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General position subsets and independent
hyperplanes in d-space

Jean Cardinal, Csaba D. Tóth, and David R. Wood

Abstract. Erdős asked what is the maximum number α(n) such that every
set of n points in the plane with no four on a line contains α(n) points in
general position. We consider variants of this question for d-dimensional
point sets and generalize previously known bounds. In particular, we
prove the following two results for fixed d:
• Every set H of n hyperplanes in R

d contains a subset S ⊆ H of size

at least c (n logn)1/d, for some constant c = c(d) > 0, such that no
cell of the arrangement of H is bounded by hyperplanes of S only.

• Every set of cqd log q points in R
d, for some constant c = c(d) > 0,

contains a subset of q cohyperplanar points or q points in general
position.

Two-dimensional versions of the above results were respectively proved
by Ackerman et al. [Electronic J. Combinatorics, 2014] and by Payne and
Wood [SIAM J. Discrete Math., 2013].

Mathematics Subject Classification. Primary 52C35; Secondary 52C10.

1. Introduction

Points in general position A finite set of points in R
d is said to be in general

position if no hyperplane contains more than d points. Given a finite set of
points P ⊂ R

d in which at most d + 1 points lie on a hyperplane, let α(P ) be
the size of a largest subset of P in general position. Let α(n, d) = min{α(P ) :
|P | = n}.

For d = 2, Erdős [5] observed that α(n, 2) � √
n and proposed the determi-

nation of α(n, 2) as an open problem.1 Füredi [6] proved
√

n log n � α(n, 2) ≤
o(n), where the lower bound uses independent sets in Steiner triple systems,

Research of Wood is supported by the Australian Research Council.
1We use the shorthand notation � to indicate inequality up to a constant factor for large
n. Hence f(n) � g(n) is equivalent to f(n) ∈ O(g(n)), and f(n) � g(n) is equivalent to

f(n) ∈ Ω(g(n)).
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and the upper bound relies on the density version of the Hales–Jewett The-
orem [7,8]. Füredi’s argument combined with the quantitative bound for the
density Hales–Jewett problem proved in the first polymath project [14] yields
α(n, 2) � n/

√
log∗ n (Theorem 2.2).

Our first goal is to derive upper and lower bounds on α(n, d) for fixed d ≥ 3.
We prove that the multi-dimensional Hales–Jewett theorem [8] yields α(n, 3) ∈
o(n) (Theorem 2.4). But for d ≥ 4, only the trivial upper bound α(n, d) ∈ O(n)
is known. We establish lower bounds α(n, d) � (n log n)1/d in a dual setting of
hyperplane arrangements in R

d as described below.

Independent sets of hyperplanes For a finite set H of hyperplanes in R
d, Bose

et al. [2] defined a hypergraph G(H) with vertex set H such that the set of
hyperplanes containing the facets of each cell of the arrangement of H forms
a hyperedge in G(H). A subset S ⊆ H of hyperplanes is called independent if
it is an independent set of G(H); that is, if no cell of the arrangement of H is
bounded by hyperplanes in S only. Denote by β(H) the maximum size of an
independent set of H, and let β(n, d) := min{β(H) : |H| = n}.

The following relation between α(n, d) and β(n, d) was observed by Ackerman
et al. [1] in the case d = 2.

Lemma 1.1 (Ackerman et al. [1]). For d ≥ 2 and n ∈ N, we have β(n, d) ≤
α(n, d).

Proof. For every set P of n points in R
d in which at most d + 1 points lie on

a hyperplane, we construct a set H of n hyperplanes in R
d such that β(H) ≤

α(P ). Consider the set H0 of hyperplanes obtained from P by duality. Since
at most d + 1 points of P lie on a hyperplane, at most d + 1 hyperplanes
in H0 have a common intersection point. Perturb the hyperplanes in H0 so
that the d + 1 hyperplanes that intersect form a simplicial cell, and denote
by H the resulting set of hyperplanes. An independent subset of hyperplanes
corresponds to a subset in general position in P . Thus α(P ) ≥ β(H). �
Ackerman et al. [1] proved that β(n, 2) �

√
n log n, using a result by Kostochka

et al. [11] on independent sets in bounded-degree hypergraphs.
Lemma 1.1 implies that any improvement on this lower bound would immedi-
ately improve Füredi’s lower bound for α(n, 2). We generalize the lower bound
to higher dimensions by proving that β(n, d) � (n log n)1/d for fixed d ≥ 2
(Theorem 3.3).

Subsets either in General Position or in a Hyperplane We also consider a
generalization of the first problem, and define α(n, d, �), with a slight abuse
of notation, to be the largest integer such that every set of n points in R

d in
which at most � points lie in a hyperplane contains a subset of α(n, d, �) points
in general position. Note that α(n, d) = α(n, d, d + 1) with this notation, and
every set of n points in R

d contains α(n, d, �) points in general position or �+1
points in a hyperplane.
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Motivated by a question of Gowers [9], Payne and Wood [13] studied
α(n, 2, �); that is, the minimum, taken over all sets of n points in the plane
with at most � collinear, of the maximum size a subset in general position.
They combine the Szemerédi–Trotter Theorem [17] with lower bounds on max-
imal independent sets in bounded-degree hypergraphs to prove α(n, 2, �) �√

n log n/ log � for � � n1/2−ε. We generalize some of their techniques, and
show that for fixed d ≥ 2 and all � � √

n, we have α(n, d, �) � (n/ log �)1/d

(Theorem 4.1). It follows that every set of at least Cqd log q points in R
d, where

C = C(d) > 0 is a sufficiently large constant, contains q cohyperplanar points
or q points in general position (Corollary 4.2).

2. Subsets in general position and the Hales–Jewett theorem

Let [k] := {1, 2, . . . , k} for every positive integer k. A subset S ⊆ [k]m is a
t-dimensional combinatorial subspace of [k]m if there exists a partition of [m]
into sets W1,W2, . . . ,Wt,X such that W1,W2, . . . ,Wt are nonempty, and S
is exactly the set of elements x ∈ [k]m for which xi = xj whenever i, j ∈ W�

for some � ∈ [t], and xi is constant if i ∈ X. A one-dimensional combinatorial
subspace is called a combinatorial line.

To obtain a quantitative upper bound for α(n, 2), we combine Füredi’s ar-
gument with the quantitative version of the density Hales–Jewett theorem for
k = 3 obtained in the first polymath project (Note that the latter also consider
Moser numbers, involving geometric lines and not only combinatorial lines, but
this is not needed here.)

Theorem 2.1 (Polymath [14]). The size of the largest subset of [3]m without a
combinatorial line is O(3m/

√
log∗ m).

Theorem 2.2. α(n, 2) � n/
√

log∗ n.

Proof. Consider the m-dimensional grid [3]m in R
m and project it onto R

2

using a generic projection; that is, so that three points in the projection are
collinear if and only if their preimages in [3]m are collinear. Denote by P the
resulting planar point set and let n = 3m. Since the projection is generic, the
only collinear subsets of P are projections of collinear points in the original
m-dimensional grid, and [3]m contains at most three collinear points. From
Theorem 2.1, the largest subset of P with no three collinear points has size at
most the indicated upper bound. �
To bound α(n, 3), we use the multidimensional version of the density Hales–
Jewett Theorem.

Theorem 2.3 (See [7,14]). For every δ > 0 and every pair of positive integers
k and t, there exists a positive integer M := M(k, δ, t) such that for every
m > M , every subset of [k]m of density at least δ contains a t-dimensional
subspace.

Theorem 2.4. α(n, 3) ∈ o(n).
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Proof. Consider the m-dimensional hypercube [2]m in R
m and project it onto

R
3 using a generic projection. Let P be the resulting point set in R

3 and let
n := 2m. Since the projection is generic, the only coplanar subsets of P are
projections of points of the m-dimensional grid [2]m lying in a two-dimensional
subspace. Therefore P does not contain more than four coplanar points. From
Theorem 2.3 with k = t = 2, for every δ > 0 and sufficiently large m, every
subset of P with at least δn elements contains kt = 4 coplanar points. Hence
every independent subset of P has o(n) elements. �
We would like to prove α(n, d) ∈ o(n) for fixed d. However, we cannot apply the
same technique, because an m-cube has too many co-hyperplanar points, which
remain co-hyperpanar in projection. By the multidimensional Hales–Jewett
theorem, every constant fraction of vertices of a high-dimensional hypercube
has this property. It is a coincidence that a projection of a hypercube to R

d

works for d = 3, because 2d−1 = d + 1 in that case.

3. Lower bounds for independent hyperplanes

We also give a lower bound on β(n, d) for d ≥ 2. By a simple charging argument
(see Cardinal and Felsner [3]), one can establish that β(n, d) � n1/d. Inspired
by the recent result of Ackerman et al. [1], we improve this bound by a factor
of (log n)1/d.

Lemma 3.1. Let H be a finite set of hyperplanes in R
d. For every subset of d

hyperplanes in H, there are at most 2d simplicial cells in the arrangement of
H such that all d hyperplanes contain some facets of the cell.

Proof. A simplicial cell σ in the arrangement of H has exactly d + 1 vertices,
and exactly d + 1 facets. Any d hyperplanes along the facets of σ intersect in
a single point, namely at a vertex of σ. Every set of d hyperplanes in H that
intersect in a single point can contain d facets of at most 2d simplicial cells
(since no two such cells can lie on the same side of all d hyperplanes). �
The following is a reformulation of a result of Kostochka et al. [11], that is
similar to the reformulation of Ackerman et al. [1] in the case d = 2. In what
follows, d = O(1), and asymptotic notations refer to n → ∞.

Theorem 3.2 (Kostochka et al. [11]). Consider an n-vertex (d + 1)-uniform
hypergraph H such that every d-tuple of vertices is contained in at most t =
O(1) edges, and apply the following procedure:

1. let X be the subset of vertices obtained by choosing each vertex inde-
pendently at random with probability p, such that pn = (n/(t log log
log n))3/(3d−1),

2. remove the minimum number of vertices of X so that the resulting subset
Y induces a triangle-free linear2 hypergraph H[Y ].

2A hypergraph is linear if it has no pair of distinct edges sharing two or more vertices.
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Then with high probability H[Y ] has an independent set of size at least
(

n
t log n

t

) 1
d .

Theorem 3.3. For fixed d ≥ 2, we have β(n, d) � (n log n)1/d.

Proof. Let H be a set of n hyperplanes in R
d and consider the (d + 1)-uniform

hypergraph H having one vertex for each hyperplane in H, and a hyperedge
of size d + 1 for each set of d + 1 hyperplanes forming a simplicial cell in the
arrangement of H. From Lemma 3.1, every d-tuple of vertices of H is contained
in at most t := 2d edges. We can apply Theorem 3.2 and obtain a subset S of
hyperplanes of size Ω

(
(( n

2d
) log( n

2d
))1/d

)
such that no simplicial cell is bounded

by hyperplanes of S only. However, there might be nonsimplicial cells of the
arrangement that are bounded by hyperplanes of S only.

Let p be the probability used to define X in Theorem 3.2. It is known [10] that
the total number of cells in an arrangement of d-dimensional hyperplanes is
less than dnd. Hence for an integer c ≥ d + 1, the expected number of cells of
size c that are bounded by hyperplanes of X only is at most

pcdnd ≤ n(4−3d)c/(3d−1)

(2d log log log n)3/(3d−1)
· dnd � dn(4−3d)c/(3d−1)+d.

Note that for c ≥ d + 2, the exponent of n satisfies

(4 − 3d)c
3d − 1

+ d < 0.

Therefore the expected number of such cells of size at least d + 2 is vanishing.

On the other hand we can bound the expected number of cells that are of
size at most d, and that are bounded by hyperplanes of X only, where the
expectation is again with respect to the choice of X. Note that cells of size
d are necessarily unbounded, and in a simple arrangement, no cell has size
less than d. The number of unbounded cells in a d-dimensional arrangement
is O(dnd−1) [10]. Therefore, the number we need to bound is at most

pdO(dnd−1) � n(4−3d)d/(3d−1)+d−1 � n1/(3d−1) = o(n1/d).

Consider now a maximum independent set S in the hypergraph H[Y ], where Y
is defined as in Theorem 3.2, and for each cell that is bounded by hyperplanes of
S only, remove from S one of the hyperplanes bounding the cell. Since S ⊆ X,
the expected number of such cells is o(n1/d), hence there exists an X for which
the number of remaining hyperplanes in S ⊆ X is still Ω

(
(n log n)1/d

)
, and

they now form an independent set. �
We have the following coloring variant of Theorem 3.3.

Corollary 3.4. Hyperplanes of a simple arrangement of size n in R
d for fixed

d ≥ 2 can be colored with O
(
n1−1/d/(log n)1/d

)
colors so that no cell is bounded

by hyperplanes of a single color.
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Proof. From Theorem 3.3, there always exists an independent set of hyper-
planes of size at least c (n log n)1/d for some constant c. We assume here that
all logarithms are base 2. We define a new constant c′ such that

c′ =
(

1
c

+ c′
)

22/d−1 ⇔ c′ =
22/d−1

c(1 − 22/d−1)
.

We now prove that n hyperplanes forming a simple arrangement in R
d can

be colored with c′ (n1−1/d/(log n)1/d
)

colors so that no cell is bounded by
hyperplanes of a single color. We proceed by induction and suppose this holds
for n/2 hyperplanes. We apply the greedy algorithm and iteratively pick a
maximum independent set until there are at most n/2 hyperplanes left. We
assign a new color to each independent set, then use the induction hypothesis
for the remaining hyperplanes. This clearly yields a proper coloring.

Since every independent set has size at least c
(

n
2 log n

2

)1/d, the number of
iterations before we are left with at most n/2 hyperplanes is at most

t ≤
n
2

c
(

n
2 log n

2

)1/d
.

The number of colors is therefore at most

t + c′
( (

n
2

)1−1/d

(
log n

2

)1/d

)

≤
n
2

c
(

n
2 log n

2

)1/d
+ c′

( (
n
2

)1−1/d

(
log n

2

)1/d

)

=
(

1
c

+ c′
) ( (

n
2

)1−1/d

(
log n

2

)1/d

)

≤
(

1
c

+ c′
) (

22/d−1 n1−1/d

(log n)1/d

)

= c′
(

n1−1/d

(log n)1/d

)

,

as claimed. In the penultimate line, we used the fact that log n
2 > 1

2 log n for
n > 4. �

4. Large subsets in general position or in a hyperplane

We wish to prove the following.

Theorem 4.1. Fix d ≥ 2. Every set of n points in R
d with at most � cohyper-

planar points, where � � n1/2, contains a subset of Ω
(
(n/ log �)1/d

)
points in

general position. That is,

α(n, d, �) � (n/ log �)1/d for � �
√

n.
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This is a higher-dimensional version of the result by Payne and Wood [13].
The following Ramsey-type statement is an immediate corollary.

Corollary 4.2. For fixed d ≥ 2 there is a constant c such that every set of
at least cqd log q points in R

d contains q cohyperplanar points or q points in
general position.

In order to give some intuition about Corollary 4.2, it is worth mentioning an
easy proof when cqd log q is replaced by q · (

q
d

)
. Consider a set of n = q · (

q
d

)

points in R
d, and let S be a maximal subset in general position. Either |S| ≥ q

and we are done, or S spans
(|S|

d

) ≤ (
q
d

)
hyperplanes, and, by maximality,

every point lies on at least one of these hyperplanes. Hence by the pigeonhole
principle, one of the hyperplanes in S must contain at least n/

(
q
d

)
= q points.

We now use known incidence bounds to estimate the maximum number of
cohyperplanar (d+1)-tuples in a point set. In what follows we consider a finite
set P of n points in R

d such that at most � points of P are cohyperplanar,
where � := �(n) � n1/2 is a fixed function of n. For d ≥ 3, a hyperplane h is
said to be γ-degenerate if at most γ · |P ∩h| points in P ∩h lie on a (d−2)-flat.
A flat is said to be k-rich whenever it contains at least k points of P . The
following is a standard reformulation of the classic Szemerédi–Trotter theorem
on point-line incidences in the plane [17].

Theorem 4.3 (Szemerédi and Trotter [17]). For every set of n points in R
2,

the number of k-rich lines is at most

O

(
n2

k3
+

n

k

)
.

This bound is the best possible.

Elekes and Tóth proved the following higher-dimensional version, involving an
additional non-degeneracy condition.

Theorem 4.4 (Elekes and Tóth [4]). For every integer d ≥ 3, there exist con-
stants Cd > 0 and γd > 0 such that for every set of n points in R

d, the number
of k-rich γd-degenerate planes is at most

Cd

(
nd

kd+1
+

nd−1

kd−1

)
.

This bound is the best possible apart from constant factors.

We prove the following upper bound on the number of cohyperplanar (d + 1)-
tuples in a point set.

Lemma 4.5. Fix d ≥ 2. Let P be a set of n points in R
d with at most �

cohyperplanar points, where � � n1/2. Then the number of cohyperplanar (d +
1)-tuples in P is O

(
nd log �

)
.

Proof. We proceed by induction on d ≥ 2. The base case d = 2 was established
by Payne and Wood [13], using the Szemerédi–Trotter bound (Theorem 4.3).
We reproduce it here for completeness. We wish to bound the number of
collinear triples in a set P of n points in the plane. Let hk be the number
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of lines containing exactly k points of P . The number of collinear 3-tuples
is

�∑

k=3

hk

(
k

3

)
≤

�∑

k=3

k2
�∑

i=k

hi

�
�∑

k=3

k2

(
n2

k3
+

n

k

)

� n2 log � + �2n � n2 log �.

We now consider the general case d ≥ 3. Let P be a set of n points in R
d,

no � in a hyperplane, where n ≥ d + 2 and � � √
n. let γ := γd > 0 be a

constant specified in Theorem 4.4. We distinguish the following three types of
(d + 1)-tuples:

Type 1: (d + 1)-tuples contained in some (d − 2)-flat spanned by P Denote by
sk the number of (d − 2)-flats spanned by P that contain exactly k points of
P . Project P onto a (d − 1)-flat in a generic direction to obtain a set of points
P ′ in R

d−1. Now sk is the number of hyperplanes of P ′ containing exactly
k points of P ′. By applying the induction hypothesis on P ′, the number of
cohyperplanar d-tuples is

�∑

k=d

sk

(
k

d

)
� nd−1/2 log �.

Hence the number of (d + 1)-tuples of P lying in a (d − 2)-flat spanned by P
satisfies

�∑

k=d+1

sk

(
k

d + 1

)
� �nd−1 log � ≤ nd log �.

Type 2: (d + 1)-tuples of P that span a γ-degenerate hyperplane Let hk be
the number of γ-degenerate hyperplanes containing exactly k points of P . By
Theorem 4.4,

�∑

k=d+1

hk

(
k

d + 1

)
≤

�∑

k=d+1

kd
�∑

i=k

hi

�
�∑

k=d+1

kd

(
nd

kd+1
+

nd−1

kd−1

)

� nd log � + �2nd−1 � nd log �.

Type 3: (d + 1)-tuples of P that span a hyperplane that is not γ-degenerate
Recall that if a hyperplane H panned by P is not γ-degenerate, then more
than a γ fraction of its points lie in a (d − 2)-flat L(H). We may assume
that L(H) is also spanned by P . Consider a (d − 2)-flat L spanned by P and
containing exactly k points of P . The hyperplanes spanned by P that contain L
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partition P\L. Let nr be the number of hyperplanes containing L and exactly
r points of P\L. We have

∑�
r=1 nrr ≤ n.

If a hyperplane H is not γ-degenerate, contains a (d − 2)-flat L = L(H) with
exactly k points, and r other points of P , then k > γ(r+k), hence r < ( 1

γ −1)k.
Furthermore, all (d + 1)-tuples that span H must contain at least one point
that is not in L. Hence the number of (d + 1)-tuples that span H is at most
O(rkd). The total number of (d + 1)-tuples of type 3 that span a hyperplane
H with a common (d − 2)-flat L = L(H) is therefore at most

�∑

r=1

nrrk
d ≤ nkd.

Recall that sk denotes the number of (d − 2)-flats containing exactly k points.
Summing over all such (d − 2)-flats and applying the induction hypothesis
yields the following upper bound on the total number of (d+1)-tuples spanning
hyperplanes that are not γ-degenerate:

�∑

k=d+1

sknkd � nd log �.

Summing over all three cases, the total number of cohyperplanar (d+1)-tuples
is O(nd log �) as claimed. �
In the plane, Lemma 4.5 gives an O(n2 log �) bound for the number of collinear
triples in an n-element point set with no � on a line, where � ∈ O(

√
n). This

bound is tight for � = Θ(
√

n) for a �√n
×�√n
 section of the integer lattice. It
is almost tight for � ∈ Θ(1), Solymosi and Stojaković [15] recently constructed
n-element point sets for every constant � and ε > 0 that contains at most �
points on a line and Ω(n2−ε) collinear �-tuples, hence Ω(n2−ε

(
�
3

)
) ⊂ Ω(n2−ε)

collinear triples.

Armed with Lemma 4.5, we now apply the following standard result from
hypergraph theory due to Spencer [16].

Theorem 4.6 (Spencer [16]). Every r-uniform hypergraph with n vertices and
m edges contains an independent set of size at least

r − 1
rr/(r−1)

n
(

m
n

)1/(r−1)
. (1)

Proof of Theorem 4.1. We apply Theorem 4.6 to the hypergraph formed by
considering all cohyperplanar (d + 1)-tuples in a given set of n points in R

d,
with no � cohyperplanar. Substituting m � nd log � and r = d + 1 in (1), we
get a lower bound

n

(nd−1 log �)1/d
=

(
n

log �

)1/d

,

for the maximum size of a subset in general position, as desired. �
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Note added in proof

Recall that in Sect. 2 we asked whether α(n, d) ∈ o(n) for every d ≥ 3. Subse-
quently, Milićević [12] announced an answer to this question in the affirmative.
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