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Abstract

In this paper we consider the problem of determining a balanced ordering of the vertices of a
graph; that is, the neighbors of each vertexv are as evenly distributed to the left and right ofv as
possible. This problem, which has applications in graph drawing for example, is shown to beNP-
hard, and remainsNP-hard for bipartite simple graphs with maximum degree six.We then describe
and analyze a number of methods for determining a balanced vertex-ordering, obtaining optimal
orderings for directed acyclic graphs, trees, and graphs with maximum degree three. For undirected
graphs, we obtain a 13/8-approximation algorithm. Finally we consider the problem of determining a
balanced vertex-ordering of a bipartite graph with a fixed ordering of one bipartition. When only the
imbalances of the fixed vertices count, this problem is shown to beNP-hard. On the other hand, we
describe an optimal linear time algorithm when the final imbalances of all vertices count.We obtain a
linear time algorithm to compute an optimal vertex-ordering of a bipartite graph with one bipartition
of constant size.
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1. Introduction

A number of algorithms for graph drawing use a ‘balanced’ ordering of the vertices of
the graph as a starting point[22,23,31,37,38]. Here balanced means that the neighbors of
each vertexv are as evenly distributed to the left and right ofv as possible. In this paper we
consider the problem of determining such a vertex-ordering.
Throughout this paperG = (V , E) is a connected graph without loops which may be

directed or undirected. We assumeG is simple unless explicitly called a multigraph. The
number of vertices ofG is denoted byn = |V | and the number of edges ofG is denoted by
m =|E|. vw refers to the undirected edge{v, w} ∈ E if G is undirected, and to the directed
edge(v, w) ∈ E if G is directed. We denote byE(v) the set of (outgoing) edges{vw ∈ E}
incident to a vertexv. Thedegreeof v is deg(v) = |E(v)|.
A vertex-ordering� of G is a total ordering onV or equivalently a numbering(v1, v2,

. . . , vn) of V. Each edgevivj ∈ E(vi) with i < j is a successor edgeof vi , andvj is a
successorof vi . Similarly each edgevivj ∈ E(vi) with j < i is apredecessor edgeof vi ,
andvj is apredecessorof vi . The number of predecessor and successor edges of a vertexvi

is denoted by pred�(vi) and succ�(vi), respectively. That is, pred�(vi) = |{vivj ∈ E(vi) :
j < i}| and succ�(vi) = |{vivj ∈ E(vi) : i < j}|. We omit the subscript� if the ordering
in question is clear. Note that for directed graphs, we only count the number of outgoing
edges incident to a vertexvi in pred(vi) and succ(vi). In a given vertex-ordering, a vertex
v is called a

(
min{pred(v), succ(v)},max{pred(v), succ(v)})-vertex,

and theimbalanceof v is defined to be

�(v) = |succ(v) − pred(v)|.
We sayv isbalancedif �(v) is minimum, taken over all partitions of the edges incident tov

into predecessor and successor edges.A vertex has even imbalance if and only if it has even
degree; hence the imbalance of a vertex with odd degree is at least one. In a vertex-ordering
of a simple graph, a vertexv is balanced if and only if�(v)�1.
The total imbalanceof a vertex-ordering is the sum of the imbalance of each

vertex. We say a vertex-ordering isperfectly balancedif every vertex is balanced. Thus
a vertex-ordering of a simple graph is perfectly balanced if and only if the total imbal-
ance is equal to the number of odd degree vertices. For a given graph, a vertex-ordering
with minimum total imbalance is said to beoptimal. We are interested in the following
problem.

BALANCED VERTEX-ORDERING

Instance: A (directed) graphG = (V , E), integerK �0.
Question: DoesG have a vertex-ordering with total imbalance

∑
v∈V �(v)�K?

The balanced vertex-ordering problem can be described in a number of different ways.
In a particular vertex-ordering, define

�(v) =max{succ(v),pred(v)}.
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Then

�(v) = 2�(v) − deg(v). (1)

Hence the problem of finding an optimal vertex-ordering is equivalent to finding a vertex-
ordering that minimizes∑

v∈V

�(v). (2)

However, for approximation-purposes, the balanced vertex-ordering problem andminimiz-
ing (2) are not equivalent. Since12 deg(v)��(v)� deg(v), an arbitrary vertex-orderingwill
be a 2-approximation for the problem of minimizing (2).
There is another equivalent formulation of the balanced vertex-ordering problem, which

shall prove useful to consider. In a particular vertex-ordering, let�′(v) = 2	12|succ(v) −
pred(v)|
. Here,�′(v) may be zero for both even and odd degree verticesv. Since∑

v

�(v) = |{v : deg(v) is odd} | +
∑

v

�′(v),

a vertex-ordering is optimal if and only if it minimizes
∑

v �′(v).
In a vertex-ordering of an undirected graphG=(V , E), the total imbalance is equal to the

total imbalance of the same vertex-ordering of the symmetric directed graph(V , {(v, w),

(w, v) : vw ∈ E}). Hence the balanced ordering problem for directed graphs is a general-
ization of the same problem for undirected graphs.
In related work, Wood[37] takes a local minimum approach to the balanced vertex-

ordering problem. The algorithms here apply simple rules to move vertices within
an existing ordering to reduce the total imbalance. Certain structural properties of the
produced vertex-orderings are obtained, which are used in an algorithm for graph
drawing.
In this paper we present the following results. In Section 2 we show, using a reduction

fromNAE-3SAT, that the balanced vertex-ordering problem isNP-complete. In particular,
we prove that determiningwhether a given graph has a perfectly balanced vertex-ordering is
NP-complete, and remainsNP-complete for bipartite graphs with maximum degree six.
Section 3 considers the balanced vertex-ordering problem on weighted trees. We prove

that this problem is (weakly)NP-complete in general. On the other hand, we give a
pseudo-polynomial time algorithm for its solution that runs in linear time in the case of
unweighted trees.
Section 4 explores the relationship between balanced vertex-orderings and the connectiv-

ity of undirected graphs. We describe an algorithm for determining a vertex-ordering with
the minimum number of highly unbalanced vertices; that is, verticesv with pred(v) = 0 or
succ(v)=0. The same algorithm determines optimal vertex-orderings of undirected graphs
with maximum degree three.
Section 5 describes and analyses an algorithm for determining a balanced vertex-ordering

of an arbitrary graph. This algorithm has been successfully used in[3,36] to establish
improved bounds for the area of orthogonal graph drawings. We analyze the performance
of this algorithm, establishing a worst-case upper bound on the total imbalance which
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is tight in the case of the complete graph. Furthermore, the method determines perfectly
balanced vertex-orderings of directed acyclic graphs. We prove that this algorithm is a
linear-time 13/8-approximation algorithm for the problem of minimizing (2) in undirected
graphs.
In Section 6 we consider the problem of determining a balanced vertex-ordering of

a bipartite graph where a fixed vertex-ordering of one bipartition is given. The prob-
lem where only the imbalance of the fixed vertices in the ordering counts, is shown to
beNP-complete. On the other hand, we present linear time algorithms for the prob-
lems where only the final imbalance of the unsettled vertices counts, and where the final
imbalance of all vertices count. A corollary of this final result is that the balanced or-
dering problem is solvable in linear time if the number of vertices in one bipartition is
constant.

2. Complexity

In this section we show that the balanced vertex-ordering problem isNP-complete. Our
reduction is from the Not-All-Equal-3SAT problem (NAE-3SAT for short). Here we are
given a setU of boolean variables and a collectionCof clauses overU such that each clause
c ∈ C has 2� |c|�3. The problem is to determine whether there is a truth assignment for
U such that each clause inC has at least one true literal and at least one false literal. In a
given instance of NAE-3SAT, the number of times a variablex appears is called theorder
of x, and is denoted bydx . NAE-3SAT isNP-complete[33], and it is well-known (see
[26] for example) that NAE-3SAT remainsNP-complete if all literals are positive and/or
every variablex hasdx �3.

Theorem 1. Determining if a given graph has a perfectly balanced vertex-ordering is
NP-complete, and remainsNP-complete for bipartite undirected graphs with maximum
degree six.

Proof. Let I be an instance of NAE-3SAT such that all literals are positive and every
variablex hasdx �3. We now convertI to an instance of the balanced vertex-ordering
problem. Construct a graphG as follows. For each variablex ∈ U add the gadget shown
in Fig. 1 toG. In particular, add the verticesx0, x1, . . . , x2dx toG. We callx0 thevariable
vertexassociated with the variablex. Now add edgesxj xj+1, 1�j �2dx − 1, toG, along

Fig. 1. The gadget associated with a variablex.
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with the edgesx0x2j−1, 1�j �dx . In addition, add aclause vertexc0 toG for each clause
c ∈ C, and insert an edgex0c0 for each variablex appearing inc.
We claim that the instance of NAE-3SAT is satisfiable if and only ifG has a perfectly

balanced vertex-ordering. To prove the only-if direction construct a vertex-ordering ofG
with all the clause vertices in the middle of the vertex-ordering in arbitrary order, and for
each variablex, put x0, x1, . . . , x2dx to the left (respectively, right) of the clause vertices
if x is true (false). For the true variablesx, order the verticesx2dx , x2dx−1, . . . , x0 from
left to right, and for the false variablesx, order the verticesx0, x1, . . . , x2dx from left to
right. For each variablex ∈ U , the vertexx0 hasdx predecessor edges anddx succes-
sor edges (going to clause vertices and to{x2j−1,1�j �dx}). Thusx0 is balanced. The
verticesxj , 1�j �2dx , are either(1,1), (1,2) or (0,1)-vertices, and are thus balanced.
Since every clausec ∈ C contains at least one true literal and at least one false literal,
the vertexc0 has at least one successor and at least one predecessor. Since deg(c0)�3,
c0 is balanced. Hence every vertex is balanced, and thus the vertex-ordering is perfectly
balanced.
For the if direction, assume we have a perfectly balanced vertex-ordering, and consider

the vertexx0 for some variablex.
Case1. x1 is to the right ofx0: As x1 has degree two,x2 must be to the right ofx1.

Similarly, asx2 has degree two,x3 must be to the right ofx2. As x3 has degree three, and
already has two predecessorsx0 andx2, its third neighborx4 must be to the right ofx3.
By induction, all ofx1, x2, . . . , x2dx must be to the right ofx0. Thusx0 is to the left of its
neighborsx1, x3, . . . , x2dx−1. Sincex0 is balanced, it must be to the right of its remaining
dx neighbors, which are the clause vertices of the clauses containingx. Set the variablex
to false.
Case2. x1 is to the left ofx0: Then symmetrically,x0 is to the left of itsdx adjacent

clause vertices. Setx to true.
A clause vertexc0 has degree two or three. Hencec0 has at least one predecessor and

at least one successor, and thusc contains at least one false variable and at least one true
variable; that is,c is satisfied.
We have shown that the given instance of NAE-3SAT is satisfied if and only if the graph

Ghas a perfectly balanced vertex-ordering.G is simple and bipartite (with the vertices par-
titioned into the sets{c0: c ∈ C}∪{x2j−1: x ∈ U,1�j �dx} and{x2j : x ∈ U,0�j �dx}).
Observe that the maximum degree ofG is twice the maximum order which is at most three.
Thus themaximum degree ofG is at most six. It is trivial to check if a given vertex-ordering
is perfectly balanced. Since NAE-3SAT isNP-complete[33], and the construction ofG
is polynomial, testing if a graph has a perfectly balanced vertex-ordering isNP-complete
for simple bipartite graphs with maximum degree six.�

For an intended application in 3-D orthogonal graph drawing[38] it is important to
consider balanced vertex-orderings of graphs with minimum degree five and maximum
degree six. We now show that we still haveNP-completeness in this case, at least for
multigraphs.

Lemma 2. Determining if a bipartite undirectedmultigraph with minimum degree five and
maximum degree six has a perfectly balanced vertex-ordering isNP-complete.
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Fig. 2. The gadget associated with a variablex.

Proof. Let I be an instance of NAE-3SAT containing only positive literals. For each clause
c of I, if c = x ∨ y ∨ z then setc = x ∨ x ∨ y ∨ y ∨ z ∨ z, and if c = x ∨ y then set
c = x ∨ x ∨ x ∨ y ∨ y ∨ y. Thus each clause now has exactly six literals. This does not
affect whether there is a solution toI.
For each variablexwith dx �4, introduce two new variablesy andz, calledreplacement

andspecialvariables, respectively. Replace two occurrences ofxby y, and add newspecial
clausesx ∨z andy ∨z. Thusdx decreases by one, and in any not-all-equal truth assignment,
x receives the same value asy; that is, this operation does not affect whetherI is satisfiable.
Repeat the above step until each variable has order two or three. Since this operation can be
applied at most 3m times, wherem is the number of clauses, the size of the instance is still
polynomial. All clauses now contain two or six variables. Now construct a graphG similar
to that in Theorem 1, but using the gadget shown inFig. 2.
Since each clause has two or six literals, each clause vertex has degree two or six in

G. If a clause vertex has degree two inG; that is, it corresponds to a special clause, then
simply replace it by an edge between its two neighbors. This does not affect whether
the graph has a perfectly balanced ordering. Thus all clause vertices now have degree
six. A variable vertexx0 has degree five ifdx = 2, and degree six ifdx = 3. A vertex
xi , 1� i �5, has degree five or six. Thus the graph has minimum degree five and max-
imum degree six. Furthermore the graph is bipartite with the following 2-coloring. For
each original variable or replacement variable, color the gadget as shown inFig. 2. For
each special variable, color the gadget in the opposite way toFig. 2. Special variables
were only in special clauses, and since the corresponding special clause vertices have been
replaced by an edge, the only neighbors of a special variable vertex are original or replace-
ment variable vertices (and of course the vertices within the gadget). Thus the graph is
bipartite.
We now show that a similar argument as in Theorem 1 holds for this graph. A clause

vertexc0 is perfectly balanced if and only ifc0 is a (2,4)-vertex or a (3,3)-vertex if and
only if c contains at least one true literal and at least one false literal. A variable vertex is
perfectly balanced if and only if it is a (2,3)-vertex or a (3,3)-vertex, and thus must appear
completely to the right or left of the vertices corresponding to the clauses containing it.
Clearly, any arrangement of the vertices within a gadget other that shown inFig. 2 will
increase the imbalance (except for the reverse order). By the same argument in Theorem
1, it follows that this graph has a perfectly balanced ordering if and only if the instance of
NAE-3SAT is satisfiable. �
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A strategy for producing 3-D orthogonal point-drawings of maximum degree six graphs
which is employed by Eades et al.[17] andWood[38], is to position the vertices along the
main diagonal of a cube. For graphs with minimum degree five, minimizing the number of
bends in such a drawing is equivalent to finding an optimal ordering of the vertices along
the diagonal; see[38]. As a consequence of Lemma 2 we therefore have the following
result.

Theorem 3. Let G be a bipartite undirected multigraph with maximum degree six. It is
NP-hard to find a3-D orthogonal point-drawing of G with a diagonal vertex layout, and
with the minimum number of bends.

3. Weighted trees

Anatural generalization of the balanced ordering problem is to consider weighted graphs.
Given a vertex-ordering(v1, v2, . . . , vn)of a graphG=(V , E)with positive integerweights
� : E → N on the edges ofG, for each vertexvi ∈ V , we define pred(vi) to be the sum
of the weights of the predecessor edges ofvi , and succ(vi) to be the sum of the weights of
the successor edges ofvi . That is,

pred(vi) =
∑

vi vj ∈E(vi )

j<i

�(vivj ) and succ(vi) =
∑

vi vj ∈E(vi )

i<j

�(vivj ).

Clearly these definitions with all edge-weights equal to one are equivalent to the un-
weighted case. (One can think of a graph with edge-weights as a multigraph where the
multiplicity of an edge equals its weight.) Thus the weighted balanced ordering problem
is NP-complete (since the unweighted version is), but in fact, it remainsNP-
complete even for trees, whereas the unweighted version is solvable on trees, as we
now show.

Lemma 4. It is NP-complete to determine if a given weighted graph has a perfectly
balanced vertex-ordering, and remains so for weighted trees.

Proof. We reduce the partition problem to the weighted balanced ordering problem. Given
a setw1, w2, . . . , wn of positive integers, the partition problem (which isNP-complete
[25]) asks whether there is a setI ⊆ {1,2, . . . , n} such that

∑
i∈I wi = ∑

i /∈I wi . Given
positive integersw1, w2, . . . , wn, consider the star graph onn + 1 vertices, which has one
vertex connected to all other vertices, and withw1, w2, . . . , wn being the weights on the
edges. LetW = ∑

i wi . For any ordering of the vertices, the total imbalance is at leastW,
since each leaf must have imbalancewi . We have a vertex-ordering with total imbalance of
W if and only if we can splitw1, w2, . . . , wn into two sets that each sum to exactly12W ;
that is, there is a solution to the partition problem.�

Thus the weighted problem isNP-complete, even if the graph is a tree. However, it
is only weaklyNP-complete, since the partition problem is only weaklyNP-complete.
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We now describe a pseudo-polynomial time algorithm for determining a perfectly balanced
vertex-ordering of a weighted tree.

WEIGHTEDTREEORDERING

Input: treeG = (V , E) with edge-weights� : E → N.
Output: vertex-ordering ofG

Let (v1, v2, . . . , vn) be a pre-order vertex-ordering ofG;
(that is, every vertex, exceptv1, has exactly one predecessor).

Initialize the current ordering to be(v1).
for i = 1,2, . . . , n do

Let vk be the predecessor ofvi (if i >1).
PartitionE(vi) intoLi andRi such that:

•
∣∣∣(∑

vivj ∈Li
�(vivj )

)
−

(∑
vivj ∈Ri

�(vivj )
)∣∣∣ is minimized, and

• vivk ∈ Ri if vkvi ∈ Lk,andvivk ∈ Li if vkvi ∈ Rk.

Insert each successorvj of vi into the current ordering

• to the right ofvi if vivj ∈ Ri , and
• to the left ofvi if vivj ∈ Li .

end-for

Theorem 5. TheWEIGHTED TREEORDERINGalgorithm determines a perfectly balanced
vertex-ordering of the given graph in pseudo-polynomial time.

Proof. Every vertexvi , except forv1 which is inserted into the current ordering at the
beginning of the algorithm, is inserted into the current ordering in thekth iteration, where
vk is the (sole) predecessor ofvi . Thus every vertex is inserted into the current ordering
exactly once.
In the ith partitioning step we can swapLi andRi if vivk ∈ Li ∩ Lk or vivk ∈ Ri ∩ Rk.

Hence for all edgesvivj ∈ E, we havevivj ∈ Li ∩ Rj or vivj ∈ Ri ∩ Lj . Thus when
vertices are inserted into the current ordering, a vertexvi is to the left of an adjacent vertex
vj if and only if vivj ∈ Ri ∩ Lj . Therefore the imbalance

�(vi) =
∣∣∣∣∣∣

 ∑

vivj ∈Li

�(vivj )


 −


 ∑

vivj ∈Ri

�(vivj )




∣∣∣∣∣∣ ,

which is chosen to be minimum. Thus eachvi is balanced, and therefore the ordering is
perfectly balanced.
Using a dynamic programming algorithm (see[21] for example) the partitioning ofE(v)

can be completed inO(Wv · deg(v)) time, whereWv is the sum of the weights of the edges
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incident tov. Hence the total time is proportional to∑
v∈V

∑
vw∈E(v)

deg(v) · �(vw) =
∑

vw∈E

�(vw)(deg(v) + deg(w))

�2�
∑

vw∈E

�(vw) = 2�W,

whereWis the sumof all edge-weights, and� is themaximumdegree ofG. Clearly,O(�W)

is pseudo-polynomial time. Note that for unweighted trees, the partition ofE(v) is trivial,
and the algorithm runs in linear time.�

4. Connectivity and maximum degree

We now examine relationships between balanced vertex-orderings and the vertex-
connectivity of a graph.

4.1. st-Orderings

A vertex-ordering(v1, v2, . . . , vn) of an undirected graphG= (V , E) is anst-ordering if
v1=s,vn=t , and for every other vertexvi , 1< i < n, with deg(vi)�2, we have pred(vi)�1
and succ(vi)�1. Lempel et al.[27] show that for any biconnected graphG = (V , E) and
for anys, t ∈ V , there exists anst-ordering ofG. Cheriyan and Reif[8] extended this result
to directed graphs. Even and Tarjan[19,20] develop a linear time algorithm to compute
anst-ordering of an undirected biconnected graph (also see[7,18,29,35]). Under the guise
of bipolar orientations, st-orderings have also been studied in[9,14,32]. In related work,
Papakostas and Tollis[31] describe an algorithm for producing so-calledbst-orderings
of graphs with maximum degree four; these arest-orderings with a lower bound on the
number of perfectly balanced vertices of degree four. In general,st-orderings do not have
minimum imbalance (in[4] we give an example of a graph for which everyst-ordering
is not optimal), butst-orderings immediately give the following upper bound on the total
imbalance.

Lemma 6. The total imbalance in an st-ordering of an n-vertex m-edge graphG = (V , E)

is at most2m − 2n + 4 if G is undirected andm − 2n + 4 if G is directed.

The following algorithm determines a vertex-ordering of a graph based onst-orderings
of its biconnected components (blocks). In Corollary 13 below we prove that given an
optimal vertex-ordering of each biconnected component, it isNP-hard to find an optimal
vertex-ordering of the graph. However, this algorithmand variations of it have proved useful
in many graph drawing algorithms[2,28,34]as it gives bounds on the number of highly
unbalanced vertices (see Lemma 7 below). Moreover, we employ this method to obtain
optimal vertex-orderings of graphs with maximum degree three.
It is well-known that the blocks of a graph can be stored in the form of a tree; this is the

so-calledblock-cut-tree, which we denote byBC(G) for a graphG. A block containing
exactly one cut-vertex is called anend-block.
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COMBINE st-ORDERINGS

Input: undirected graphG = (V , E)

Output: vertex-ordering ofG

LetB1 be an end-block ofG.
Complete a depth-first traversal ofBC(G) starting atB1, and

letB1, B2, . . . , Br be the depth-first numbering of the blocks ofG.
Let t1 be a cut-vertex ofB1, and lets1 be a vertex ofB1 distinct fromt1.
Initialize thecurrent orderingto be ans1t1-ordering ofB1.
for i = 2,3, . . . , r do

Let si be the (unique) cut-vertex ofBi with some blockBj with j < i.
if Bi is an end-block ofG then

Let ti be a vertex ofBi distinct fromsi .
else

Let ti be a cut-vertex ofBi with some blockBj with j > i.
end-if
Let (vi

1, vi
2, . . . , vi

ni
) be ansi ti-ordering ofBi (with vi

1 = si andvi
ni

= ti).
Append(vi

2, vi
3, . . . , vi

ni
) to the current ordering.

end-for

Lemma 7. Let G be an undirected graph with k end-blocks, and assumek�2; that is, G
has at least one cut-vertex. ThenCOMBINE st-ORDERINGSalgorithm determines a vertex-
ordering in linear time,with one vertexv havingpred(v) = 0,andk − 1 verticesv having
succ(v) = 0.

Proof. By the definition ofst-ordering, a vertexv ∈ V that is notsi or ti for somei, has
pred(v) >0 and succ(v) >0.We now count the number of vertices with zero successors. A
vertexsi has succ(si) >0.A vertexti for whichBi is not an end-block has succ(ti) >0. The
vertext1, for whichB1 is an end-block, has succ(ti) >0. The remaining verticesti with Bi

an end-block have succ(ti)=0. Hence the number of verticesv having succ(v)=0 isk −1.
We now count the number of vertices with zero predecessors. A vertexti has pred(ti) >0.
For eachi �2, si is chosen to be the cut-vertex with some blockBj (j < i)—such a block
must exist because of the depth-first numbering of the blocks. Hencesi has predecessors in
Bj , and therefore the only vertex with zero predecessors iss1. Since the block-cut-tree and
the st-orderings can be determined in linear time, and since the block-cut-tree has linear
size, the algorithm runs in linear time.�

The next result easily follows from Lemma 7.

Lemma 8. Given a non-biconnected n-vertex m-edge undirected graph with k end-blocks,
theCOMBINE st-ORDERINGSalgorithm determines in linear time a vertex-ordering with
total imbalance at most2m − 2n + 2k.
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We now show that the COMBINE st-ORDERINGSalgorithm determines a vertex-ordering
with the minimum number of vertices with zero predecessors or zero successors. Consider
an end-blockB. Then either the first vertex ofB in the ordering has no predecessors, or the
last vertex ofB in the ordering has no successors, for in an end-blockBonly one vertex has
neighbors outside ofB. The next result follows.

Lemma 9. Every vertex-ordering of an undirected graph with k end-blocks has at least k
verticesv havingpred(v) = 0 or succ(v) = 0.

Note that for a triangulated planar graphG, vertex-orderings can be determined that
are more balanced thanst-orderings. de Fraysseix et al.[15] show thatG has acanonical
vertex-ordering(v1, v2, . . . , vn) with pred(vi)�2 for every vertexvi , 3� i �n, and with
succ(vi)�1 for every vertexvi , 1� i �n − 1. Kant [22] generalizes canonical orderings
to the case of 3-connected planar graphs, and it is easy to extend canonical orderings to
3-connected non-planar graphs (Kant, private communication, 1992; see also[13]). Kant
and He[23] show that ifG is planar and 4-connected, thenG has a vertex-ordering with
every vertexvi , 3� i �n−2, having succ(vi)�2 and pred(vi)�2. The next result follows.

Lemma 10. An n-vertex m-edge4-connected triangulated planar undirected graph has a
vertex-ordering with total imbalance at most2m − 4n + 12.

4.2. Graphs with maximum degree three

We now apply the results from the previous section to obtain optimal vertex-orderings of
graphs with maximum degree three.

Lemma 11. Any st-ordering of a biconnected undirected graph G with maximum degree
at most3 is optimal.

Proof. SupposeG hasn vertices. Clearly the result holds ifn = 2. Assume from now on
thatn�3. In this case, all vertices have degree at least two by biconnectivity and at most
three by assumption. Letn3 be the number of degree three vertices inG. In anst-ordering,

∑
v

�(v) =
{2+ 2+ n3 = n3 + 4, if deg(s) = deg(t) = 2
3+ 3+ (n3 − 2) = n3 + 4, if deg(s) = deg(t) = 3
2+ 3+ (n3 − 1) = n3 + 4, if {deg(s),deg(t)} = {2,3}.

By considering the degrees of the first and last vertex, and since every degree three vertex
v has�(v)�1, it is easily seen that any vertex-ordering ofG has total imbalance at least
n3 + 4. �

Theorem 12. Given an undirected graphG = (V , E) with maximum degree at most three,
theCOMBINE st-ORDERINGSalgorithmdetermines in linear time an optimal vertex-ordering
of G.

Proof. Asnoted inSection1, findinganoptimal vertex-ordering is equivalent tominimizing∑
v �′(v), where�′(v) = 2	12|succ(v) − pred(v)|
. For graphs with maximum degree
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three,�′(v)=2 if v is a(0,2)- or (0,3)-vertex, and�′(v)=0 otherwise. Henceminimizing∑
v �′(v) is equivalent tominimizing the number of(0,2)- and(0,3)-vertices. Every vertex

withdegreeonemust havezeropredecessorsor zerosuccessors, thusminimizing thenumber
of (0,2)- and(0,3)-vertices is equivalent to minimizing the number of vertices with zero
predecessors or zero successors. ByLemmas7and9, theCOMBINE st-ORDERINGSalgorithm
determines in linear time, a vertex-ordering with the minimum possible number of vertices
with zero predecessors or zero successors. Therefore theCOMBINE st-ORDERINGSalgorithm
determines an optimal vertex-ordering for graphs with maximum degree three.�

Observe that in the reduction in Theorem 1, the variable vertices are cut-vertices, and
that each biconnected component has maximum degree three. By Theorem 12, an optimal
ordering of a graph with maximum degree three can be determined in linear time. Hence,
we have the following result.

Corollary 13. Finding the optimal vertex-ordering of a graph isNP-hard, even if given
an optimal vertex-ordering of each biconnected component.

5. Median placement algorithm

We now describe an algorithm for the balanced vertex-ordering problem. The algorithm
inserts each vertex, in turn, mid-way between its already inserted neighbors.At any stage of
the algorithm we refer to the ordering under construction as thecurrent ordering. Similar
methods were introduced by Biedl and Kaufmann[3] and Biedl et al.[5].

MEDIAN PLACEMENT
Input: vertex-orderingI = (u1, u2, . . . , un) of a (directed) graphG

(called theinsertion ordering)
Output: vertex-ordering ofG

for i = 1,2, . . . , n do
Letw1, w2, . . . , wk be the predecessors ofui in the insertion ordering,

ordered by their position in the current ordering.
if k = 0 then Insertui arbitrarily into the current ordering.
else if k is eventhen Insertui arbitrarily betweenwk/2 andwk/2+1.
else(k is odd) Insertui immediately before or afterw(k+1)/2

to minimize the imbalance ofw(k+1)/2.
(In this casew(k+1)/2 is called themedian neighborof ui .)

end-for

Using the median-finding algorithm of Blum et al.[6], and the algorithm of Dietz and
Sleator[11] to maintain the vertex-ordering and orderings of the adjacency lists ofG, the
algorithm can be implemented in linear time.
For a given insertion orderingI of a (directed) graphG = (V , E), let X be the set of

verticesu ∈ V for which predI (u) is odd.
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Lemma 14. The algorithmMEDIAN PLACEMENT determines in linear time a vertex-
ordering of a(directed) graphG = (V , E) with total imbalance

∑
v∈V

�(v)� |X| +
∑
u∈V

succI (u).

Proof. When a vertexu is inserted into the current ordering, the predecessors ofu in I are
precisely the neighbors ofu that have already been inserted intoI. Thus immediately after
u is inserted,�(u) = 0 if predI (u) is even and�(u) = 1 if predI (u) is odd. Even if all
the successors ofu (in the insertion ordering) are inserted on the one side ofu, in the final
ordering, the imbalance�(u)�succI (u) if predI (u) is even, and�(u)�succI (u) + 1 if
predI (u) is odd. Thus the total imbalance is at most|X| + ∑

u succI (u). �

5.1. Undirected graphs

Theorem 15. The algorithmMEDIAN PLACEMENT determines in linear time a vertex-
ordering of an n-vertex m-edge undirected graph with total imbalance

∑
v

�(v)�m +min{|X|, n − |X|}�m +
⌊n

2

⌋
.

Proof. That
∑

v �(v)�m+|X| follows immediately fromLemma14 since
∑

u succI (u)=
m for undirected graphs. For each vertexv ∈ V , let X(v) be the set of verticesu ∈ X

such thatv is the median neighbor ofu whenu is inserted into the current ordering. Thus
elements ofX(v) are successors ofv in I, and

∑
v |X(v)| = |X|. Since vertices inX(v)

are inserted to balancev, �(v)�succI (v) − |X(v)| if predI (v) + |X(v)| is even, and
�(v)�1+ succI (v) − |X(v)| if predI (v) + |X(v)| is odd. Thus

∑
v

�(v)� n +
∑

v

succI (v) −
∑

v

|X(v)| = n + m − |X|. �

A simple calculation shows that any vertex-ordering of the complete graphKn has total
imbalance	n2

2 
=m+	n
2
. ThusTheorem15providesanupper boundon the total imbalance

that is tight in this case. Comparing the bound on the total imbalance established by the
MEDIAN PLACEMENTalgorithm (Theorem15) versus the analogous bound for the imbalance
of st-orderings of biconnected graphs (Lemma 6), the MEDIAN PLACEMENT algorithm is
better for simple graphs with average degree at least five. On the other hand, for simple 4-
connected triangulated planar graphs (which have average degree just under six), the bound
in Lemma 10 is better than that in Theorem 15.
We now prove that the vertex-orderings produced by the MEDIAN PLACEMENT algorithm

are in some sense locally optimal.

Lemma 16. For undirected graphs, assuming the existing vertex-ordering is fixed, each
iteration of theMEDIAN PLACEMENT algorithm inserts the vertex u to minimize the increase
in the total imbalance.
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Proof. When inserting a vertexu, only the imbalance ofu and its neighbors may change.
Thus we need only consider the positions in the current ordering between the neighbors of
u as potential places for the insertion ofu. If k is even the position in the current ordering
betweenwk/2 andwk/2+1 is called themedian position. If k is odd there are twomedian
positions: immediately before and afterw(k+1)/2. Assume that there exists a position to
insertu in the current vertex-ordering, which is not a median position, but minimizes the
total imbalance of the current ordering.
Supposek is even. If movingu to the median position involves movingupastt neighbors

of u, then doing so decreases�(u) by 2t , while the imbalance of each of theset neighbors
increases by at most 2. Thus movingu to the median position does not increase the total
imbalance.
Supposek is odd. If movingu to the closer median position involves movingu pastt

neighbors ofu, then doing so decreases�(u) by 2t , while the imbalance of each of these
t neighbors increases by at most 2. Thus movingu to the closer median position does not
increase the total imbalance. The imbalance ofu is the same in either median position,
and only the imbalance ofw(k+1)/2 differs with u in the different median positions. Thus
by insertingu in a median position that minimizes�(w(k+1)/2), we minimize the total
imbalance. �

Recall that�(v) denotes max{succ(v),pred(v)} for each vertexv in a vertex-ordering.
As mentioned in Section 1, any vertex-ordering is a 2-approximation for the problem of
minimizing

∑
v �(v). This observation can be improved as follows.

Theorem 17. There is a linear-time13/8-approximation algorithm for the problem of
determining a vertex-ordering of an undirected graph that minimizes

∑
v �(v).

Proof. We proceed by induction on|V | with the hypothesis that every undirected graph
G = (V , E) with k vertices of odd degree, has a vertex-ordering with

∑
v∈V

�(v)� 13

8

(
|E| + k

2

)
.

This will imply the claimed approximation factor, since in every vertex-ordering ofG,

∑
v∈V

�(v)�
∑

v

⌈
deg(v)

2

⌉
= |E| + k

2
.

First suppose thatG has a vertexv of degree one. Letw be the neighbor ofv. Let
G′ = (V ′, E′) be the subgraph ofG induced byV ′ = V \{v}. SayG′ hask′ vertices of odd
degree. By induction,G′ has a vertex-ordering with

∑
x∈V ′

�(x)� 13

8

(
|E| − 1+ k′

2

)
.

Suppose that degG(w) is even. Then degG′(w) is odd, andk′ = k. Insertv into the ordering
of G′ to minimize the resulting imbalance ofw. Thus�(w) is unchanged by the insertion
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of v, and�(v) = 1. We obtain a vertex-ordering ofGwith

∑
x∈V

�(x)�1+
∑
x∈V ′

�(x)�1+ 13

8

(
|E| − 1+ k

2

)
<
13

8

(
|E| + k

2

)
.

Now suppose that degG(w) is odd. Then degG′(w) is even, andk′=k−2. Insertv arbitrarily
into the ordering ofG′. Thus�(w) increases by at most one, and�(v) = 1. We obtain a
vertex-ordering ofGwith

∑
x∈V

�(x)�2+
∑
x∈V ′

�(x)�2+ 13

8

(
|E| − 1+ k − 2

2

)
<
13

8

(
|E| + k

2

)
.

This completes the case in whichG has a vertex of degree one.
Now suppose thatG has a vertexv of degree two. Letu andw be the neighbors ofv.

LetG′ = (V ′, E′) be the graph obtained fromG by contractingv. That is,V ′ = V \{v} and
E′ =(E\{vu, vw})∪{uw}. Observe thatG′ haskvertices of odd degree, and|E′|=|E|−1.
By induction,G′ has a vertex-ordering with

∑
x∈V ′

�(x)� 13

8

(
|E| − 1+ k

2

)
.

Insertv into the ordering ofG′ betweenu andw. Thus�(u) and�(w) are unchanged, and
�(v) = 1. We obtain a vertex-ordering ofGwith

∑
x∈V

�(x)�1+
∑
x∈V ′

�(x)�1+ 13

8

(
|E| − 1+ k

2

)
<
13

8

(
|E| + k

2

)
.

Now suppose thatG has minimum degree three. By Theorem 15, the algorithm MEDIAN

PLACEMENT determines a vertex-ordering ofG with total imbalance
∑

v �(v) � |E| +
|V |/2. By (1),�(v) = 2�(v) − deg(v). It follows that,∑

v

�(v)� 3|E|
2

+ |V |
4

. (3)

Letn3 be the number of vertices inGwith degree exactly three. Since the minimum degree
is three,

2|E| =
∑

v

deg(v)�3n3 + 4(|V | − n3) = 4|V | − n3.

Hence 4|V |�2|E| + n3�2|E| + k�2|E| + 13k, and 24|E| + 4|V |�26|E| + 13k. Thus
by (3),

∑
v

�(v)� 3|E|
2

+ |V |
4

� 13

8

(
|E| + k

2

)
,

as desired. The above approach can be implemented in linear time using the MEDIAN

PLACEMENT algorithm, by placing the low degree vertices at the end of the insertion
ordering. �
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Fig. 3. Inserting vertexu into a vertex-ordering of a directed graph: (a) median placement insertion, (b) minimum
imbalance insertion.

5.2. Directed graphs

Wenowanalyze theMEDIAN PLACEMENTalgorithm in thegeneral caseof directedgraphs.
For undirected graphs, Lemma 16 proves that the MEDIAN PLACEMENT algorithm inserts
each vertex tominimize the increase in the total imbalance. The example inFig. 3shows that
this property does not hold for directed graphs. Using the MEDIAN PLACEMENT algorithm
the total imbalance becomes four, whereas there exists a position, illustrated inFig. 3b, to
insertuwith total imbalance two.
Lemma 14 suggests that a good insertion ordering for theMEDIAN PLACEMENT algorithm

applied to a directed graph, is one with small
∑

u succ(u). For any vertex-ordering of a
directed graph,

∑
u succ(u) or

∑
u pred(u) is at mostm2 . Thus using an arbitrary vertex-

ordering or its reverse as the insertion ordering in the MEDIAN PLACEMENT algorithm we
obtain a vertex-ordering with total imbalance at mostm

2 + n. For acyclic graphs, a reverse
topological ordering has succ(u) = 0 for all verticesu. Since such an ordering can be
determined in linear time (see[10] for example) we have the following result (which was
implicitly used by Biedl and Kaufmann[3, Theorem 4]to establish upper bounds on the
area of orthogonal graph drawings.)

Theorem 18. A perfectly balanced vertex-ordering of a directed acyclic graph can be
determined in linear time(with total imbalance|X|).

For a directed graphG = (V , E) which is not necessarily acyclic, a good insertion
ordering can be obtained by first removing edges to makeG acyclic. A feedback arc set
of G is a set of edgesF ⊆ E such thatG\F is acyclic. Since the successor edges in a
vertex-ordering form a feedback arc set, and a reverse topological ordering of the graph
obtained by removing a feedback arc setF has

∑
u succ(u)=|F |, finding a vertex-ordering

with minimum
∑

u succ(u) is equivalent to finding a minimum feedback arc set, which is
NP-hard[25].
Berger and Shor[1] establish an asymptotically tight bound for the size of a feedback

arc set. They show that, for directed graphs of maximum degree� and without 2-cycles,
the minimum of

∑
u succ(u) (taken over all vertex-orderings) ism2 − �(m/

√
�), and a

vertex-ordering with
∑

u succ(u) = m
2 − �(m/

√
�) can be determined inO(mn) time.

Using this as the insertion ordering in algorithm MEDIAN PLACEMENT, by Lemma 14 with
|X|�n, we obtain the following result.
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Theorem 19. Everyn-vertexm-edgedirectedgraphwithout2-cycleshasavertex-ordering,
which can be computed inO(mn) time, with total imbalance∑

v

�(v)�n + m

2
− �

(
m√
�

)
.

Only for small values of� is the constant in the�(m/
√

�) term evaluated; thus for graph
drawing purposes only then+m/2 term can be used. This bound can be improved by using
a result of Eades et al.[16]. They give a linear time greedy heuristic for finding a feedback
arc set, and prove an exact bound on

∑
u succ(u), which in a number of instances, provides

a better result than that in[1]. In particular, they show that every directed graph without
2-cycles has a vertex-ordering with

∑
u succ(u)� m

2 − n
6. For directed graphs with 2-cycles

simply delete both edges in each 2-cycle, apply the above result, and insert the 2-cycles
back into the graph. This adds one successor to one vertex, and increases the number of
edges by two. Thus the same bound

∑
u succ(u)� m

2 − n
6 holds. Using this ordering as the

insertion ordering in algorithmMEDIAN PLACEMENT, by Lemma 14with|X|�n, we obtain
the following result.

Theorem 20. Every n-vertex m-edge directed graph has a vertex-ordering, which can be
computed in linear time, with total imbalance at mostm2 + 5n

6 .

The above result can be improved by the following randomized approach.

Theorem 21. Every directed graph G with n vertices and m edges has a vertex-ordering
with total imbalancem+n

2 .

Proof. Take a random permutation� of the vertices as the ordering. Consider a vertexv

of (out-)degreed. We claim that in�, succ(v) = i and pred(v) = d − i with probability
1

d+1. To prove this, we only need consider permutations ofv and its neighbors. (There are
equal numbers of permutations of the whole vertex set for each permutation ofv and its
neighbors.) Now, ifv is placed in the(i+1)-st position, then succ(v)=i and pred(v)=d−i.
There ared! such permutations. Thus with probabilityd!/(d + 1)! = 1/(d + 1), we have
succ(v) = i and pred(v) = d − i, as claimed.
Define�(v) =max{pred(v), succ(v)}. Thus

E[�(v)] =
d∑

i=0

max(i, d − i)

d + 1
= 1

d + 1


	d/2
∑

i=0

(d − i) +
d∑

i=	d/2
+1

i


 .

For evend,

E[�(v)] = 1

d + 1

(
d

2
+ d

2

(
d + d

2
+ 1

))
<
3d + 1

4
.

For oddd,

E[�(v)] = 1

d + 1

(
d + 1

2

(
d + d + 1

2

))
= 3d + 1

4
.
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Thus,

E

[∑
v

�(v)

]
� 3

4

∑
v

deg(v) + n

4
= 3m

4
+ n

4
.

Thus there exists an ordering with
∑

v �(v)� 3m
4 + n

4. By (1), it follows that∑
v �(v)� m+n

2 . �

We can derandomize the proof of Theorem 21 using the method of conditional expec-
tations to obtain a polynomial time algorithm. For details on this standard method of de-
randomization we refer the reader to the monograph of Motwani and Raghavan[30]. For
undirected graphsG, Theorem 21 applied to the symmetric directed graph ofG, matches the
result in Theorem 15. In one sense, however, the median placement algorithm is superior
to the randomized approach. Using conditional probabilities one has to choose the vertex
that minimizes the increase in the total imbalance as the next vertex to be inserted, whereas
Theorem 21 can be obtained using the MEDIAN PLACEMENT algorithm regardless of the
insertion ordering.
ApplyingTheorem21with the algorithmof Biedl andKaufmann[3] for orthogonal graph

drawing with bounded aspect ratios, yields an improved bound of
(3
4m + 1

4n
)×(3

4m + 1
4n

)
for the area, compared with area

(3
4m + 1

2n
) × (3

4m + 1
2n

)
as stated in[3, Theorem 5].

6. Partially fixed orderings of bipartite graphs

We have seen that the MEDIAN PLACEMENT algorithm finds an optimal ordering for an
acyclic directed graph, but in general, does not necessarily find an optimal ordering. We
now turn to another special case where this algorithm finds an optimal ordering.
Consider the following variant of the balanced ordering problem: Given a bipartite graph

G = (A, B; E) and a fixed ordering of the vertices ofA, how difficult is it to insert the
vertices ofB into this ordering so that the resulting ordering has minimum total imbalance?
There are actually three variants of the problem. We can consider the total imbalance, or
only the imbalance of the vertices inB, or only the imbalance of vertices inA.We now show
that the first two of these problems are solvable with the MEDIAN PLACEMENT algorithm,
whereas (surprisingly so) the third problem isNP-complete.

6.1. Total imbalance and imbalance in B

If only the final imbalanceof vertices inBcounts, then theMEDIAN PLACEMENTalgorithm
determines a perfectly balanced vertex-ordering, since a vertexv ∈ B is placed in themiddle
of its neighbors, and no neighbor ofv is inserted into the current ordering afterv is inserted.
We now prove that a variant of the MEDIAN PLACEMENT algorithm determines an optimal
vertex-ordering if we count the imbalance of all vertices.

Theorem 22. Given a bipartite graphG = (A, B; E) and a fixed vertex-ordering of A,
there is a linear time algorithm that determines an optimal vertex-ordering of G.
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Proof. It follows from the same technique used in the proof of Lemma 16 that there is an
optimal vertex-ordering inwhicheachvertex inB is placed in (oneof ) itsmedianposition(s).
Thus we need only consider such vertex-orderings. A vertex inBwith even degree has one
median position, and a vertex inBwith odd degree has two median positions (either side of
its median neighbor). Which of these two positions a vertex inBwith odd degree is placed
only affects the imbalance of the median neighbor. Recall that for each vertexv ∈ A,X(v)

is the set of verticesu ∈ B with odd degree such thatv is the median neighbor ofu.
Thus an optimal vertex-ordering can be determined as follows. Starting with the given

ordering ofA, apply theMEDIAN PLACEMENTalgorithmusinganarbitrary insertion ordering
forB. For each vertexv ∈ A, partitionX(v) into setsL(v) andR(v) such that by placing the
vertices inL(v) immediately to the left ofv, and placing the vertices inR(v) immediately
to the right ofv, the imbalance ofv is minimized. (This is similar to the partitioning step
in the WEIGHTED TREE ORDERING algorithm in Section 3.) To do so, we also count the
neighbors ofv not inX(v) in the imbalance ofv; for each such neighbor we know whether
it will be placed to the left or to the right ofv. In the resulting ordering, each vertex inB is in
(one of) its median position(s), and subject to this constraint, each vertex inAhasminimum
imbalance. Thus the ordering is optimal. The partitioning step and thus the entire algorithm
can be computed in linear time.�

Consider the following algorithm to compute a vertex-ordering of a bipartite graphG =
(A, B; E). For every vertex-ordering ofA, apply the algorithm described in Theorem 22
with this ordering ofAfixed. By Theorem 22 this algorithmwill compute an optimal vertex-
ordering ofG. We therefore have the following result.

Corollary 23. There is a linear time algorithm to compute an optimal vertex-ordering of
a bipartite graphG = (A, B; E) if |A| ∈ O(1).

From the standpoint of parameterized complexity (see[12]) this result is of some interest.
While the balanced ordering problem isNP-complete for bipartite graphs, if the number
of vertices in one color class is constant, the problem becomes fixed parameter tractable.

6.2. Imbalance in A

Theorem 24. Given a bipartite graphG = (A, B; E), it is NP-complete to determine
whether a fixed vertex-ordering of A can be extended to a vertex-ordering of G in which all
vertices in A are balanced.

Proof. Let I be an instance of NAE-3SAT such that all literals are positive. Construct a
graphG with one vertexcj for each clausecj , and four verticesxi, x′

i , li andri for each
variablexi . Connect each vertexxi to each clause vertexcj for which cj contains the
variablexi . Also connect each ofxi andx′

i to bothli andri . The resulting graph is bipartite,
with all thexi andx′

i vertices in one color class, and all remaining vertices in the other color
class, whose vertex-ordering is fixed to

(l1, l2, . . . , ln, c1, c2, . . . , cm, r1, r2, . . . , rn).
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Suppose there is a vertex-ordering ofG in which all fixed vertices are balanced. In particular,
this means that for eachi, one ofxi andx′

i is to the left ofli and the other one is to the
right. (No other vertices are connected toli .) Also, one ofxi andx′

i is to the left ofri and
the other one is to the right. (No other vertices are connected tori .) Thus one ofxi andx′

i

is to the left ofli , and the other one is to the right ofri . Let xi be true ifxi is to the left of
li , and false ifxi is to the right ofri . Since the clause vertices are balanced, it is easy to see
that this gives a solution to NAE-3SAT.
If I is satisfiable, construct a vertex-ordering withxi to the left of the fixed part andx′

i to
the right ifxi is true, and withxi to the right of the fixed part andx′

i to the left ifxi is false.
Every vertexli or ri is a(1,1)-vertex, and every clause vertex is a(1,2)-vertex. Thus every
vertex in one color class is balanced. Therefore the problem isNP-complete. �

While the above problem isNP-complete in general, it becomes solvable if the maxi-
mum degree of the vertices inB is two (regardless of the degrees of vertices inA). In fact,
we prove the following stronger result.

Lemma 25. Given a bipartite graphG = (A, B; E) such that every vertex in B has degree
at most two, there is a polynomial time algorithm to extend a fixed vertex-ordering of A into
a vertex-ordering of G such that every vertex in A is balanced.

Proof. We proceed by induction on the number of edges. The claim clearly holds ifG
has no edges. AssumeG has an edge. IfG contains a cycleC = (v1, u1, . . . , vk, uk), then
without loss of generality assumev1 is the leftmost vertex in the ordering ofA, andvi ∈ A

andui ∈ B for 1� i �k. Find a balanced ordering ofG − C by induction. Insertu1 to the
left of v1 in the ordering, and for each vertexvi , 2� i �k, if ui−1 is to the left ofvi , putui

to the right ofvi and vice versa. Sincev1 is the leftmost vertex, the last vertexuk can be
placed to the right ofv1 regardless of what side ofvk it has to be placed. We have added
one predecessor and one successor to every vertex inA, so the ordering again is balanced.
If G contains no cycle, then it is a forest. LetP be a path ofGwhose endpoints are leaves,
and insert the vertices inP ∩ B into the ordering in a similar manner to that for cycles. If a
vertex inA has degree two inP then it will remain balanced. If a vertex inA has degree one
in P then it is a leaf ofG, has no more incident edges in the remaining part ofG, has odd
degree in the originalG, and will have an imbalance of one in the vertex-ordering. Now,
removeP fromG, and repeat the above step untilG is empty. At this point, all even degree
vertices inA are balanced, and all odd degree vertices inA have an imbalance of one.�

7. Conclusion and open problems

We have considered the problem of determining a balanced ordering of the vertices of a
graph. This problem is shown to beNP-hard, and remainsNP-hard for bipartite simple
graphs with maximum degree six. Note that Kára et al.[24] have recently extended the
method developed in this paper to prove that the balanced ordering problem isNP-hard
for graphs ofmaximumdegree four, and for planar graphs.We thendescribed andanalyzeda
number ofmethods for determining a balanced vertex-ordering, obtaining optimal orderings



T. Biedl et al. / Discrete Applied Mathematics 148 (2005) 27–48 47

for trees, directed acyclic graphs and graphs with maximum degree three. We presented a
13/8-approximation algorithm for the problem on undirected graphs. Obtaining a good
approximation algorithm for directed graphs, and improving the approximation factors for
undirected graphs are challenging open problems. Linear or semi-definite programming
would seem a potential approach. However, we have found that these methods tend to give
an approximation factor that is at least logarithmic in the size of the graph.
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