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Abstract

Consider the following question: does every complete geometric graph K2n have a partition of its edge set into n plane spanning
trees? We approach this problem from three directions. First, we study the case of convex geometric graphs. It is well known that
the complete convex graph K2n has a partition into n plane spanning trees. We characterise all such partitions. Second, we give
a sufficient condition, which generalises the convex case, for a complete geometric graph to have a partition into plane spanning
trees. Finally, we consider a relaxation of the problem in which the trees of the partition are not necessarily spanning. We prove
that every complete geometric graph Kn can be partitioned into at most n − √

n/12 plane trees. This is the best known bound even
for partitions into plane subgraphs.
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

A geometric graph G is a pair (V (G),E(G)) where V (G) is a set of points in the plane in general position (that
is, no three are collinear), and E(G) is set of closed segments with endpoints in V (G). Elements of V (G) are vertices
and elements of E(G) are edges. An edge with endpoints v and w is denoted by {v,w} or vw when convenient.
A geometric graph can be thought of as a straight-line drawing of its underlying (abstract) graph. A geometric graph

✩ A preliminary version of this paper appeared in the Proceedings of the 12th International Symposium on Graph Drawing (GD 2004), Lecture
Notes in Computer Science, vol. 3383, Springer, 2004, pp. 71–81.
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is plane if no two edges cross. A tree is an acyclic connected graph. A subgraph H of a graph G is spanning if
V (H) = V (G). We are motivated by the following question.

Problem 1. Does every complete geometric graph with an even number of vertices have a partition of its edge set into
plane spanning trees?

Since Kn, the complete graph on n vertices, has 1
2n(n − 1) edges and a spanning tree has n − 1 edges, there are

1
2n trees in such a partition, and n is even. We approach this problem from three directions. In Section 2 we study
the case of convex geometric graphs. We characterise the partitions of the complete convex graph into plane spanning
trees. Section 3 describes a sufficient condition, which generalises the convex case, for a complete geometric graph to
have a partition into plane spanning trees. In Section 4 we consider a relaxation of Problem 1 in which the trees of the
partition are not necessarily spanning.

It is worth mentioning that decompositions of (abstract) graphs into trees have attracted much interest. In particular,
Tutte [13] and Nash–Williams [11] independently obtained necessary and sufficient conditions for a graph to admit
k edge-disjoint spanning trees, and Ringel’s conjecture and the graceful tree conjecture about ways of decomposing
complete graphs into trees are among the most outstanding open problems in the field. Nevertheless the non-crossing
property that we require in our geometric setting changes the problems drastically.

2. Convex graphs

A convex graph is a geometric graph with the vertices in convex position. A k-page book embedding of a graph G

consists of a representation of G as a convex graph, and a partition of E(G) into k plane subgraphs called pages. The
book thickness of G is the minimum integer k for which there is a k-page book embedding of G. See reference [6] for
numerous references on this topic. Berhnart and Kainen [4] proved that the book thickness of K2n equals n. In fact,
they proved that the convex graph K2n can be partitioned into n plane spanning paths, thus solving Problem 1 in the
affirmative in the convex case (see Fig. 1).

In this section we characterise the solutions to Problem 1 in the convex case. In other words, we characterise the
book embeddings of the complete graph in which every page is a spanning tree.

First some standard definitions and terms. We use the interval notation [a, b] to denote the set {a, a + 1, . . . , b} for
all integers a � b.

An edge on the convex hull of a convex graph is called a boundary edge. Two convex graphs are isomorphic if
the underlying graphs are isomorphic and the clockwise ordering of the vertices around the convex hull is preserved
under this isomorphism. Suppose that G1 and G2 are isomorphic convex graphs. Then two edges cross in G1 if and
only if the corresponding edges in G2 also cross. That is, in a convex graph, it is only the order of the vertices around
the convex hull that determines edge crossings—the actual coordinates of the vertices are not important.

A leaf of a tree is a vertex of degree at most one. A leaf-edge of a tree is an edge incident to a leaf. A tree has
exactly one leaf if and only if it is a single vertex with no edges. Every tree with at least one edge has at least two
leaves. A tree has exactly two leaves if and only if it is a path with at least one edge. Let T be a tree. Let T ′ be the tree
obtained by deleting the leaves and leaf-edges from T . Let �(T ) be the number of leaves in T ′. A star is a tree with at
most one non-leaf vertex. Clearly a tree T is a star if and only if �(T ) � 1. A caterpillar is a tree T such that T ′ is a
path. The path T ′ is called the spine of the caterpillar. Clearly T is a caterpillar if and only if �(T ) � 2. Observe that
stars are the caterpillars whose spines consist of a single vertex.

Fig. 1. Partition of the convex K8 into four spanning paths.
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We say a tree T is symmetric if there exists an edge vw of T such that if A and B are the components of T \ vw

with v ∈ A and w ∈ B , then there exists a graph-isomorphism between A and B that maps v to w.
We can now state the main result of this section.

Theorem 2. Let T1, T2, . . . , Tn be a partition of the edges of the convex complete graph K2n into plane spanning trees.
Then T1, T2, . . . , Tn are symmetric convex caterpillars that are pairwise isomorphic. Conversely, for any symmetric
convex caterpillar T on 2n vertices, the edges of the convex complete graph K2n can be partitioned into n plane
spanning convex copies of T that are pairwise isomorphic.

We prove Theorem 2 by a series of lemmas, starting with the following result of García et al. [9].

Lemma 3. [9] Let T be a tree with at least two edges. In every plane convex drawing of T there are at least
max{2, �(T )} boundary edges. Moreover, if T is not a star, then every plane convex drawing of T has at least two
non-consecutive boundary edges.

In what follows {0,1, . . . ,2n − 1} are the vertices of a convex graph G in clockwise order around the convex hull.
All vertices are taken modulo 2n. That is, vertex i refers to the vertex i mod 2n. Let G[i, j ] denote the subgraph of G

induced by the vertices [i, j ] if i < j , and by [j,2n − 1] ∪ [0, i] if j < i.

Lemma 4. For all n � 2, let T0, T1, . . . , Tn−1 be a partition of the convex complete graph K2n into plane spanning
trees. Then (after relabelling the trees) for each i ∈ [0, n − 1],

(1) the edge {i, n + i} is in Ti ,
(2) Ti is a caterpillar with exactly two boundary edges, and
(3) for every non-boundary edge {a, b} of Ti , there is exactly one boundary edge of Ti in each of Ti[a, b] and Ti[b, a].

Proof. The edges {{i, n+ i}: 0 � i � n− 1} are pairwise crossing. Thus each such edge is in a distinct tree. Label the
trees such that each edge {i, n + i} is in Ti . Since n � 2, each Ti has at least three edges, and by Lemma 3, has at least
two boundary edges. There are 2n boundary edges in total and n trees. Thus each Ti has exactly two boundary edges,
and by Lemma 3, �(Ti) � 2. For any tree T , �(T ) � 2 if and only if T is a caterpillar. Thus each Ti is a caterpillar. Let
{a, b} be a non-boundary edge in some Ti . Then Ti[a, b] has at least one boundary edge of T , as otherwise Ti[a, b]
would be a convex tree on at least three vertices with only one boundary edge (namely, {a, b}), which contradicts
Lemma 3. Similarly Ti[b, a] has at least one boundary edge of T . Thus each of Ti[a, b] and Ti[b, a] has exactly one
boundary edge of T . �
Lemma 5. Let {i, j} be a non-boundary edge of a plane convex spanning tree T such that T [i, j ] has exactly one
boundary edge of T . Then exactly one of {i, j − 1} and {j, i + 1} is an edge of T .

Proof. If both {i, j − 1} and {j, i + 1} are in T then they cross, unless j − 1 = i + 1 in which case T contains a
3-cycle. Thus at most one of {i, j − 1} and {j, i + 1} is in T . Suppose, for the sake of contradiction, that neither
{i, j − 1} nor {j, i + 1} are edges of T . Since T is spanning, there is an edge {i, a} or {j, a} in T for some vertex
i + 1 < a < j − 1. Without loss of generality {i, a} is this edge, as illustrated in Fig. 2.

The subtree T [i, a] has at least three vertices i, i + 1, and a. By Lemma 3, T [i, a] has at least two boundary edges,
one of which is {i, a}. Thus T [i, a] has at least one boundary edge that is also a boundary edge of T . Now consider
the subtree T ′ of T induced by {i} ∪ [a, j ]. Then T ′ has at least four vertices i, a, j − 1, and j . Since {i, j − 1} is not
an edge of T , and thus not an edge of T ′, the subtree T ′ is not a star. By Lemma 3, T ′ has at least two non-consecutive
boundary edges, at most one of which is {i, j} or {i, a}. Thus T ′ has at least one boundary edge that is also a boundary
edge of T . No boundary edge of T can be in both T [i, a] and T ′. Thus we have shown that T [i, j ] has at least two
boundary edges of T , which is the desired contradiction. �

In what follows we say an edge e = {i, j} has span

span(e) = min
{
(i − j) mod 2n, (j − i) mod 2n

}
.
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Fig. 2. One of {i, j − 1} and {j, i + 1} is an edge of T .

That is, span(e) is the number of edges in a shortest path between i and j that is contained in the boundary of the
convex hull.

Lemma 6. Let {i, j} be an edge of a plane convex spanning tree T such that 1 � j − i � n, and T [i, j ] has exactly
one boundary edge of T . Then T [i, j ] has exactly one edge of span k, for each k ∈ [1, j − i]. Moreover, for each
k ∈ [2, j − i], the edge of span k has an endpoint in common with the edge of span k − 1, and the other two endpoints
are consecutive on the convex hull.

Proof. If j − i = 1 then {i, j} is a boundary edge, and the result is trivial. Otherwise {i, j} is not a boundary edge. By
Lemma 5, exactly one of the edges {i, j − 1} and {j, i + 1} is in T . Without loss of generality {i, j − 1} is in T . Thus
the edge of span j − i has an endpoint in common with the edge of span j − i − 1, and the other two endpoints are
consecutive on the convex hull. The result follows by induction (on span) applied to the edge {i, j − 1}. �

Let e = {a, b} be an edge in the convex complete graph K2n. Then e + i denotes the edge {a + i, b + i}. For a set
X of edges, X + i = {e + i: e ∈ X}, and X(k) = {e ∈ X, span(e) � k}.

Lemma 7. Let T0, T1, . . . , Tn−1 be a partition of the edges of the convex complete graph K2n into plane spanning
convex trees. Then T0, T1, . . . , Tn−1 are pairwise isomorphic symmetric convex caterpillars.

Proof. By Lemma 4, for each i ∈ [0, n − 1], Ti is a caterpillar with two boundary edges, the edge {i, n + i} is in Ti ,
and for every non-boundary edge {a, b} of Ti , there is exactly one boundary edge of Ti in each of Ti[a, b] and Ti[b, a].

Let H = T0[0, n]. Since {0, n} is an edge of H , by Lemma 6, H has exactly one edge of span k for each k ∈ [1, n].
Furthermore, for each k ∈ [1, n − 1], the edge of span k has an endpoint in common with the edge of span k + 1, and
the other two endpoints are consecutive on the convex hull. Let hk = {xk, xk + k} denote the edge of span k in H . For
each k ∈ [1, n − 1], if hk ∩ hk+1 = xk + k (= xk+1 + k + 1) then we say the k-direction is ‘clockwise’. Otherwise,
hk ∩ hk+1 = xk (= xk+1), and we say the k-direction is ‘anticlockwise’, as illustrated in Fig. 3.

Fig. 3. k-direction is (a) clockwise and (b) anticlockwise.
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We now prove that H determines the structure of all the trees T0, T1, . . . , Tn−1. We proceed by downwards induc-
tion on k = n,n − 1, . . . ,1 with the hypothesis that for all i ∈ [0, n − 1],

T
(k)
i = (H (k) + i) ∪ (H (k) + n + i). (1)

Consider the base case with k = n. The only edge in H of span n is {0, n}. Thus H(n) = {0, n}, which implies that
H(n) + i = {i, n + i}, and H(n) + n + i = {n + i,2n + i} = {i, n + i}. Thus the right-hand side of (1) is {i, n + i}. The
only edge in Ti of span n is {i, n + i}. Thus T

(n)
i = {i, n + i}, and (1) is satisfied for k = n.

Now suppose that (1) holds for some k+1 � 2. We now prove that (1) holds for k. First suppose that the k-direction
is clockwise. We proceed by induction on j = 0,1, . . . ,2n − 1 with the hypothesis:

the edge {xk + j, xk + k + j} is in the tree Tj mod n. (2)

The base case with j = 0 is immediate since by definition, {xk, xk +k} ∈ E(T0). Suppose that {xk +j, xk +k+j} ∈
E(Tj mod n) for some 0 � j < 2n−1. Consider the edge e = {xk +j, xk +k+j +1}. Since the k-direction is clockwise,
xk = xk+1 +1 and xk +k = xk+1 +k+1. Thus e = {xk+1 +1+j, xk+1 +k+1+j +1} = {xk+1, xk+1 +k+1}+j +1 =
hk+1 + j + 1. Hence e ∈ H + j + 1, and since e has span k + 1, we have e ∈ H(k+1) + j + 1. By induction from (1),
e ∈ T

(k+1)
(j+1) mod n, as illustrated in Fig. 4(a).

By Lemma 5 applied to e, which is a non-boundary edge of T(j+1) mod n, exactly one of {xk + j, xk + k + j} and
{xk + j + 1, xk + k + j + 1}is an edge of T(j+1) mod n. By induction from (2), {xk + j, xk + k + j} ∈ Tj mod n. Thus
{xk + j + 1, xk + k + j + 1} ∈ T(j+1) mod n. That is, (2) holds for j + 1. Therefore for all j ∈ [0,2n − 1], the edge
{xk + j, xk + k + j} is in Tj mod n. That is, hk + j is in Tj mod n. By (1) for k + 1 we have that (1) holds for k. The
case in which the k-direction is anticlockwise is symmetric; see Fig. 4(b).

By (1) with k = 1, each tree Ti can be expressed as Ti = (H + i) ∪ (H + n + i). Clearly H ∪ (H + n) is a
symmetric convex caterpillar. Thus each Ti is a translated copy of the same symmetric convex caterpillar. Therefore
T0, T1, . . . , Tn−1 are pairwise isomorphic symmetric convex caterpillars. �

Fig. 5 illustrates the proof of Lemma 7.

Lemma 8. For any symmetric convex caterpillar T on 2n vertices, the edges of the convex complete graph K2n can
be partitioned into n plane spanning pairwise isomorphic convex copies of T .

Proof. Say V (K2n) = {0,1, . . . ,2n − 1} in clockwise order around the convex hull. Let {0, n} be the edge of T such
that after deleting {0, n}, A and B are the components with 0 ∈ A and n ∈ B , and there exists a graph-isomorphism
between A and B that maps 0 to n. It is easily seen that A has a plane representation on the vertices [0, n − 1]. For
each i ∈ [0, n − 1], let Ti = (A + i) ∪ (A + n + i) plus the edge {i, n + i}. Then as in Lemma 7, T0, T1, . . . , Tn−1 is
partition of K2n into plane spanning pairwise isomorphic convex copies of T . �

Observe that Lemmas 7 and 8 together prove Theorem 2.

Fig. 4. k-direction is (a) clockwise and (b) anticlockwise.
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Fig. 5. Illustration for Lemma 7 with n = 4.

3. A sufficient condition

In this section we prove the following sufficient condition for a complete geometric graph to have an affirmative
solution to Problem 1. A double star is a tree with at most two non-leaf vertices.
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Fig. 6. Plane double star rooted at the edge vw and separated by the line L.

Theorem 9. Let G be a complete geometric graph K2n. Suppose that there is a set L of pairwise non-parallel lines
with exactly one vertex of G in each open unbounded region formed by L. Then E(G) can be partitioned into n plane
spanning double stars (that are pairwise graph-isomorphic).

Observe that in a double star, if there are two non-leaf vertices v and w then they must be adjacent, in which case
we say vw is the root edge.

Lemma 10. Let P be a set of points in general position. Let L be a line with L ∩ P = ∅. Let H1 and H2 be the
half-planes defined by L. Let v and w be points such that v ∈ P ∩ H1 and w ∈ P ∩ H2. Let T (P,L,v,w) be the
geometric graph with vertex set P and edge set

{vw} ∪ {
vx: x ∈ (

P \ {v}) ∩ H1
} ∪ {

wy: y ∈ (
P \ {w}) ∩ H2

}
.

Then T (P,L,v,w) is a plane double star with root edge vw.

Proof. The set of edges incident to v form a star. Regardless of the point set, a geometric star is always plane. Thus
no two edges incident to v cross. Similarly no two edges incident to w cross. No edge incident to v crosses an edge
incident to w since such edges are separated by L, as illustrated in Fig. 6. �
Lemma 11. Let P be a set of points in general position. Let L1 and L2 be non-parallel lines with L1 ∩P = L2 ∩P = ∅.
Let v,w,x, y be points in P such that v,w,x, y are in distinct quarter-planes formed by L1 and L2, with each pair
(v,w) and (x, y) in opposite quarter-planes. (Note that this does not imply that vw and xy cross.) Let T1 and T2 be
the plane double stars T1 = T (P,L1, v,w) and T2 = T (P,L2, x, y). Then E(T1) ∩ E(T2) = ∅.

Proof. Suppose, for the sake of contradiction, that there is an edge e ∈ E(T1) ∩ E(T2). All edges of T1 are incident
to v or w, and all edges of T2 are incident to x or y. Thus e ∈ {vx, vw,vy, xw,xy,wy}. By assumption, v,w,x, y

are in distinct quarter-planes formed by L1 and L2, with each pair (v,w) and (x, y) in opposite quarter-planes. Thus
e crosses at least one of L1 and L2. Without loss of generality e crosses L1. Since e ∈ E(T1), and the only edge of
T1 that crosses L1 is the root edge vw, we have e = vw. Since all edges of T2 are incident to x or y and v,w,x, y

are distinct, we have e /∈ E(T2), which is the desired contradiction. Therefore E(T1) ∩ E(T2) = ∅, as illustrated in
Fig. 7. �

We now prove the main result of this section.

Proof of Theorem 9. As illustrated in Fig. 8, let C be a circle such that the vertices of G and the intersection point
of any two lines in L are in the interior of C. The intersection points of C and the lines in L partition C into 2n

consecutive components C0,C1, . . . ,C2n−1, each corresponding to a region containing a single vertex of G. Let i

be the vertex in the region corresponding to Ci . Label the lines L0,L1, . . . ,Ln−1 so that for each i ∈ [0, n − 1], the
components Ci and Ci+n run from C ∩ Li to C ∩ L(i+1) mod n in the clockwise direction.

For each i ∈ [0, n − 1], let Ti be the double star T (V (G),Li, i, i + n). By Lemma 10, each Ti is plane. Since
V (Ti) = V (G), Ti is a spanning tree of G. For all i, j ∈ [0, n − 1] with i < j , the points i, i + n, j, j + n are in
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Fig. 7. Plane spanning double stars are edge-disjoint.

Fig. 8. Example of Theorem 9 with n = 4.

distinct quarter-planes formed by Li and Lj , with each pair (i, i + n) and (j, j + n) in opposite quarter-planes.
Thus, by Lemma 11, E(Ti) ∩ E(Tj ) = ∅. Since each Ti has 2n − 1 edges, and there are n(2n − 1) edges in total,
T0, T1, . . . , Tn−1 is the desired partition of E(G). �

Note that each line in L in Theorem 9 is a halving line. Pach and Solymosi [12] proved a related result: a complete
geometric graph on 2n vertices has n pairwise crossing edges if and only if it has precisely n halving lines.

4. Relaxations

We first drop the requirement that our plane trees be spanning. Thus we can consider complete graphs with any
number of vertices.

Lemma 12. Every complete geometric graph Kn can be partitioned into n − 1 plane stars.
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Proof. Say V (Kn) = [1, n]. For each i ∈ [1, n − 1], let Ti be the star with edge set {ij : i < j � n}. Then Ti is plane
regardless of the positions of the vertices. Clearly {T1, T2, . . . , Tn−1} is a partition of E(Kn). �

Lemma 12 can be strengthened by the following generalisation of Theorem 9.

Theorem 13. Let G be a complete geometric graph Kn. Suppose that there is a set L of pairwise non-parallel lines
with at least one vertex of G in each open unbounded region formed by L. Then E(G) can be partitioned into n − |L|
plane trees.

Proof. Let P be a set consisting of exactly one vertex in each open unbounded region formed by L. Then |P | = 2|L|.
By Theorem 9, the induced subgraph G[P ] can be partitioned into 1

2 |P | plane double stars. The edges incident to a
vertex not in P can be covered by n − |P | spanning stars, one rooted at each of the vertices not in P . Clearly a star is
plane regardless of the vertex positions. Edges with both endpoints not in P can be placed in the star rooted at either
endpoint. In total we have 1

2 |P | + (n − |P |) = n − 1
2 |P | = n − |L| plane trees. �

Lemma 14. Every complete geometric graph Kn with k pairwise crossing edges can be partitioned into n − k plane
trees.

Proof. Let E = {ei : 1 � i � k} be a set of k pairwise crossing edges. For each i ∈ [1, k], let Li be the line obtained
by extending the segment ei , and rotating it about the midpoint of ei by some angle of ε degrees. Clearly there exists
an ε such that each edge ei crosses every line Lj , and there is one endpoint of an edge in E in each open unbounded
region formed by L1,L2, . . . ,Lk . The result follows from Theorem 13. �

Aronov et al. [2] proved that every complete geometric graph Kn has at least
√

n/12 pairwise crossing edges
(called a crossing family). Thus we have the following corollary of Lemma 14.

Corollary 15. Every complete geometric graph Kn can be partitioned into at most n − √
n/12 plane trees.

We now drop the requirement that our plane subgraphs by trees. The best known upper bound on the number of
plane subgraphs in a partition of any geometric Kn is n−√

n/12 (by Corollary 15). We have the following seemingly
easier question than Problem 1.

Problem 16. Is there an ε > 0, such that every complete geometric graph Kn can be partitioned into at most (1 − ε)n

plane subgraphs?

Of course ε � 1/2 in Problem 16 since �n/2	 edges can be pairwise crossing. An affirmative answer to Problem 16
is implied by Theorem 13 and an affirmative answer to the following question.

Problem 17. Is there an ε > 0, such that for every set P of n points in general position, there is a set L of at least εn

pairwise non-parallel lines, with at least one point of P in each open unbounded region formed by L?

A famous conjecture by Aronov et al. [2] states that for some ε > 0, every complete geometric graph Kn has at
least εn pairwise crossing edges. This is considerably stronger than Problem 17.

Dillencourt et al. [5] defined the geometric thickness of an (abstract) graph G to be the minimum k such that G

has a representation as a geometric graph whose edges can be partitioned into k plane subgraphs; also see [3,7,8,10].
They proved that the geometric thickness of Kn is between 
(n/5.646) + 0.342� and 
n/4�. The difference between
Problem 16 and determining the geometric thickness of Kn is that Problem 16 deals with all possible drawings of Kn,
whereas geometric thickness asks for the best drawing.

As a final word, we refer the reader to reference [1] for more results and problems on the colouring of complete
geometric graphs.
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