � P

k

+ O

�

�

k�1

�

(P

k

)

(k�1)=k

(7.5)
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Consider the 
ase of k = 2. Sin
e x

1

=x

2

� �, we have x

2

� x

1

=� and x

1

x

2

� x

2

1

=�.

So x

1

�

p

x

1

x

2

�. Similarly x

2

�

p

x

1

x

2

�. So (x

1

+1)(x

2

+1) = x

1

x

2

+x

1

+x

2

+1 �

x

1

x

2

+ 2

p

x

1

x

2

� + 1 � x

1

x

2

+ O(�)

p

x

1

x

2

. So the indu
tion hypothesis holds for

n = 2.

Suppose the indu
tion hypothesis holds for all k

0

< k. Then

k

Y

i=1

(x

i

+ 1)

= (x

k

+ 1)

k�1

Y

i=1

(x

i

+ 1)

� (x

k

+ 1)

�

P

k�1

+ O

�

�

k�2

�

(P

k�1

)

(k�2)=(k�1)

�

(by the indu
tion hypothesis)

� P

k

+ x

k

O

�

�

k�2

�

(P

k�1

)

(k�2)=(k�1)

+ P

k�1

+ O

�

�

k�2

�

(P

k�1

)

(k�2)=(k�1)

(7.6)

We now determine upper bounds in terms of � and P

k

for ea
h 
omponent of (7.6).

Sin
e x

k

� x

j

, for j, 1 � j � k � 1, we have x

k�1

k

� P

k�1

. So

x

k

� (P

k�1

)

1=(k�1)

: (7.7)

Now, for all j, 1 � j � k � 1, we have x

j

=x

k

� �. So x

k

� x

j

=�, and hen
e

x

k�1

k

� P

k�1

=�

k�1

x

k

k

� P

k

=�

k�1

x

k

� (P

k

=�

k�1

)

1=k

x

�1

k

� (�

k�1

=P

k

)

1=k

x

�1

k

� �

(k�1)=k

P

�1=k

k

P

k�1

� �

(k�1)=k

P

1�1=k

k

P

k�1

� (�P

k

)

(k�1)=k

: (7.8)

Now,

x

k

O

�

�

k�2

�

(P

k�1

)

(k�2)=(k�1)

� (P

k�1

)

1=(k�1)

O

�

�

k�2

�

(P

k�1

)

(k�2)=(k�1)

(by (7.7))

� O

�

�

k�2

�

P

k�1
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� O

�

�

k�2

�

(�P

k

)

(k�1)=k

(by (7.8))

� O

�

�

k�1

�

(P

k

)

(k�1)=k

: (7.9)

Now,

O

�

�

k�2

�

(P

k�1

)

(k�2)=(k�1)

� O

�

�

k�2

��

(�P

k

)

(k�1)=k

�

(k�2)=(k�1)

(by (7.8))

� O

�

�

k�2

�

(�P

k

)

(k�2)=k

(by (7.8))

� O

�

�

k�1

�

(P

k

)

(k�2)=k

: (7.10)

Substituting (7.8), (7.9) and (7.10) into (7.6) we obtain,

k

Y

i=1

(x

i

+ 1)

� P

k

+ O

�

�

k�1

�

(P

k

)

(k�1)=k

+ (�P

k

)

(k�1)=k

+ O

�

�

k�1

�

(P

k

)

(k�2)=k

� P

k

+ O

�

�

k�1

�

(P

k

)

(k�1)=k

:

Hen
e the indu
tion hypothesis holds for k, and by the indu
tion prin
iple the result

holds.

In D = 3 dimensions we have the following bound for the surfa
e (v) regardless of

whether M

X

(v), M

Y

(v) and M

Z

(v) have bounded ratios.

Lemma 7.3. For every M

X

(v), M

Y

(v) and M

Z

(v) there is a solution to (7.1) with

surfa
e (v) � 4 (M

X

(v) +M

Y

(v) +M

Z

(v)) +O(1)

Proof. In what follows fi; j; kg = fX;Y;Zg, and we omit the `(v)' from M

i

(v), r

i

(v),

et
. Note that for D = 3, problem (7.1) be
omes

determine �

i

; �

j

; �

k

su
h that �

i

�

j

�M

k

; �

i

�

k

�M

j

and �

j

�

k

�M

i

: (7.11)

We wish to minimise the surfa
e (v) = 2 (�

i

�

j

+ �

i

�

k

+ �

j

�

k

). For ea
h i 2 fX;Y;Zg

the real-valued exa
t solution to (7.11) is given by

(�

i

=) r

i

=

r

M

j

M

k

M

i

:
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Suppose without loss of generality that M

i

�M

j

and M

i

�M

k

. Then r

i

� r

j

and

r

i

� r

k

. We initially 
onsider three spe
ial 
ases for small values of r

i

.

Case 1: r

i

� 1 (i.e., M

i

�M

j

M

k

).

We set �

i

 1, �

j

 M

k

and �

k

 dM

i

=M

k

e. Hen
e

�

i

�

j

=M

k

; �

i

�

k

�M

i

=M

k

�M

j

and �

j

�

k

�M

k

(M

i

=M

k

) =M

i

:

So a valid solution to (7.11) is determined. We have the following upper bound.

surfa
e (v) = 2(�

i

�

j

+ �

i

�

k

+ �

j

�

k

)

= 2(M

k

+ dM

i

=M

k

e+M

k

dM

i

=M

k

e)

< 2(M

k

+M

i

=M

k

+ 1 +M

k

(M

i

=M

k

+ 1))

= 2(2M

k

+M

i

=M

k

+M

i

+ 1)

� 2(2M

k

+ 2M

i

+ 1) :

So, in this 
ase the result stands.

Case 2: 1 < r

i

�

p

2 (i.e., M

j

M

k

=2 �M

i

< M

j

M

k

).

We set �

i

 1, �

j

 M

k

and �

k

 M

j

. Hen
e

�

i

�

j

=M

k

; �

i

�

k

=M

j

and �

j

�

k

=M

k

M

j

> M

i

:

So a valid solution to (7.11) is determined. We have the following upper bound.

surfa
e (v) = 2(�

i

�

j

+ �

i

�

k

+ �

j

�

k

)

= 2(M

k

+M

j

+M

k

M

j

)

� 2(M

k

+M

j

+ 2M

i

) :

So, in this 
ase the result stands.

Case 3:

p

2 < r

i

� 2 (i.e., M

j

M

k

=4 �M

i

< M

j

M

k

=2).

Set �

i

 2. Assume without loss of generality thatM

j

�M

k

, and set �

j

 dM

k

=2e

and �

k

 M

j

. Hen
e

�

i

�

j

= 2 dM

k

=2e �M

k

;
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�

i

�

k

= 2M

j

> M

j

, and

�

j

�

k

= dM

k

=2eM

j

�M

j

M

k

=2 > M

i

:

So a valid solution to (7.11) is determined. We have the following upper bound.

surfa
e (v) = 2(�

i

�

j

+ �

i

�

k

+ �

j

�

k

)

= 2(2 dM

k

=2e+ 2M

j

+ dM

k

=2eM

j

)

� 2(M

k

+ 1 + 2M

j

+M

j

M

k

=2 +M

j

=2)

� 2(M

k

+ 1 + 2M

j

+ 2M

i

+M

k

=2)

= 2(2M

i

+ 2M

j

+ 3M

k

=2 + 1)

So, in this 
ase the result stands.

Case 4: r

i

> 2 for every i 2 f1; 2; 3g.

Set �

i

 dr

i

e, �

j

 dr

j

e, and �

k

 dr

k

e. Obviously this is a valid solution to

(7.11) and we have the following upper bound.

surfa
e (v) = 2(�

i

�

j

+ �

i

�

k

+ �

j

�

k

)

< 2((r

i

+ 1)(r

j

+ 1) + (r

i

+ 1)(r

k

+ 1) + (r

j

+ 1)(r

k

+ 1))

= 2((r

i

r

j

+ r

i

+ r

j

+ 1) + (r

i

r

k

+ r

i

+ r

k

+ 1) + (r

j

r

k

+ r

j

+ r

k

+ 1))

= 2((M

k

+ r

i

+ r

j

) + (M

j

+ r

i

+ r

k

) + (M

i

+ r

j

+ r

k

) + 3)

It is well-known that x + y � xy for any two real numbers x; y � 2. So r

i

+ r

j

�

r

i

r

j

=M

k

, r

i

+ r

k

� r

i

r

k

=M

j

and r

j

+ r

k

� r

j

r

k

=M

i

. Hen
e

surfa
e (v) � 2(2M

i

+ 2M

j

+ 2M

k

+ 3) ;

and, in this 
ase the result stands.

7.1.2 Determining Port Assignments

Given a general position vertex layout and ar
-routing, we now des
ribe how to assign

ports on a vertex v to the ar
s in
ident to v su
h that an ar


�!

vw 2 A(v)[i℄ is assigned

an i-port on v pointing toward w. Suppose the k

th

segment of an ar


�!

vw, 1 � k � D,

refers to the k

th

segment of the edge route vw starting at v.
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We �rstly assign ports to ar
s so that no two edges routed on the same fa
e 
an

interse
t. This algorithm improves on the algorithm of Biedl [27℄ for D = 3, in that we

potentially use all the ports on a fa
e. This is possible due to the se
ond stage of our

port assignment method whi
h eliminates all subsequent edge route 
rossings.

We now des
ribe how to assign the ports on the (i

+

)-fa
e of a vertex v (for some

dimension i), to the ar
s in A

G

(v)hi

+

i[i℄; i.e. ar
s

�!

vw 
oloured i with w in dire
tion i

+

from v. Assigning ports on the (i

�

)-fa
e to the ar
s in A

G

(v)hi

�

i[i℄ is analogous.

We group the ar
s inA

G

(v)hi

+

i[i℄ a

ording to the dire
tion of their se
ond segment,

whi
h by the routing of edges des
ribed in Algorithm 7.1 D-Dimensional General

Position Box-Drawing is one of (i+ 1)

+

, (i+ 1)

�

, (i� 1)

+

and (i� 1)

�

. For these


ases we say an ar
 in A

G

(v)hii[i℄ is either an up, down, right or left ar
, respe
tively.

Ports are assigned so that the ports `underneath' the se
ond segment of an ar
 are

assigned to ar
s within the same grouping.

Firstly, as illustrated in Figure 7.2(a), we partition the fa
e into two regions, the

�rst with enough ports for the Down and Right ar
s, and the se
ond with enough ports

for the Up and Left ar
s. Within the �rst region we determine the ports to be used by

the Right ar
s by numbering the ports starting at the top-right 
orner in a right-to-left

row-by-row fashion, as in Figure 7.2(a). Similarly, we determine the ports of the se
ond

region to be used by the Left ar
s by numbering the ports starting at the bottom-left


orner of the se
ond region in a left-to-right row-by-row fashion. The remaining ports

in the �rst region are assigned to the Down ar
s and the remaining ports in the se
ond

region are assigned to the Up ar
s, as in Figure 7.2(b).

We assign ports to the ar
s in ea
h grouping in turn, and within a grouping we

assign ports to the ar
s in in
reasing order of the length of the �rst segment of the ar
.

Sin
e our graphs are simple this length is unique. For ea
h ar
 we 
hoose an unused

port within its grouping so that the se
ond segment of the produ
ed edge route has

minimum possible length, as in Figure 7.2(b). Clearly no two edges routed on the same

fa
e 
an interse
t.
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(a) (b)

Down & Right

Up & Left

1 2 3 12

3456

Figure 7.2: Determining port assignments on a fa
e.

7.1.3 Removing Edge Crossings

We now show how to remove edge route 
rossings in general position D-dimensional

orthogonal box-drawings (D � 3). The method is a generalisation of the 
rossing

elimination rule for 3-D orthogonal point-drawings shown in Figure 5.11.

Suppose the edge routes vw and xy interse
t at some grid-point, and the interse
ting

segments of vw and xy are a- and b-segments, respe
tively (for some dimensions a and

b). Label the endpoints of these segments r, s, p and q as shown in Figure 7.3(a).

a

b

v r ws

x

q

y

p

b bb bb b

b

b

b

b

b

b

(a)

v

r

ws

x

q

y

p

bb b

b

b

b

(b)

x

w

v

y

p

s

bb b

b

b

b

(
)

Figure 7.3: Removing edge 
rossings in general position.

In what follows we des
ribe a sequen
e of segments 
ontained in an edge route as a

path. Sin
e the graph is simple, we 
an assume without loss of generality that y 6= w.

Therefore port(

�!

wv) and port(

�!

yx) di�er in every 
oordinate. It follows that for every

dimension i ex
ept for a and b, there is an i-segment on the paths from w to s, and



CHAPTER 7. GENERAL POSITION BOX-DRAWING 153

y to p. This implies there is at most one segment on the paths r to v, and if there

is su
h a segment then it is a b-segment. Similarly, there is at most one segment on

the path q to x, and if there is su
h a segment then it is an a-segment. This implies

that v and x are 
oplanar, and sin
e the verti
es are in general position, v = x. By

the 
onstru
tion used in the previous se
tion, edge routes are assigned unique ports

on a fa
e, and no two edge routes on the same fa
e 
an interse
t. So the paths from

r to v (= x) and from q to x (= v) have exa
tly one segment, and the edge 
rossing

o

urs between the se
ond segments of ar
s in
ident to a 
ommon vertex, as shown

in Figure 7.3(b). Ea
h su
h 
rossing 
an be removed by swapping the ports assigned

to these ar
s, and rerouting the 
orresponding edge routes as shown in Figure 7.3(
).

We have the following algorithm for removing edge route 
rossings in general position

orthogonal drawings.

Algorithm 7.2. Box-Drawing Remove Edge Crossings

Input: D-dimensional general position orthogonal drawing of a graph G (possibly with


rossings)

Output: D-dimensional general position orthogonal drawing of G (without 
rossings).

A A(G)

while A 6= ; do

Choose

�!

vw 2 A.

Set A A n f

�!

vwg.

if

�!

vw interse
ts some other ar


�!

vu then

Swap the ports at v assigned to

�!

vw and

�!

vu.

Reroute the edge routes vu and vw as des
ribed above.

Set A A [ f

�!

vu;

�!

vwg.

if D = 3 then

Set A A [ f

�!

uv;

�!

wvg.

end-if

end-if

end-while
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Lemma 7.4. The algorithm Box-Drawing Remove Edge Crossings removes all


rossings from the given general position orthogonal box-drawing in O(mn�) time.

Proof. We shall prove that at all times the set A 
ontains all ar
s whi
h possibly

interse
t some other ar
. Initially this is true sin
e A = A(G). As proved above, an ar


�!

vw 
an only interse
t another ar
 in
ident to v. Hen
e, if

�!

vw does not interse
t some

other ar


�!

vu, then

�!

vw does not interse
t any ar
, and

�!

vw 
an be removed from A.

Suppose that

�!

vw interse
ts some other ar


�!

vu. After swapping the ports assigned

to

�!

vu and

�!

vw all new edge 
rossings must involve

�!

vu or

�!

vw (or

�!

uv or

�!

wv if D = 3).

By adding

�!

vu and

�!

vw (and

�!

uv and

�!

wv if D = 3) to A for re-
he
king, we maintain

the 
ondition that A 
ontains all ar
s whi
h possibly interse
t some other ar
. The

algorithm 
ontinues until A = ;, at whi
h point the drawing must be 
rossing-free.

For an ar


�!

vw whose se
ond segment is parallel to the i-axis, let l(

�!

vw) = jp � qj,

where (u

1

; u

2

; : : : ; u

n

) is the i-ordering of the verti
es and v = u

p

and w = u

q

.

Now l(

�!

vw) = O(n), so

P

�!

vw

l(

�!

vw) = O(mn). Ea
h port swap between ar
s

�!

vw and

�!

vu redu
es l(

�!

vw) + l(

�!

vu). Hen
e there will be O(mn) port swaps. Therefore O(mn)

ar
s are added to A, so O(mn) ar
s are 
he
ked for 
rossings. To test if an ar
 interse
ts

some other ar
 takes O(�) time, so the algorithm takes O(mn�) time.

The e�e
t of a number of port swaps, all in the same plane, is shown in Figure 7.4.

�

�

�

�

�

?

�

���

�	

�

���

�	

�

���

�	

�

���

�	

�

���

�	

�

���

�	

�

���

�	

=)

�

�

�

�

�

?

Figure 7.4: Rerouting 
rossing edge routes.
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Based on the above methods for port assignment and the elimination of edge 
ross-

ings we have the following result.

Lemma 7.5. Given a D-dimensional general position vertex layout, D-dimensional

general position ar
-routing and the size of ea
h vertex of a graph G, if for every vertex

v 2 V (G) the surfa
e

i

(v) � M

i

(v) for ea
h i, 1 � i � D, then a 
rossing-free assign-

ment of the ports on ea
h vertex v to the ar
s A

G

(v) 
an be determined in O(mn�)

time.

7.1.4 Upper Bounds

We now establish upper bounds for the surfa
e and volume of the bounding box of a

general position D-dimensional orthogonal box-drawing in terms of the size and shape

of the verti
es. For ea
h vertex v we denote the arithmeti
, geometri
 and harmoni


means of �

1

(v); �

2

(v); : : : ; �

D

(v) by �

+

(v), �

�

(v) and �

�

(v) respe
tively; i.e.,

�

+

(v) =

1

D

X

1�i�D

�

i

(v); �

�

(v) =

0

�

Y

1�i�D

�

i

(v)

1

A

1=D

; �

�

(v) = D

0

�

X

1�i�D

1

�

i

(v)

1

A

�1

:

Obviously volume (v) = �

�

(v)

D

, and also,

surfa
e (v) = 2

X

1�i�D

Y

1�j�D

j 6=i

�

j

(v)

= 2

X

1�i�D

�

�

(v)

D

�

i

(v)

= 2�

�

(v)

D

X

1�i�D

1

�

i

(v)

=

2D�

�

(v)

D

�

�

(v)

: (7.12)

The arithmeti
, geometri
 and harmoni
 means of the dimensions of the bounding

box are denoted by �

+

, �

�

and �

�

respe
tively. As in (7.12) we have,

surfa
e ( bounding box ) =

2D(�

�

)

D

�

�

: (7.13)

It is well-known that, of the D-dimensional hyperboxes with �xed sum of side

lengths, the D-dimensional hyper
ube has maximum volume and maximum surfa
e
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area (see for example Kazarino� [126℄). Given a D-dimensional vertex v, 
onsider the

hyper
ube C with the same sum of side lengths as v; i.e., C has side length �

+

(v). We

de�ne the surfa
e aspe
t(v) to be the ratio of the surfa
e(C) to the surfa
e(v), and the

volume aspe
t(v) to be the ratio of the volume(C) to the volume(v). Clearly surfa
e

aspe
t and volume aspe
t are both at least one. By (7.12) we have,

surfa
e aspe
t (v) =

surfa
e (C)

surfa
e (v)

=

�

+

(v)

D�1

�

�

(v)

�

�

(v)

D

; (7.14)

volume aspe
t (v) =

volume (C)

volume (v)

=

�

�

+

(v)

�

�

(v)

�

D

: (7.15)

Lemma 7.6. For a general position D-dimensional orthogonal box-drawing,

surfa
e ( bounding box ) � n

D�2

X

v

surfa
e aspe
t (v)� surfa
e (v)

Proof. Sin
e the surfa
e aspe
t of the bounding box is at least one, by (7.14) applied

to the bounding box,

(�

�

)

D

=�

�

� (�

+

)

D�1

;

so by (7.13),

surfa
e ( bounding box ) =

2D(�

�

)

D

�

�

� 2D

�

�

+

�

D�1

:

The average side `length' of the bounding box is

�

+

=

1

D

X

i

X

v

�

i

(v) :

So the surfa
e of the bounding box is

2D

 

1

D

X

i

X

v

�

i

(v)

!

D�1

= 2D

 

X

v

1

D

X

i

�

i

(v)

!

D�1

= 2D

 

X

v

�

+

(v)

!

D�1

:

By the Cau
hy-S
hwarz inequality,

2D

 

X

v

�

+

(v)

!

D�1

� 2Dn

D�2

X

v

�

+

(v)

D�1
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= n

D�2

X

v

�

�

+

(v)

D�1

�

�

(v)

�

�

(v)

D

�

�

�

2D�

�

(v)

D

�

�

(v)

�

= n

D�2

X

v

surfa
e aspe
t (v)� surfa
e (v) :

It is easily seen that this bound is tight for D = 2, for same-sized hyper
ube draw-

ings and in the 
ase of n = D pairwise perpendi
ular lines. The proof of the following

bound on the volume of the bounding box is similar to that of Lemma 7.6.

Lemma 7.7. For a general position D-dimensional orthogonal box-drawing,

volume ( bounding box ) � n

D�1

X

v

volume aspe
t (v)�

�

surfa
e (v)

2D

�

D=(D�1)

Proof. The volume of the bounding box is

(�

�

)

D

�

�

�

+

�

D

=

0

�

X

1�i�D

X

v

�

i

(v)

D

1

A

D

=

0

�

X

v

X

1�i�D

�

i

(v)

D

1

A

D

=

 

X

v

�

+

(v)

!

D

:

By the Cau
hy-S
hwarz inequality,

 

X

v

�

+

(v)

!

D

� n

D�1

X

v

�

+

(v)

D

= n

D�1

X

v

�

�

+

(v)

�

�

(v)

�

D

�

�

(v)

D

= n

D�1

X

v

volume aspe
t (v)� volume (v)

Of the D-dimensional hyperboxes with �xed surfa
e S, the 
ube with side length

(S=2D)

1=(D�1)

has maximum volume [126℄. So

volume ( bounding box ) � n

D�1

X

v

volume aspe
t (v)�

�

surfa
e (v)

2D

�

D=(D�1)

:
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Corollary 7.1. For a general position D-dimensional orthogonal box-drawing,

surfa
e ( bounding box ) � n

D�2

X

v

aspe
t ratio (v)� surfa
e (v)

volume ( bounding box ) � n

D�1

X

v

aspe
t ratio (v)�

�

surfa
e (v)

2D

�

D=(D�1)

:

Proof. Of the D-dimensional hyperboxes with �xed sum of side lengths, the line has

minimum surfa
e and minimum volume, so the surfa
e aspe
t and volume aspe
t of a

line is maximum (for the D-dimensional hyperboxes with �xed sum of side lengths).

The surfa
e aspe
t and volume aspe
t of a line are no more than its aspe
t ratio. The

result follows from Lemma 7.6 and Lemma 7.7.

The next result will be used to establish a bound on the bounding box volume for

the orthogonal graph drawing algorithms presented in Se
tions 7.2 and 7.3.

Theorem 7.2. A d-degree-restri
ted general position D-dimensional orthogonal box-

drawing with ea
h vertex having aspe
t ratio at most a has

volume ( bounding box ) � a

�

n

D�2

�

dm

D

+ o (m)

��

D=(D�1)

Proof. By Corollary 7.1,

volume ( bounding box ) � n

D�1

X

v

a

�

surfa
e (v)

2D

�

D=(D�1)

:

By the Cau
hy-S
hwarz inequality,

volume ( bounding box ) � an

D�1

 

n

(D�1)=D�1

X

v

surfa
e (v)

2D

!

D=(D�1)

= an

D�1

n

�1=(D�1)

 

X

v

surfa
e (v)

2D

!

D=(D�1)

= an

D(D�2)=(D�1)

 

X

v

surfa
e (v)

2D

!

D=(D�1)

= a

 

n

D�2

X

v

surfa
e (v)

2D

!

D=(D�1)

Sin
e the drawing is d-degree-restri
ted,

volume ( bounding box ) � a

 

n

D�2

X

v

d � deg(v) + o (deg(v))

2D

!

D=(D�1)
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= a

�

n

D�2

�

dm

D

+ o (m)

��

D=(D�1)

:

7.2 Layout-Based Algorithms

In this se
tion we des
ribe our layout-based approa
h for determining general position

D-dimensional orthogonal drawings, for some 
onstant D � 3. In Se
tion 7.2.1 we

present an algorithm for determining an ar
-routing given an arbitrary general position

vertex layout. We derive algorithms using �xed, balan
ed and diagonal vertex layouts

in Se
tions 7.2.2, 7.2.3 and 7.2.4.

7.2.1 Ar
-Routing Algorithm

We now present an algorithm for determining an ar
-routing of A(G) with respe
t to

a given general position vertex layout of a graph G. To represent the 
olouring of

A(G) we vertex-
olour a graph H with vertex set V (H) = A(G). We represent a D-

dimensional orthant by the 
orresponding set of D pairwise non-opposite dire
tions.

For a given vertex v and dire
tion d, the set of orthants fT : d 2 Tg in dire
tion d from

v is denoted �

D

d

(v). We denote the set of ar
s

�!

vw at a vertex v with w in orthant T

by A

G

(v)hT i; i.e.,

A

G

(v)hT i =

\

d2T

A

G

(v)hdi :

Algorithm 7.3. D-Dimensional General Position Ar
-Routing

Input: � graph G

� D-dimensional general position vertex layout of V (G)

Output: D-dimensional general position ar
-routing of A(G)

1. For ea
h edge vw 2 E(G), insert the edge f

�!

vw;

�!

wvg to E(H) (
alled an `r'-edge).

2. For ea
h vertex v 2 V (G) and for ea
h orthant T relative to v,
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(a) Partition the ar
s in A

G

(v)hT i into sets Q

1

; Q

2

; : : : ; Q

k

, so that jQ

j

j = D,

1 � j < k (see Figure 7.5).

(b) Add a 
lique (
alled `
'-edges) to E(H) between the verti
es of H 
orre-

sponding to the ar
s in Q

j

, 1 � j � k.

3. Determine a D-
olouring of A(G) from a vertex-
olouring of H with D 
olours.

v

�

(X

+

; Y

+

; Z

�

)-

orthant

�

(X

+

; Y

+

; Z

+

)-

orthant

�

(X

�

; Y

+

; Z

�

)-

orthant

�

(X

�

; Y

+

; Z

+

)-

orthant

�

(X

+

; Y

�

; Z

+

)-

orthant

�

(X

+

; Y

�

; Z

�

)-

orthant

�

(X

�

; Y

�

; Z

+

)-

orthant

�

(X

�

; Y

�

; Z

�

)-

orthant

Figure 7.5: Partitioning of A

G

(v) and 
onstru
tion of H for D = 3.

Lemma 7.8. The algorithm D-Dimensional General Position Ar
-Routing

determines an ar
-routing of A(G) in O(D(m+ n)) time su
h that for ea
h vertex

v 2 V (G),

2

X

i

M

i

(v) � deg(v) + 
(v) + (D � 1)2

D

:

Proof. A vertex of H is in
ident with one `r' edge and at most D � 1 `
' edges. So the

maximum degree �(H) � D, and sin
e the 
omplete graph K

D+1

6� H, by Brooks'

Theorem [47℄, H is vertex D-
olourable. The proof of Brook's Theorem due to Lov�asz

[147℄ and simpli�ed by Bryant [49℄ des
ribes an algorithm for �nding a vertex-
olouring
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of H with at most �(H) 
olours in O(jE(H)j) = O(Dm) time. The vertex-
olouring

of H determines a D-dimensional routing of A(G). Sin
e f

�!

vw;

�!

wvg 2 E(H), reversal

ar
s are 
oloured di�erently, so the routing is an ar
-routing.

For ea
h orthant T relative to a vertex v and in ea
h partition of A

G

(v)hT i, there is

at most one ar


�!

vw 
oloured i, 1 � i � D. Therefore, for ea
h dimension i, 1 � i � D,

we have the following bounds on the number of ar
s

�!

vw 
oloured i with w in dire
tion

i

+

from v.

X

T2�

D

i

(v)

$

�

�

A

G

(v)hT i

�

�

D

%

�

�

�

A

G

(v)hii[i℄

�

�

�

X

T2�

D

i

(v)

&

�

�

A

G

(v)hT i

�

�

D

'

:

So,

1

D

0

�

0

�

X

T2�

D

i

(v)

�

�

A

G

(v)hT i

�

�

1

A

� (D � 1)j�

D

i

(v)j

1

A

�

�

�

A

G

(v)hii[i℄

�

�

�

1

D

0

�

0

�

X

T2�

D

i

(v)

�

�

A

G

(v)hT i

�

�

1

A

+ (D � 1)j�

D

i

(v)j

1

A

:

It follows that

1

D

�

s

i

(v)� (D � 1)2

D�1

�

�

�

�

A

G

(v)hii[i℄

�

�

�

1

D

�

s

i

(v) + (D � 1)2

D�1

�

:

Similarly,

1

D

�

p

i

(v)� (D � 1)2

D�1

�

�

�

�

A

G

(v)




i

�

�

[i℄

�

�

�

1

D

�

p

i

(v) + (D � 1)2

D�1

�

:

Sin
e M

i

(v) = max fjA

G

(v)hii[i℄ j; jA

G

(v)hi

�

i[i℄ jg,

1

D

�

max fs

i

(v); p

i

(v)g � (D � 1)2

D�1

�

� M

i

(v) �

1

D

�

max fs

i

(v); p

i

(v)g + (D � 1)2

D�1

�

:

By (4.1),

1

D

�

1

2

(deg(v) + 


i

(v))� (D � 1)2

D�1

�
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� M

i

(v) �

1

D

�

1

2

(deg(v) + 


i

(v)) + (D � 1)2

D�1

�

: (7.16)

Summing over all dimensions, we obtain,

X

i

M

i

(v) �

X

i

1

D

�

1

2

(deg(v) + 


i

(v)) + (D � 1)2

D�1

�

2

X

i

M

i

(v) �

X

i

1

D

�

deg(v) + 


i

(v) + (D � 1)2

D

�

2

X

i

M

i

(v) � deg(v) + 
(v) + (D � 1)2

D

:

7.2.2 Fixed Vertex Layout Drawings

We now derive an algorithm for a �xed general position vertex layout.

Algorithm 7.4. Fixed General Position D-Dimensional Box-Drawing

Input: � graph G.

� D-dimensional general position vertex layout of V (G).

Output: layout-preserving D-dimensional orthogonal box-drawing of G.

1. Determine an ar
-routing with Algorithm 7.3 D-Dimensional General Posi-

tion Ar
-Routing.

2. Apply Algorithm 7.1 D-Dimensional General Position Box-Drawing.

Theorem 7.3. The algorithm Fixed General Position D-Dimensional Box-

Drawing determines a layout-preserving D-dimensional orthogonal box-drawing of G

in O(mn�) time su
h that:

� Ea
h edge route has D � 1 bends.

� Ea
h vertex is 2-degree-restri
ted

� The aspe
t ratio of ea
h vertex v is at most 2 + o (deg(v)).
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� The bounding box volume is O

�

�

n

D�2

m

�

D=(D�1)

�

.

Proof. By (7.16) and sin
e 


i

(v) � deg(v),

1

D

�

1

2

deg(v)� (D � 1)2

D�1

�

� M

i

(v) �

1

D

�

deg(v) + (D � 1)2

D�1

�

:

So for all i; j, 1 � i; j;� D,

M

i

(v)

M

j

(v)

�

deg(v) + (D � 1)2

D�1

1

2

deg(v)� (D � 1)2

D�1

�

2 deg(v) + (D � 1)2

D

deg(v)� (D � 1)2

D

�

2

�

deg(v)� (D � 1)2

D

�

+ 3(D � 1)2

D

deg(v)� (D � 1)2

D

� 2 +

3(D � 1)2

D

deg(v)� (D � 1)2

D

:

It follows from Theorem 7.1 with

f(v) = 2 +

3(D � 1)2

D

deg(v)� (D � 1)2

D

that

surfa
e (v) � 2

X

i

M

i

+

�

2 +

3(D � 1)2

D

deg(v)� (D � 1)2

D

�

D�2

 

X

i

M

i

!

(D�2)=(D�1)

:

For 
onstant D we have

surfa
e (v) � 2

X

i

M

i

+

�

2 +O

�

deg(v)

�1

��

D�2

 

X

i

M

i

!

(D�2)=(D�1)

: (7.17)

By Lemma 7.8 and sin
e 
(v) � deg(v) with D a 
onstant we have

2

X

i

M

i

(v) � 2 deg(v) +O(1) :

Hen
e,

surfa
e (v) � 2 deg(v) +O(1)

�

2 +O

�

deg(v)

�1

��

D�2

�

deg(v) +O(1)

�

(D�2)=(D�1)

� 2 deg(v) +O

�

deg(v)

(D�2)=(D�1)

�

� 2 deg(v) + o (deg(v)) :
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So v is 2-degree-restri
ted. Suppose �

i

(v) and �

j

(v) are the maximum and minimum

of f�

1

(v); �

2

(v); : : : ; �

D

(v)g, respe
tively. Then

aspe
t ratio (v) = �

i

(v)=�

j

(v)

=

0

�

�

i

(v)

Y

k 6=i;j

�

k

(v)

1

A

Æ

0

�

�

j

(v)

Y

k 6=i;j

�

k

(v)

1

A

=

0

�

Y

k 6=j

�

k

(v)

1

A

Æ

0

�

Y

k 6=i

�

k

(v)

1

A

=

surfa
e

j

(v)

surfa
e

i

(v)

:

Now,

surfa
e

j

(v) � M

j

(v) + O

�

f(v)

D�2

�

M

j

(v)

(D�2)=(D�1)

� M

j

(v) +

�

2 +O

�

deg(v)

�1

��

D�2

M

j

(v)

(D�2)=(D�1)

:

Sin
e M

j

(v) �

1

D

�

deg(v) + (D � 1)2

D�1

�

, for 
onstant D we have

surfa
e

j

(v) �

1

D

deg(v) +O

�

deg(v)

(D�2)=(D�1)

�

:

Now surfa
e

i

(v) � deg(v)=2D, so

aspe
t ratio (v) �

1

D

deg(v) +O

�

deg(v)

(D�2)=(D�1)

�

1

2D

deg(v)

�

2 deg(v) +O

�

deg(v)

(D�2)=(D�1)

�

deg(v)

� 2 + o (deg(v)) :

Hen
e the aspe
t ratio of v is 2 + o (deg(v)). The volume bound follows immediately

from Theorem 7.2.

Applying Algorithm D-Dimensional General Position Box-Drawing, whi
h

takes O(mn�) time, is the most time-
onsuming step of the algorithm. So Algorithm

Fixed General Position D-Dimensional Box-Drawing takes O(mn�) time.

7.2.3 Balan
ed Vertex Layout Drawings

We initially show that the 
omplete graph provides a lower bound for the problem

D-DIMENSIONAL GENERAL POSITION VERTEX LAYOUT.
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Lemma 7.9. In any D-dimensional general position vertex layout of K

n

there is a

vertex v with


(v) �

deg(v)

2

:

Proof. By Lemma 4.1, the total 
ost of a D-dimensional layout of K

n

is

X

v

1

D

X

i




i

(v) =

1

D

X

i

X

v




i

(v) =

1

D

X

i

�

n

2

=2

�

=

�

n

2

2

�

:

So even if ea
h vertex has the same 
ost, there exists a vertex v with


(v) �

�

n

2

=2

�

n

=

8

>

<

>

:

n=2; if n is even;

(n

2

� 1)=2n; if n is odd.

>

n� 1

2

=

deg(v)

2

:

The following algorithm provides a tight upper bound for the problem

D-DIMENSIONAL GENERAL POSITION VERTEX LAYOUT. It is based on the

algorithm for determining balan
ed 2-D general position vertex layouts presented in

Chapter 6.

Algorithm 7.5. Balan
ed D-Dimensional General Position Vertex Layout

Input: graph G and positive integer D.

Output: D-dimensional general position vertex layout of G.

1. Determine a 2-D general position vertex layout, represented by X- and Y - ver-

tex orderings, with Algorithm 6.4 Balan
ed 2-D General Position Vertex

Layout.

2. Set the i-ordering of the vertex layout to be the X-ordering for odd i, 1 � i � D.

3. Set the i-ordering of the vertex layout to be the Y -ordering for even i, 1 � i � D.
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Theorem 7.4. The algorithm Balan
edD-Dimensional General Position Ver-

tex Layout determines a D-dimensional general position vertex layout of G in

O(D(m+ n)) time su
h that for ea
h vertex v,


(v) � 1 +

dD=2e

D

deg(v) :

Proof. For ea
h vertex v and ea
h ordering i, 1 � i � D, the 
ost 


i

(v) � s(v) + 1 if i

is odd, and 


i

(v) � p(v) + 1 if i is even. So


(v) �

1

D

��

D

2

�

(s(v) + 1) +

�

D

2

�

(p(v) + 1)

�

=

1

D

��

D

2

�

deg(v) +

��

D

2

�

�

�

D

2

��

s(v) +D

�

�

1

D

��

D

2

�

deg(v) +D

�

= 1 +

dD=2e

D

deg(v) :

By Theorem 6.2, a balan
ed 2-D vertex layout 
an be determined in O(m+ n) time,

so algorithmBalan
ed D-Dimensional General Position Vertex Layout takes

O(D(m+ n)) time.

For a D-dimensional general position vertex layout of K

n

the upper bound provided

by Theorem 7.4 is


(v) � 1 +

dD=2e

D

deg(v) =

8

>

<

>

:

(n+ 1)=2; if D is even;

1 + (n� 1)(D + 1)=2D; if D is odd.

For even D, the di�eren
e between this upper bound and the lower bound of

Lemma 7.9 is at most 1. For odd D, the di�eren
e between the upper and lower

bounds is at least n=2D. It is an open problem to establish tight bounds on max

v


(v)

in the 
ase of odd D. We now derive results for general position orthogonal graph

drawing based on a balan
ed vertex layout.

Algorithm 7.6. Balan
ed General Position D-Dimensional Box-Drawing

Input: graph G.

Output: D-dimensional orthogonal box-drawing of G.
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1. Determine a general position vertex layout with the Balan
ed D-Dimensional

General Position Vertex Layout algorithm.

2. Determine an ar
-routing with Algorithm 7.3 D-Dimensional General Posi-

tion Ar
-Routing.

3. Apply Algorithm 7.1 D-Dimensional General Position Box-Drawing.

Theorem 7.5. The algorithm Balan
ed General Position D-Dimensional Box-

Drawing determines a D-dimensional orthogonal box-drawing of G in O(mn�) time

su
h that:

� Ea
h edge route has D � 1 bends.

� Ea
h vertex is 3=2-degree-restri
ted if D is even,

and (3=2 + 1=2D)-degree-restri
ted if D is odd.

� The aspe
t ratio of ea
h vertex v is 2 + o (deg(v)).

� The bounding box volume is O

�

�

n

D�2

m

�

D=(D�1)

�

.

Proof. By Lemma 7.8, and sin
e in a D-dimensional balan
ed vertex layout (Theo-

rem 7.4), for every vertex v, 
(v) � 1 +

dD=2e

D

deg(v), it follows that

2

X

i

M

i

(v) �

�

1 +

dD=2e

D

�

deg(v) +O(1) :

By (7.17),

surfa
e (v) � 2

X

i

M

i

+

�

2 +

O(1)

deg(v)

�

2(D�2)

 

X

i

M

i

!

(D�2)=(D�1)

:

So surfa
e (v) is at most

�

1 +

dD=2e

D

�

deg(v) +

�

2 +

O(1)

deg(v)

�

2(D�2)

��

1 +

dD=2e

D

�

deg(v)

�

(D�2)=(D�1)

�

�

1 +

dD=2e

D

�

deg(v) + O

�

deg(v)

(D�2)=(D�1)

�

=

�

1 +

dD=2e

D

�

deg(v) + o (deg(v)) :

So v is 3=2-degree-restri
ted if D is even, and 3=2+1=2D-degree-restri
ted if D is odd.

The bounding box volume, aspe
t ratio and time bounds follow from Theorem 7.3.
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7.2.4 Diagonal Vertex Layout Drawings

We now present two algorithms for produ
ing orthogonal box-drawings with a diagonal

general position vertex layout.

Algorithm 7.7. Diagonal General Position D-Dimensional Cube-Drawing

Input: graph G.

Output: D-dimensional orthogonal hyper
ube-drawing of G.

1. Determine aD-dimensional diagonal vertex layout of G with 
orresponding vertex

ordering determined by Algorithm 4.1 Median Pla
ement Ordering (with

insertion ordering determined by the Algorithm 4.2 Insertion Ordering).

2. Determine an ar
-routing with Algorithm 7.3 D-Dimensional General Posi-

tion Ar
-Routing.

3. Apply Algorithm 7.1 D-Dimensional General Position Box-Drawing.

Theorem 7.6. The algorithm Diagonal General Position D-Dimensional Cube-

Drawing determines a D-dimensional hyper
ube-drawing in O(D(m+ n)) time su
h

that:

� Ea
h edge route has D � 1 bends.

� Ea
h vertex is 2-degree-restri
ted.

� The bounding box volume is at most

 

n+

�

n

D�2

2D

�

3m+

n

2

�

�

1=(D�1)

!

D

Proof. By Theorem 7.3 for arbitrary D-dimensional general position vertex layouts,

ea
h vertex is 2-degree-restri
ted.

For ea
h vertex v and dimension i, 1 � i � D, when applying the algorithm D-

Dimensional General Position Box-Drawing,

�

i

(v) =

&

�

max fs(v); p(v)g

D

�

1=(D�1)

'

:
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Hen
e v is a 
ube, and for ea
h dimension i, the side length of the bounding box is

X

v

�

i

(v) =

X

v

&

�

max fs(v); p(v)g

D

�

1=(D�1)

'

< n+

X

v

�

max fs(v); p(v)g

D

�

1=(D�1)

� n+

 

n

D�2

X

v

max fs(v); p(v)g

D

!

1=(D�1)

(by Cau
hy-S
hwarz)

� n+

�

n

D�2

D

�

3m

2

+

n

4

��

1=(D�1)

(by Theorem 4.2)

The result for the bounding box volume follows.

For a diagonal layout, it is easily seen that there are no edge 
rossings (see Se
-

tion 7.1.3), so there is no need to apply Algorithm Box-Drawing Remove Edge

Crossings. Hen
e the algorithm Diagonal General Position D-Dimensional

Cube-Drawing takes O(D(m+ n)) time.

We now present an algorithm for produ
ingD-dimensional orthogonal line-drawings

using a diagonal layout.

Algorithm 7.8. Diagonal General Position D-Dimensional Line-Drawing

Input: graph G.

Output: D-dimensional orthogonal line-drawing of G.

1. Determine a diagonal D-dimensional general position vertex layout of G with the


orresponding vertex ordering determined by Algorithm 4.1Median Pla
ement

Ordering (with insertion ordering determined by Algorithm 4.2 Insertion Or-

dering).

2. Determine a (D � 1)-dimensional ar
-routing with Algorithm 7.3 General Po-

sition Ar
-Routing.

3. Representing ea
h vertex by a D-axis-parallel line, apply Algorithm 7.1

D-Dimensional General Position Box-Drawing.
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Theorem 7.7. The algorithm Diagonal General Position D-Dimensional Line-

Drawing determines a D-dimensional orthogonal line-drawing of G in O(D(m+ n))

time su
h that:

� Ea
h edge route has D � 1 bends.

� Ea
h vertex has aspe
t ratio at most deg(v)=(D � 1) +O(1).

� Ea
h vertex is a 2-degree-restri
ted D-axis parallel line.

� The bounding box volume is at most

n

D�1

�

(2D � 3)n+ 3m

2(D � 1)

�

Proof. This proof is similar to that of Theorem 7.6. Algorithm D-Dimensional Gen-

eral Position Ar
-Routing determines a (D�1)-dimensional ar
-routing su
h that,

for ea
h i, 1 � i � D � 1,

M

i

(v) �

�

max fs(v); p(v)g

D � 1

�

:

We represent ea
h vertex v by a line of length

�

D

(v) =

�

max fs(v); p(v)g

D � 1

�

�

max fs(v); p(v)g +D � 2

D � 1

:

The aspe
t ratio bound follows, and

surfa
e (v) = 2 ((D � 1)�

D

(v) + 1) � 2 (max fs(v); p(v)g +D � 1) :

Sin
e max fs(v); p(v)g � deg(v), the drawing is 2-degree-restri
ted and has height

X

v

�

D

(v) �

X

v

max fs(v); p(v)g +D � 2

D � 1

�

�

D � 2

D � 1

�

n+

6m+ n

4(D � 1)

(by Theorem 4.2)

�

4(D � 2)n+ 6m+ n

4(D � 1)

�

(4D � 7)n+ 6m

4(D � 1)

:
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The bounding box volume bound follows.

As was the 
ase for 
ube-drawings with a diagonal layout, there is no need to

apply Algorithm 7.2 Box-Drawing Remove Edge Crossings. Hen
e the algorithm

Diagonal General Position D-Dimensional Cube-Drawing takes O(D(m+ n))

time.

7.3 3-D Routing-Based Algorithm

In this se
tion we des
ribe a routing-based approa
h to 3-D orthogonal box-drawing

in the general position model. The following algorithm determines a general position

vertex layout with respe
t to a predetermined ar
-routing. Re
all that for a given ar
-

routing of a graph G, for ea
h dimension i 2 fX;Y;Zg, the subgraph of

 !

G indu
ed by

the ar
s 
oloured i is denoted

 !

G [i℄.

Algorithm 7.9. 3-D General Position Routing-Based Layout

Input: � graph G

� 3-D general position ar
-routing of A(G)

Output: 3-D general position vertex layout of V (G).

for i 2 fX;Y;Zg do

Determine the i-ordering

by applying Algorithm 4.1 Median Pla
ement Ordering to

 !

G [i℄.

end-for

If

 !

G [i℄ is a
y
li
 for ea
h dimension i 2 fX;Y;Zg, we say the ar
-routing is a
y
li
,

and by Theorem 4.1, Algorithm 4.1 Median Pla
ement Ordering determines min-

imum 
ost orderings. We now des
ribe algorithms for �nding 2- and 3-
olour a
y
li


ar
-routings.
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7.3.1 A
y
li
 Ar
-Routing

To determine a 2-
olour a
y
li
 ar
-routing of G, start with a vertex ordering < of

G, and for ea
h edge vw 2 E(G) (v < w), 
olour the ar


�!

vw with 
olour X and

�!

wv

with 
olour Y . Clearly

 !

G [X℄ and

 !

G [Y ℄ are both a
y
li
. This approa
h is used

by Biedl and Kaufmann [30℄ for 2-D orthogonal graph drawing. Biedl [27℄ uses this

2-
olour a
y
li
 ar
-routing method to determine the X- and Y -orderings of a 3-D

general position vertex layout; ea
h vertex is then represented by a line parallel to the

Z-axis. The 3-D drawings produ
ed have small volume (O

�

n

2

m

�

) but are inherently

two-dimensional. The following algorithm determines a 3-
olour a
y
li
 ar
-routing

and is illustrated in Figure 7.6.

Algorithm 7.10. 3-Colour A
y
li
 Ar
-Routing

Input: A graph G.

Output: A 3-
olour a
y
li
 ar
-routing of G.

Determine a 1-balan
ed vertex ordering < of G using

Algorithm 4.3 1-Balan
ed Vertex Ordering.

for ea
h vertex v 2 V (G) do

for k = 1; 2; : : : ; b
(v)=2
 do

assign the ar


�!

vv

k

the 
olour Z

end-for

end-for

for ea
h un
oloured ar


�!

vw do

if v < w then assign to

�!

vw the 
olour X else assign to

�!

vw the 
olour Y

end-for

Lemma 7.10. Algorithm 3-Colour A
y
li
 Ar
-Routing determines a 3-
olour

routing of G.

Proof. Obviously if

�!

vw is 
oloured X (respe
tively, Y ) then the reversal ar


�!

wv 
annot

be 
oloured X (Y ). If

�!

vw is 
oloured Z then

�!

wv 
annot also be 
oloured Z, as otherwise
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Z

X

Y

v

v

1

v

k

v

k+1

v

s(v)

v

�1

v

�p(v)

b b b b b b b

Figure 7.6: Routing ar
s at a positive vertex v; k = b
(v)=2
.

w would be opposite to v, and v 
ould move past w under rule M1. By Lemma 4.5,

reversal ar
s are 
oloured di�erently and the 
olouring is an ar
-routing. Clearly

 !

G [X℄

and

 !

G [Y ℄ are a
y
li
. A positive vertex v 
annot have an in
oming ar


�!

wv 2

 !

G [Z℄

with v < w as otherwise w 
ould move past v under rule M1 (see Corollary 4.2).

Similarly for negative verti
es. Hen
e

 !

G [Z℄ is also a
y
li
.

Algorithm 7.11. Routing-Based 3-D General Position Box-Drawing

Input: graph G.

Output: 3-D orthogonal box-drawing of G.

1. Determine a 3-D ar
-routing of A(G) with Algorithm 7.10 3-Colour A
y
li


Routing.

2. Determine a layout with Algorithm 7.9 3-D General Position Routing-

Based Layout.

3. Apply Algorithm 7.1 3-Dimensional General Position Box-Drawing.

Theorem 7.8. The algorithm Routing-Based 3-D General Position Box-

Drawing determines a 3-D orthogonal box-drawing in O(mn�) time su
h that

� Ea
h edge route has 2 bends.

� Ea
h vertex v is 2-degree-restri
ted and has aspe
t ratio at most deg(v)=4.

� The bounding box volume is

�(G)

4

�

n

�

2

3

m+O(1) n

��

3=2
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Proof. For a positive vertex v,

deg

 !

G [Z℄

(v) =

�


(v)

2

�

; deg

 !

G [Y ℄

(v) = minfs(v); p(v)g ; and deg

 !

G [X℄

(v) =

�

deg(v)

2

�

:

For ea
h i 2 fX;Y;Zg, sin
e

 !

G [X℄ is a
y
li
, by Theorem 4.1, in ea
h of the

orderings of

 !

G [X℄,

 !

G [Y ℄ and

 !

G [Z℄ the 
ost 


i

(v) � 1, for every vertex v.

M

X

(v) �

�

1

2

�

deg(v)

2

��

=

deg(v)

4

+O(1) ;

M

Y

(v) �

�

min fs(v); p(v)g

2

�

=

min fs(v); p(v)g

2

+O(1) ;

M

Z

(v) �

�

1

2

�


(v)

2

��

=


(v)

4

+O(1) :

So, for ea
h positive vertex v and similarly for negative verti
es,

M

X

(v) +M

Y

(v) +M

Z

(v)

�

deg(v)

4

+

min fs(v); p(v)g

2

+


(v)

4

+O(1)

�

deg(v) + 2min fs(v); p(v)g + deg(v)� 2min fs(v); p(v)g

4

+O(1) (by (4.1))

=

deg(v)

2

+O(1) :

By Lemma 7.3,

surfa
e (v) � 2 deg(v) +O(1) ;

and v is 2-degree-restri
ted. A vertex v has maximum aspe
t ratio if, in the lo
ally

balan
ed vertex ordering, 
(v) = 0, s(v) = 0 or p(v) = 0, in whi
h 
ase v is a line of

length deg(v)=4. Applying Theorem 7.2 we have

volume ( bounding box ) �

�(G)

4

�

n

�

2

3

m+

O(1)

6

n

��

3=2

Applying Algorithm D-Dimensional General Position Box-Drawing, whi
h

takes O(mn�) time, is the most time-
onsuming step of the algorithm. So Algorithm

Routing-Based 3-D General Position Box-Drawing takes O(mn�) time.

The drawings produ
ed by the above algorithm have smaller aspe
t ratio, on av-

erage, than those produ
ed by the algorithm based on a 2-
olour a
y
li
 routing [27℄.

Furthermore, edges 
an be routed on all sides of a vertex. Hen
e the drawings are

orientation-independent.
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Chapter 8

Equitable Edge-Colouring

In this 
hapter we present and analyse a greedy algorithm for determining

a (non-proper) edge-
olouring of a multigraph su
h that for ea
h vertex the


olours are evenly distributed about the edges in
ident to that vertex. Su
h

a 
olouring is 
alled an equitable edge-
olouring. This algorithm is used

in subsequent graph drawing algorithms presented in Chapters 9 and 10 to

assign ports to edge routes.

8.1 Simple Graphs

We initially re
all a result due to Hilton and de Werra [117℄ 
on
erning equitable edge-


olourings of graphs. An edge-
olouring of a graph G with k 
olours is said to be

equitable if for ea
h vertex v 2 V (G) and ea
h pair of 
olours i and j, the number of

edges in
ident to v 
oloured i and j di�er by at most one.

Theorem 8.1 ([117℄). If k � 2 and G is a graph su
h that no vertex degree is a

multiple of k, then G has an equitable edge-
olouring with k 
olours.

We have the following result.

Corollary 8.1. If k � 2 and G is a graph, then there is an edge-
olouring of G with k


olours su
h that for ea
h vertex v 2 V (G) and 
olour i, the number of edges in
ident

with v 
oloured i is at most d(deg(v) + 1)=ke.

176



CHAPTER 8. EQUITABLE EDGE-COLOURING 177

Proof. For ea
h vertex v 2 V (G) with degree a multiple of k, add a new vertex v

0

and

a new edge vv

0

to G to 
reate a graph G

0

. G

0

has no vertex with degree a multiple

of k, so G

0

has an equitable edge-
olouring with k 
olours. At ea
h vertex v 2 V (G

0

)

and 
olour i the number of edges in
ident to v 
oloured i is at most ddeg

G

0

(v)=ke �

d(deg

G

(v) + 1)=ke.

8.2 Multigraphs

The result of Hilton and de Werra is dependent on the graph being simple. We now

present a greedy heuristi
 for edge-
olouring multigraphs with k 
olours. Given a partial

edge-
olouring 
ol : E(G)! f1; 2; : : : ; kg of a multigraph G we de�ne

N(v) = j fvw 2 E(G) : vw is 
olouredg j

M(v) = max

i

j fvw 2 E(G) : 
ol(vw) = ig j

C(v) = fi 2 f1; 2; : : : ; kg :M(v) = j fvw 2 E(G) : 
ol(vw) = ig jg :

M(v) is the maximum number of edges in
ident with v assigned the same 
olour,

and C(v) is the set of 
olour(s) most abundant at v.

Algorithm 8.1. Quasi-Equitable Edge-Colour

Input: multigraph G, positive integer k.

Output: edge-
olouring of G with at most k 
olours.

for ea
h edge vw 2 E(G) do

if C(v) [ C(w) 6= f1; 2; : : : ; kg then Choose i 2 f1; 2; : : : ; kg n (C(v) [ C(w)).

else if C(v) = C(w) then Choose i 2 f1; 2; : : : ; kg.

else if jC(v)j � jC(w)j then Choose i 2 C(v) n C(w).

else (jC(w)j > jC(v)j) Choose i 2 C(w) n C(v).

Set the 
olour of vw to be i.

end-for
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Theorem 8.2. The algorithm Quasi-Equitable Edge-Colour will determine, in

O

�

m

2

�

time, a edge k-
olouring of a multigraph G, su
h that for every vertex v 2 V (G),

M(v) �

2 deg(v)

k

+ 1 :

Proof. Firstly, observe that

N(v) � jC(v)j �M(v) : (8.1)

At ea
h step of the algorithm the only vertex u for whi
hM(u) 
an possibly in
rease

is v and w. So, for ea
h vertex v we apply indu
tion onN(v) with the following indu
tive

hypothesis.

if N(v) � t then M(v) �

2N(v)

k

+ 1 : (8.2)

The basis for the indu
tion is trivial. Now, suppose that for N(v) = t, M(v) �

2N(v)=k + 1 and the next edge in
ident to v to be 
oloured is vw.

In the �rst 
ase of the algorithm vw is 
oloured with a 
olour not in C(v), so M(v)

does not in
rease. By (8.2) for N(v) = t, (8.2) holds for N(v) = t+ 1.

In the se
ond 
ase, C(v) = C(w) = f1; 2; : : : ; kg. By (8.1), N(v) � jC(v)j �M(v) =

k �M(v). So M(v) � N(v)=k � 2(N(v) + 1)=k + 1, and (8.2) holds for N(v) = t+ 1.

In the third 
ase, C(v)[C(w) = f1; 2; : : : ; kg and jC(v)j � jC(w)j. So jC(v)j � k=2.

By (8.1) N(v) � kM(v)=2, so M(v) � 2N(v)=k, and (8.2) holds for N(v) = t+ 1.

In the fourth 
ase, the edge vw is 
oloured with a 
olour not in C(v), so M(v) does

not in
rease. By (8.2) for N(v) = t, (8.2) holds for N(v) = t+ 1.

Upon termination of the algorithm N(v) = deg(v), so for every vertex v 2 V (G),

M(v) � 2 deg(v)=k + 1.

We now analyse the time 
omplexity of the algorithm. It is easily seen that

the iteration of the algorithm 
orresponding to the 
olouring of the edge vw takes

O(deg(v) + deg(w) + k) time. So the algorithm takes

X

vw2E(G)

O(deg(v) + deg(w) + k) = O

0

�

mk +

X

v2V (G)

deg(v)

2

1

A

time. We now prove that for non-negative numbers d

1

; d

2

; : : : ; d

n

,

n

X

i=1

d

2

i

�

 

n

X

i=1

d

i

!

2

: (8.3)
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The result will follow. We pro
eed by indu
tion on n. For n = 1, equality holds in

(8.3). Assume that (8.3) holds for all n

0

< n. Then

n

X

i=1

d

2

i

=

n�1

X

i=1

d

2

i

+ d

2

n

�

 

n�1

X

i=1

d

i

!

2

+ d

2

n

(by indu
tion)

�

 

n�1

X

i=1

d

i

!

2

+ d

2

n

+ 2d

n

 

n�1

X

i=1

d

i

!

=

  

n�1

X

i=1

d

i

!

+ d

n

!

2

=

 

n

X

i=1

d

i

!

2

So the time taken by the algorithm is

O

0

�

mk +

 

X

v

deg(v)

!

2

1

A

= O

�

mk + 4m

2

�

:

If k > m then trivially there is an edge m-
olouring of G with the required properties,

so we 
an assume that k � m. Hen
e the algorithm takes O

�

m

2

�

time.

Finally, we present a well-known algorithm for the 
ase of k = 2, whi
h provides

an improvement on the previous result. This te
hnique has been employed for graph

drawing in [30, 31℄ for example.

Algorithm 8.2. 2-Edge-Colour

Input: multigraph G.

Output: edge 2-
olouring of G.

1. Pair the odd degree verti
es of G, and add an edge to G between the paired

verti
es. All verti
es now have even degree.

2. Follow an Eulerian tour of G, and 
olour the edges alternately with di�erent


olours.
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Theorem 8.3. The algorithm 2-Edge-Colour will, in O(m) time, determine a edge

2-
olouring of a multigraph G, su
h that for every vertex v 2 V (G),

M(v) �

�

deg(v)

2

�

+ 1 :

Proof. In any graph there is an even number of verti
es with odd degree, so the �rst

step of the algorithm is valid. An undire
ted graph has an Eulerian tour if and only

if every vertex has even degree. See Even [90℄ for an algorithm for �nding an Eulerian

tour in O(m) time.

At ea
h vertex v, there is at most one `extra' edge in
ident with v added in Step 1.

If the Eulerian tour has odd length then the �rst and last edges in the tour will re
eive

the same 
olour. Therefore, at every vertex v, there will be at least ddeg(v)=2e � 1

pairs of edges in
ident with v re
eiving di�erent 
olours. The remaining (� 2) edges

in
ident to v may re
eive the same 
olour, so the maximum number of edges in
ident

with v and re
eiving the same 
olour is ddeg(v)=2e + 1.



Chapter 9

The Coplanar Vertex Layout

Model for Three-Dimensional

Orthogonal Graph Drawing

In this 
hapter we present algorithms for produ
ing 3-D orthogonal draw-

ings in the 
oplanar vertex layout model; i.e., there exists a single grid-

plane interse
ting every vertex. We present three algorithms, for produ
ing

(1) 1-bend line-drawings, (2) drawings with optimal volume, and (3) 
ube-

drawings with optimal volume. A disadvantage of this model is that the

drawings produ
ed are inherently orientation-dependent.

In this 
hapter we present algorithms for determining 
oplanar 3-D orthogonal

drawings; i.e., there exists a grid-plane interse
ting every vertex. Se
tion 9.1 des
ribes

an algorithm whi
h represents the verti
es by Z-lines positioned in a 2-D diagonal, and

produ
es 1-bend line-drawings based on a book embedding of the graph.

The algorithms in the remainder of the 
hapter are a produ
t of joint resear
h with

Therese Biedl and Torsten Thiele [34℄. In Se
tion 9.2 we present an algorithm whi
h

positions the verti
es in O(

p

n)�O(

p

n) grid, and produ
es line-drawings with optimal

volume for regular graphs, and four bends per edge route. A variation of this algorithm

produ
es 3-bend drawings with an in
rease in the volume. Our algorithm presented in

Se
tion 9.3 positions the verti
es in a O

�

p

m+ n

�

�O

�

p

m+ n

�

grid, and determines

181
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degree-restri
ted 
ube-drawings with O

�

(m+ n)

3=2

�

volume, whi
h is optimal. This

algorithm, whi
h 
an be 
onsidered a generalisation of the Compa
t algorithms of

Eades et al. [86, 87℄ for 3-D point-drawing, is an improvement on the line-drawing

algorithm of Wood [223℄.

9.1 1-Bend Box-Drawing Algorithm

Biedl et al. [32, 33℄ 
onstru
t 3-D orthogonal drawings of K

n

, and hen
e for any simple

graph, with O

�

n

3

�

volume and one bend per edge route. This 
onstru
tion, 
alled the

Lifting-Edges algorithm by Biedl [27℄, represents the verti
es as Z-lines of length

n positioned in a 2-D diagonal layout. Ea
h edge is routed with one bend in some

Z-plane. As mentioned in [32, 33℄, the assignment of Z-planes to edge routes is 
losely

related to the assignment of pages to edges in book embeddings. The following algo-

rithm, illustrated in Figure 9.1, exploits a book embedding to 
onstru
t 3-D orthogonal

drawings with one bend per edge route.

Algorithm 9.1. Coplanar 1-Bend Drawing

Input: n-vertex m-edge multigraph G with genus g.

Output: 3-D orthogonal drawing of G.

1. Find a book-embedding of G using the algorithm of Malitz [150℄ (see Se
tion 1.3).

Suppose (v

1

; v

2

; : : : ; v

n

) is the spine ordering and page : E(G) ! f1; 2; : : : ; Pg is

the page numbering with P = O

�

p

g

�

.

2. Orient ea
h edge v

i

v

j

2 E(G) from left to right in the ordering (v

1

; v

2

; : : : ; v

n

);

i.e., if i < j then the edge v

i

v

j

is dire
ted from v

i

to v

j

.

3. Denote by G

R

the subgraph of G 
onsisting of the edges in any page p 2

f1; 2; : : : ; dP=2eg, and by G

L

the subgraph of G 
onsisting of the edges in the

remaining pages. (Edges in G

R

will be routed through grid-points (x; y; z) with

x � y, and edges in G

L

will be routed through grid-points (x; y; z) with y � x.)

4. Determine edge-
olourings of G

R

and of G

L

, ea
h with d2m=ne 
olours, us-

ing Algorithm 8.1 Quasi-Equitable Edge-Colour. Suppose 
ol : E(G) !
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m
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Figure 9.1: Coplanar 1-bend drawing with a diagonal vertex layout.

f1; 2; : : : ; d2m=neg is the resulting edge-
olouring of G.

5. For ea
h vertex v 2 V (G), suppose M

+R

(v) (respe
tively, M

+L

(v)) is the max-

imum number of outgoing edges

�!

vw 2 E(G

R

) (

�!

vw 2 E(G

L

)) on the same page

and re
eiving the same 
olour. Similarly, M

�R

(v) (respe
tively, M

�L

(v)) is the

maximum number of in
oming edges

�!

wv 2 E(G

R

) (

�!

wv 2 E(G

L

)) on the same

page and re
eiving the same 
olour.

6. For ea
h vertex v

i

2 V (G), set

M

X

(v

i

) = max

�

M

+L

(v

i

);M

�R

(v

i

)

	

, and

M

Y

(v

i

) = max

�

M

+R

(v

i

);M

�L

(v

i

)

	

:
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Represent v

i

by the

M

X

(v

i

)�M

Y

(v

i

)�

�

P

2

��

2m

n

�

box with maximum 
orner at

0

�

X

j�i

M

X

(v

j

);

X

j�i

M

Y

(v

j

);

�

P

2

��

2m

n

�

1

A

:

(Note that for verti
es v with degree at most the average degree

2m

n

, M

X

(v) and

M

Y

(v) will probably be 1, and hen
e v will be represented by a line.)

7. For ea
h vertex v 2 V (G), for ea
h page p 2 f1; 2; : : : ; dP=2eg, and for ea
h 
olour


 2 f1; 2; : : : ; d2m=neg, suppose f

�!

vw

1

;

�!

vw

2

; : : : ;

�!

vw

k

g are the outgoing edges at v

in G

R

whi
h are 
oloured 
 and appear in page p, where w

1

� w

2

� � � � � w

k

in

the spine ordering. As illustrated in Figure 9.1, assign the X

+

-ports at v with

Z-
oordinates of (p � 1) d2m=ne + 
 to these edges, su
h that, if i < j then the

Y -
oordinate of the port assigned to

�!

vw

i

is less than the Y -
oordinate of the port

assigned to

�!

vw

j

. Now suppose f

��!

w

1

v;

��!

w

2

v; : : : ;

��!

w

k

vg are the in
oming edges at v in

G

R

whi
h are 
oloured 
 and appear in page p, where w

k

� w

k�1

� � � � � w

1

in the

spine ordering (taking 
are to 
onsistently order parallel edges fvwg at v and w;

see Figure 9.1). Assign the Y

�

-ports at v with Z-
oordinates of (p�1) d2m=ne+


to these edges, su
h that, if i < j then the X-
oordinate of the port assigned to

�!

w

i

v is less than the X-
oordinate of the port assigned to

�!

w

j

v.

8. For ea
h edge

�!

vw 2 E(G

R

), if

�!

vw has been assigned ports at v and w with


oordinates of (x

v

; y

v

; z

0

) and (x

w

; y

w

; z

0

) respe
tively, then route

�!

vw with one

bend as follows:

�

x

v

; y

v

; z

0

�

!

�

x

w

; y

v

; z

0

�

!

�

x

w

; y

w

; z

0

�

9. In an analogous manner to the 
ase for edges in G

R

, route edges

�!

vw 2 E(G

L

)

using Y

+

-ports at v and X

�

-ports at w, as illustrated in Figure 9.1.
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Theorem 9.1. The algorithm Coplanar 1-Bend Drawing determines an orthog-

onal box-drawing of G with one bend per edge and O

�

nm

p

g

�

volume, where g is the

genus of G.

Proof. By 
onstru
tion ea
h edge has one bend, and edge routes are assigned unique

ports, so two X-segments do not interse
t, and two Y -segments do not interse
t. An

X-segment and a Y -segment 
an only interse
t if they have the same Z-
oordinate.

Two edges have the same Z-
oordinate if and only if they are on the same page of the

book embedding and they re
eive the same 
olour in Step 4. Hen
e the X-segment

and the Y -segment of edges on di�erent pages of the book embedding or re
eiving a

di�erent 
olours, will not interse
t. By the method used in Step 7 for assigning ports

to edges on the same page and re
eiving the same 
olour, su
h edge routes will not

interse
t. Hen
e no two edges routes interse
t.

In the edge-
olouring of G

R

, the maximum number of edges in
ident to a vertex

v re
eiving the same 
olour, by Theorem 8.2, is at most 2 deg

G

R

(v)= d2m=ne + 1 �

ndeg

G

(v)=m + 1. So ea
h of M

+R

(v), M

�R

(v), M

+L

(v) and M

�L

(v) is at most

ndeg

G

(v)=m+1, and hen
eM

X

(v) andM

Y

(v) are at most ndeg

G

(v)=m+1. The width

and depth of the bounding box is therefore at most

P

v

(ndeg

G

(v)=m + 1) = 3n. The

height of the bounding box is dP=2e d2m=ne = O

�

m

p

g=n

�

. So the bounding box has

volume O

�

nm

p

g

�

.

Note that smaller drawings 
an be produ
ed in pra
ti
e by the following modi�-


ation to algorithm Coplanar 1-Bend Drawing. For ea
h page p, determine an

edge-
olouring (still with d2m=ne 
olours) of the subgraph of G 
onsisting of the edges

in page p su
h that, for ea
h vertex v, there at at most deg(v)n=m edges in
ident to v

re
eiving the same 
olour. Then we need only allo
ate as many layers for the routing

of edges in page p, as there are used 
olours.

Sin
e the genus of a multigraph is the same as the genus of the underlying simple

graph, and sin
e the genus of a graph is at most m, our volume bound is

O

�

min

�

n

2

m;nm

3=2

	�

. Note that, for the 
omplete graph K

n

, this volume bound

is O

�

n

4

�

, whi
h is more than the volume of the 
onstru
tion of K

n

due to Biedl et al.

[32, 33℄. For sparse graphs with m = O

�

n

4=3

�

the above algorithm produ
es drawings
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with less volume than the K

n


onstru
tion. The following open problem is of interest.

Open Problem 9.1. Does every graph have an orthogonal box-drawing with one bend

per edge and O

�

n

2

p

m

�

volume?

9.2 Optimal Volume Line-Drawing Algorithm

The following algorithm for produ
ing 
oplanar orthogonal line-drawings represents

the verti
es by Z-lines in a O(

p

n)�O(

p

n) grid. Edges are routed with four bends in

layers, ea
h 
onsisting of two Z-planes, as illustrated in Figure 9.2.

X

Y

Z

Figure 9.2: 4-bend edge routes.

Algorithm 9.2. Optimal Volume Line-Drawing

Input: n-vertex m-edge multigraph G with maximum degree �.

Output: 3-D orthogonal line-drawing of G.

1. Assign to ea
h vertex v 2 V (G) a unique pair

(x

v

; y

v

) 2

�

1; 2; : : : ;

�

p

n

�	

�

�

1; 2; : : : ;

�

p

n

�	

:
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2. Pair the odd degree verti
es of G and add an edge between the paired verti
es.

Orient the edges of G by following an Eulerian tour of G. Remove the inserted

edges.

3. Constru
t a graph H with V (H) = E(G), and add an edge to H between the

verti
es 
orresponding to oriented edges

�!

vw and

�!

xy if v is in the same 
olumn as

x, or w is in the same row as y.

4. Vertex-
olour the graph H using the algorithm Greedy Vertex-Colour with


olours f0; 1; : : : ;�(H)g (see Se
tion 2.2). For ea
h edge vw 2 E(G), if the

vertex of H 
orresponding to vw is 
oloured i 2 f0; 1; : : : ;�(H)g then set the

height h(vw) 2i. Suppose M = max

vw2E(G)

h(vw) + 1.

5. Represent ea
h vertex v by the line

�

2x

v

; 2y

v

; 0

�

�!

�

2x

v

; 2y

v

;M

�

:

6. For ea
h oriented edge

�!

vw 2 E(G), 
onstru
t the following edge route for vw, as

illustrated in Figure 9.2.

(2x

v

; 2y

v

; h(

�!

vw))! (2x

v

+ 1; 2y

v

; h(

�!

vw))! (2x

v

+ 1; 2y

v

+ 1; h(

�!

vw))!

(2x

v

+ 1; 2y

v

+ 1; h(

�!

vw) + 1)! (2x

w

; 2y

v

+ 1; h(

�!

vw) + 1)! (2x

w

; 2y

w

; h(

�!

vw) + 1)

Theorem 9.2. The algorithm Optimal Volume Line-Drawing determines a 3-D

orthogonal line-drawing of G in O(m�

p

n) time with O

�

�n

3=2

�

volume and four bends

per edge route.

Proof. In ea
h edge route the �rst, third and �fth segments have unit length. An edge


rossing involving a unit-length segment must also involve one of the adja
ent segments

in the edge route, so to show that the drawing is 
rossing-free, we need only 
onsider

potential interse
tions between the se
ond and the fourth segments of the edge routes.

These segments are parallel to the Y - and X-axes, respe
tively. Su
h Y -segments have

even Z-
oordinate, and su
h X-segments have odd Z-
oordinate, so an X-segment does

not interse
t a Y -segment. For two X-segments to interse
t, they must have the same
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height and be routed in the same row. Sin
e oriented edges destined for verti
es in

the same row re
eive di�erent heights, no two X-segments interse
t. Similarly, for two

Y -segments to interse
t, they must have the same height and be routed in the same


olumn. Sin
e oriented edges starting at verti
es in the same 
olumn re
eive di�erent

heights, no two Y -segments interse
t.

The vertex in H 
orresponding to an edge

�!

vw 2 E(G) has degree

X

x in row(v)

deg(x) +

X

y in row(w)

deg(y) :

So the maximum degree of H is at most 2� d

p

ne. Hen
e the maximum height of an

edge route is 4� d

p

ne+ 1 = O(�

p

n). Sin
e the width and depth of the drawing are

both 2 d

p

ne, the bounding box has O

�

�n

3=2

�

volume.

The greedy vertex-
olouring of H takes O(jE(H)j) time. Sin
e jV (H)j = m and

�(H) � 2� d

p

ne, the algorithm takes O(m�

p

n) time.

For regular graphs, the above algorithm produ
es drawings with O(m

p

n) volume,

whi
h by Theorem 3.2 is optimal for any 3-D orthogonal graph drawing. By drawing

verti
es of large degree separately, and using a parti
ular layout of the remaining ver-

ti
es, a modi�
ation of the above algorithm a
hieves this optimal bound for all graphs

(see [34℄).

If we eliminate the middle segment from ea
h edge route used in Algorithm 9.2

Optimal Volume Line-Drawing, and assign ea
h edge a unique height then we

obtain the following result.

Theorem 9.3. A 3-D orthogonal line-drawing of a multigraph G 
an be determined in

O(m) time with O(nm) volume and three bends per edge route.

This algorithm is parti
ularly appropriate for multilayer VLSI as there are no ver-

ti
al edge segments, whi
h are 
alled 
ross-
uts; see [2℄.

9.3 Optimal Volume Cube-Drawing Algorithm

In the following algorithm for produ
ing 
oplanar orthogonal drawings, verti
es are

initially represented by squares in the (Z = 0)-plane, and their positions are determined
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by an O

�

p

m+ n

�

�O

�

p

m+ n

�

square-pa
king. Verti
es are then extended in the Z

dimension to form 
ubes, and edges are routed either above or below the verti
es.

By Theorem 3.2, the bounding box volume of O

�

(m+ n)

3=2

�

is optimal for degree-

restri
ted orthogonal box-drawings with bounded aspe
t ratio (assuming m = 
(n)).

Algorithm 9.3. Optimal Volume Cube-Drawing

Input: n-vertex m-edge multigraph G.

Output: 3-D orthogonal 
ube-drawing of G.

1. Determine an edge 2-
olouring of G using Algorithm 8.2 2-Edge-Colour. Sup-

pose the indu
ed subgraphs are G

+

and G

�

, and for ea
h vertex v 2 V (G) set

M(v) = max fdeg

G

+

(v);deg

G

�

(v)g :

Orient the edges of G by following the Eulerian tour used in Algorithm 8.2.

2. For ea
h vertex v 2 V (G), initially represent v by a square S

v

of size

�

2

l

p

M(v)

m

+ 2

�

�

�

2

l

p

M(v)

m

+ 2

�

:

3. Position the squares fS

v

: v 2 V (G)g in the (Z = 0)-plane with the square-

pa
king algorithm of Kleitman and Krieger [127℄.

= Verti
es after

Step 4.

= Unused

spa
e in square-

pa
king.

Figure 9.3: Square pa
king.
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4. For ea
h vertex v 2 V (G), let (x

0

; y

0

; 0) be the grid-point in S

v

with minimum

even X-
oordinate and minimum even Y -
oordinate. Repla
e S

v

by the

�

2

l

p

M(v)

m

� 1

�

�

�

2

l

p

M(v)

m

� 1

�

�

�

2

l

p

M(v)

m

� 1

�


ube with minimum 
orner at

�

x

0

; y

0

; 2� 2

l

p

M(v)

m�

(see Figure 9.3).

5. Assign ea
h edge vw 2 E(G

+

) unique Z

+

-ports at v and w both with even X-


oordinate and even Y -
oordinate.

6. Constru
t a graph H with V (H) = E(G

+

), and add the edge fvw; xyg to E(H)

if the port assigned to vw at v is in the same 
olumn as the port assigned to xy

at x, or the port assigned to vw at w is in the same row as the port assigned to

xy at y.

7. Vertex-
olour the graph H using the algorithm Greedy Vertex-Colour with


olours f1; 2; : : : ;�(H) + 1g (see Se
tion 2.2). For ea
h vertex v 2 V (H) 
oloured

i 
orresponding to an edge vw, set the height h(vw) i.

8. For ea
h oriented edge vw 2 E(G

+

), 
onstru
t an edge route for vw as follows.

Suppose the ports on v and w assigned to vw have 
oordinates (v

X

; v

Y

; 0) and

(w

X

; w

Y

; 0), respe
tively. Route the edge vw with one of the following four or six

bend routes, as illustrated in Figure 9.4.

� v

X

= w

X

:

(v

X

; v

Y

; 0)! (v

X

; v

Y

; 2h(vw)) ! (v

X

+ 1; v

Y

; 2h(vw)) !

(v

X

+ 1; w

Y

; 2h(vw)) ! (v

X

; w

Y

; 2h(vw)) ! (v

X

; w

Y

; 0)

� v

Y

= w

Y

:

(v

X

; v

Y

; 0)! (v

X

; v

Y

; 2h(vw) + 1)! (v

X

; v

Y

+ 1; 2h(vw) + 1)!

(w

X

; v

Y

+ 1; 2h(vw) + 1)! (w

X

; v

Y

; 2h(vw) + 1)! (w

X

; v

Y

; 0)

� v

X

6= w

X

and v

Y

6= w

Y

:

(v

X

; v

Y

; 0)! (v

X

; v

Y

; 2h(vw)) ! (v

X

+ 1; v

Y

; 2h(vw)) !

(v

X

+ 1; w

Y

+ 1; 2h(vw)) ! (v

X

+ 1; w

Y

+ 1; 2h(vw) + 1)!

(w

X

; w

Y

+ 1; 2h(vw) + 1)! (w

X

; w

Y

; 2h(vw) + 1)! (w

X

; w

Y

; 0)
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X

Y

Z

v

w

2h(vw)

x

y

2h(xy) + 1

u

2h(vu)

Figure 9.4: Routing edges above the plane Z = 0.

9. Repeat Steps 5-8 for the edges in E(G

�

), assigning Z

�

-ports and 
onstru
ting

edge routes below the verti
es.

Theorem 9.4. The algorithm Optimal Volume Cube-Drawing determines an or-

thogonal 
ube-drawing of G in O

�

m

p

m+ n

�

time, with O

�

(m+ n)

3=2

�

bounding box

volume and at most six bends per edge. Ea
h vertex is 12-degree-restri
ted.

Proof. After step 3, verti
es are disjoint with Z

+

-fa
es in the (Z = 0)-plane, and with


orners at grid-points with even 
oordinates. So, for ea
h vertex v, the the number of

Z

+

-ports on S

v

with even X- and even Y -
oordinate is

l

p

M(v)

m

2

� M(v), so there

are enough ports on v for the routing of edges in G

+

on the Z

+

-fa
e, and for edges in

G

�

on the Z

�

-fa
e.

In ea
h edge route, there are no 
onse
utive unit length segments. Therefore to show

that the drawing is 
rossing-free, we need only show that non-unit length edge segments

do not interse
t. Verti
al segments 
annot interse
t be
ause unique ports are assigned

to the edges. X-parallel segments have odd Z-
oordinate and Y -parallel segments have

even Z-
oordinate, so an X-parallel segment 
annot interse
t a Y -parallel segment.

A verti
al segment has even X and Y 
oordinate, a X-parallel segment has odd Y -
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oordinate, and a Y -parallel segment has odd X-
oordinate, so a verti
al segment


annot interse
t aX- or Y -parallel segment. Two Y -parallel segments 
an only interse
t

if they overlap. Sin
e edges originating in the same 
olumn have di�erent heights,

two Y -parallel segments 
annot interse
t. Similarly, two X-parallel segments 
an only

interse
t if originating in the same row and in this 
ase they have di�erent heights, so

they 
annot interse
t. So no two edges 
an interse
t.

For ea
h vertex v, the surfa
e (v) is

6

�

2

l

p

M(v)

m

� 1

�

2

� 6

�

p

2 deg(v) +O(1)

�

2

= 12deg(v) +O

�

p

deg(v)

�

:

Thus v is 12-degree-restri
ted.

The total area of the squares fS

v

: v 2 V (G)g (before Step 3) is

P

v

�

2

l

p

M(v)

m

+ 1

�

2

.

By Theorem 8.3, M(v) � ddeg(v)=2e + 1, thus the total area is at most

X

v

�

2

l

p

ddeg(v)=2e + 1

m

+ 1

�

2

�

X

v

�

p

2 deg(v) +O(1)

�

2

�

X

v

�

2 deg(v) +O

�

p

deg(v)

�

+O(1)

�

� 4m+O

 

n+

X

v

p

deg(v)

!

� 4m+O

0

�

n+

s

n

X

v

deg(v)

1

A

(by Cau
hy-S
hwarz)

� 4m+O

�

n+

p

nm

�

:

The algorithm of Kleitman and Krieger [127℄ pa
ks squares with a total area of 1

in a

2

p

3

�

p

2 re
tangle. So the squares fS

v

: v 2 V (G)g 
an be pa
ked in a re
tangle

with size

�

2

p

3

q

4m+O

�

n+

p

nm

�

�

�

�

p

2

q

4m+O

�

n+

p

nm

�

�

�

�

4

r

m

3

+O

�

q

n+

p

nm

��

�

�

2

p

2m+O

�

q

n+

p

nm

��

:

The maximum degree of H is thus

�(H) �

�

4

p

3

+ 2

p

2

�

p

m+O

�

q

n+

p

nm

�

:
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A greedy vertex-
olouring of H requires at most �(H) + 1 
olours; hen
e the height of

the drawing above the (Z = 0)-plane, and the height below the verti
es, whi
h is twi
e

the number of 
olours, is

�

8

p

3

+ 4

p

2

�

p

m+O

�

q

n+

p

nm

�

:

The height of the verti
es is max

v

2

l

p

M(v)

m

� 1 � max

v

p

2 deg(v) + O(1) =

p

2�(G) +O(1) �

p

2m+O(1) : Thus the total height of the drawing is at most

�

16

p

3

+ 9

p

2

�

p

m+O

�

q

n+

p

nm

�

:

We have shown that ea
h of the height, width and depth of the drawing is

O

�

p

m+

q

n+

p

nm

�

: (9.1)

If n = O(m) then (9.1) is O(

p

m), and if m = O(n) then (9.1) is O(

p

n). Hen
e the

height, width and depth of the drawing are ea
h O(

p

m+

p

n), whi
h is O

�

p

m+ n

�

by the Cau
hy-S
hwarz inequality. The volume of the bounding box is therefore

O

�

(m+ n)

3=2

�

. Note that in most appli
ations n� m, hen
e the volume is

�

4

p

3

� 2

p

2 �

�

16

p

3

+ 9

p

2

�

m

3=2

< 144m

3=2

:

The time-
onsuming stage of the algorithm is the vertex-
olouring of H. This 
an

be 
omputed in

O(jE(H)j) = O(jV (H)j�(H)) = O

�

m

�

p

m+

q

n+

p

nm

��

;

whi
h is O

�

m

p

m+ n

�

by the same argument used above. By 
onstru
tion there are

at most six bends per edge.

If we remove the middle segment from ea
h edge and assign ea
h edge a unique

height then the overall height is O(m) and we obtain the following result.

Theorem 9.5. Every graph has an orthogonal 
ube-drawing, whi
h 
an be 
omputed

in O(m) time, with O(m(m+ n)) bounding box volume and �ve bends per edge. Ea
h

vertex is 12-degree-restri
ted.
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Note that if we redu
e the length in the Z-dire
tion of the box representing a

vertex then the surfa
e of the box 
an be redu
ed at the expense of an in
rease in the

aspe
t ratio. In parti
ular, for aspe
t ratio r, it is easily seen that a vertex will be

4(1 + 2=r)-degree-restri
ted.



Chapter 10

The Non-Collinear Vertex Layout

Model for Three-Dimensional

Orthogonal Graph Drawing

In this 
hapter we present an algorithm for produ
ing 3-D orthogonal box-

drawings in the non-
ollinear model. The box-drawings produ
ed have op-

timal volume for regular graphs. We use this algorithm as the basis for

another algorithm to generate 3-D orthogonal point-drawings with optimal

volume. The advantage of this model over the 
oplanar vertex layout model

is that the drawings are orientation-independent, whi
h for point-drawings


omes at the 
ost of one more bend per edge route.

10.1 Box-Drawing Algorithm

The algorithm to follow determines a 3-D non-
ollinear vertex layout by lifting the

verti
es from a plane grid into 3-D spa
e in an orientation-independent manner. We 
all

the box surrounding the verti
es the inner box. For ea
h dire
tion d 2 fX

�

; Y

�

; Z

�

g,

the box extending out from the d-fa
e of the inner box is 
alled the d-outer box , as

shown in Figure 5.18 (page 114). Ea
h edge is routed in an outer box determined by

an equitable edge-
olouring. Within ea
h outer box, the routing of edges resembles the

195
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method employed in Algorithm 9.3 Optimal Volume Cube-Drawing.

Algorithm 10.1. Non-Collinear Box-Drawing

Input: multigraph G with maximum degree �.

Output: 3-D orthogonal 
ube-drawing of G.

1. Assign ea
h vertex v 2 V (G) a unique pair (x(v); y(v)) with

0 � x(v); y(v) �

�

p

n

�

� 1 :

2. For ea
h vertex v 2 V (G), set z(v) x(v)+ y(v) (mod d

p

ne) (see Figure 10.1).

X

Y

0 1 2 3

1

2

3

z

=

0

z

=

1

z

=

2

z

=

3

z

=

0

z

=

1

z

=

2

Figure 10.1: Determining z(v).

3. De�ne the `vertex spa
ing' � = 2

�l

p

d�(G)=3e

m

+ 1

�

.

4. Represent ea
h vertex v 2 V (G) by the

�

2

l

p

ddeg(v)=3e

m

+ 1

�

�

�

2

l

p

ddeg(v)=3e

m

+ 1

�

�

�

2

l

p

ddeg(v)=3e

m

+ 1

�


ube with minimum 
orner at (�x(v);�y(v);�z(v)), as shown in Figure 10.2.

5. Apply Algorithm 8.1 Quasi-Equitable Edge-Colour to G with k = 6. Sup-

pose the edge-
olouring determines an assignment of dire
tions fX

�

; Y

�

; Z

�

g to

E(G).
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Inner box

XY

Z

XY

Z

Figure 10.2: Non-Collinear Vertex Layout.

6. For ea
h edge vw 2 E(G) in dire
tion d 2 fX

�

; Y

�

; Z

�

g, arbitrarily assign

unique ports at v andw in dire
tion d with even j-
oordinate and odd k-
oordinate,

where i, j and k are de�ned in Table 10.1 as fun
tions of d. Call these the usable

ports, as shown in Figure 10.3.

Table 10.1: De�nition of i, j, k

d i j k

X

�

X Y Z

Y

�

Y Z X

Z

�

Z X Y

7. Arbitrarily orient the edges of G.

8. For ea
h dire
tion d 2 fX

+

; Y

+

; Z

+

g apply the following steps.

(a) Constru
t a graphH with V (H) 
orresponding to the edges of G in dire
tion

d. Add the edge f

�!

vw;

�!

xyg to E(H) if the port assigned to

�!

vw at v has the



CHAPTER 10. NON-COLLINEAR 3-D DRAWING 198

X

Y

Z

Figure 10.3: Usable ports on near-by verti
es.

same j-
oordinate as the port assigned to

�!

xy at x, or the port assigned to

�!

vw at w has the same k-
oordinate as the port assigned to

�!

xy at y.

(b) Vertex-
olour the graph H using the algorithm Greedy Vertex-Colour

with 
olours f1; 2; : : : ;�(H) + 1g (see Se
tion 2.2). For ea
h vertex v 2

V (H) 
oloured � 
orresponding to an edge

�!

vw, set the height h(

�!

vw) �.

(
) For ea
h oriented edge

�!

vw 2 E(G) in dire
tion d, 
onstru
t the edge route

with (i; j; k) 
oordinates as follows. Suppose

�!

vw is assigned the port at

(v

i

; v

j

; v

k

) on v and the port at (w

i

; w

j

; w

k

) on w. If v

k

= w

k

then use the

following 4-bend edge route, whi
h extends a distan
e of 2h(

�!

vw) into the

d-outer box, as illustrated in Figure 10.4 (and similarly if v

j

= w

j

).

(v

i

; v

j

; v

k

)! (� (d

p

ne � 1) + 2h(

�!

vw); v

j

; v

k

)!
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(� (d

p

ne � 1) + 2h(

�!

vw); v

j

; v

k

+ 1)!

(� (d

p

ne � 1) + 2h(

�!

vw); w

j

; v

k

+ 1)!

(� (d

p

ne � 1) + 2h(

�!

vw); w

j

; v

k

)! (w

i

; w

j

; v

k

)

v

w

i

j

k

v

w

X

Y

Z

Figure 10.4: Edge route for vw if v

k

= w

k

.

Otherwise use the following 6-bend edge route illustrated in Figure 10.5.

(v

i

; v

j

; v

k

)! (� (d

p

ne � 1) + 2h(

�!

vw); v

j

; v

k

)!

(� (d

p

ne � 1) + 2h(

�!

vw); v

j

; v

k

+ 1)!

(� (d

p

ne � 1) + 2h(

�!

vw); w

j

+ 1; v

k

+ 1)!

(� (d

p

ne � 1) + 2h(

�!

vw) + 1; w

j

+ 1; v

k

+ 1)!

(� (d

p

ne � 1) + 2h(

�!

vw) + 1; w

j

+ 1; w

k

)!

(� (d

p

ne � 1) + 2h(

�!

vw) + 1; w

j

; w

k

)! (w

i

; w

j

; w

k

).

9. Repeat Step 8 for dire
tions X

�

, Y

�

and Z

�

, routing edges in the X

�

, Y

�

and

Z

�

outer boxes, respe
tively.

Theorem 10.1. For every multigraph G, the algorithm Non-Collinear Box-

Drawing determines a 3-D orthogonal 
ube-drawing in O

�

m

2

�

time, with O

�

(n�)

3=2

�

bounding box volume and six bends per edge route. Ea
h vertex is 8-degree-restri
ted.

Proof. The number of usable ports on a fa
e of a vertex v is

l

p

ddeg(v)=3e

m�l

p

ddeg(v)=3e

m

+ 1

�

� ddeg(v)=3e + 1 :

By Theorem 8.2, there are at most ddeg(v)=3e + 1 edges in
ident to v in a given

dire
tion so there are enough usable ports at v. It is easily seen that no two verti
es

are interse
ted by a single grid-line.
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v

w

i

j

k

v

w

X

Y

Z

Figure 10.5: Edge routes vw in the non-
ollinear model.

In all edge routes, there are no 
onse
utive unit length segments, and an edge 
ross-

ing involving a unit-length segment must also involve the adja
ent non-unit-length

segment, so to show that the drawing is 
rossing-free, we need only 
onsider interse
-

tions between non-unit-length segments. We distinguish between segments 
ontained

within the outer boxes, and the segments in
ident with verti
es.

Clearly, segments 
ontained in di�erent outer boxes 
annot interse
t, and in an i-

outer box, the j-parallel segments have even i-
oordinate and the k-parallel segments

have odd i-
oordinate. Hen
e no two segments 
ontained in an outer box 
an interse
t.

Consider a segment 
ontained in an i-outer box and a segment in
ident to a vertex.

If the segment in
ident to a vertex is not in dire
tion i then no interse
tion 
an o

ur.

If this segment is in dire
tion i then it has even j-
oordinate and odd k-
oordinate,

whereas a j-parallel segment in the i-outer box has even k-
oordinate, and a k-parallel

segment in the i-outer box has odd j-
oordinate. So a segment in
ident to a vertex

and a segment 
ontained in an outer box 
annot interse
t.

Now 
onsider two segments in
ident to di�erent verti
es. (Segments in
ident to the

same vertex are assigned unique ports so no interse
tion 
an o

ur.) If one su
h segment
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is in a positive dire
tion and the other is in a negative dire
tion then no interse
tion


an o

ur. If the two segments are in the same dire
tion then they are parallel so no

interse
tion 
an o

ur. If the two segments are in dire
tions i and j then one will have

even k-
oordinate and the other will have odd k-
oordinate, so they 
annot interse
t.

Therefore no two edge routes interse
t.

The inner box has 
orners at

(0; 0; 0) and

�

�

��

p

n

�

� 1

�

;�

��

p

n

�

� 1

�

;�

��

p

n

�

� 1

��

;

so the width, depth and height of the inner box is � (

p

n). The graph H has �(H) =

2� d

p

ne, so the height of an edge is at most 4� d

p

ne. Hen
e the bounding box has

width, depth and height 8� d

p

ne. Sin
e � = O

�

p

�

�

, the bounding box volume is

O

�

(n�)

3=2

�

.

For ea
h vertex v 2 V (G), the surfa
e (v) is

6

�

2

l

p

ddeg(v)=3e

m

+ 1

�

2

= 8deg(v) + o (deg(v)) :

So the drawing is 8-degree-restri
ted.

By Theorem 8.2, Step 5 of the algorithm takes O

�

m

2

�

time. The six vertex-


olourings of H ea
h take O(jE(H)j) = O(jV (H)j�(H)) = O

�

m

p

n�

�

time. Now,

� � m, so assuming m � n, we have � � m

2

=n. So

p

n� � m and m

p

n� � m

2

.

Hen
e Step 5 is most time-
onsuming step of the algorithm, and the total time taken

is O

�

m

2

�

.

For simple graphs we 
an use an equitable edge-
olouring of G (see Corollary 8.1)

instead of Algorithm Quasi-Equitable Edge-Colour in Step 5 of the above algo-

rithm. The `vertex spa
ing' is de�ned as � = 2

�l

p

d�(G)=6e

m

+ 1

�

and ea
h vertex

is a

�

2

l

p

ddeg(v)=6e

m

+ 1

�

�

�

2

l

p

ddeg(v)=6e

m

+ 1

�

�

�

2

l

p

ddeg(v)=6e

m

+ 1

�


ube. We obtain the following result.

Corollary 10.1. For every graph with maximum degree � there exists a 3-D orthogonal


ube-drawing with O

�

(n�)

3=2

�

bounding box volume and at most six bends per edge

route. Ea
h vertex is 4-degree-restri
ted.
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For regular (multi)graphs the bounding box volume bound in Theorem 10.1 is

O

�

m

3=2

�

, whi
h, by Theorem 3.2 is optimal for degree-restri
ted orthogonal box-drawings

with bounded aspe
t ratio.

Open Problem 10.1. Can the algorithm Non-Collinear Box-Drawing be modi-

�ed to produ
e box-drawings with bounding box volume O

�

(m+ n)

3=2

�

? This amounts

to �nding a non-
ollinear vertex layout with an O

�

p

m+ n

�

�O

�

p

m+ n

�

�O

�

p

m+ n

�

inner box.

10.2 Point-Drawing Algorithm

We now present our algorithm for produ
ing 3-D orthogonal point-drawings in the non-


ollinear model. This algorithm follows a similar approa
h as the previous box-drawing

algorithm ex
ept that only the X

+

, Y

+

and Z

+

outer boxes are used, and a 
y
le 
over

de
omposition determines the port assignment instead of an equitable edge-
olouring.

Algorithm 10.2. Non-Collinear Point-Drawing

Input: multigraph G with �(G) � 6.

Output: 3-D orthogonal point-drawing of G.

1. Assign ea
h vertex v 2 V (G) a unique pair (x(v); y(v)) with

0 � x(v); y(v) �

�

p

n

�

� 1 :

2. For ea
h vertex v 2 V (G), set z(v)  x(v) + y(v) (mod d

p

ne), and pla
e v at

(4x(v); 4y(v); 4z(v)).

3. Determine a 
y
le 
over de
omposition of G (see Theorem 2.1) and assign dire
-

tions X

+

, Y

+

and Z

+

to the edges appearing in the �rst, se
ond and third 
y
le


overs, respe
tively.

4. Considering v to be represented by the 3 � 3 � 3 box 
entred at v, determine

edge routes as des
ribed in Steps 6-8 of Algorithm 10.1 Non-Collinear Box-

Drawing.
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5. For ea
h vertex v 2 V (G) 
onne
t the edges in
ident with v from the surfa
e of

the 3� 3� 3 box to the point representing v, as shown in Figure 10.6.

X

Y

Z

Figure 10.6: A vertex inside a 3� 3 box.

Theorem 10.2. The algorithm Non-Collinear Point-Drawing determines in

O

�

n

3=2

�

time a 3-D orthogonal point-drawing of the given graph G, with O

�

n

3=2

�

bound-

ing box volume and at most 8 bends per edge route.

Proof. This result follows immediately from Theorem 10.1 and the observations that

edges will be routed by algorithm Non-Collinear Box-Drawing as indi
ated in

Figure 10.6, and one extra bend is added to ea
h end of an edge route.



Chapter 11

Multi-Dimensional Orthogonal

Point-Drawing

In this 
hapter we study multi-dimensional orthogonal point-drawings of

graphs, as suggested by Liu [145, Note 8.5.2℄. In parti
ular, we present an

algorithm for generating minimum-dimensional orthogonal point-drawings

of arbitrary degree graphs in the non-
ollinear 
oplanar vertex layout model

with at most six bends per edge. We also 
onstru
t minimum-dimensional

orthogonal point-drawings of K

n

with at most two bends per edge, a result

�rst presented in [219℄.

We say a D-dimensional orthogonal point-drawing of a graph G is minimum-

dimensional if there does not exist a (D � 1)-dimensional orthogonal point-drawing

of G. Consider an orthogonal point-drawing of an arbitrary degree graph G. At a

vertex in the D-dimensional orthogonal grid there are 2D ports, so an orthogonal

point-drawing of G requires at least d�(G)=2e dimensions. We shall show that only a

few graphs G do not have an orthogonal point-drawing in d�(G)=2e dimensions. We

de�ne the bend number of G to be the minimum integer b su
h that there exists a

minimum-dimensional point-drawing of G with at most b bends per edge route.

TriviallyK

1

and K

2

have minimum-dimensional orthogonal point-drawings without

any bends (in the 0- and 1-dimensional grids, respe
tively). K

3

is our �rst example

of a graph G whi
h does not have an orthogonal point-drawing in d�(G)=2e (= 1)

204
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dimensions. The 1-bend 2-D orthogonal point-drawing of K

3

establishes that the bend

number of K

3

is one. In fa
t, all 
y
les C

n

(n � 3) do not have an orthogonal point-

drawing in d�(C

n

)=2e (= 1) dimensions. C

n

does have a 1-bend 2-D orthogonal point-

drawing so the bend number of C

n

is one.

If we de�ne `minimum-dimensional' so that edge-
rossings are allowed in 2-D or-

thogonal point-drawings, by the algorithms of Biedl and Kant [28℄ and Papakostas and

Tollis [165℄, all maximum degree four graphs have bend number at most two. If 2-D

drawings must be 
rossing-free, then by the algorithm of Biedl and Kant [28℄, the bend

number of a planar graph with maximum degree at most four is at most two (ex
ept

the o
tahedron graph whi
h requires a 3-bend edge route [91℄).

By Theorem 5.4, graphs with maximum degree at most �ve have a 2-bend 3-D

orthogonal point-drawing, so the bend number of su
h graphs is at most two. Maximum

degree six multigraphs have a 3-bend 3-D orthogonal point-drawing (see Se
tion 5.5),

so maximum degree six multigraphs have bend number at most three.

In Se
tion 11.1 we shall show that the bend number of K

n

is two. To do so, we

initially prove a tight bound for the number of dimensions required for a 1-bend orthog-

onal point-drawing of K

n

. We then 
onstru
t minimum-dimensional point-drawings of

K

n

with at most two bends per edge route, a result whi
h establishes the bend number

of K

n

to be two ex
ept for some isolated 
ases. The algorithm presented in Se
tion 11.2

establishes an upper bound of six for the bend number of an arbitrary multigraph.

11.1 Drawings of K

n

We now prove a lower bound for the number of dimensions required for a 1-bend

orthogonal point-drawing of K

n

.

Theorem 11.1. For n � 3, a 1-bend orthogonal point-drawing of K

n

requires at least

n� 1 dimensions.

Proof. To 
onstru
t a 1-bend (n�1)-dimensional point-drawing of K

n

, for ea
h dimen-

sion i, 1 � i � n � 1, pla
e a vertex v

i

at 1 on the i-axis, and pla
e the remaining

vertex at the origin. Conne
t ea
h v

i

to the origin by a 0-bend edge route, and 
onne
t
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verti
es v

i

and v

j

by a 1-bend edge route through (0; : : : ; 0; 1; 0; : : : ; 0; 1; 0; : : : ; 0) where

the 1's appear in the i- and j-
oordinates.

Suppose there is a (n � 2)-dimensional orthogonal point-drawing of K

n

with at

most one bend per edge route. Let v be some vertex of K

n

. De�ne T

0

to be the set of

dimensions i, 1 � i � n � 2, su
h that no edge route uses port(v;+i) or port(v;�i).

Let T

1

be the set of dimensions with exa
tly one port at v in use, and let T

2

be the

set of dimensions with both ports at v in use. Clearly jT

0

j + jT

1

j + jT

2

j = n � 2 and

0jT

0

j+ 1jT

1

j+ 2jT

2

j = n� 1, implying jT

0

j = jT

2

j � 1 and jT

2

j � 1.

Let i 2 T

2

and let va and vb be the edges assigned port(v;�i) and port(v;+i),

respe
tively. Now, va and vb 
annot both be 0-bend edge routes, as otherwise ab would

have to be a 2-bend edge route. Suppose one of va or vb is a 0-bend edge route and

the other is a 1-bend edge route, as shown in Figure 11.1. Let j be the dire
tion of the

se
ond segment of the 1-bend edge. Clearly, no edge vx 
ould be routed with port(v; j)

as otherwise there would be no possible 0- or 1-bend edge route for xa nor xb. If vx is

routed with port(v;�j) then xa or xb would need two bends, so j 2 T

0

.

a v

v

b

6

j

-

i

a

v

b

�

�

.

.

.

.

.

.

6

j

-
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(a)

a

v

b

(b)

a

v

b

(
)

a

v

b

(d)

a

v

b




d

�

�

�

�

�

�

�

�

�

�

�

�

.

.

.

.

.

.

.

.

.

.

.

.

.

.

�

��

k

-

i

Figure 11.1: A 0-bend and a 1-bend edge

If the edge routes va and vb both have one bend then, as in Figure 11.2, for ab to

have a 0- or 1-bend edge route, the se
ond segments of va and vb must point in the

same dire
tion j, as in 
ases (
) and (d). By the same argument as before, this implies

that j 2 T

0

.

Suppose jT

2

j > 1 and dimension k 2 T

2

n fig. Let v
 and vd be the edges routed

using port(v;+k) and port(v;�k), respe
tively. For a
, ad, b
 and bd to have 1-bend

edge routes, the edges va, vb, v
 and vd all must have one bend and their se
ond

segments must point in the same dire
tion and have the same length, as in Figure 11.3.

Therefore ab and 
d must interse
t, so jT

2

j = 1.

jT

2

j = 1 implies jT

0

j = 0, but j 2 T

0

, whi
h is a 
ontradi
tion. Therefore K

n

does



CHAPTER 11. MULTI-DIMENSIONAL POINT-DRAWING 207

a v

v

b

6

j

-

i

a

v

b

�

�

.

.

.

.

.

.

6

j

-

i

(a)

a

v

b

(b)

a

v

b

(
)

a

v

b

(d)

a

v

b




d

�

�

�

�

�

�

�

�

�

�

�

�

.

.

.

.

.

.

.

.

.

.

.

.

.

.

�

��

k

-

i

Figure 11.2: Two 1-bend edges
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b
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�
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Figure 11.3: i; k 2 T

2

not have a (n � 2)-dimensional orthogonal point-drawing with at most one bend per

edge route.

A minimum-dimensional orthogonal point-drawing of K

n

has at least d�(K

n

)=2e =

bn=2
 dimensions. For n � 4, we have n � 1 > bn=2
, so a minimum-dimensional

orthogonal point-drawing of K

n

(n � 4) requires at least two bends in some edge route.

There is a 2-D 2-bend orthogonal point-drawing of K

4

, so the bend number of K

4

is

two. K

5

also has a 2-D 2-bend orthogonal point-drawing (of 
ourse, with 
rossings),

so it too has bend number two. If we do not allow 
rossings in 2-D drawings then K

5

requires three dimensions. By Theorem 11.1 a 3-D orthogonal point-drawing of K

5

still requires an edge route with at least two bends. A 2-bend 3-D orthogonal point-

drawing of K

5

is provided in Figure 2.3(b) (on page 28). We now 
onstru
t 2-bend

minimum-dimensional orthogonal point-drawings of K

n

for n � 6.

Theorem 11.2. For every n � 6, the bend number of K

n

is 2.

Proof. We initially 
onsider the 
ase of odd n. In Figure 3.6 there is a 2-bend 3-D

orthogonal point-drawing of K

7

, so the result is true for n = 7. We now 
onstru
t a

((n� 1)=2)-dimensional 2-bend point-drawing of K

n

for odd n � 9. Let the vertex set
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of K

n

be

V (K

n

) = fv

1

; v

2

; : : : ; v

7

g [ fa

i

; b

i

: 4 � i � (n� 1)=2g :

The K

7

subgraph indu
ed by the verti
es fv

1

; v

2

; : : : ; v

7

g is drawn with two bends

per edge route as in Figure 3.6 (on page 53). In parti
ular we pla
e the fv

1

; v

2

; : : : ; v

7

g

as follows.

v

1

: (2; 0; 0; 0; : : : ; 0) v

2

: (�2; 0; 0; 0; : : : ; 0)

v

3

: (0; 2; 0; 0; : : : ; 0) v

4

: (0;�2; 0; 0; : : : ; 0)

v

5

: (0; 0; 2; 0; : : : ; 0) v

6

: (0; 0;�2; 0; : : : ; 0)

v

7

: (1; 1; 1; 0; : : : ; 0) :

For ea
h i, 4 � i � (n� 1)=2, pla
e a

i

and b

i

at

a

i

: (1; 0; 0; : : : ; 2; 0; 0; : : : ; 0) b

i

: (1; 0; 0; : : : ;�2; 0; 0; : : : ; 0)

(with the 2 and �2 at 
oordinate i). The edge a

i

v

j

and b

i

v

j

, 4 � i � (n � 1)=2,

1 � j � 7, are routed a

ording to Figure 11.4.

X

i

Y

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

v

1

v

2

v

3

v

4

a

i

b

i

X

i

Z

�

�

�

�

�

�

�

�

v

5

v

6

a

i

b

i

Z

i

Y

-

6

�

�

�	

�

�

�

�

v

7

a

i

b

i

(a) In the Z = 0 hyperplane (b) In the Y = 0 hyperplane (
) In the X = 1 hyperplane

-�

6

?

b

i+1

b

i

a

i

a

i+1

(a)

-�

6

?

b

j

a

i

a

j

b

i

(b)

Figure 11.4: Edge routes a

i

v

j

and b

i

v

j

.

The edges a

i

b

i

, a

i

a

i+1

, b

i

a

i+1

, a

i

b

i+1

and b

i

b

i+1

, 4 � i � (n � 3)=2, are routed

a

ording to Figure 11.5(a). The edges a

i

a

j

, b

i

a

j

, a

i

b

j

, and b

i

b

j

, 4 � i � (n � 3)=2,

i+ 2 � j � (n� 1)=2 are routed a

ording to Figure 11.5(b).

A straight line edge route from a

(n�1)=2

to b

(n�1)=2

passing through the va
ant

grid-point (1; 0; 0; : : : ; 0) 
ompletes the drawing.
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X

i

Y

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

v

1

v

2

v

3

v

4

a

i

b

i

X

i

Z

�

�

�

�

�

�

�

�

v

5

v

6

a

i

b

i

Z

i

Y

-

6

�

�

�	

�

�

�

�

v

7

a

i

b

i

(a) In the Z = 0 hyperplane (b) In the Y = 0 hyperplane (
) In the X = 1 hyperplane

-�

6

?

b

i+1

b

i

a

i

a

i+1

(a)

-�

6

?

b

j

a

i

a

j

b

i

(b)

Figure 11.5: Edge routes in the X = 1 hyperplane.

It is easily seen that a unique port assignments are determined by this edge routing

s
heme. The grid-points 
ontained in edge routes des
ribed in Figure 11.4 only 
ontain

grid-points with a non-zero i 
oordinate (ex
ept for the verti
es themselves). So su
h

edge routes 
annot 
ross an edge route in the K

7

subgraph indu
ed by fv

1

; v

2

; : : : ; v

7

g.

Similarly, an edge route a

i

v

k

or b

i

v

k


annot 
ross an edge route a

j

v

k

or b

j

v

k

(1 � k � 7).

Ex
ept for the grid-points (1; 0; : : : ; 0; 4; 0; : : : ; 0) (in edge a

i

b

i

), (1; 0; : : : ; 0; 1;

0; : : : ; 0) (in edge a

i

a

i+1

) and (1; 0; : : : ; 0;�1; 0; : : : ; 0) (in edge b

i

a

i+1

), the edge routes

des
ribed in Figure 11.5 only 
ontain grid-points with non-zero i and j 
oordinates.

They will therefore not 
ross other edges. By 
he
king grid-points in the X = 1

hyperplane it is easily seen that these parti
ular grid-points are not in any other edge

routes. So no two edge routes 
ross.

Hen
e there is a 2-bend minimum-dimensional orthogonal point-drawing of K

n

for

odd n � 7. In fa
t there are O(n

2

) 1-bend edge routes and only O(n) 2-bend edge

routes. For even n � 6, removing a single vertex from the drawing of K

n+1

provides a

minimum-dimensional 2-bend orthogonal point-drawing of K

n

. By Theorem 11.1, n�1

dimensions are required for a 1-bend point-drawing of K

n

, so the bend number of K

n

is 2, for n � 6.
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11.2 Algorithm

As mentioned by Eades et al. [87℄, their 3-Bends algorithm easily generalises to give an

algorithm for produ
ing a minimum-dimensional orthogonal point-drawing of a graph

G with at most d�(G)=2e bends per edge route. This algorithm pla
es the verti
es

along the main diagonal of a d�(G)=2e-dimensional hyper
ube. Here we pla
e the

verti
es along a 2-D diagonal within d�(G)=2e-dimensional spa
e, and use at most six

bends per edge route

1

.

Algorithm 11.1. Minimum-Dimensional Point-Drawing

Input: A multigraph G with maximum degree �(G) � 5.

Output: A minimum-dimensional orthogonal point drawing of G.

1. Determine G

0

and its 
y
le 
overs C

1

; C

2

; : : : ; C

d

where d = d�(G)=2e (see The-

orem 2.1).

2. Arbitrarily assign the numbers f1; 2; : : : ; ng to the verti
es of G.

(We shall refer to a vertex by its number.)

3. Position vertex a at (2a; 3a; 0; : : : ; 0) 2 Z

d

.

4. Constru
t edge routes for ea
h ar
 in G

0

, as des
ribed below.

5. For ea
h edge of G, draw the edge route of the 
orresponding ar
 in G

0

.

The following method used to 
lassify ar
s a

ording to a vertex ordering is due to

Eades et al. [86, 87℄. Consider an ar
 ab 2 E(G

0

) in 
y
le 
over C

1

, and suppose b
 is

the next ar
 in the 
y
le 
ontaining ab. We route the ar
 ab depending on the relative

values of a, b and 
. In the following �gures, the arrow head indi
ates the port at b to

be assigned to the ar
 b
.

1

In [219℄ it was erroneously stated that using a 3-D diagonal vertex layout, �ve bends per edge route

was possible.
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Case 1.1: If a < b < 
 then we say ab is normal in
reasing. As in Figure 11.6(a),

route ab with the 4-bend edge:

(2a; 3a; 0; 0; : : : ; 0)! (2b� 1; 3a; 0; 0; : : : ; 0)! (2b� 1; 3a; 1; 0; : : : ; 0)

! (2b� 1; 3b; 1; 0; : : : ; 0)! (2b� 1; 3b; 0; 0; : : : ; 0)! (2b; 3b; 0; 0; : : : ; 0)

Case 1.2: If a > b > 
 then we say ab is normal de
reasing. As in Figure 11.6(b),

route ab with the 4-bend edge:

(2a; 3a; 0; 0; : : : ; 0)! (2b+ 1; 3a; 0; 0; : : : ; 0)! (2b+ 1; 3a; 1; 0; : : : ; 0)

! (2b+ 1; 3b; 1; 0; : : : ; 0)! (2b+ 1; 3b; 0; 0; : : : ; 0)! (2b; 3b; 0; 0; : : : ; 0)

X

Y

Z

a

b

(a) In
reasing

b

a

(b) De
reasing

X

Y

Z

a

b

(b) In
reasing to a lo
al maximum

b

a

(b) De
reasing to a lo
al minimum

X

Y

Z

a

b

(a) In
reasing

b

a

(b) De
reasing

X

Y

Z

a

b

(a) In
reasing to a lo
al maximum

b

a

(b) De
reasing to a lo
al minimum

Figure 11.6: Normal ar
s ab in C

1

.

Case 1.3: If a < b > 
 then we say ab is in
reasing to a lo
al maximum. As in

Figure 11.7(a), route ab with the 4-bend edge:

(2a; 3a; 0; 0; : : : ; 0)! (2b+ 1; 3a; 0; 0; : : : ; 0)! (2b+ 1; 3a; 1; 0; : : : ; 0)

! (2b+ 1; 3b; 1; 0; : : : ; 0)! (2b+ 1; 3b; 0; 0; : : : ; 0)! (2b; 3b; 0; 0; : : : ; 0)

Case 1.4: If a > b < 
 then we say ab is de
reasing to a lo
al minimum. As in

Figure 11.7(b), route ab with the 4-bend edge:

(2a; 3a; 0; 0; : : : ; 0)! (2b� 1; 3a; 0; 0; : : : ; 0)! (2b� 1; 3a; 1; 0; : : : ; 0)

! (2b� 1; 3b; 1; 0; : : : ; 0)! (2b� 1; 3b; 0; 0; : : : ; 0)! (2b; 3b; 0; 0; : : : ; 0)

Observe that all ar
s ab in C

1

are routed using the X-ports at a and b. Now 
onsider

an ar
 ab 2 E(G

0

) in 
y
le 
over C

2

and, as before, suppose b
 is the next ar
 in the


y
le 
ontaining ab.

Case 2.1: If ab is normal in
reasing then, as in Figure 11.8(a), route ab with the

5-bend edge:
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X

Y

Z

a

b

(a) In
reasing

b

a

(b) De
reasing

X

Y

Z

a

b

(b) In
reasing to a lo
al maximum

b

a

(b) De
reasing to a lo
al minimum

X

Y

Z

a

b

(a) In
reasing

b

a

(b) De
reasing

X

Y

Z

a

b

(a) In
reasing to a lo
al maximum

b

a

(b) De
reasing to a lo
al minimum

Figure 11.7: Lo
al min/max ar
s ab in C

1

.

(2a; 3a; 0; 0; : : : ; 0)! (2a; 3a + 1; 0; 0; : : : ; 0)! (2a; 3a + 1; 1; 0; : : : ; 0)!

(2a; 3b � 1; 1; 0; : : : ; 0)! (2a; 3b � 1; 0; 0; : : : ; 0)!

(2b; 3b � 1; 0; 0; : : : ; 0)! (2b; 3b; 0; 0; : : : ; 0)

Case 2.2: If ab is normal de
reasing then, as in Figure 11.8(b), route ab with the

5-bend edge:

(2a; 3a; 0; 0; : : : ; 0)! (2a; 3a � 1; 0; 0; : : : ; 0)! (2a; 3a � 1; 1; 0; : : : ; 0)!

(2a; 3b + 1; 1; 0; : : : ; 0)! (2a; 3b + 1; 0; 0; : : : ; 0)!

(2b; 3b + 1; 0; 0; : : : ; 0)! (2b; 3b; 0; 0; : : : ; 0)

X

Y

Z

a

b

(a) In
reasing

b

a

(b) De
reasing

X

Y

Z

a

b

(b) In
reasing to a lo
al maximum

b

a

(b) De
reasing to a lo
al minimum

X

Y

Z

a

b

(a) In
reasing

b

a

(b) De
reasing

X

Y

Z

a

b

(a) In
reasing to a lo
al maximum

b

a

(b) De
reasing to a lo
al minimum

Figure 11.8: Normal ar
s ab in C

2

.

Case 2.3: If ab is in
reasing to a lo
al maximum then, as in Figure 11.9(a), route ab

with the 5-bend edge:

(2a; 3a; 0; 0; : : : ; 0)! (2a; 3a + 1; 0; 0; : : : ; 0)! (2a; 3a + 1; 1; 0; : : : ; 0)!

(2a; 3b + 1; 1; 0; : : : ; 0)! (2a; 3b + 1; 0; 0; : : : ; 0)!

(2b; 3b + 1; 0; 0; : : : ; 0)! (2b; 3b; 0; 0; : : : ; 0)

Case 2.4: If ab is de
reasing to a lo
al minimum then, as in Figure 11.9(b), route ab

with the 5-bend edge:

(2a; 3a; 0; 0; : : : ; 0)! (2a; 3a � 1; 0; 0; : : : ; 0)! (2a; 3a � 1; 1; 0; : : : ; 0)!
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(2a; 3b � 1; 1; 0; : : : ; 0)! (2a; 3b � 1; 0; 0; : : : ; 0)!

(2b; 3b � 1; 0; 0; : : : ; 0)! (2b; 3b; 0; 0; : : : ; 0)

X

Y

Z

a

b

(a) In
reasing

b

a

(b) De
reasing

X

Y

Z

a

b

(b) In
reasing to a lo
al maximum

b

a

(b) De
reasing to a lo
al minimum

X

Y

Z

a

b

(a) In
reasing

b

a

(b) De
reasing

X

Y

Z

a

b

(a) In
reasing to a lo
al maximum

b

a

(b) De
reasing to a lo
al minimum

Figure 11.9: Lo
al min/max ar
s ab in C

2

.

Observe that ar
s in C

2

are assigned the Y -ports at both ends. We now des
ribe

how to route ar
s in 
y
le 
over C

j

, 3 � j � d�(G)=2e. Suppose (a

1

; a

2

; : : : ; a

k

) is a


y
le in C

j

. As illustrated in Figure 11.10, the in
oming ar
 at a vertex a

i

uses the

�j=+ j port and the outgoing ar
 uses the +j=� j port, for odd/even i.

a

4

j

+

j

�

a

3

j

�

j

+

a

2

j

�

j

+

a

1

j

�

j

+

a

k

j

+

=j

�

j

�

=j

+

�

�

�

�

�

�

��

H

H

H

H

H

Hj

�

�

�

�

�

�*

A

AK

A

A

r

r

r

Figure 11.10: Port assignment for a 
y
le in C

j

, j � 3.

� For ea
h odd i, 1 � i � k� 1, as in Figure 11.11(a), route the ar
 a

i

a

i+1

with the

4-bend edge:

(2a

i

; 3a

i

; 0; : : : ; 0)! (2a

i

; 3a

i

; 0; : : : ; 2; 0; : : : ; 0)!

(2a

i

; 3a

i+1

; 0; : : : ; 0; 2; 0; : : : ; 0)! (2a

i

; 3a

i+1

; 0; : : : ; 0; 3; 0; : : : ; 0)!

(2a

i+1

; 3a

i+1

; 0; : : : ; 0; 3; 0 : : : ; 0)! (2a

i+1

; 3a

i+1

; 0 : : : ; 0)

� For ea
h even i, 2 � i � k, as in Figure 11.11(b), route the ar
 a

i

a

i+1

(or a

i

a

1

if

i = k) with the 4-bend edge:



CHAPTER 11. MULTI-DIMENSIONAL POINT-DRAWING 214

(2a

i

; 3a

i

; 0; : : : ; 0)! (2a

i

; 3a

i

; 0; : : : ; 0;�2; 0; : : : ; 0)!

(2a

i

; 3a

i+1

; 0; : : : ; 0;�2; 0; : : : ; 0)! (2a

i

; 3a

i+1

; 0; : : : ; 0;�3; 0; : : : ; 0)!

(2a

i+1

; 3a

i+1

; 0; : : : ; 0;�3; 0; : : : ; 0)! (2a

i+1

; 3a

i+1

; 0; : : : ; 0)

X

Y

j

a

i

a

i+1

(a) i odd.

a

i

a

i+1

(b) i even.

X

Y

j

j + 1

a

k

a

1

Figure 11.11: Ar
 a

i

a

i+1

in 
y
le 
over C

j

, j � 3.

� If k is odd then, as in Figure 11.12, route the ar
 a

k

a

1

with the following 6-bend

edge. If j = D(= d�(G)=2e) then dimension j + 1 is 3.

(2a

k

; 3a

k

; 0; : : : ; 0)! (2a

k

; 3a

k

; 0; : : : ; 0; 2; 0; 0; : : : ; 0)!

(2a

k

; 3a

k

; 0; : : : ; 0; 2; 2; 0; : : : ; 0)! (2a

k

; 3a

1

; 0; : : : ; 0; 2; 2; 0; : : : ; 0)!

(2a

k

; 3a

1

; 0; : : : ; 0;�3; 2; 0; : : : ; 0)! (2a

k

; 3a

1

; 0; : : : ; 0;�3; 0; 0; : : : ; 0)!

(2a

1

; 3a

1

; 0; : : : ; 0;�3; 0; 0; : : : ; 0)! (3a

1

; 3a

1

; 0; : : : ; 0; : : : ; 0)

X

Y

j

a

i

a

i+1

(a) i odd.

a

i

a

i+1

(b) i even.

X

Y

j

j + 1

a

k

a

1

Figure 11.12: Ar
 a

k

a

1

(k odd) in 
y
le 
over C

j

, j � 3.

Theorem 11.3. The algorithm Minimum-Dimensional Point-Drawing determines

a minimum-dimensional 6-bend orthogonal point-drawing of G, whi
h 
an be 
omputed

in O(�

2

n) time.

Proof. The 
y
le 
over de
omposition gives for ea
h vertex exa
tly one in
oming ar


and one outgoing ar
 in ea
h of the d 
y
le 
overs. Observe that ar
s in 
y
le 
over C

j

use the j-ports at ea
h vertex. Hen
e a valid port assignment has been determined,
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and the �rst segments of edges in
ident to a parti
ular vertex do not interse
t (ex
ept

at the vertex itself).

Consider edge routes in 
y
le 
overs C

1

and C

2

. The X-parallel segments lie in the

(Z = 0)-plane and Y -parallel segments lie in the Z = 1 plane, so a X-parallel segment


annot interse
t a Y -parallel segment. Note that the X-parallel segments of an ar
 ab

in C

1

lie in the Y Z-plane 
ontaining a, and the X-parallel segments of an ar
 ab in C

2

lie in the Y Z-plane o�set from b by a distan
e of 1. Similarly for Y -parallel segments,

so by the spa
ing between the verti
es, no two edge routes in C

1

or C

2


an interse
t.

Now 
onsider edge routes in a 
y
le 
over C

j

, j � 3. Apart from the point

(2a

k

; 3a

1

; 0; : : : ; 0; 2; 0; : : : ; 0) for some ar
 a

k

a

1

in C

j

(k odd) with the 2 in 
oordi-

nate j + 1, grid-points in edge routes in C

j

have non-zero j-
oordinate and a zero

k-
oordinate for ea
h k � 3 (k 6= j). Hen
e edge routes in C

j

and C

k

(j 6= k, j; k � 3)

do not interse
t. X-parallel segments of an edge route in C

j

have a j-
oordinate of �3,

and Y -parallel segments of edge routes in C

j

have j-
oordinate of �2, so no two edges

in a 
y
le 
over C

j


an interse
t. The grid-point (2a

k

; 3a

1

; 0; : : : ; 2; 0; : : : ; 0) with the 2

in 
oordinate j+1 
an only be in the ar
 a

k

a

1

(k odd) in 
y
le 
over C

j

, so it too does

not interse
t any other edge routes.

Hen
e the drawing is 
rossing-free, and ea
h edge route has at most six bends. By

Theorem 2.1, the 
y
le 
over de
omposition and hen
e the whole drawing 
an 
omputed

in O(�

2

n) time.
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Chapter 12

Con
lusion

In this 
on
lusion we summarise the main a
hievements of this thesis, the

open problems in 3-D orthogonal graph drawing whi
h have been identi�ed,

and dis
uss avenues for future work in 3-D graph drawing.

This thesis has investigated problems related to the automati
 generation of 3-D

orthogonal graph drawings. Orthogonal graph drawing has appli
ations in VLSI 
ir
uit

design and software engineering, for example. The methods developed have also been

applied to 2-D orthogonal graph drawing and generalised to multi-dimensional spa
e.

12.1 Models and Algorithms

The following models for 3-D orthogonal graph drawing have either been introdu
ed

or extended in this thesis. The algorithms in this thesis, whi
h typi
ally have polyno-

mial time 
omplexity, explore tradeo�s between the established aestheti
 
riteria for

measuring the quality of the produ
ed drawings.

General Position Vertex Layout Model:

A 3-D orthogonal graph drawing is in the general position model if no two verti
es

are interse
ted by a single grid-plane; e.g., by positioning the verti
es along the main

diagonal of 
ube. We have presented algorithms for produ
ing orientation-independent

drawings in the general position model with few bends. A disadvantage of this model

is that the volume of drawings is ne
essarily large.
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We have des
ribed an algorithm whi
h, given a �xed general position vertex layout

of an arbitrary degree graph, 
onstru
ts a general position drawings with bounded

degree-restri
tion and bounded aspe
t ratio (Algorithm 7.4). This algorithm is also

appli
able in a 2-D or multi-dimensional setting. Using a balan
ed vertex layout, our

algorithm produ
es drawings with the smallest known bounds for the degree-restri
tion

of verti
es (Algorithm 7.6).

Our algorithm for produ
ing 3-D orthogonal point-drawings of maximum degree

six graphs establishes the best known upper bound for the total number of bends in

3-D orthogonal point-drawings (Algorithm 5.8). Another algorithm establishes the best

known upper bound for the volume of 3-D orthogonal point-drawings with three bends

per edge route (Algorithm 5.11).

Coplanar Vertex Layout Model:

A 3-D orthogonal graph drawing is in the 
oplanar vertex layout model if there exists

a grid-plane whi
h interse
ts all verti
es. We have 
onsidered two variations of this

model, namely the non-
ollinear 
oplanar model and the 
oplanar grid model. Our

algorithms produ
e orthogonal drawings in these models with few bends and small

volume, respe
tively. A disadvantage of the 
oplanar vertex layout model is that the

drawings produ
ed are ne
essarily orientation-dependent.

Our algorithm for orthogonal drawing in the non-
ollinear 
oplanar model exploits

a book embedding to obtain 1-bend drawings, whi
h for sparse graphs have less volume

than existing methods for 1-bend drawing (Algorithm 9.1).

We have presented two algorithms for produ
ing 3-D orthogonal box-drawings in

the 
oplanar grid model. The �rst algorithm produ
es drawings with optimal volume

for regular graphs (Algorithm 9.2). The se
ond algorithm produ
es degree-restri
ted

3-D orthogonal 
ube-drawings with optimal volume (Algorithm 9.3).

Non-Collinear Vertex Layout Model:

A 3-D orthogonal graph drawing is in the non-
ollinear vertex layout model if no two

verti
es are interse
ted by a single grid-line. In this model, we present an algorithm

for produ
ing 3-D orthogonal box-drawings with optimal volume for regular graphs
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(Algorithm 10.1). This algorithm is then used as the basis for produ
ing 3-D orthogo-

nal point-drawings with optimal volume (Algorithm 10.2). These are the only known

algorithms for produ
ing orientation-independent 3-D orthogonal graph drawings with

optimal volume.

12.2 Methods

As part of our investigation into orthogonal graph drawings, we have developed and

extended existing methods whi
h may be of independent interest. These in
lude:

� algorithms for the balan
ed vertex ordering problem, whi
h we use as the basis

for determining general position vertex layouts;

� an algorithm for equitable edge-
olouring of multigraphs, whi
h we use to deter-

mine port assignments;

� an approa
h to port assignment based on ar
-
olouring;

� the use of vertex-
olouring to determine the heights of edge routes; and

� an exa
t algorithm for the maximum 
lique problem, whi
h we use for sear
hing

for 2-bend point-drawings.

12.3 Open Problems

In the 
ourse of this thesis we have raised many open problems, in
luding the following.

� Does every graph have a degree-restri
ted 3-D orthogonal box-drawing with at

most one bend per edge route? Does every graph have a 3-D orthogonal box-

drawing with O

�

n

2

p

m

�

volume and at most one bend per edge route? (See

Se
tions 3.5.2 and 9.1.)

� Does every graph have a 3-D orthogonal box-drawing with O(m

p

n) volume and

at most three bends per edge route? (See Se
tions 3.5.2 and 9.2.)
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� Does every graph have a degree-restri
ted 3-D orthogonal 
ube-drawing with

O

�

(m+ n)

3=2

�

volume and at most �ve bends per edge route? (See Se
tions 3.5.2

and 9.3.)

� Does every graph with maximum degree six have a 3-D orthogonal point-drawing

with at most two bends per edge route? [86, 87℄ (See Se
tions 3.5.1 and 5.6.1.)

� Does every graph with maximum degree six have a 3-D orthogonal point-drawing

with O

�

n

3=2

�

volume and at most six bends per edge route? (See Se
tion 3.5.1.)

� Can the Topology-Shape-Metri
s approa
h be applied to 3-D orthogonal graph

drawing? For example, given a (linkless) 3-D embedding of a graph with max-

imum degree six, 
an an embedding-preserving 3-D orthogonal point-drawing

with the minimum number of bends be determined in polynomial time? (See

Se
tion 3.2.2.) Note that a 3-D graph embedding 
an be represented by a 2-D

proje
tion for whi
h `over/under' 
rossings are spe
i�ed.

� Develop bounds for the aestheti
 
riteria, besides bounding box volume and the

number of bends, of 3-D orthogonal graph drawings. For example, the total edge

length and the maximum edge length 
ould be studied.

12.4 Future Work

The development of three-dimensional graph drawing is in its infan
y. While algorithms

for 3-D orthogonal graph drawing have been developed whi
h optimise 
ertain aestheti



riteria, most notably the bounding box volume, it is reasonable to ask whether the

drawings produ
ed are feasible for visualisation purposes. We now outline avenues of

resear
h aimed at produ
ing more readable 3-D graph drawings.

Firstly, the question of what are the properties of 3-D graph drawings whi
h are

most appropriate for visualisation purposes has not been addressed in any s
ienti�


manner. It is unrealisti
 to assume that the aestheti
 
riteria for 2-D graph drawings

automati
ally apply in a three-dimensional setting. In parti
ular, the experiments of

Pur
hase et al. [176℄ and Pur
hase [175℄ 
on�rm that the minimisation of 
rossings is

an important aestheti
 
riterion for 2-D graph drawings, however in three dimensions
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all graphs 
an be drawn without 
rossings. Also, it would be interesting to determine

if 3-D graph drawings are better for visualisation purposes than their two-dimensional


ounterparts (see Ware and Fran
k [213℄ for a preliminary study).

A 
riti
al issue in 3-D graph visualisation is the question of how to display a graph

drawing on a 
omputer s
reen. Many issues from 
omputer graphi
s, su
h as rendering

and shading, immediately arise. A system for displaying, and intera
ting with, 3-D

graph drawings needs to be developed. Su
h a system 
ould in
orporate methods for

�nding viewpoints of 3-D drawings with few o

lusions (see Kamada and Kawai [123℄,

Bose et al. [39℄, Eades et al. [81℄ and Houle and Webber [120℄).

As well as solving the open problems dis
ussed in Se
tion 12.3, we now propose

a number of resear
h dire
tions to be be pursued with the goal of produ
ing better

3-D orthogonal drawings. Firstly, heuristi
 improvements 
an be made to many of the

algorithms proposed in the literature and those presented in this thesis. For example, in

Se
tion 5.5.2 we dis
uss the use of a vertex-
olouring method to determine the heights

of edge routes in AlgorithmGeneral Position Three-Bend Point-Drawing, thus

redu
ing the volume of the drawings produ
ed. Se
ondly, a set of re�nements 
ould

be developed, whi
h given an arbitrary 3-D orthogonal graph drawing, modify the

drawing to improve parti
ular aestheti
 qualities. Su
h re�nements 
ould form the

basis of a post-pro
essing step in any 3-D orthogonal graph drawing algorithm, as

has been done for 2-D orthogonal graph drawing by F�o�meier et al. [101℄ and Six

et al. [197℄. An experimental evaluation of the performan
e of 3-D orthogonal graph

drawing algorithms, measuring the relative improvements gained through heuristi
s and

re�nements, 
ould be 
arried out. A �rst step in this dire
tion, was the experiment

of Di Battista et al. [74℄ measuring the performan
e of a number of 3-D orthogonal

point-drawing algorithms.

To produ
e 3-D graph drawings whi
h are potentially more readable than 3-D or-

thogonal drawings a more 
exible model 
ould be employed. It is expe
ted that for 3-D

polyline graph drawings (see Se
tion 1.4.3), 
onsiderably fewer bends will be needed

to produ
e drawings with small volume. The tradeo� between angular resolution and

the number of bends in su
h drawings is an interesting area for resear
h. Of theo-

reti
al interest is the development of algorithms for drawing graphs in non-orthogonal
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three-dimensional grids.
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Appendix A

Lower Bounds for

Three-Dimensional Orthogonal

Point-Drawing

In this Appendix we establish lower bounds for the number of bends in 3-D orthogonal

point-drawings of simple graphs and multigraphs. Firstly, we show that a 3-D orthog-

onal point-drawing of K

5

has at least seven bends. This is the only known non-trivial

lower bound for the total number of bends in a 3-D orthogonal point-drawing of a sim-

ple graph. Theorem 11.1 shows that a 3-D orthogonal point-drawing of K

5

has an edge

route with at least two bends. We then provide a formal proof of the well-known result

that the multigraph with two verti
es and six edges has an edge route with at least

three bends in any 3-D orthogonal point-drawing. Finally, we show this multigraph has

at least 12 bends in any 3-D orthogonal point-drawing, and we provide su
h a drawing.

Throughout this appendix we impli
itly use obvious symmetries to redu
e the number

of 
ases to 
onsider.

A.1 Simple Graphs

Our result for K

5

depends on the following results 
on
erning 3-D orthogonal point-

drawings of small 
y
les. Figure A.1 shows 3-D orthogonal point-drawings of the 4-
y
le

C

4

and of the 5-
y
le C

5

, ea
h with no bends.
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(a) (b)

(a) (b)

(a) (b)

(a) (b) (c)

Figure A.1: 0-bend 3-D orthogonal point-drawings of (a) C

4

and (b) C

5

.

Lemma A.1. The only 0-bend 3-D orthogonal point-drawings of C

4

and of C

5

are

those shown in Figure A.1.

Proof. We shall prove this result for C

5

. The proof for C

4

is similar. Suppose k is the

number of edges in the longest straight-line path in a 0-bend 3-D orthogonal point-

drawing of C

5

. Obviously k � 4. If k = 4 then, as in Figure A.2(a), there must be a

2-bend edge route. If k = 3 then, as in Figure A.2(b), there are two possible pla
e for

the �nal vertex, and in either 
ase there must be a 1-bend edge route.

(a) (b)

(a) (b)

(a) (b)

(a) (b) (c)

Figure A.2: The 
ases (a) k = 4 and (b) k = 3.

If k = 2 then, as in Figure A.3, the edges 
onne
ting to the ends of the 2-path, may

be (a) perpendi
ular, (b) in opposite dire
tions, or (
) in the same dire
tion. In 
ase

(a) there must be a 2-bend edge route. In 
ase (b) there must be a 3-bend edge route,

and 
ase (
) produ
es the 0-bend drawing of C

5

shown in Figure A.1(b).

(a) (b)

(a) (b)

(a) (b)

(a) (b) (c)

Figure A.3: The 
ase k = 2.
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If k = 1 then, as in Figure A.4, the edges 
onne
ting to the ends of the 1-path

(whi
h is drawn parallel to the X-axis), may be (a) perpendi
ular, (b) in the same

dire
tion, or (
) in opposite dire
tions. In ea
h 
ase there are no 1-bend edge routes


onne
ting the end-points of the resulting 4-path whi
h do not introdu
e a straight-line

path with two edges. So it is impossible to add the remaining vertex to make a 0-bend

5-
y
le with k = 1.

(a) (b)

(a) (b)

(a) (b)

(a) (b) (c)

Figure A.4: The 
ase k = 1.

Hen
e the only drawing of the 5-
y
le with no bends is that shown in Figure A.1(b)

with k = 2.

In Figure 2.3(b) (page 28) there is a 3-D orthogonal point-drawing of K

5

with seven

bends. We now show that this is optimal.

Theorem A.1. Every 3-D orthogonal point-drawing of K

5

has at least seven bends.

Proof. Suppose, to the 
ontrary, that there is a 3-D orthogonal point-drawing of K

5

with a total of six bends.

Our proof pro
eeds by 
onsidering the stru
ture of the subgraph of K

5


onsisting

of the 0-bend edges. It is easily veri�ed that in any subgraph of K

5

with at least

seven edges there is a K

3

subgraph. Sin
e K

3

does not have a 0-bend 3-D orthogonal

point-drawing, the number of 0-bend edge routes in the drawing of K

5

is at most six.

Clearly, in any K

3

-free 6-edge subgraph of K

5

there is a 4-
y
le. Given a 4-
y
le,

the only way to add a �fth vertex and two more edges without 
reating a triangle is

to 
onne
t the �fth vertex to the non-adja
ent verti
es of the 4-
y
le. Hen
e, the only

6-edge K

3

-free subgraph of K

5

is that shown in Figure A.5(a), whi
h we 
all H.

Note that H 
ontains C

4

. By Lemma A.1 the only 0-bend 3-D orthogonal point-
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(a) (b)

(a) (b)

Figure A.5: (a) K

3

-free 6-edge subgraph H of K

5

; (b) H does not have a 0-bend 3-D

point-drawing

drawing of C

4

is a re
tangle. It is not possible to 
onne
t the non-adja
ent verti
es of

a re
tangle by two 0-bend edges (see Figure A.5(b)). Hen
e H does not have a 0-bend

3-D orthogonal point-drawing. So the number of 0-bend edge routes in the drawing of

K

5

is at most �ve. By Theorem 11.1, any 3-D point-drawing of K

5

has an edge route

with at least two bends. It follows that in a point-drawing of K

5

with six bends there

is pre
isely one 2-bend edge, four 1-bend edges and �ve 0-bend edges.

A K

3

-free subgraph of K

5

with �ve edges is C

5

or 
ontains C

4

. By Lemma A.1,

the only 0-bend drawings of C

5

and C

4

are the re
tangles shown in Figure A.1. As

illustrated in Figure A.6, the diagonally opposite verti
es of the re
tangles must be


onne
ted by a 3-bend edge route, whi
h is a 
ontradi
tion. The result follows.

(a) (b)

(a) (b)

Figure A.6: 3-bend edge `a
ross' the 4- and 5-
y
le.
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A.2 Multigraphs

In Figure A.7 we show 3-D orthogonal point-drawings of the multigraph with two

verti
es and six edges.

(a) (b) (c)

(b)(a)

Figure A.7: Drawings of the 2-vertex 6-edge multigraph with (a) a maximum of three

bends per edge route, and (b) a total of twelve bends.

We now prove that the maximum number of bends per edge route in the drawing

in Figure A.7(a) is optimal.

Lemma A.2. The multigraph with two verti
es and six edges has a 3-bend edge route

in every 3-D orthogonal point-drawing.

Proof. Sin
e the graph is 6-regular every port at the verti
es v and w must be used.

The two verti
es 
an be (a) 
ollinear, (b) 
oplanar but not 
ollinear, or (
) not 
oplanar,

as illustrated in Figure A.8.

(a) (b) (c)

(b)(a)

Figure A.8: The 2-vertex 6-edge multigraph needs a 3-bend edge route.

In ea
h 
ase a port at vertex v pointing away from w requires at least three bends

to rea
h w.

We now prove that the total number of bends in the drawing in Figure A.7(b) is

optimal.
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Lemma A.3. The multigraph with two verti
es and six edges has at least 12 bends in

any 3-D orthogonal point-drawing.

Proof. If the verti
es are not 
oplanar then at one of the verti
es, three of the ports

need at least two bends to rea
h the other vertex, and the other three ports need at

least three bends to rea
h the other vertex. So a non-
oplanar drawing has at least 15

bends.

If the verti
es are 
oplanar but not 
ollinear then at one of the verti
es, two of the

ports need at least one bend to rea
h the other vertex, two of the ports need at least

two bends to rea
h the other vertex, and the remaining two ports need at least three

bends to rea
h the other vertex. So a non-
ollinear 
oplanar drawing has at least 12

bends.

If the verti
es are 
ollinear then at one of the verti
es, four of the ports need at

least two bends to rea
h the other vertex, and one of the ports needs at least three

bends to rea
h the other vertex. So a non-
ollinear 
oplanar drawing has at least 11

bends. Suppose, without loss of generality, that the verti
es are in an X-line, and there

is su
h a drawing with 11 bends. Then there must be four 2-bend edge routes, and

one 3-bend edge route. These four 2-bend edge routes must use the Y

�

and Z

�

ports

at ea
h vertex. Therefore, the edge routed using the X

�

and X

+

port must have four

bends, whi
h is a 
ontradi
tion. The result follows.



Appendix B

3-D Orthogonal `Cage' Drawings

As dis
ussed in Chapter 3, the 2-bends problem (Problem 3.3) is one of the most

interesting open problems in the �eld of 3-D orthogonal graph drawing. This problem

asks whether every maximum degree six graph has a 3-D orthogonal point-drawing with

at most two bends per edge route. We now present 3-D orthogonal point-drawings of

the 6-regular multi-partite graphs K

7

, K

2;2;2;2

, K

3;3;3

and K

6;6

with two bends per edge

route, thus providing eviden
e for the 
onje
ture that every maximum degree six graph

has a 2-bend 3-D orthogonal point-drawing.

Wood [219℄ presented the �rst 2-bend 3-D orthogonal point-drawing of K

7

. This

drawing is less symmetri
 than the drawing presented here. In a 2-bend 3-D orthogonal

point-drawing the edge routes assigned an `extreme' port must be planar. The 2-bend

point-drawings whi
h follow 
onsist of two parts. The outer `
age' in
ludes planar

and non-planar 2-bend edge routes (see Figure 5.25). The `interior' 
onsists solely of

non-planar 2-bend edge routes.

2-Bend Drawing of K

7

:

Figures B.1 and B.2 respe
tively show a K

6


age drawing and a K

1;6

interior drawing

whi
h 
ombine to give the 8� 8� 8 2-bend point-drawing of K

7

from Figure 3.6. The

verti
es are positioned at (2; 0; 0), (�2; 0; 0), (0; 2; 0), (0;�2; 0), (0; 0; 2), (0; 0;�2) and

(1; 1; 1).
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6

Z

-

Y

�

�	

X

6

Z

-

Y

�

�	

X

Figure B.1: K

6


age.

2-Bend Drawings of K

2;2;2;2

and K

3;3;3

:

Our 2-bend 3-D point-drawings of K

2;2;2;2

and K

3;3;3

both use the o
tahedron graph


age shown in Figure B.3.

Combining the o
tahedron 
age with the K

2;6

interior drawing shown in Figure B.4

gives a 9� 9� 9 2-bend 3-D orthogonal point-drawing of K

2;2;2;2

.

Combining the o
tahedron 
age with the interior drawing shown in Figure B.5 gives

a 10� 10� 10 2-bend 3-D orthogonal point-drawing of K

3;3;3

.
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6

Z

-

Y

�

�	

X

6

Z

-

Y

�

�	

X

Figure B.2: K

1;6

drawing forming the interior of K

7

.
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Figure B.3: O
tahedron 
age
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Figure B.4: K

2;6

drawing forming the interior of K

2;2;2;2

.
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Figure B.5: Interior of K

3;3;3

.
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2-Bend Drawing of K

6;6

:

Our 2-bend 3-D orthogonal point-drawing of K

6;6


onsists of the `bipartite 
age' shown

in Figure B.6, and the interior drawing of Figure B.7 drawn three times with:

(1) I = X, J = Y , K = Z, (2) I = Y , J = Z, K = X, (3) I = Z, J = X, K = Y .

We position the verti
es of K

6;6

as indi
ated in Table B.1, obtaining a 12� 12� 12

2-bend 3-D orthogonal point-drawing of K

6;6

. This drawing was found using the sear
h

te
hnique presented in Se
tion 5.2.2, whi
h is based on the algorithm in Appendix C

for the maximum 
lique problem.
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Figure B.6: Bipartite 
age.
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Figure B.7: Interior of K

6;6

.

Table B.1: Coordinates of V (K

6;6

).

X

+

W

(4,-2,0) Y

+

W

(0,4,-2) Z

+

W

(-2,0,4)

X

+

B

(3,2,0) Y

+

B

(0,3,2) Z

+

B

(2,0,3)

X

�

W

(-4,1,-1) Y

�

W

(-1,-4,1) Z

�

W

(1,-1,-4)

X

�

B

(-5,-3,-1) Y

�

B

(-1,-5,-3) Z

�

B

(-3,-1,-5)



Appendix C

Maximum Clique Algorithm

In this appendix we des
ribe an algorithm for �nding a maximum 
lique in a

graph and 
ompare its performan
e with leading algorithms for this problem

in an experimental study. In Se
tion 5.2.2 we des
ribe how this algorithm


an be used for sear
hing for 2-bend 3-D orthogonal point-drawings. For

example, it was used to �nd the 2-bend drawing of K

6;6

presented in Ap-

pendix B. This algorithm and the experimental results were published in

[218℄.

C.1 Introdu
tion

As de�ned in Se
tion 2.2, a 
lique of an undire
ted graph G is a set of pairwise adja
ent

verti
es. A set of pairwise non-adja
ent verti
es is 
alled an independent set. In this

appendix we address the Maximum Clique Problem; i.e., for a given undire
ted graph

G �nd a maximum 
ardinality 
lique of G (whose 
ardinality we denote by !(G)).

Clearly the maximum 
lique problem is equivalent to that of �nding a maximum

independent set in the 
omplementary graph. Appli
ations for this problem exist in

signal pro
essing, 
omputer vision and experimental design for example (see Balas and

Yu [13℄). Unfortunately, not only is the exa
t problem NP-hard (see Garey and Johnson

[105℄), but Arora et al. [7℄ show that approximating the maximum 
lique problem within

a fa
tor of jV j

�

for some � > 0 is NP-hard .

Early algorithms in
luded the bran
h and bound algorithm of Bron and Kerbos
h

236



APPENDIX C. MAXIMUM CLIQUE ALGORITHM 237

[46℄ to generate all the 
liques of a graph and the re
ursive algorithm of Tarjan and

Trojanowski [206℄ to determine a maximum independent set of an n-vertex graph in

O(2

n=3

) time. Re
ent approa
hes to the maximum 
lique problem have in
luded the

bran
h and bound algorithms of Carraghan and Pardalos [52℄, Pardalos and Rodgers

[170℄, Balas and Yu [13℄, Balas and Xue [11, 12℄, Babel and Tinhofer [9℄, and Babel

[8℄. In their survey paper, Pardalos and Xue [171℄ identify the following key issues in a

bran
h and bound algorithm for the maximum 
lique problem.

1. How to �nd a good lower bound, i.e., a 
lique of large size?

2. How to �nd a good upper bound on the size of a maximum 
lique?

3. How to bran
h, i.e., break a problem into smaller subproblems?

In Se
tion C.2 we address the �rst two of these questions. In Se
tion C.3 we present

our bran
h and bound algorithm, and in Se
tion C.4 we dis
uss 
omputational results of

our algorithm in 
omparison with leading algorithms for the maximum 
lique problem.

C.2 Heuristi
s

The algorithm of Balas and Yu [13℄ 
on
entrates on the determination of lower bounds

using an algorithm to �nd a maximum 
lique of a maximal triangulated indu
ed sub-

graph at sele
ted sear
h tree nodes. This method is extended to the maximum weight


lique problem by Balas and Xue [11℄. The algorithm to follow and the algorithm of

Balas and Xue [12℄ determine a lower bound at the root node of the sear
h tree, using

the algorithm of Balas [10℄ to �nd a maximum 
lique of an edge-maximal triangulated

subgraph. To provide lower bounds at non-root sear
h tree nodes we use the following

well-known heuristi
 whi
h we 
all Greedy Clique. Given a graph G, maintain a set

S (initially S  V (G)) of 
andidate verti
es to be added to the 
urrent 
lique. Add a

vertex v 2 S to the 
urrent 
lique, set S  (S nfvg)\V

G

(v), and 
ontinue until S = ;.

We now turn our attention to the determination of upper bounds. The algorithms

of Carraghan and Pardalos [52℄ and Pardalos and Rodgers [170℄ use the size of a given

subgraph as an upper bound for the size of a 
lique in that subgraph. Vertex-
olourings

provide mu
h tighter upper bounds. A vertex k-
olouring of a graph G partitions V (G)
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into k independent sets (C

1

; C

2

; : : : ; C

k

) 
alled 
olour 
lasses. Ea
h vertex of a 
lique

must be 
oloured di�erently, so k is an upper bound for !(G). As dis
ussed in Se
-

tion 2.2, the algorithm Greedy Vertex-Colour is a simple heuristi
 for determining

a vertex-
olouring of a graph.

In [8, 9, 12℄ upper bounds for the maximum 
lique problem are determined using

the Dsatur vertex-
olouring heuristi
 of Brelaz [43℄. Brelaz de�nes the saturation

degree of an un
oloured vertex v to be the number of 
olours assigned to the verti
es

adja
ent to v. While un
oloured verti
es remain, the Dsatur heuristi
 
hooses an

un
oloured vertex v with maximum saturation degree (breaking ties by higher degree),

and 
olouring v with the minimum 
olour not already assigned to an adja
ent vertex.

This method 
olours the 
onne
ted 
omponents of G in turn, and within ea
h 
on-

ne
ted 
omponent the initial verti
es 
hosen form a 
lique. So Dsatur provides both

a lower and upper bound for !(G). Comparisons of Greedy Vertex Colour and

Dsatur in [12, 217℄ show that for all but a few of the tested graphs Dsatur requires

(up to 27.5%) fewer 
olours than Greedy Vertex Colour, although Dsatur is


onsiderably slower. For very sparse and very dense graphs, Dsatur is an order of

magnitude more expensive than 
olour [12℄.

A fra
tional 
olouring of a graph G is a set C of (possibly interse
ting) weighted


olour 
lasses (i.e., independent sets), su
h that for ea
h vertex v 2 V (G) the sum of

the weights of the 
olour 
lasses 
ontaining v is at least one. Sin
e a 
olour 
lass 
an


ontain at most one vertex of a 
lique, in a fra
tional 
olouring the sum of the weights

of those 
olour 
lasses interse
ting a 
lique Q is at least jQj. Therefore the total weight

of a fra
tional 
olouring of a graph G is an upper bound for !(G). The upper bound

from a minimum weight fra
tional 
olouring is in general tighter than that provided by

a minimum vertex-
olouring [12℄; unfortunately determining su
h a fra
tional 
olouring

is NP-hard [112℄ .

Balas and Xue [12℄ use the following heuristi
 FCP for the fra
tional 
olouring

problem to provide upper bounds for the maximum 
lique problem. After i iterations

of FCP, ea
h vertex is 
oloured exa
tly i times, and ea
h 
olour 
lass is assigned weight

1=i, so t

i

= jCj=i is an upper bound for !(G). Initially C  ;, i  1 and t

0

 1.

Iteration i of FCP exe
utes the following algorithm.
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For ea
h vertex v, in
lude v in the �rst 
olour 
lass C

j

2 C, if one exists, su
h that

C

j

[fvg remains an independent set. Suppose U is the set of verti
es not in
luded in a


olour 
lass. Find a vertex-
olouring (C

1

; C

2

; : : : ; C

k

) of G[U ℄ (using Greedy Vertex

Colour or Dsatur), and set C  C [ fC

1

; C

2

; : : : ; C

k

g and t

i

 jCj=i. If t

i

< t

i�1

then set i i+ 1 and repeat, otherwise return the upper bound bt

i�1


.

To prove a time 
omplexity result for FCP, the authors amend the stopping rule so

that the number of 
olour 
lasses jCj does not ex
eed the number of verti
es jV j. Our

implementation also in
ludes this feature. Note that for many graphs a tighter upper

bound 
an be 
al
ulated by reiterating the algorithm after either stopping 
ondition is

satis�ed.

By FCP

G

and FCP

D

we refer to algorithm FCP with Greedy Vertex Colour

and Dsatur determining vertex-
olourings, respe
tively. The 
omparison of these

heuristi
s in [12, 217℄ show that the improvements in upper bound by FCP

G

over

Greedy Vertex Colour range from 0{21 
olours, and for FCP

D

over Dsatur the

improvements range from 0{7 
olours.

C.3 Maximum Clique Algorithm

We now present our bran
h and bound algorithm MC for the maximum 
lique problem,

whi
h uses the FCP heuristi
 to determine upper bounds, and, like the algorithms in [52,

170℄, a
tivates exa
tly one new sear
h tree node at ea
h bran
hing stage. Other bran
h

and bound algorithms for the maximum 
lique problem a
tivate many sear
h tree nodes

at ea
h bran
hing step. This is ineÆ
ient as new bounds need to be determined for ea
h

subgraph 
onsidered. A lower bound (i.e., a large maximum 
lique) is only determined

at the root node of the sear
h tree. To do so we use the linear-time algorithm of Balas

and Yu [13℄ (also see Xue [225℄) for �nding a maximum 
lique in an edge-maximal

triangulated subgraph of the input graph.

Given a graph G, algorithm MC maintains the following 
onditions:

� If h is the 
urrent depth of the sear
h tree then the set of verti
es

fv

1

; v

2

; : : : ; v

h�1

g � V (G) is a 
lique of G.

� M is the 
urrent largest 
lique found by the algorithm; h� 1 � jM j � !(G).
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� For 1 � i � h, the vertex set S

i

�

i�1

T

j=1

V

G

(v

j

) 
onsists of 
andidates for enlarging

fv

1

; v

2

; : : : ; v

i�1

g.

� For ea
h i, 1 � i � h, (C

i

1

; C

i

2

; : : : ; C

i

k

i

) is a vertex-
olouring of G[S

i

℄. Both k

i

and k

0

i

(determined by FCP) are upper bounds for !(G[S

i

℄), with k

0

i

� k

i

.

� An a
tive node of the sear
h tree 
orresponds to the subproblem of �nding a

maximum 
lique larger than M of the subgraph:

G

i

= G[fv

1

; v

2

; : : : ; v

i�1

g [ S

i

℄, for 1 � i � h.

Clearly !(G

i

) � i� 1 + k

0

i

� i� 1 + k

i

.

Algorithm C.1. MaxClique

Input: graph G

Output: maximum 
lique of G

Step 0: Initialisation

Find a maximum 
lique M of an edge-maximal triangulated subgraph of G [13, 225℄.

Set h 1, S

h

 V (G) and go to Step 2.

Step 1: Cal
ulate Lower Bound

Q Greedy Clique(G[S

h

℄).

if h� 1 + jQj > jM j then set M  fv

1

; v

2

; : : : ; v

h�1

g [Q.

Go to Step 2.

Step 2: Cal
ulate Upper Bound

Find a vertex-
olouring (C

h

1

; C

h

2

; : : : ; C

h

k

h

) of G[S

h

℄.

if h� 1 + k

h

� jM j then go to Step 4.

Apply FCP to G[S

h

℄ to obtain a further upper bound k

0

h

� !(G[S

h

℄).

if h� 1 + k

0

h

� jM j then go to Step 4.

Go to Step 3.

Step 3: Bran
hing

Choose a vertex v

h

2 C

h

k

h

with maximum deg

G

(v

h

).
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Set S

h+1

 S

h

\ V

G

(v

h

), S

h

 S

h

n fv

h

g, C

h

k

h

 C

h

k

h

n fv

h

g.

if C

h

k

h

= ; then set k

h

 k

h

� 1 and if k

h

< k

0

h

then set k

0

h

 k

h

.

Set h h+ 1.

Go to Step 1.

Step 4: Ba
ktra
king

if h = 1 then stop: M is a maximum 
lique of G.

Set h h� 1.

if h� 1 + k

0

h

� jM j then go to Step 4.

Go to Step 3.

In the se
ond line of Step 3, the problem of �nding a maximum 
lique of G

h

is

divided into two sub-problems. If v

h

is a vertex of G[S

h

℄ then a 
lique Q of G

h

will be


ontained in either:

G

h+1

= G[fv

1

; v

2

; : : : ; v

h

g [ (S

h

\ V

G

(v

h

))℄ (if v

h

2 Q)

or G

h

= G[fv

1

; v

2

; : : : ; v

h�1

g [ (S

h

n fv

h

g)℄ (if v

h

62 Q).

We 
hoose v

h

from the �nal 
olour 
lass C

h

k

h

, as the latter 
olour 
lasses generated

by Greedy Vertex Colour and by Dsatur tend to be smaller than the initial ones.

Therefore the upper bound k

h

is redu
ed more qui
kly than if an arbitrary vertex in S

h

was 
hosen. Note that, sin
e jM j � h�1 and h�1+k

h

> jM j whenever the algorithm

goes to Step 3, we have k

h

� 1 at this stage, and hen
e the 
olour 
lass C

h

k

h

must exist.

Theorem C.1. Given an undire
ted graph G, algorithm MC �nds a maximum 
lique

M of G.

Proof. This result follows immediately from the observation that algorithm MC main-

tains the abovementioned 
onditions throughout the algorithm.

C.4 Experimental Results

See [217℄ for a 
omplete des
ription of the implementation of our algorithms in GAP

[193℄ on a Sun Spar
station 10.
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To evaluate the e�e
tiveness of the FCP heuristi
 as an upper bounding devi
e

for the maximum 
lique problem, we have also developed an algorithm MC

0

whi
h

skips the third and fourth lines of Step 2, thus not using FCP to 
al
ulate a further

upper bound. MC

G

(respe
tively, MC

0

G

) usesGreedy Clique to determine a 
lique in

Step 1, and FCP

G

(Greedy Vertex Colour) to determine upper bounds in Step 2.

MC

D

(respe
tively, MC

0

D

) uses FCP

D

(Dsatur) for these purposes.

We now 
ompare the performan
e of algorithms MC

G

, MC

D

, MC

0

G

and MC

0

D

with

existing algorithms for the maximum 
lique problem. By BXB we refer to a 
ombina-

tion of the algorithms of Babel [8℄ and Balas and Xue [12℄, the most eÆ
ient known

algorithms for the maximum 
lique problem. BXB uses FCP

D

to 
al
ulate lower and

upper bounds at ea
h sear
h tree node, and uses bran
hing rule II in [8℄, their best

performing bran
hing rule. The bran
hing rules in [8℄ and [12℄ (whi
h is stated for

weighted graphs) both generally a
tivate more than one new sear
h tree node.

Table C.1 shows the average size of the lower bound determined at the root node

(LB), the average size of a maximum 
lique (jM j), the average CPU time taken by

ea
h of the algorithms, and the average number of sear
h tree nodes generated by ea
h

algorithm, for 10 uniform random graphs with n = jV (G)j verti
es and % edge density

d = 200jEj=n(n � 1).

In Table C.2 we 
ompare the algorithms for a sele
tion of the DIMACS ben
hmark

graphs whi
h were developed as part of the 1993 DIMACS Challenge (see Johnson

and Tri
k [122℄). They in
lude non-uniform random graphs with relatively large 
lique

sizes, and graphs whi
h have arisen in 
oding theory, the Steiner Triple Problem, tiling

of hyper
ubes, vertex 
over problems and fault diagnosis. Table B.2 shows the size n

and % density d of the graph, the CPU time taken by ea
h algorithm, and the number

of sear
h tree nodes generated by ea
h algorithm. Column BX refers to the number of

sear
h tree nodes for the algorithm of Balas and Xue [12℄, as stated in their paper. To

a

urately 
ompare algorithms we use the values presented in [12℄ for the lower bound

at the root node for ea
h of the tested algorithms.

In most 
ases the algorithms MC

D

, BXB and BX, whi
h use the upper bound

heuristi
 FCP

D

, generate the least number of sear
h tree nodes. MC

D

on average

generates less sear
h tree nodes than BXB for 12 of the 16 sets of random graphs. For
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Table C.1: Performan
e of Maximum Clique Finding Algorithms on Uniform Random

Graphs

CPU Time (se
onds) Sear
h Tree Nodes

n d LB jM j

MC

G

MC

D

MC

0

G

MC

0

D

BXB MC

G

MC

D

MC

0

G

MC

0

D

BXB

100 10 3.7 3.9 0.222 0.428 0.160 0.280 0.432 24.3 18.7 24.8 18.7 23.1

100 20 4.7 5.1 0.363 0.755 0.277 0.523 0.752 38.1 33.9 40.6 34.7 39.2

100 30 5.6 6.3 0.959 1.590 0.422 0.883 1.390 53.4 45.6 79.2 52.9 50.3

100 40 6.9 7.6 1.325 3.148 0.613 1.508 3.020 109.8 82.4 165.6 102.8 89.1

100 50 8.1 9.1 2.515 6.894 1.478 3.780 6.458 254.1 198.7 344.5 234.9 201.9

100 60 10.4 11.6 5.497 14.18 1.932 6.860 14.87 468.4 328.7 707.5 405.8 365.4

100 70 12.8 14.8 14.31 36.85 3.445 18.08 38.38 1,048 672.7 1,705 893.4 698.1

100 80 18.0 20.0 35.43 92.84 6.525 46.46 88.62 1,786 1,253 2,961 1,696 1,160

100 90 28.0 30.7 73.84 150.1 12.12 71.30 134.1 2,126 1,109 4,043 1,523 974.3

200 10 4.0 4.3 1.013 2.498 0.962 1.715 2.705 92.3 83.5 98.2 83.7 91.2

200 20 5.1 5.9 2.708 5.810 1.548 4.217 5.965 140.3 120.7 202.2 137.6 126.9

200 30 6.1 7.3 7.030 17.71 3.187 9.095 18.56 519.9 396.2 699.5 476.8 386.0

200 40 7.6 9.0 16.04 47.64 5.510 26.04 49.85 1,539 1,162 2,011 1,279 1,317

200 50 10.0 11.1 57.49 161.5 12.68 81.31 168.1 4,295 2,810 6,846 3,622 2,889

200 60 12.1 14.0 249.9 755.6 45.66 380.4 820.4 17,461 11,704 26,857 14,712 13,109

200 70 15.3 18.1 1,993 5,830 341.9 2,945 5,829 102,122 64,430 173,810 88,354 63,972

CPU Time (se
onds) Sear
h Tree Nodes

jM j

MC

G

MC

D

MC

0

G

MC

0

D

BXB MC

G

MC

D

MC

0

G

MC

0

D

BXB

29 160.0 263.1 26.34 122.5 285.8 4,957 2,014 9,854 2,721 2,216

30 66.09 158.2 10.38 74.80 134.4 1,885 1,183 3,259 1,620 966

31 53.27 94.34 9.740 45.92 79.52 1,392 643.5 2,815 938.5 522

32 50.80 138.0 7.809 66.97 92.19 1,323 1,005 2,465 1,372 623

33 12.03 36.32 2.300 17.90 22.80 256 217 391 307 123

12 of the DIMACS ben
hmark graphs, the lower bound and upper bound 
al
ulated at

the root node by these algorithms are equal, and therefore only one sear
h tree node

is generated. Of the other 26 DIMACS ben
hmark graphs, MC

D

uses the least sear
h

tree nodes of these algorithms 15 times, BXB 10 times, and BX 8 times.



A
P
P
E
N
D
I
X
C
.
M
A
X
I
M
U
M

C
L
I
Q
U
E
A
L
G
O
R
I
T
H
M

2
4
4

Table C.2: Performan
e of Maximum Clique Finding Algo-

rithms on the DIMACS Ben
hmark Graphs

CPU Time (se
onds) Sear
h Tree Nodes

DIMACS

Graph

n d jM j

MC

G

MC

D

MC

0
G

MC

0
D

BXB MC

G

MC

D

MC

0
G

MC

0
D

BXB BX

bro
k200 1 200 75 21 4,911 15,186 805.2 7,951 16,320 218,853 149,153 379,810 211,013 163,348 113,244

bro
k200 2 200 50 12 26.72 149.7 3.833 74.22 158.4 1,790 3,018 2,594 3,593 3,018 2,965

bro
k200 3 200 61 15 230.1 573.6 38.50 281.0 815.9 15,354 7,818 24,113 10,113 12,717 8,155

bro
k200 4 200 66 17 568.2 1,926 92.95 931.5 1,530 31,751 25,105 52,332 33,693 19,316 25,705


-fat200-1 200 8 12 0.283 2.200 0.017 0.150 2.133 8 1 8 4 1 1


-fat200-2 200 16 24 0.317 0.183 0.017 0.183 0.167 7 1 7 1 1 1


-fat200-5 200 43 58 0.683 3.467 0.133 2.217 3.284 27 27 27 27 27 29


-fat500-1 500 4 14 0.534 0.616 0.017 0.617 2.217 13 1 13 1 1 1


-fat500-2 500 7 26 1.417 0.700 0.083 0.700 0.750 23 1 23 1 1 1


-fat500-5 500 19 64 1.450 0.984 0.166 0.950 0.983 23 1 23 1 1 1


-fat500-10 500 37 126 0.017 1.400 0.033 1.400 1.450 1 1 1 1 1 1

hamming6-2 64 90 32 0.017 0.050 0.001 0.067 0.066 1 1 1 1 1 1

hamming6-4 64 35 4 0.133 0.850 0.067 0.300 0.800 81 29 81 58 29 48

hamming8-2 256 97 128 0.017 0.733 0.001 0.750 0.717 1 1 1 1 1 1
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Table C.2: 
ontinued

CPU Time (se
onds) Sear
h Tree Nodes

DIMACS

Graph

n d jM j

MC

G

MC

D

MC

0
G

MC

0
D

BXB MC

G

MC

D

MC

0
G

MC

0
D

BXB BX

hamming8-4 256 64 16 344.2 155.7 79.15 137.6 156.5 28,593 357 36,441 2,045 357 373

hamming10-2 1,024 99 512 0.050 10.57 0.066 10.47 12.28 1 1 1 1 1 1

johnson8-2-4 28 56 4 0.050 0.050 0.017 0.083 0.033 20 1 23 26 1 1

johnson8-4-4 70 77 14 0.533 0.300 0.183 0.534 0.300 115 1 115 19 1 1

johnson16-2-4 120 76 8 770.8 0.417 195.8 2,046 0.384 190,084 1 256,099 355,522 1 1

keller4 171 65 11 113.1 256.5 18.45 137.5 256.7 6,543 3,700 12,829 5,195 3,700 4,164

MANN a9 45 93 16 0.617 1.033 0.100 0.384 1.017 46 19 60 20 19 23

MANN a27 378 99 126 23,286 26,524 704.3 9,753 25,549 39,087 8,704 47,264 9,874 8,714 14,145

p hat300-1 300 24 8 8.800 38.93 1.467 20.12 37.53 1,032 819 1,310 928 819 832

p hat300-2 300 49 25 75.05 225.6 10.05 129.2 225.5 1,888 1,304 2,801 1,579 1,304 1,613

p hat500-1 500 25 9 76.48 384.8 13.72 231.4 389.5 7,454 6,179 9,772 6,724 6,179 6,105

p hat500-2 500 50 36 2,695 9,790 267.1 5,796 6,320 35,657 27,182 59,393 34,787 17,019 31,746

p hat700-1 700 25 11 272.8 1,915 40.32 1,060 1,408 17,629 19,337 25,805 23,150 15,310 14,040

p hat1000-1 1,000 24 10 1,883 13,060 283.2 6,974 13,150 122,182 90,607 179,082 111,897 91,159 93,004

san200 0.7 1 200 70 30 6.617 36.37 0.917 18.85 95.73 53 231 206 348 645 635
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Table C.2: 
ontinued

CPU Time (se
onds) Sear
h Tree Nodes

DIMACS

Graph

n d jM j

MC

G

MC

D

MC

0
G

MC

0
D

BXB MC

G

MC

D

MC

0
G

MC

0
D

BXB BX

san200 0.7 2 200 70 18 3.700 20.80 0.466 10.65 36.53 110 154 195 182 363 852

san200 0.9 1 200 90 70 73.75 45.72 11.48 24.92 255.4 715 121 2,069 201 631 10

san200 0.9 2 200 90 60 5,988 612.6 1,052 348.0 2,036 71,114 1,553 211,889 2,365 5,655 1,825

san400 0.5 1 400 50 13 51.03 81.73 11.22 64.83 247.7 1,223 378 3,465 523 1,689 1,194

san400 0.7 1 400 70 40 1,681 2,455 198.7 1,430 10,263 15,903 5,604 38,989 8,507 30,707 20,913

san400 0.7 2 400 70 30 36,486 39,100 6,228 24,285 66,579 690,806 139,092 1,591,030 231,593 295,314 75,773

san1000 1,000 50 15 2,281 32,630 653.9 40,814 9,277 43,623 44,408 106,823 78,698 12,996 21,897

sanr200 0.7 200 70 18 1,711 4,608 338.2 2,372 4,076 87,012 51,610 150,861 71,799 44,278 40,496

sanr400 0.5 400 50 13 2,352 9,094 350.9 4,955 8,617 155,285 115,210 233,381 136,636 114,208 112,932
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Those algorithms whi
h use the vertex-
olouring heuristi
 Greedy Vertex

Colour, while generating the most sear
h tree nodes, are generally the fastest. In

parti
ular, for the random graphs, MC

0

G

is the fastest of the tested algorithms, using

on average only 18.41% of the CPU time used by BXB. MC

0

G

is again the fastest for all

but four of the DIMACS ben
hmark graphs (and for two of these the di�eren
e is only

a few mi
rose
onds). We have also implemented a variant MC2

G

of MC

0

G

whi
h only

�nds a lower bound at the root node of the sear
h tree. For the random graphs (DI-

MACS ben
hmark graphs) this algorithm uses 0.65% (0.20%) more sear
h tree nodes

than MC

0

G

, yet is on average 4.34% (12.04%) faster than MC

0

G

. This indi
ates that the

determination of lower bounds at non-root nodes is not time-eÆ
ient.

We have observed that for graphs with �xed size and density the diÆ
ulty of the

maximum 
lique problem is generally inversely 
orrelated to the size of a maximum


lique in the graph. This is apparent for the san graphs with equal n and d. Similar

results o

ur with the random graphs. For example, the 10 uniform random graphs

(used in Table C.1) with n = 100 and d = 90% have a maximum 
lique of size 29(2),

30(3), 31(2), 32(2) or 33(1). For ea
h maximum 
lique size, Table C.3 shows the

average CPU time taken, and the average number of sear
h tree nodes generated by

ea
h algorithm.

Table C.3: Performan
e of Maximum Clique Finding Algorithms on Uniform Random

Graphs with n = 100 and d = 90%

CPU Time (se
onds) Sear
h Tree Nodes

n d LB jM j

MC

G

MC

D

MC

0

G

MC

0

D

BXB MC

G

MC

D

MC

0

G

MC

0

D

BXB

100 10 3.7 3.9 0.222 0.428 0.160 0.280 0.432 24.3 18.7 24.8 18.7 23.1

100 20 4.7 5.1 0.363 0.755 0.277 0.523 0.752 38.1 33.9 40.6 34.7 39.2

100 30 5.6 6.3 0.959 1.590 0.422 0.883 1.390 53.4 45.6 79.2 52.9 50.3

100 40 6.9 7.6 1.325 3.148 0.613 1.508 3.020 109.8 82.4 165.6 102.8 89.1

100 50 8.1 9.1 2.515 6.894 1.478 3.780 6.458 254.1 198.7 344.5 234.9 201.9

100 60 10.4 11.6 5.497 14.18 1.932 6.860 14.87 468.4 328.7 707.5 405.8 365.4

100 70 12.8 14.8 14.31 36.85 3.445 18.08 38.38 1,048 672.7 1,705 893.4 698.1

100 80 18.0 20.0 35.43 92.84 6.525 46.46 88.62 1,786 1,253 2,961 1,696 1,160

100 90 28.0 30.7 73.84 150.1 12.12 71.30 134.1 2,126 1,109 4,043 1,523 974.3

200 10 4.0 4.3 1.013 2.498 0.962 1.715 2.705 92.3 83.5 98.2 83.7 91.2

200 20 5.1 5.9 2.708 5.810 1.548 4.217 5.965 140.3 120.7 202.2 137.6 126.9

200 30 6.1 7.3 7.030 17.71 3.187 9.095 18.56 519.9 396.2 699.5 476.8 386.0

200 40 7.6 9.0 16.04 47.64 5.510 26.04 49.85 1,539 1,162 2,011 1,279 1,317

200 50 10.0 11.1 57.49 161.5 12.68 81.31 168.1 4,295 2,810 6,846 3,622 2,889

200 60 12.1 14.0 249.9 755.6 45.66 380.4 820.4 17,461 11,704 26,857 14,712 13,109

200 70 15.3 18.1 1,993 5,830 341.9 2,945 5,829 102,122 64,430 173,810 88,354 63,972

CPU Time (se
onds) Sear
h Tree Nodes

jM j

MC

G

MC

D

MC

0

G

MC

0

D

BXB MC

G

MC

D

MC

0

G

MC

0

D

BXB

29 160.0 263.1 26.34 122.5 285.8 4,957 2,014 9,854 2,721 2,216

30 66.09 158.2 10.38 74.80 134.4 1,885 1,183 3,259 1,620 966

31 53.27 94.34 9.740 45.92 79.52 1,392 643.5 2,815 938.5 522

32 50.80 138.0 7.809 66.97 92.19 1,323 1,005 2,465 1,372 623

33 12.03 36.32 2.300 17.90 22.80 256 217 391 307 123
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