Available online at www.sciencedirect.com

IENCE DIRECT® DISCRETE
e @ © APPLIED

- MATHEMATICS
ELSEVIER Discrete Applied Mathematics 148 (2005) 27 -48

www.elsevier.com/locate/dam

Balanced vertex-orderings of graphs

Therese Biedl!, Timothy Chaf?!, Yashar Ganjalfi?,
Mohammad Taghi Hajiaghdyf, David R. Wood3

a3chool of Computer Science, University of Waterloo, Waterloo, Canada ON N2L 3G1
bDepartment of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
CLaboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
dschool of Computer Science, Carleton University, Ottawa, Canada ON K1S 5B6

Received 6 June 2002; received in revised form 5 November 2004; accepted 1 December 2004

Abstract

In this paper we consider the problem of determining a balanced ordering of the vertices of a
graph; that is, the neighbors of each verteare as evenly distributed to the left and rightios
possible. This problem, which has applications in graph drawing for example, is shownftthe
hard, and remaing/”#-hard for bipartite simple graphs with maximum degree six. We then describe
and analyze a number of methods for determining a balanced vertex-ordering, obtaining optimal
orderings for directed acyclic graphs, trees, and graphs with maximum degree three. For undirected
graphs, we obtain a ¥8-approximation algorithm. Finally we consider the problem of determining a
balanced vertex-ordering of a bipartite graph with a fixed ordering of one bipartition. When only the
imbalances of the fixed vertices count, this problem is shown td'ls8-hard. On the other hand, we
describe an optimal linear time algorithm when the final imbalances of all vertices count. We obtain a
linear time algorithm to compute an optimal vertex-ordering of a bipartite graph with one bipartition
of constant size.
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1. Introduction

A number of algorithms for graph drawing use a ‘balanced’ ordering of the vertices of
the graph as a starting poif#2,23,31,37,38]Here balanced means that the neighbors of
each vertew are as evenly distributed to the left and righvads possible. In this paper we
consider the problem of determining such a vertex-ordering.

Throughout this papet = (V, E) is a connected graph without loops which may be
directed or undirected. We assui@ds simple unless explicitly called a multigraph. The
number of vertices o is denoted by: = |V | and the number of edges Gfis denoted by
m = |E|. vw refers to the undirected ed@e w} € E if Gis undirected, and to the directed
edge(v, w) € E if Gis directed. We denote ¥ (v) the set of (outgoing) edgdsw € E}
incident to a vertex. Thedegreeof v is deqv) = |E(v)|.

A vertex-orderingr of G is a total ordering oV or equivalently a numberingp1, va,

..., vy Of V. Each edge;v; € E(v;) with i < j is asuccessor edgef v;, andv; is a
successoof v;. Similarly each edge;v; € E(v;) with j <i is apredecessor edgef v;,

andv; is apredecessonf v;. The number of predecessor and successor edges of avertex
is denoted by predv;) and sucg(v;), respectively. That is, predv;) = [{viv; € E(v;) :

j <i}l and sucg(v;) = [{v;vj € E(v;) : i < j}|. We omit the subscript if the ordering

in question is clear. Note that for directed graphs, we only count the number of outgoing
edges incident to a vertax in pred(v;) and suc¢v;). In a given vertex-ordering, a vertex
vis called a

(min{pred(v), sucqv)}, max{pred(v), sucqv)})-vertex

and thembalanceof v is defined to be
¢(v) = |sucqv) — pred(v)|.

We sayv is balancedf ¢(v) is minimum, taken over all partitions of the edges incident to
into predecessor and successor edges. A vertex has even imbalance if and only if it has even
degree; hence the imbalance of a vertex with odd degree is at least one. In a vertex-ordering
of a simple graph, a vertexis balanced if and only i (v) <1.

The total imbalanceof a vertex-ordering is the sum of the imbalance of each
vertex. We say a vertex-ordering perfectly balancedf every vertex is balanced. Thus
a vertex-ordering of a simple graph is perfectly balanced if and only if the total imbal-
ance is equal to the number of odd degree vertices. For a given graph, a vertex-ordering
with minimum total imbalance is said to lmptimal We are interested in the following
problem.

BALANCED VERTEX-ORDERING
InstanceA (directed) graphG = (V, E), integerk >0.
Question DoesG have a vertex-ordering with total imbalange, ., ¢(v) <K?
The balanced vertex-ordering problem can be described in a number of different ways.
In a particular vertex-ordering, define

Y (v) = max{sucdv), pred(v)}.
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Then
$(v) = 24(v) — deg). 1

Hence the problem of finding an optimal vertex-ordering is equivalent to finding a vertex-
ordering that minimizes

> v). (2)

veV

However, for approximation-purposes, the balanced vertex-ordering problem and minimiz-
ing (2) are not equivalent. Sinéedegv) <Y(v) < degv), an arbitrary vertex-ordering will
be a 2-approximation for the problem of minimizing (2).

There is another equivalent formulation of the balanced vertex-ordering problem, which
shall prove useful to consider. In a particular vertex-orderingglét) = 2L%|succ(v) —
pred(v)||. Here,¢'(v) may be zero for both even and odd degree vertic&ince

> ¢)=I{v: degv) is odd |+ > ¢'(v).

a vertex-ordering is optimal if and only if it minimizés , ¢’ (v).

In a vertex-ordering of an undirected gra@hk= (V, E), the totalimbalance is equal to the
total imbalance of the same vertex-ordering of the symmetric directed giaditv, w),

(w,v) : vw € E}). Hence the balanced ordering problem for directed graphs is a general-
ization of the same problem for undirected graphs.

In related work, Wood37] takes a local minimum approach to the balanced vertex-
ordering problem. The algorithms here apply simple rules to move vertices within
an existing ordering to reduce the total imbalance. Certain structural properties of the
produced vertex-orderings are obtained, which are used in an algorithm for graph
drawing.

In this paper we present the following results. In Section 2 we show, using a reduction
from NAE-3SAT, thatthe balanced vertex-ordering problentig”-complete. In particular,
we prove that determining whether a given graph has a perfectly balanced vertex-ordering is
N P-complete, and remaing”Z-complete for bipartite graphs with maximum degree six.

Section 3 considers the balanced vertex-ordering problem on weighted trees. We prove
that this problem is (weakly)/”2-complete in general. On the other hand, we give a
pseudo-polynomial time algorithm for its solution that runs in linear time in the case of
unweighted trees.

Section 4 explores the relationship between balanced vertex-orderings and the connectiv-
ity of undirected graphs. We describe an algorithm for determining a vertex-ordering with
the minimum number of highly unbalanced vertices; that is, vertiogih pred(v) = 0 or
sucqv) =0. The same algorithm determines optimal vertex-orderings of undirected graphs
with maximum degree three.

Section 5 describes and analyses an algorithm for determining a balanced vertex-ordering
of an arbitrary graph. This algorithm has been successfully us¢8,36] to establish
improved bounds for the area of orthogonal graph drawings. We analyze the performance
of this algorithm, establishing a worst-case upper bound on the total imbalance which
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is tight in the case of the complete graph. Furthermore, the method determines perfectly
balanced vertex-orderings of directed acyclic graphs. We prove that this algorithm is a
linear-time 138-approximation algorithm for the problem of minimizing (2) in undirected
graphs.

In Section 6 we consider the problem of determining a balanced vertex-ordering of
a bipartite graph where a fixed vertex-ordering of one bipartition is given. The prob-
lem where only the imbalance of the fixed vertices in the ordering counts, is shown to
be ./"2-complete. On the other hand, we present linear time algorithms for the prob-
lems where only the final imbalance of the unsettled vertices counts, and where the final
imbalance of all vertices count. A corollary of this final result is that the balanced or-
dering problem is solvable in linear time if the number of vertices in one bipartition is
constant.

2. Complexity

In this section we show that the balanced vertex-ordering problefm#complete. Our
reduction is from the Not-All-Equal-3SAT problem (NAE-3SAT for short). Here we are
given a set of boolean variables and a collectiGrof clauses oved such that each clause
¢ € C has X |c|<3. The problem is to determine whether there is a truth assignment for
U such that each clause @hhas at least one true literal and at least one false literal. In a
given instance of NAE-3SAT, the number of times a variabégpears is called therder
of x, and is denoted by,. NAE-3SAT is ./ 2-complete[33], and it is well-known (see
[26] for example) that NAE-3SAT remaing”#-complete if all literals are positive ayior
every variable< hasd, <3.

Theorem 1. Determining if a given graph has a perfectly balanced vertex-ordering is
N P-completeand remains/”2-complete for bipartite undirected graphs with maximum
degree six

Proof. Let | be an instance of NAE-3SAT such that all literals are positive and every
variablex hasd, <3. We now convert to an instance of the balanced vertex-ordering
problem. Construct a graph as follows. For each variable € U add the gadget shown

in Fig. 1to G. In particular, add the vertices, x1, . . ., x24, to G. We callxg thevariable
vertexassociated with the variable Now add edges;x; 1, 1<j <2d, — 1, t0G, along

to
clause
vertices

To Ty T2 X3z Xy Tod,—1 Tad,

Fig. 1. The gadget associated with a variable
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with the edgesox2;_1, 1< j <d,. In addition, add @lause vertexg to G for each clause
¢ € C, and insert an edgeyco for each variable: appearing irc.

We claim that the instance of NAE-3SAT is satisfiable if and onlgihas a perfectly
balanced vertex-ordering. To prove the only-if direction construct a vertex-orderi@g of
with all the clause vertices in the middle of the vertex-ordering in arbitrary order, and for
each variabler, putxo, x1, ..., x24, to the left (respectively, right) of the clause vertices
if x is true (false). For the true variables order the verticesyy, , x24,—1, - .., xo from
left to right, and for the false variables order the verticeso, x1, ..., xz4, from left to
right. For each variable € U, the vertexxg hasd, predecessor edges add succes-
sor edges (going to clause vertices andxg;_1, 1< j <d,}). Thusxo is balanced. The
verticesx;, 1< j<2d,, are either(1, 1), (1, 2) or (0, 1)-vertices, and are thus balanced.
Since every clause € C contains at least one true literal and at least one false literal,
the vertexcg has at least one successor and at least one predecessor. Si@ge<d8g
co is balanced. Hence every vertex is balanced, and thus the vertex-ordering is perfectly
balanced.

For the if direction, assume we have a perfectly balanced vertex-ordering, and consider
the vertexxg for some variable:.

Casel. x1 is to the right ofxg: As x1 has degree tway,; must be to the right ok;.
Similarly, asx» has degree twogz must be to the right af,. As x3 has degree three, and
already has two predecessagsandxy, its third neighborxs must be to the right ofs.

By induction, all ofxy, xo, ..., x4, must be to the right ofg. Thusxg is to the left of its
neighborsyy, x3, ..., x24,—1. Sincexg is balanced, it must be to the right of its remaining
d, neighbors, which are the clause vertices of the clauses contain®ef the variable

to false.

Case2. x1 is to the left ofxg: Then symmetricallyyxg is to the left of itsd, adjacent
clause vertices. Satto true.

A clause vertexg has degree two or three. Hengghas at least one predecessor and
at least one successor, and tlousntains at least one false variable and at least one true
variable; that is¢ is satisfied.

We have shown that the given instance of NAE-3SAT is satisfied if and only if the graph
G has a perfectly balanced vertex-orderi@gs simple and bipartite (with the vertices par-
titioned into the setfco: c € C}U{xp;_1:x € U, 1< j <dy}and{xz;:x € U, 0< j<d,}).
Observe that the maximum degred®is twice the maximum order which is at most three.
Thus the maximum degree Gfis at most six. Itis trivial to check if a given vertex-ordering
is perfectly balanced. Since NAE-3SAT.ig'?-completeg[33], and the construction @
is polynomial, testing if a graph has a perfectly balanced vertex-orderingZscomplete
for simple bipartite graphs with maximum degree six]

For an intended application in 3-D orthogonal graph drawB®] it is important to
consider balanced vertex-orderings of graphs with minimum degree five and maximum
degree six. We now show that we still haviEZ-completeness in this case, at least for
multigraphs.

Lemma 2. Determining if a bipartite undirected multigraph with minimum degree five and
maximum degree six has a perfectly balanced vertex-ordering4s-complete
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to
clause
vertices

Fig. 2. The gadget associated with a variable

Proof. Letl be an instance of NAE-3SAT containing only positive literals. For each clause
cofl,ifc=xvyvzthenset=xVvxvVvyvyvzvz andifc=x Vv ythen set
c=xVxVxVyVyVy. Thus each clause now has exactly six literals. This does not
affect whether there is a solution to

For each variabl& with d, >4, introduce two new variablgsandz, calledreplacement
andspecialvariables, respectively. Replace two occurrencedmfy, and add nevgpecial
clauses vz andy Vv z. Thusd, decreases by one, and in any not-all-equal truth assignment,
x receives the same valueysghat is, this operation does not affect whethirsatisfiable.
Repeat the above step until each variable has order two or three. Since this operation can be
applied at mosta times, wheranis the number of clauses, the size of the instance is still
polynomial. All clauses now contain two or six variables. Now construct a géagimilar
to that in Theorem 1, but using the gadget showRig 2

Since each clause has two or six literals, each clause vertex has degree two or six in
G. If a clause vertex has degree two@j that is, it corresponds to a special clause, then
simply replace it by an edge between its two neighbors. This does not affect whether
the graph has a perfectly balanced ordering. Thus all clause vertices now have degree
six. A variable vertexxg has degree five ifl, = 2, and degree six ifl, = 3. A vertex
xi, 1<i <5, has degree five or six. Thus the graph has minimum degree five and max-
imum degree six. Furthermore the graph is bipartite with the following 2-coloring. For
each original variable or replacement variable, color the gadget as shawig.i@ For
each special variable, color the gadget in the opposite wdsigo2 Special variables
were only in special clauses, and since the corresponding special clause vertices have been
replaced by an edge, the only neighbors of a special variable vertex are original or replace-
ment variable vertices (and of course the vertices within the gadget). Thus the graph is
bipartite.

We now show that a similar argument as in Theorem 1 holds for this graph. A clause
vertexco is perfectly balanced if and only ify is a (2,4)-vertex or a (3,3)-vertex if and
only if c contains at least one true literal and at least one false literal. A variable vertex is
perfectly balanced if and only if it is a (2,3)-vertex or a (3,3)-vertex, and thus must appear
completely to the right or left of the vertices corresponding to the clauses containing it.
Clearly, any arrangement of the vertices within a gadget other that showig.ir2 will
increase the imbalance (except for the reverse order). By the same argument in Theorem
1, it follows that this graph has a perfectly balanced ordering if and only if the instance of
NAE-3SAT is satisfiable. [J
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A strategy for producing 3-D orthogonal point-drawings of maximum degree six graphs
which is employed by Eades et fl1.7] and Wood 38], is to position the vertices along the
main diagonal of a cube. For graphs with minimum degree five, minimizing the number of
bends in such a drawing is equivalent to finding an optimal ordering of the vertices along
the diagonal; se¢38]. As a consequence of Lemma 2 we therefore have the following
result.

Theorem 3. Let G be a bipartite undirected multigraph with maximum degree six. It is
N"#-hard to find a3-D orthogonal point-drawing of G with a diagonal vertex laypamd
with the minimum number of bends

3. Weighted trees

A natural generalization of the balanced ordering problem is to consider weighted graphs.
Given avertex-orderinys, vo, ..., v,) ofagraphG=(V, E) with positive integer weights
o : E — N on the edges oB, for each vertex; € V, we define precy;) to be the sum
of the weights of the predecessor edges;pind suc¢v;) to be the sum of the weights of
the successor edgeswf That is,

pred(v;) = Z o(v;) and sucty;) = Z o(v;v;).
vivjEI:'(vi) v;vjelz'(vi)
J<t i<j
Clearly these definitions with all edge-weights equal to one are equivalent to the un-
weighted case. (One can think of a graph with edge-weights as a multigraph where the
multiplicity of an edge equals its weight.) Thus the weighted balanced ordering problem
is A" Z?-complete (since the unweighted version is), but in fact, it remains?-
complete even for trees, whereas the unweighted version is solvable on trees, as we
now show.

Lemma 4. It is 4/ Z-complete to determine if a given weighted graph has a perfectly
balanced vertex-orderingind remains so for weighted trees

Proof. We reduce the partition problem to the weighted balanced ordering problem. Given
a setws, wo, ..., w, of positive integers, the partition problem (which.is Z-complete

[25]) asks whether there is a sktC {1, 2,...,n} such that)_,_,w; = Zi¢,wi. Given
positive integersv1, wo, ..., w,, consider the star graph ant- 1 vertices, which has one
vertex connected to all other vertices, and with wo, ..., w, being the weights on the
edges. LetV = ), w;. For any ordering of the vertices, the total imbalance is at Mé&st
since each leaf must have imbalange We have a vertex-ordering with total imbalance of

W if and only if we can splitw1, wo, ..., w, into two sets that each sum to exacgw;

that is, there is a solution to the partition problent]

Thus the weighted problem ig”#-complete, even if the graph is a tree. However, it
is only weakly./"2-complete, since the partition problem is only weakiyZ-complete.
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We now describe a pseudo-polynomial time algorithm for determining a perfectly balanced
vertex-ordering of a weighted tree.

WEIGHTED TREE ORDERING
Input treeG = (V, E) with edge-weightsy : £ — N.
Output vertex-ordering ofc

Let (v1, v2, ..., v,) be a pre-order vertex-ordering Gf

(that is, every vertex, except, has exactly one predecessor).
Initialize the current ordering to b@1).
fori=1,2,...,ndo

Let v; be the predecessor of (if i > 1).

Partition E (v;) into L; and R; such that:

(Zviv_/eL; w(v,-vj)) — (Zv[vjeRiw(Uivj))‘ is minimized, and
e vu; € R; if vpv; € Ly,andv;v, € L; if viv; € Ry.

Insert each successoy of v; into the current ordering

e to the right ofv; if v;v; € R;, and
e t0 the left ofv; if viv; € L.

end-for

Theorem 5. TheWEIGHTED TREE ORDERING algorithm determines a perfectly balanced
vertex-ordering of the given graph in pseudo-polynomial time

Proof. Every vertexv;, except forvy which is inserted into the current ordering at the
beginning of the algorithm, is inserted into the current ordering irkthéteration, where

v IS the (sole) predecessor of. Thus every vertex is inserted into the current ordering
exactly once.

In theith partitioning step we can swdp andR; if v;vy € L; N Ly orv;vx € R; N Ry.
Hence for all edges;v; € E, we havev;v; € L; N R; or v;v; € R; N L;. Thus when
vertices are inserted into the current ordering, a vertéx to the left of an adjacent vertex
v; ifand only ifv;v; € R; N L;. Therefore the imbalance

pwd = D o) |- D owvll,

v,-vjeL,- v,-v_/-eR,-

which is chosen to be minimum. Thus eaghis balanced, and therefore the ordering is
perfectly balanced.

Using a dynamic programming algorithm (4§2&] for example) the partitioning of (v)
can be completed iv (W, - degv)) time, whereW,, is the sum of the weights of the edges
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incident tov. Hence the total time is proportional to

> ) degw) - www)= Y o(w)(degv) + degw))
veV vweE (v) vweE
<24 Z o(w) = 2AW,

vweE

whereWis the sum of all edge-weights, arlds the maximum degree &. Clearly,O (AW)
is pseudo-polynomial time. Note that for unweighted trees, the partitidgof is trivial,
and the algorithm runs in linear time. ]

4. Connectivity and maximum degree

We now examine relationships between balanced vertex-orderings and the vertex-
connectivity of a graph.

4.1. st-Orderings

A vertex-orderingvs, vo, ..., v,) of an undirected grap&i = (V, E) is anst-ordering if
v1=s, v, =t, and for every other vertax, 1 < i < n, with deqv;) > 2, we have pre);) >1
and succv;) > 1. Lempel et al[27] show that for any biconnected graph= (V, E) and
foranys, t € V, there exists ast-ordering ofG. Cheriyan and Re{B] extended this result
to directed graphs. Even and Tarjfl®,20] develop a linear time algorithm to compute
anstordering of an undirected biconnected graph (alsd 848,29,35). Under the guise
of bipolar orientations storderings have also been studied914,32] In related work,
Papakostas and Tollig1] describe an algorithm for producing so-callestorderings
of graphs with maximum degree four; these aterderings with a lower bound on the
number of perfectly balanced vertices of degree four. In gengtratderings do not have
minimum imbalance (irf4] we give an example of a graph for which evestyordering
is not optimal), bust-orderings immediately give the following upper bound on the total
imbalance.

Lemma 6. The total imbalance in an st-ordering of an n-vertex m-edge g@gh(V, E)
is at mosm — 2n + 4 if G is undirected and: — 2n + 4 if G is directed

The following algorithm determines a vertex-ordering of a graph basestomlerings
of its biconnected componentblgckg. In Corollary 13 below we prove that given an
optimal vertex-ordering of each biconnected component, it'i-hard to find an optimal
vertex-ordering of the graph. However, this algorithm and variations of it have proved useful
in many graph drawing algorithrjg,28,34]as it gives bounds on the number of highly
unbalanced vertices (see Lemma 7 below). Moreover, we employ this method to obtain
optimal vertex-orderings of graphs with maximum degree three.

It is well-known that the blocks of a graph can be stored in the form of a tree; this is the
so-calledblock-cut-tree which we denote by#%(G) for a graphG. A block containing
exactly one cut-vertex is called amd-block
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COMBINE StORDERINGS
Input undirected grapli = (V, E)
Output vertex-ordering ofc

Let B1 be an end-block o6.
Complete a depth-first traversal &' (G) starting atB1, and

let B1, Bo, ..., B, be the depth-first numbering of the blocks@f
Letr; be a cut-vertex oB;, and lets; be a vertex ofB; distinct fromz;.
Initialize thecurrent orderingto be ans1#1-ordering of B.
fori=23,...,rdo

Lets; be the (unique) cut-vertex d; with some blockB; with j <i.

if B; is an end-block of5 then

Letr; be a vertex of3; distinct froms;.

else
Letr; be a cut-vertex oB; with some blockB; with j > i.
end-if
Let (v}, v5, ..., v}) be ans;s;-ordering of B; (with vy = 5; andv), = 1r,).
Append(v, v4, ..., v} ) to the current ordering.
end-for

Lemma 7. Let G be an undirected graph with k end-blocked assumé > 2; that is G
has at least one cut-vertex. Th@oMBINE stORDERINGSalgorithm determines a vertex-
ordering in linear timewith one vertex havingpred(v) = 0, andk — 1 verticesv having
sucdqv) = 0.

Proof. By the definition ofst-ordering, a vertex € V that is nots; or ¢; for somei, has
pred(v) > 0 and suc¢v) > 0. We now count the number of vertices with zero successors. A
vertexs; has sucés;) > 0. A vertexs; for which B; is not an end-block has sugg) > 0. The
vertexr, for which B; is an end-block, has su@g) > 0. The remaining verticess with B;

an end-block have su¢g) =0. Hence the number of verticefiaving suc¢v) =0isk — 1.

We now count the number of vertices with zero predecessors. A vettes predr;) > O.

For each > 2, 5; is chosen to be the cut-vertex with some bldtk(j < i)—such a block
must exist because of the depth-first numbering of the blocks. Hehes predecessors in
B;, and therefore the only vertex with zero predecessars Bince the block-cut-tree and
the st-orderings can be determined in linear time, and since the block-cut-tree has linear
size, the algorithm runs in linear time.[

The next result easily follows from Lemma 7.
Lemma 8. Given a non-biconnected n-vertex m-edge undirected graph with k end-blocks

the CoMBINE stORDERINGS algorithm determines in linear time a vertex-ordering with
total imbalance at mostm — 2n + 2k.
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We now show that the @uBINE st ORDERINGSalgorithm determines a vertex-ordering
with the minimum number of vertices with zero predecessors or zero successors. Consider
an end-blockB. Then either the first vertex & in the ordering has no predecessors, or the
last vertex oB in the ordering has no successors, for in an end-bBakly one vertex has
neighbors outside d. The next result follows.

Lemma 9. Every vertex-ordering of an undirected graph with k end-blocks has at least k
verticesv havingpred(v) = 0 or sucqv) = 0.

Note that for a triangulated planar grafh vertex-orderings can be determined that
are more balanced thatorderings. de Fraysseix et §15] show thatG has acanonical
vertex-ordering(vi, va, .. ., v,) With pred(v;) >2 for every vertexy;, 3<i <n, and with
sucdqv;) > 1 for every vertex;, 1<i <n — 1. Kant[22] generalizes canonical orderings
to the case of 3-connected planar graphs, and it is easy to extend canonical orderings to
3-connected non-planar graphs (Kant, private communication, 1992; sefd 2jlsdKant
and He[23] show that ifG is planar and 4-connected, thénhas a vertex-ordering with
every vertex;, 3<i <n—2, having suctv;) >2 and predv;) > 2. The next result follows.

Lemma 10. An n-vertex m-edgé-connected triangulated planar undirected graph has a
vertex-ordering with total imbalance at mdat — 4n + 12.

4.2. Graphs with maximum degree three

We now apply the results from the previous section to obtain optimal vertex-orderings of
graphs with maximum degree three.

Lemma 11. Any st-ordering of a biconnected undirected graph G with maximum degree
at most3 is optimal

Proof. Suppose&s hasn vertices. Clearly the result holdssif= 2. Assume from now on
thatn > 3. In this case, all vertices have degree at least two by biconnectivity and at most
three by assumption. Leg be the number of degree three vertice§irin anst-ordering,

24+ 2+n3=n3+4, if deg(s) =deqr)=2
Y ¢pw)=13+3+(n3—2 =n3+4, if deg(s)=degr) =3
v 2+3+(n3—1) =n3+4, if {degs),deqr)} = {2 3.
By considering the degrees of the first and last vertex, and since every degree three vertex
v has¢(v) > 1, it is easily seen that any vertex-ordering®has total imbalance at least
ny3+4. O

Theorem 12. Given an undirected grap& = (V, E) with maximum degree at most thyee
theComBINE st-ORDERINGSalgorithm determines in linear time an optimal vertex-ordering
of G.

Proof. Asnoted in Section 1, finding an optimal vertex-ordering is equivalent to minimizing
>, ' (v), where¢'(v) = 2L%|sucqv) — pred(v)|]. For graphs with maximum degree
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three,¢’(v)=2if visa(0, 2)- or (0, 3)-vertex, andp’ (v) =0 otherwise. Hence minimizing

>, ¢’ (v) is equivalent to minimizing the number @, 2)- and(0, 3)-vertices. Every vertex

with degree one must have zero predecessors or zero successors, thus minimizing the number
of (0, 2)- and (0, 3)-vertices is equivalent to minimizing the number of vertices with zero
predecessors or zero successors. By Lemmas 7 and Rt st ORDERINGSalgorithm
determines in linear time, a vertex-ordering with the minimum possible number of vertices
with zero predecessors or zero successors. Thereforethe! Qe st ORDERINGSalgorithm
determines an optimal vertex-ordering for graphs with maximum degree thrée.

Observe that in the reduction in Theorem 1, the variable vertices are cut-vertices, and
that each biconnected component has maximum degree three. By Theorem 12, an optimal
ordering of a graph with maximum degree three can be determined in linear time. Hence,
we have the following result.

Corollary 13. Finding the optimal vertex-ordering of a graph.i&’#-hard, even if given
an optimal vertex-ordering of each biconnected companent

5. Median placement algorithm

We now describe an algorithm for the balanced vertex-ordering problem. The algorithm
inserts each vertex, in turn, mid-way between its already inserted neighbors. At any stage of
the algorithm we refer to the ordering under construction agtinent ordering Similar
methods were introduced by Biedl and KaufmgBhand Bied| et al[5].

MEDIAN PLACEMENT

Input vertex-ordering = (u1, uz, ..., u,) of a (directed) grapl®
(called theinsertion ordering

Output vertex-ordering ofs

fori=12,...,ndo
Letws1, wo, ..., w; be the predecessorsofin the insertion ordering,
ordered by their position in the current ordering.
if k =0then Insertu; arbitrarily into the current ordering.
else ifk is eventhen Inserty; arbitrarily betweenu, > andwy241.
else(kis odd) Insert; immediately before or aftap1),2
to minimize the imbalance ab1)/2.
(In this casaw1),2 is called themedian neighboof u;.)
end-for

Using the median-finding algorithm of Blum et )], and the algorithm of Dietz and
Sleator[11] to maintain the vertex-ordering and orderings of the adjacency ligg tife
algorithm can be implemented in linear time.

For a given insertion orderingof a (directed) graplG = (V, E), let X be the set of
verticesu € V for which pred (x) is odd.
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Lemma 14. The algorithmMEDIAN PLACEMENT determines in linear time a vertex-
ordering of a(directed graphG = (V, E) with total imbalance

3 p)<IXI+ Y sucq ).

veV ueV

Proof. When a vertexiis inserted into the current ordering, the predecessausrof are
precisely the neighbors aofthat have already been inserted ihtd@ hus immediately after
u is insertedg(u) = 0 if pred; () is even andp(u) = 1 if pred; (u) is odd. Even if all
the successors af (in the insertion ordering) are inserted on the one sidg of the final
ordering, the imbalance (u) <sucg () if pred; (u) is even, andp(u) <sucg (u) + 1 if
pred; (1) is odd. Thus the total imbalance is at mpgt + ), sucq (v). O

5.1. Undirected graphs

Theorem 15. The algorithmMEDIAN PLACEMENT determines in linear time a vertex-
ordering of an n-vertex m-edge undirected graph with total imbalance

> p@)<m +min{|X|,n — |X|}<m + SJ

Proof. That)_, ¢(v) <m+|X|followsimmediately from Lemma 14 sin¢e,, sucq (u)=

m for undirected graphs. For each vertexe V, let X (v) be the set of vertices € X
such thatv is the median neighbor af whenu is inserted into the current ordering. Thus
elements ofX (v) are successors afin |, and)_, | X (v)| = |X|. Since vertices irX (v)
are inserted to balance ¢(v) <sucg(v) — |X(v)| if pred,(v) + |X(v)| is even, and
¢(v) <1+ sucg(v) — | X (v)| if pred; (v) + | X (v)| is odd. Thus

Y pwy<n+) sucgw) =Y [X@W)|=n+m—I|X]. O

A simple calculation shows that any vertex-ordering of the complete gkapias total

imbalancqéj =m+|3]. Thus Theorem 15 provides an upper bound on the total imbalance
that is tight in this case. Comparing the bound on the total imbalance established by the
MEDIAN PLACEMENT algorithm (Theorem 15) versus the analogous bound for the imbalance
of storderings of biconnected graphs (Lemma 6), theDMN PLACEMENT algorithm is
better for simple graphs with average degree at least five. On the other hand, for simple 4-
connected triangulated planar graphs (which have average degree just under six), the bound
in Lemma 10 is better than that in Theorem 15.

We now prove that the vertex-orderings produced by tiE®iiN PLACEMENT algorithm
are in some sense locally optimal.

Lemma 16. For undirected graphsassuming the existing vertex-ordering is fixedch
iteration of theMEDIAN PLACEMENT algorithm inserts the vertex u to minimize the increase
in the total imbalance
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Proof. When inserting a vertey, only the imbalance afl and its neighbors may change.
Thus we need only consider the positions in the current ordering between the neighbors of
u as potential places for the insertionwflf k is even the position in the current ordering
betweenw; > andwy 2.1 is called themedian positionlf k is odd there are twanedian
positions immediately before and aften,1),2. Assume that there exists a position to
insertu in the current vertex-ordering, which is not a median position, but minimizes the
total imbalance of the current ordering.

Supposéis even. If movingu to the median position involves movingpastt neighbors
of u, then doing so decreasesu) by 2, while the imbalance of each of theseeighbors
increases by at most 2. Thus moviado the median position does not increase the total
imbalance.

Supposek is odd. If movingu to the closer median position involves movingastt
neighbors ofu, then doing so decreaseésu) by 2, while the imbalance of each of these
t neighbors increases by at most 2. Thus movirig the closer median position does not
increase the total imbalance. The imbalancei @ the same in either median position,
and only the imbalance ab 1)/, differs with u in the different median positions. Thus
by insertingu in a median position that minimizeg(w1)/2), we minimize the total
imbalance. [

Recall that)/(v) denotes majsucqv), pred(v)} for each vertex in a vertex-ordering.
As mentioned in Section 1, any vertex-ordering is a 2-approximation for the problem of
minimizing ), y(v). This observation can be improved as follows.

Theorem 17. There is a linear-timel3/8-approximation algorithm for the problem of
determining a vertex-ordering of an undirected graph that minimjzes) (v).

Proof. We proceed by induction o[V | with the hypothesis that every undirected graph
G = (V, E) with k vertices of odd degree, has a vertex-ordering with

13 k
Y << (1EI+5 ).
8 2
veV
This will imply the claimed approximation factor, since in every vertex-ordering,of

IRIOEDS [degﬂ = IEI+ 5.

veV v

First suppose thaG has a vertexw of degree one. Letv be the neighbor ob. Let
G’ = (V', E') be the subgraph @ induced byV’ = V\{v}. SayG’ hask’ vertices of odd
degree. By inductioni;’ has a vertex-ordering with

E w(x)<1—3<lE|—1+li/)
=~ 8 2/
xeV’

Suppose that degw) is even. Then deg(w) is odd, andc’ = k. Insertv into the ordering
of G’ to minimize the resulting imbalance of Thusy(w) is unchanged by the insertion
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of v, andy/(v) = 1. We obtain a vertex-ordering & with

13 k 13 k
Zl/j(x)gl_i_ Z ‘//(x)<1+§ <|E| -1+ E) <§ (|E|+§>

xevV xeV’

Now suppose that dggw) is odd. Then deg (w) is even, an@d’ =k — 2. Insert arbitrarily
into the ordering ofG’. Thusy/(w) increases by at most one, apdv) = 1. We obtain a
vertex-ordering of5 with

13 k—2 13 k
Z Y(x) <2+ Z lp(x)<2+§ <|E| -1+ T) <3 (|E|+§)~

xeV xeV’

This completes the case in whiGhhas a vertex of degree one.

Now suppose tha® has a vertex of degree two. Leti andw be the neighbors of.
Let G’ = (V/, E’) be the graph obtained frof by contracting. Thatis,V’' = V\{v} and
=(E\{vu, vw})U{uw}. Observe that’ hask vertices of odd degree, ahfl’|=|E| —

By induction,G’ has a vertex-ordering with

) ¢<x)<1§3<|E| —1+§>.

xeV’

Insertv into the ordering of5’ betweeru andw. Thusy(x) andy(w) are unchanged, and
Y(v) = 1. We obtain a vertex-ordering & with

13 k 13 k
DYWL Y p<iy <|E| —1+§> <3 <|E|+§>.

xeV xeV’

Now suppose thab has minimum degree three. By Theorem 15, the algorithenikiN
PLACEMENT determines a vertex-ordering & with total imbalance)_, ¢(v) < |E| +
[V1]/2. By (1),¢(v) = 2y (v) — degv). It follows that,

S ww< ©

Letng be the number of vertices (& with degree exactly three. Since the minimum degree
is three,

21E| =" degv)>3n3+4(|V| —n3) =4|V| — na.
v

Hence 4V | <2|E| + n3<2|E| + k<2|E| + 13k, and 24E| + 4|V | <26|E| + 13k. Thus
by (3),

Zw<><% M<1—3(|E|+5>
4 8 2)’

as desired. The above approach can be implemented in linear time usingethenM
PLACEMENT algorithm, by placing the low degree vertices at the end of the insertion
ordering. [
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1-1 2-0 2-0 1-1 1-1 2-0

(a) (b)

Fig. 3. Inserting vertex into a vertex-ordering of a directed graph: (a) median placement insertion, (b) minimum
imbalance insertion.

5.2. Directed graphs

We now analyze the bIAN PLACEMENT algorithm in the general case of directed graphs.
For undirected graphs, Lemma 16 proves that tlepiMN PLACEMENT algorithm inserts
each vertex to minimize the increase in the total imbalance. The exanipte Bshows that
this property does not hold for directed graphs. Using tiEpiN PLACEMENT algorithm
the total imbalance becomes four, whereas there exists a position, illustrédtied &, to
insertu with total imbalance two.

Lemma 14 suggests that a good insertion ordering for theIM\ PLACEMENT algorithm
applied to a directed graph, is one with small, sucqu). For any vertex-ordering of a
directed graphy _, sucdu) or ), predu) is at mostz. Thus using an arbitrary vertex-
ordering or its reverse as the insertion ordering in trebMN PLACEMENT algorithm we
obtain a vertex-ordering with total imbalance at mgst- n. For acyclic graphs, a reverse
topological ordering has su@g) = 0 for all verticesu. Since such an ordering can be
determined in linear time (sd&0] for example) we have the following result (which was
implicitly used by Biedl and Kaufmanf8, Theorem 4}o establish upper bounds on the
area of orthogonal graph drawings.)

Theorem 18. A perfectly balanced vertex-ordering of a directed acyclic graph can be
determined in linear timéwith total imbalancgdX|).

For a directed grapl; = (V, E) which is not necessarily acyclic, a good insertion
ordering can be obtained by first removing edges to n@leeyclic. A feedback arc set
of G is a set of edge$ < E such thatG\ F is acyclic. Since the successor edges in a
vertex-ordering form a feedback arc set, and a reverse topological ordering of the graph
obtained by removing a feedback arcBétas) ", sucqu) =| F|, finding a vertex-ordering
with minimum )", sucqu) is equivalent to finding a minimum feedback arc set, which is
N P-hard[25].

Berger and Shofl] establish an asymptotically tight bound for the size of a feedback
arc set. They show that, for directed graphs of maximum dedreed without 2-cycles,
the minimum of)_ sucdu) (taken over all vertex-orderings) & — O(m//4), and a
vertex-ordering with) , sucqu) = 5 — @(m/\/Z) can be determined i® (mn) time.
Using this as the insertion ordering in algorithnEMAN PLACEMENT, by Lemma 14 with
| X| < n, we obtain the following result.
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Theorem 19. Every n-vertex m-edge directed graph withalycles has a vertex-ordering
which can be computed i@ (mn) time, with total imbalance

XU:(l)(v)én—i—’Z—@(:;Z).

Only for small values off is the constant in th€ (m /+/A) term evaluated:; thus for graph
drawing purposes only the+m /2 term can be used. This bound can be improved by using
aresult of Eades et dlL6]. They give a linear time greedy heuristic for finding a feedback
arc set, and prove an exact boundXy) sucau), which in a number of instances, provides
a better result than that id]. In particular, they show that every directed graph without
2-cycles has a vertex-ordering wifhi, sucqu) < %5 — . For directed graphs with 2-cycles
simply delete both edges in each 2-cycle, apply the above result, and insert the 2-cycles
back into the graph. This adds one successor to one vertex, and increases the number of
edges by two. Thus the same boung sucqu) < — & holds. Using this ordering as the
insertion ordering in algorithm EbiAN PLACEMENT, by Lemma 14 withX | <n, we obtain
the following result.

Theorem 20. Every n-vertex m-edge directed graph has a vertex-ordervitgch can be
computed in linear timewith total imbalance at mos§ + %".

The above result can be improved by the following randomized approach.

Theorem 21. Every directed graph G with n vertices and m edges has a vertex-ordering
with total imbalance”$*.

Proof. Take a random permutatianof the vertices as the ordering. Consider a veitex
of (out-)degread. We claim that int, sucqv) =i and predv) = d — i with probability
d}rl To prove this, we only need consider permutations ahd |ts neighbors. (There are
equal numbers of permutations of the whole vertex set for each permutatioaraf its
neighbors.) Now, it is placed in théi + 1)-st position, then suc¢e) =i and predv)=d —i.
There arel! such permutations. Thus with probabil#y/(d + 1)! = 1/(d + 1), we have
sucdv) =i and predv) =d — i, as claimed.

Definey (v) = max{pred(v), sucqv)}. Thus

d . d/2] d
max(i,d — i) 1 .
EWON=2 =0y d+1(z(d_l)+ 2 l)'

i=0 i=ld/2]+1

For everd,

1 d d d 3d+1
E[w<v>]=d+1(2+2<d+2+1>>< =

For oddd,

1 [(d+1 d+1 3d+1
E“”<”)]:d+1(z<"+z>>= .
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Thus,
E|Y pw) <§§ degu)+ L= "
- 4 - 4 4 4

Thus there exists an ordering with_, xp(v)g%’" + %. By (1), it follows that
Y, pm<gt. O

We can derandomize the proof of Theorem 21 using the method of conditional expec-
tations to obtain a polynomial time algorithm. For details on this standard method of de-
randomization we refer the reader to the monograph of Motwani and Ragfgdjafror
undirected graph8, Theorem 21 applied to the symmetric directed grapB,ahatches the
result in Theorem 15. In one sense, however, the median placement algorithm is superior
to the randomized approach. Using conditional probabilities one has to choose the vertex
that minimizes the increase in the total imbalance as the next vertex to be inserted, whereas
Theorem 21 can be obtained using thedvaN PLACEMENT algorithm regardless of the
insertion ordering.

Applying Theorem 21 with the algorithm of Biedl and Kaufmd8hfor orthogonal graph
drawing with bounded aspect ratios, yields an improved bouu(@mer ;lln) X (%m + %n)
for the area, compared with arém + 3n) x (3m + 3n) as stated i3, Theorem 5]

6. Partially fixed orderings of bipartite graphs

We have seen that the#diAN PLACEMENT algorithm finds an optimal ordering for an
acyclic directed graph, but in general, does not necessarily find an optimal ordering. We
now turn to another special case where this algorithm finds an optimal ordering.

Consider the following variant of the balanced ordering problem: Given a bipartite graph
G = (A, B; E) and a fixed ordering of the vertices Af how difficult is it to insert the
vertices ofB into this ordering so that the resulting ordering has minimum total imbalance?
There are actually three variants of the problem. We can consider the total imbalance, or
only the imbalance of the verticesi or only the imbalance of vertices f We now show
that the first two of these problems are solvable with trEDMN PLACEMENT algorithm,
whereas (surprisingly so) the third problemis?-complete.

6.1. Total imbalance and imbalance in B

If only the final imbalance of vertices Bicounts, then the IEbIAN PLACEMENT algorithm
determines a perfectly balanced vertex-ordering, since a veteR is placed in the middle
of its neighbors, and no neighborwofs inserted into the current ordering afteis inserted.
We now prove that a variant of the#dIAN PLACEMENT algorithm determines an optimal
vertex-ordering if we count the imbalance of all vertices.

Theorem 22. Given a bipartite graphG = (A, B; E) and a fixed vertex-ordering of,A
there is a linear time algorithm that determines an optimal vertex-ordering. of G
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Proof. It follows from the same technique used in the proof of Lemma 16 that there is an
optimal vertex-ordering in which each vertex8is placed in (one of ) its median position(s).
Thus we need only consider such vertex-orderings. A vert@&iiith even degree has one
median position, and a vertexBwith odd degree has two median positions (either side of
its median neighbor). Which of these two positions a verte& with odd degree is placed
only affects the imbalance of the median neighbor. Recall that for each veeek, X (v)
is the set of vertices € B with odd degree such thatis the median neighbor af

Thus an optimal vertex-ordering can be determined as follows. Starting with the given
ordering ofA, apply the MEDIAN PLACEMENT algorithm using an arbitrary insertion ordering
for B. For each vertex € A, partitionX (v) into setsl (v) andR (v) such that by placing the
vertices inL (v) immediately to the left ob, and placing the vertices iR(v) immediately
to the right ofv, the imbalance of is minimized. (This is similar to the partitioning step
in the WEIGHTED TREE ORDERING algorithm in Section 3.) To do so, we also count the
neighbors ob not in X (v) in the imbalance ob; for each such neighbor we know whether
it will be placed to the left or to the right af. In the resulting ordering, each vertex8ris in
(one of) its median position(s), and subject to this constraint, each verexas minimum
imbalance. Thus the ordering is optimal. The partitioning step and thus the entire algorithm
can be computed in linear time ]

Consider the following algorithm to compute a vertex-ordering of a bipartite géagh
(A, B; E). For every vertex-ordering @&, apply the algorithm described in Theorem 22
with this ordering oA fixed. By Theorem 22 this algorithm will compute an optimal vertex-
ordering ofG. We therefore have the following result.

Corollary 23. There is a linear time algorithm to compute an optimal vertex-ordering of
a bipartite graphG = (A, B; E) if |A| € O(D).

From the standpoint of parameterized complexity (42§ this result is of some interest.
While the balanced ordering problem.is 2-complete for bipartite graphs, if the number
of vertices in one color class is constant, the problem becomes fixed parameter tractable.

6.2. Imbalance in A

Theorem 24. Given a bipartite graphG = (A, B; E), it is A 2-complete to determine
whether a fixed vertex-ordering of A can be extended to a vertex-ordering of G in which all
vertices in A are balanced

Proof. Let| be an instance of NAE-3SAT such that all literals are positive. Construct a
graphG with one vertexc; for each clause;, and four vertices;, x/, /; andr; for each
variablex;. Connect each vertex; to each clause vertex; for which c¢; contains the
variablex;. Also connect each of; andx; to both/; andr;. The resulting graph is bipartite,
with all thex; andx, vertices in one color class, and all remaining vertices in the other color
class, whose vertex-ordering is fixed to

(1, I, .. Ly, cr,c2, 00 Cmy KL T2, ..., Th).
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Suppose there is a vertex-orderingzih which all fixed vertices are balanced. In particular,
this means that for eadhone ofx; andx! is to the left of/; and the other one is to the
right. (No other vertices are connected 9 Also, one ofx; andx; is to the left ofr; and

the other one is to the right. (No other vertices are connected)t®hus one ofy; andx;

is to the left ofl;, and the other one is to the right of Letx; be true ifx; is to the left of

[;, and false ifx; is to the right ofr;. Since the clause vertices are balanced, it is easy to see
that this gives a solution to NAE-3SAT.

If 1 is satisfiable, construct a vertex-ordering wito the left of the fixed part and to
the right if x; is true, and withx; to the right of the fixed part and to the left if x; is false.
Every vertex; orr; is a(1, 1)-vertex, and every clause vertex igla2)-vertex. Thus every
vertex in one color class is balanced. Therefore the problemidg-complete. [

While the above problem is/”2-complete in general, it becomes solvable if the maxi-
mum degree of the vertices Biis two (regardless of the degrees of verticeé)inIn fact,
we prove the following stronger result.

Lemma 25. Given a bipartite graplG = (A, B; E) such that every vertex in B has degree
at most twothere is a polynomial time algorithm to extend a fixed vertex-ordering of A into
a vertex-ordering of G such that every vertex in A is balanced

Proof. We proceed by induction on the number of edges. The claim clearly hol@s if
has no edges. Assunizhas an edge. I6 contains a cycl&€ = (v1, u1, ..., vk, ug), then
without loss of generality assumg is the leftmost vertex in the ordering Af andv; € A
andu; € B for 1<i <k. Find a balanced ordering ¢f — C by induction. Insert to the
left of v1 in the ordering, and for each vertex 2<i <k, if u;_1 is to the left ofv;, putu;

to the right ofv; and vice versa. Since; is the leftmost vertex, the last vertax can be
placed to the right of; regardless of what side of; it has to be placed. We have added
one predecessor and one successor to every verfexsimthe ordering again is balanced.
If G contains no cycle, then it is a forest. LRbe a path ofs whose endpoints are leaves,
and insert the vertices iR N B into the ordering in a similar manner to that for cycles. If a
vertex inA has degree two iR then it will remain balanced. If a vertex lhas degree one
in P then it is a leaf ofG, has no more incident edges in the remaining pafdias odd
degree in the originab, and will have an imbalance of one in the vertex-ordering. Now,
removeP from G, and repeat the above step u@ils empty. At this point, all even degree
vertices inA are balanced, and all odd degree vertice& hmve an imbalance of one[]

7. Conclusion and open problems

We have considered the problem of determining a balanced ordering of the vertices of a
graph. This problem is shown to b&#-hard, and remaing/”#-hard for bipartite simple
graphs with maximum degree six. Note that Kara e{2d] have recently extended the
method developed in this paper to prove that the balanced ordering probléreidard
for graphs of maximum degree four, and for planar graphs. We then described and analyzed a
number of methods for determining a balanced vertex-ordering, obtaining optimal orderings
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for trees, directed acyclic graphs and graphs with maximum degree three. We presented a
13/8-approximation algorithm for the problem on undirected graphs. Obtaining a good
approximation algorithm for directed graphs, and improving the approximation factors for
undirected graphs are challenging open problems. Linear or semi-definite programming
would seem a potential approach. However, we have found that these methods tend to give
an approximation factor that is at least logarithmic in the size of the graph.
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