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THICKNESS AND ANTITHICKNESS OF GRAPHS

Vida Dujmović,∗David R. Wood,†

Abstract. This paper studies questions about duality between crossings and non-crossings
in graph drawings via the notions of thickness and antithickness. The thickness of a graph
G is the minimum integer k such that in some drawing of G, the edges can be partitioned
into k noncrossing subgraphs. The antithickness of a graph G is the minimum integer k such
that in some drawing of G, the edges can be partitioned into k thrackles, where a thrackle
is a set of edges, each pair of which intersect exactly once. (Here edges with a common
endvertex v are considered to intersect at v.) So thickness is a measure of how close a graph
is to being planar, whereas antithickness is a measure of how close a graph is to being a
thrackle. This paper explores the relationship between the thickness and antithickness of a
graph, under various graph drawing models, with an emphasis on extremal questions.

1 Introduction

This paper studies questions about duality between crossings and non-crossings in graph
drawings. This idea is best illustrated by an example. A graph is planar if it has a drawing
with no crossings, while a thrackle is a graph drawing in which every pair of edges intersect
exactly once. So in some sense, thrackles are the graph drawings with the most crossings. Yet
thracklehood and planarity appear to be related. In particular, a widely believed conjecture
would imply that every thrackleable graph is planar. Loosely speaking, this says that a
graph that can be drawn with the maximum number of crossings has another drawing with
no crossings. This paper explores this seemingly counterintuitive idea through the notions
of thickness and antithickness. First we introduce the essential definitions.

A (topological) drawing of a graph1 G is a function that maps each vertex of G to a
distinct point in the plane, and maps each edge of G to a simple closed curve between the
images of its end-vertices, such that:

• the only vertex images that an edge image intersects are the images of its own end-
vertices (that is, an edge does not ‘pass through’ a vertex),

• the images of two edges are not tangential at a common interior point (that is, edges
cross ‘properly’).

∗School of Computer Science and Electrical Engineering, University of Ottawa, Ottawa, Canada. Research
supported by NSERC and the Ontario Ministry of Research and Innovation., vida.dujmovic@uottawa.ca

†School of Mathematical Sciences, Monash University, Melbourne, Australia. Research supported by the
Australian Research Council., david.wood@monash.edu

1We consider undirected, finite, simple graphs G with vertex set V (G) and edge set E(G). The number
of vertices and edges of G are respectively denoted by n = |V (G)| and m = |E(G)|. Let G[S] denote the
subgraph of G induced by a set of vertices S ⊆ V (G). Let G− S := G[V (G) \ S] and G− v := G \ {v}.
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Where there is no confusion we henceforth do not distinguish between a graph element and
its image in a drawing. Two edges with a common end-vertex are adjacent. Two edges in a
drawing cross if they intersect at some point other than a common end-vertex. Two edges
that do not intersect in a drawing are disjoint. A drawing of a graph is noncrossing if no
two edges cross. A graph is planar if it has a noncrossing drawing.

In the 1960s John Conway introduced the following definition. A drawing of a graph
is a thrackle if every pair of edges intersect exactly once (either at a common endvertex
or at a crossing point). A graph is thrackeable if it has a drawing that is a thrackle; see
[5, 12–15, 17, 22, 48, 50, 53, 73, 76, 84, 85, 89, 90, 93]. Note that in this definition, it is
important that every pair of edges intersect exactly once since every graph has a drawing in
which every pair of edges intersect at least once2.

A drawing is geometric if every edge is a straight line segment. A geometric drawing
is convex if every vertex is on the convex hull of the set of vertices. A 2-track drawing is
a convex drawing of a bipartite graph in which the two colour classes are separated in the
ordering of the vertices around the convex hull. For the purposes of this paper, we can
assume that the two colour classes in a 2-track drawing are on two parallel lines (called
tracks). The notion of a convex thrackle is closely related to that of outerplanar thrackle,
which was independently introduced by Cairns and Nikolayevsky [17].

1.1 Thickness and Antithickness

The thickness of a graph G is the minimum k ∈ N such that the edge set E(G) can be
partitioned into k planar subgraphs. Thickness is a widely studied parameter; see the
surveys [61, 80]. The thickness of a graph drawing is the minimum k ∈ N such that the
edges of the drawing can be partitioned into k noncrossing subgraphs. Equivalently, each
edge is assigned one of k colours such that crossing edges receive distinct colours.

Every planar graph can be drawn with its vertices at prespecified locations [57, 65,
86]. It follows that a graph has thickness k if and only if it has a drawing with thickness
k [57, 65]. However, in such a representation the edges might be highly curved3. The
minimum integer k such that a graph G has a geometric / convex / 2-track drawing with
thickness k is called the geometric / book / 2-track thickness of G. Book thickness is also
called pagenumber and stacknumber in the literature; see the surveys [7, 34]4

The following results are well known for every graph G:

• G has geometric thickness 1 if and only if G is planar [43, 98].
2Proof : Let V (G) = {v1, . . . , vn}. Position each vertex vi at (i, 0). Define a relation ≺ on E(G) where

vivj ≺ vpvq if and only if i < j ⩽ p < q. Observe that ⪯ is a partial order of E(G). Let E(G) = {e1, . . . , em},
where ei ≺ ej implies that j < i. Draw each edge ei = vpvq as the 1-bend polyline (p, 0)(i, 1)(q, 0). Then
every pair of edges intersect at least once.

3In fact, Pach and Wenger [86] proved that for every planar graph G that contains a matching of n edges,
if the vertices of G are randomly assigned prespecified locations on a circle, then Ω(n) edges of G have Ω(n)
bends in every polyline drawing of G.

4In the context of this paper it would make sense to refer to book thickness as convex thickness, and to
refer to thickness as topological thickness, although we refrain from the temptation of introducing further
terminology.
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• G has book thickness 1 if and only if G is outerplanar [65].

• G has book thickness at most 2 if and only if G is a subgraph of a Hamiltonian planar
graph [65].

• G has 2-track thickness 1 if and only if G is a forest of caterpillars [58].

The antithickness of a graph G is the minimum k ∈ N such that E(G) can be
partitioned into k thrackeable subgraphs. The antithickness of a graph drawing is the
minimum k ∈ N such that the edges of the drawing can be partitioned into k thrackles.
Equivalently, each edge is assigned one of k colours such that disjoint edges receive distinct
colours. The minimum k ∈ N such that a graph G has a topological / geometric / convex /
2-track drawing with antithickness k is called the topological / geometric / convex / 2-track
antithickness of G. Thus a graph is thrackeable if and only if it has antithickness 1.

Lemma 1. Every thrackeable graph G has a thrackled drawing with each vertex at a pre-
specified location.

Proof. Consider a thrackled drawing of G. Replace each crossing point by a dummy vertex.
Let H be the planar graph obtained. Let p(v) be a distinct prespecified point in the plane
for each vertex v of G. For each vertex x ∈ V (H) − V (G) choose a distinct point p(x) ∈
R2 \ {p(v) : v ∈ V (G)}. Every planar graph can be drawn with its vertices at prespecified
locations [57, 65, 86]. Thus H can be drawn planar with each vertex x of H at p(x). This
drawing defines a thrackled drawing of G with each vertex v of G at p(v), as desired.

Corollary 2. A graph has antithickness k if and only if it has a drawing with antithickness
k.

Every graph G satisfies

thickness(G) ⩽ geometric thickness(G) ⩽ book thickness(G), and
antithickness(G) ⩽ geometric antithickness(G) ⩽ convex antithickness(G).

Moreover, if G is bipartite, then

book thickness(G) ⩽ 2-track thickness(G) = 2-track antithickness(G), and
convex antithickness(G) ⩽ 2-track thickness(G) = 2-track antithickness(G).

For the final equality, observe that a 2-track layout of G with antithickness k is obtained
from a 2-track layout of G with thickness k by simply reversing one track, and vice versa.

1.2 An Example: Trees

Consider the thickness of a tree. Every tree is planar, and thus has thickness 1 and geometric
thickness 1. It is well known that every tree T has 2-track thickness at most 2. Proof: Orient
the edges away from some vertex r. Properly 2-colour the vertices of T black and white.
Place each colour class on its own track, ordered according to a breadth-first search of T

http://jocg.org/


JoCG 9(1), 356–386, 2018 359

Journal of Computational Geometry jocg.org

Figure 1: A 2-track drawing of a tree with thickness 2.

starting at r. Colour each edge according to whether it is oriented from a black to a white
vertex, or from a white to a black vertex. It is easily seen that no two monochromatic edges
cross, as illustrated in Figure 1.

The 2-claw is the tree with vertex set {r, v1, v2, v3, w1, w2, w3} and edge set
{rv1, rv2, rv3, v1w1, v2w2, v3w3}, as illustrated in Figure 2(a). The upper bound of 2 on
the 2-track thickness of trees is best possible since Harary and Schwenk [58] proved that the
2-claw has 2-track thickness exactly 2, as illustrated in Figure 2(b).

(a)

r

v1 v2 v3

w1 w2 w3

(b) (c)

r

v1

(d)

Figure 2: (a) The 2-claw. (b) The 2-claw has 2-track thickness 2. (c) The 2-claw is not a
geometric thrackle. (d) The 2-claw drawn as a thrackle.

What about the antithickness of a tree? Since every tree has 2-track thickness at
most 2, by reversing one track, every tree has 2-track antithickness at most 2. And again
the 2-claw shows that this bound is tight. In fact:

Lemma 3. The 2-claw is not a geometric thrackle.

Proof. Suppose to the contrary that the 2-claw is a geometric thrackle, as illustrated in
Figure 2(c). For at least one of the three edges incident to r, say rv1, the other two vertices
adjacent to r are on distinct sides of the line through rv1. Thus v1w1 can only intersect one
of rv2 and rv3, which is the desired contradiction.

This lemma shows that 2 is a tight upper bound on the geometric antithickness of
trees. On the other hand, if we allow curved edges, Woodall [100] proved that every tree
is thrackleable, and thus has antithickness 1, as illustrated in Figure 2(d) in the case of a
2-claw.
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1.3 Main Results and Conjectures

A graph parameter is a function β that assigns to every graph G a non-negative integer β(G).
Examples that we have seen already include thickness, geometric thickness, book thickness,
antithickness, geometric antithickness, and convex antithickness. Let F be a class of graphs.
Let β(F) denote the function f : N → N, where f(n) is the maximum of β(G), taken over
all n-vertex graphs G ∈ F . We say F has bounded β if β(F) ∈ O(1) (where n is the hidden
variable in O(1)).

A graph parameter β is bounded by a graph parameter γ (for some class F), if there
exists a binding function g such that β(G) ⩽ g(γ(G)) for every graph G (in F). If β is
bounded by γ (in F) and γ is bounded by β (in F) then β and γ are tied (in F). If β and
γ are tied, then a graph family F has bounded β if and only if F has bounded γ. This
definition is due to Ding and Oporowski [28] and Reed [91]. Note that ‘tied’ is a transitive
relation. For β and γ to be not tied means that for some class of graphs, β is bounded but
γ is unbounded (or vice versa). In this case, β and γ are separated, which is terminology
introduced by Eppstein [38, 39].

The central questions of this paper ask which thickness/antithickness parameters are
tied. In Section 4 we prove that thickness and antithickness are tied—in fact we prove that
these parameters are both tied to arboricity, and thus only depend on the maximum density
of the graph’s subgraphs. (See Section 4 for the definition of arboricity.)

Eppstein [38] proved that book thickness and geometric thickness are separated. In
particular, for every t, there exists a graph with geometric thickness 2 and book thickness
at least t; see [8, 9] for a similar result. Thus book thickness is not bounded by geometric
thickness. The example used here is K ′

n, which is the graph obtained from Kn by subdividing
each edge exactly once. In Lemma 17 we prove that K ′

n has geometric antithickness 2. At
the end of Section 5 we prove that K ′

n has convex antithickness at least
√
n/6 (which is

unbounded). Thus convex antithickness is not bounded by geometric antithickness, implying
that convex antithickness and geometric antithickness are separated.

Eppstein [39] also proved that geometric thickness and thickness are separated. In
particular, for every t, there exists a graph with thickness 3 and geometric thickness at least
t. Thus geometric thickness is not bounded by thickness. (Note that it is open whether every
graph with thickness 2 has bounded geometric thickness.) Eppstein [39] used the following
graph to establish this result. Let Gn be the graph having as its n+

(
n
3

)
vertices the singleton

and tripleton subsets of an n-element set, with an edge between two subsets when one is
contained in the other. (Note that K ′

n can be analogously defined—just replace tripleton by
doubleton.) Then Gn has thickness 3, and for all t there is an n for which Gn has geometric
thickness at least t. We expect that an analogous separation result holds for antithickness
and geometric antithickness. Since E(Gn) has an edge-partition into three star-forests, Gn

has antithickness 3. We conjecture that for all t there is an n for which Gn has geometric
antithickness at least t. This would imply that geometric antithickness is not bounded by
antithickness.

In the positive direction, we conjecture the following dualities:

Conjecture 4. Geometric thickness and geometric antithickness are tied.
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Conjecture 5. Book thickness and convex antithickness are tied.

In Theorem 15 we prove that convex antithickness and queue-number (defined in
Section 2) are tied. Thus the truth of Conjecture 5 would imply that book thickness and
queue-number are tied. This would imply, since planar graphs have bounded book thickness
[11, 101], that planar graphs have bounded queue-number, which is an open problem due
to Heath et al. [59, 60]; see [23, 29, 31] for recent progress. Thus a seemingly easier open
problem is to decide whether planar graphs have bounded geometric antithickness.

Lovász et al. [73] proved two related results. First they proved that every bipartite
thrackleable graph is planar. And more generally, they proved that a bipartite graph has
a drawing in which every pair of edges intersect an odd number of times if and only if the
graph is planar. In their construction, non-adjacent edges cross once, and adjacent edges
intersect three times.

1.4 Other Contributions

In addition to the results discussed above, this paper makes the following contributions. In
Section 2 we prove that convex antithickness is tied to queue-number and track-number.
Several interesting results follow from this theorem. Section 3 surveys the literature on the
problem of determining the thickness or antithickness of a given (uncoloured) drawing of a
graph. Sections 4 and 5 respectively prove two results discussed above, namely that thickness
and antithickness are tied, and that convex antithickness and geometric antithickness are
separated. Section 6 studies natural extremal questions for all of the above parameters.
Finally, Section 7 considers the various antithickness parameters for a complete graph.

2 Stack, Queue and Track Layouts

This section introduces track and queue layouts, which are well studied graph layout models.
We show that they are closely related to convex antithickness.

A vertex ordering of an n-vertex graph G is a bijection π : V (G) → {1, 2, . . . , n}.
We write v <π w to mean that π(v) < π(w). Thus ⩽π is a total order on V (G). We
say G or V (G) is ordered by <π. Let L(e) and R(e) denote the end-vertices of each edge
e ∈ E(G) such that L(e) <π R(e). At times, it will be convenient to express π by the list
(v1, v2, . . . , vn), where π(vi) = i. These notions extend to subsets of vertices in the natural
way. Suppose that V1, V2, . . . , Vk are disjoint sets of vertices, such that each Vi is ordered by
<i. Then (V1, V2, . . . , Vk) denotes the vertex ordering π such that v <π w whenever v ∈ Vi

and w ∈ Vj with i < j, or v ∈ Vi, w ∈ Vi, and v <i w. We write V1 <π V2 <π · · · <π Vk.

Let π be a vertex ordering of a graph G. Consider two edges e, f ∈ E(G) with no
common end-vertex. There are the following three possibilities for the relative positions of
the end-vertices of e and f in π. Without loss of generality L(e) <π L(f).

• e and f cross: L(e) <π L(f) <π R(e) <π R(f).

• e and f nest and f is nested inside e: L(e) <π L(f) <π R(f) <π R(e)
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• e and f are disjoint : L(e) <π R(e) <π L(f) <π R(f)

A stack (respectively, queue) in π is a set of edges F ⊆ E(G) such that no two edges
in F are crossing (nested) in π. Observe that when traversing π, edges in a stack (queue)
appear in LIFO (FIFO) order—hence the names.

A linear layout of a graph G is a pair (π, {E1, E2, . . . , Ek}) where π is a vertex
ordering of G, and {E1, E2, . . . , Ek} is a partition of E(G). A k-stack (k-queue) layout of G
is a linear layout (π, {E1, E2, . . . , Ek}) such that each Ei is a stack (queue) in π. At times
we write stack(e) = ℓ (or queue(e) = ℓ) if e ∈ Eℓ.

A graph admitting a k-stack (k-queue) layout is called a k-stack (k-queue) graph.
The stack-number of a graph G, denoted by sn(G), is the minimum k such that G is a
k-stack graph. The queue-number of G, denoted by qn(G), is the minimum k such that G
is a k-queue graph. See [34] for a summary of results and references on stack and queue
layouts.

A k-stack layout of a graph G defines a convex drawing of G with thickness k, and
vice versa. Thus the stack-number of G equals the book thickness of G.

Lemma 6. For every graph G, the queue-number of G is at most the convex antithickness
of G.

Proof. Consider a convex drawing of a graph G with convex antithickness k. Let (v1, . . . , vn)
be the underlying circular ordering and let E1, . . . , Ek be the corresponding edge-partition.
Any two edges in Ei cross or intersect at a common end-vertex with respect to the vertex
ordering (v1, . . . , vn). Thus each Ei is a queue, and G has queue-number at most k.

We now set out to prove a converse to Lemma 6. A key tool will be track layouts,
which generalise the notion of 2-track drawings, and have been previously studied by several
authors [24–26, 29–32, 35, 77–79].

A vertex |I|-colouring of a graph G is a partition {Vi : i ∈ I} of V (G) such that for
every edge vw ∈ E(G), if v ∈ Vi and w ∈ Vj then i ̸= j. The elements of I are colours, and
each set Vi is a colour class. Suppose that <i is a total order on each colour class Vi. Then
each pair (Vi, <i) is a track, and {(Vi, <i) : i ∈ I} is an |I|-track assignment of G. To ease
the notation we denote track assignments by {Vi : i ∈ I} when the ordering on each colour
class is implicit.

An X-crossing in a track assignment consists of two edges vw and xy such that v <i x
and y <j w, for distinct colours i and j. An edge k-colouring of G is simply a partition
{Ei : 1 ⩽ i ⩽ k} of E(G). A (k, t)-track layout of G consists of a t-track assignment of
G and an edge k-colouring of G with no monochromatic X-crossing. A graph admitting
a (k, t)-track layout is called a (k, t)-track graph. The track-number of a graph G is the
minimum t such that G is a (1, t)-track graph.

The next two lemmas give a method that constructs a convex drawing from a track
layout.
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Lemma 7. Suppose that Kt has a convex drawing with antithickness p, in which each thrackle
is a matching. Then every (k, t)-track graph G has convex antithickness at most kp.

Proof. In the given convex drawing of Kt, say the vertices are ordered 1, 2, . . . , t
around a circle, and {T1, T2, . . . , Tp} is an edge-partition into thrackled matchings. Let
{(Vi, <i) : 1 ⩽ i ⩽ t} be the track assignment and {Eℓ : 1 ⩽ ℓ ⩽ k} be the edge colouring in
a (k, t)-track layout of G. Let π = (V1, V2, . . . , Vt) be a circular vertex ordering of G. For
each ℓ ∈ {1, 2, . . . , k} and j ∈ {1, 2, . . . , p}, let Eℓ,j = {vw ∈ Eℓ : v ∈ Vi1 , w ∈ Vi2 , i1i2 ∈ Tj}.
We now show that each set Eℓ,j is a convex thrackle in π, as illustrated in Figure 3.

Figure 3: In the proof of Lemma 7, starting from a 5-track graph G, and a convex drawing
of K5 with antithickness 8, in which each thrackle is a matching, replace the vertices of K5

by the tracks to produce a convex drawing of G with convex antithickness 8.

Consider two edges e, f ∈ Eℓ,j with no common endvertex. If the endvertices of e and
f belong to four distinct tracks, then e and f cross in π, since the edges in Tj pairwise cross.
The endvertices of e and f do not belong to three distinct tracks, since Tj is a matching. If
the endvertices of e and f belong to two distinct tracks, then e and f cross in π, as otherwise
e and f form a monochromatic crossing in G. Thus Eℓ,j is a convex thrackle in π, and G
has convex antithickness at most kp.

The following results show that (k, t)-track graphs have bounded convex antithick-
ness (for bounded k and t). We start by considering small values of t.

Lemma 8. (a) Every (k, 3)-track graph G has convex antithickness at most 3k.
(b) Every (k, 4)-track graph G has convex antithickness at most 5k.
(c) Every (k, 5)-track graph G has convex antithickness at most 8k.
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Proof. By Lemma 7, it is enough to show that K3, K4 and K5 admit convex drawings
with their edges partitioned into 3, 5, and 8 thrackled matchings, respectively. The first
claim is trivial. For the second claim, position the vertices of K4 around a circle. Colour
the two crossing edges blue. Colour each of the four other edges by a distinct colour. We
obtain a convex drawing of K4 with its edges partitioned into five thrackled matchings.
Finally, say V (K5) = {1, 2, 3, 4, 5}. Position the vertices of K5 around a circle in the order
1, 2, 3, 4, 5. Then {13, 24}, {25, 14}, {35}, {12}, {23}, {34}, {45}, {15} is a partition of E(K5)
into 8 thrackled matchings.

Dujmović et al. [32] proved that every outerplanar graph has a 5-track layout. Thus
Lemma 8(c) with k = 1 implies:

Corollary 9. Every outerplanar graph G has convex antithickness at most 8.

Let lnn be the natural logarithm of n. Let H(n) :=
∑n

i=1
1
i denote the n-th harmonic

number. It is well-known that

lnn+ γ ⩽ H(n) < lnn+ γ +
1

2n
, (1)

where γ = 0.577 . . . is the Euler–Mascheroni constant; see [21, 52].

The constructions in the proof of Lemma 8 generalise as follows.

Lemma 10. The complete graph Kn has a convex drawing with antithickness p in which
every thrackle is a matching, for some integer p < n ln(2n). That is, there is an edge
p-colouring, such that edges that are disjoint or have a vertex in common receive distinct
colours.

Proof. By the above constructions, we may assume that n ⩾ 6. Let (v0, v1, . . . , vn−1) be the
vertices of Kn in order around a circle. For each ℓ ∈ {1, 2, . . . , ⌊n2 ⌋} and j ∈ {0, 1, . . . , ⌈n/ℓ⌉−
1}, let Eℓ,j be the set of edges

Eℓ,j := {viv(i+ℓ) mod n : jℓ ⩽ i ⩽ (j + 1)ℓ− 1}.

As illustrated in Figure 4, Eℓ,j is a thrackle and a matching.

Now

p =

⌊n
2
⌋∑

ℓ=1

⌈n/ℓ⌉ ⩽
⌊n
2
⌋∑

ℓ=1

n+ ℓ− 1

ℓ
= (n− 1) ·H(⌊n2 ⌋) + ⌊n2 ⌋.
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v0

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v11

Figure 4: The set of edges Eℓ,j in Lemma 10 with ℓ = 4 and j = 0.

By (1),

p < (n− 1)

(
ln⌊n2 ⌋+ γ +

1

2⌊n2 ⌋

)
+ ⌊n2 ⌋

⩽ n ln(n)− n ln(2) + γn+
n− 1

2⌊n2 ⌋
+ n

2

⩽ n ln(n) + n
(
− ln(2) + γ + 1

2

)
+ 1

4

< n ln(n) + 2n
5 + 1

4

< n ln(n) + n
2

< n ln(2n).

Lemmas 7 and 10 imply:

Theorem 11. Every (k, t)-track graph G has convex antithickness at most kt ln(2t).

A similar result was proved by Dujmović et al. [32], who showed that a (k, t)-track
graph has geometric thickness at most k⌈ t

2⌉⌊
t
2⌋. It is interesting that track layouts can be

used to produce graph drawings with small geometric thickness, and can be used to produce
graph drawings with small convex antithickness.

Dujmović et al. [32] proved that every k-queue c-colourable graph has a (2k, c)-track
layout. Thus Theorem 11 implies:

Corollary 12. Every k-queue c-colourable graph G has convex antithickness at most
2kc ln(2c).

Dujmović and Wood [34] proved that every k-queue graph G is 4k-colourable, and
thus has a (2k, 4k)-track layout. Thus Theorem 11 implies:

Corollary 13. Every k-queue graph G has convex antithickness at most 8k2 ln(8k).

A graph is series parallel if it has no K4-minor.
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Theorem 14. Every series parallel graph G has convex antithickness at most 18.

Proof. It is well known that G is 3-colourable. Rengarajan and Veni Madhavan [92] proved
that G has a 3-queue layout; see [33] for an alternative proof. By the above-mentioned result
of Dujmović et al. [32], G has a (6, 3)-track layout. The result follows from Lemma 8(a).

Dujmović et al. [32] proved that queue-number and track-number are tied. Thus
Lemma 6 and Corollary 13 imply:

Theorem 15. Queue-number, track-number and convex antithickness are tied.

Several upper bounds on convex antithickness immediately follow from known up-
per bounds on queue-number. In particular, Dujmović et al. [30] proved that graphs
with bounded treewidth have bounded track-number (see [24, 99] for quantitative improve-
ments to the bounds). Thus Theorem 11 with k = 1 implies that graphs with bounded
treewidth have bounded convex antithickness. Improving on a breakthrough by Di Battista
et al. [23], Dujmović [29] proved that n-vertex planar graphs have O(log n) queue-number.
More generally, Dujmović et al. [31] proved that n-vertex graphs with Euler genus g have
O(g + log n) queue-number. Since such graphs are O(

√
g)-colourable, Corollary 12 implies

a O(
√
g(log g)(g + log n)) upper bound on the convex antithickness. Most generally, for

fixed H, Dujmović et al. [31] proved that H-minor-free graphs have logO(1) n queue-number,
which implies a logO(1) n bound on the convex antithickness (since such graphs are O(1)-
colourable).

3 Thickness and Antithickness of a Drawing

This section considers the problem of determining the thickness or antithickness of a given
drawing of a graph. We employ the following standard terminology. For a graph G, a clique
of G is a set of pairwise adjacent vertices of G. The clique number of G, denoted by ω(G), is
the maximum number of vertices in a clique of G. The clique-covering number of G, denoted
by σ(G) is the minimum number of cliques that partition V (G). An independent set of G
is a set of pairwise nonadjacent vertices of G. The independence number of G, denoted
by α(G), is the maximum number of vertices in an independent set of G. The chromatic
number of G, denoted by χ(G), is the minimum number of independent sets that partition
V (G). Obviously χ(G) ⩾ ω(G) and σ(G) ⩾ α(G) for every graph G. Let F be a family of
graphs. F is χ-bounded if χ is bounded by ω in F , and F is σ-bounded if σ is bounded by
α in F .

Now let D be a drawing of a graph G. Let k be the maximum number of pairwise
crossing edges in D, and let ℓ be the maximum number of pairwise disjoint edges in D.
Then k is a lower bound on the thickness of D, and ℓ is a lower bound on the antithickness
of D. Our interest is when the thickness of D is bounded from above by a function of k, or
the antithickness of D is bounded from above by a function of ℓ.

Let H be the graph with V (H) = E(G) such that two vertices of H are adjacent if
and only if the corresponding edges cross in D. Let H+ be the graph with V (H) = E(G)
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such that two vertices of H+ are adjacent if and only if the corresponding edges cross in D
or have an endvertex in common. Note that H is a spanning subgraph of H+. By definition,
the thickness of D equals χ(H), and the antithickness of D equals σ(H+).

A string graph is the intersection graph of a family of simple curves in the plane; see
[45–47, 64, 75, 94] for example. If we consider edges in D as curves, then H+ is a string
graph. And deleting a small disc around each vertex in D, we see that H is also a string
graph. Moreover, if D is geometric, then both H and H+ are intersection graphs of sets
of segments in the plane. If D is convex, then both H and H+ are intersection graphs of
sets of chords of a circle, which is called a circle graph; see [56, 66] for example. If D is a
2-track drawing, then both H and H+ are permutation graphs, which are perfect; see [51]
for example.

Whether the thickness / antithickness of an (unrestricted) drawing is bounded by the
maximum number of pairwise crossing / disjoint edges is equivalent to whether string graphs
are χ-bounded / ω-bounded. Whether the thickness / antithickness of a geometric drawing
is bounded by the maximum number of pairwise crossing / disjoint edges is equivalent
to whether intersection graphs of segments are χ-bounded / ω-bounded. For many years
both these were open; see [69, 70]. However, in a recent breakthrough, Pawlik, Kozik,
Krawczyk, Lasoń, Micek, Trotter, and Walczak [87, 88] constructed set of segments in the
plane, whose intersection graph is triangle-free and with unbounded chromatic number.
Thus the thickness of a drawing is not bounded by any function of the maximum number
of pairwise crossing edges, and this remains true in the geometric setting.

For convex drawings, more positive results are known. Gyárfás [54, 55] proved that
the family of circle graphs is χ-bounded, the best known bound being χ(H) < 21 ·2ω(H) due
to Černý [20] (slightly improving an earlier bound by Kostochka and Kratochvíl [67]). This
implies that a convex drawing with at most k pairwise crossing edges has thickness less than
21 · 2k. For small values of k much better bounds are known [1, 2]. Kostochka [68] proved
that σ(H) ⩽ (1+ o(1))α(H) logα(H) for every circle graph H; also see [67]. Thus a convex
drawing with at most k pairwise disjoint edges has antithickness at most (1 + o(1))k log k.

Now consider a 2-track drawing D. Then H and H+ are permutation graphs, which
are perfect. Thus χ(H) = ω(H) and σ(H+) = α(H+). This says that if D has at most
k pairwise crossing edges, and at most ℓ pairwise disjoint edges, then D has thickness
at most k and antithickness at most ℓ. There is a very simple algorithm for computing
these partitions. First we compute the partition into ℓ 2-track thrackles. For each edge
vw, if {x1y1, x2y2, . . . , xiyi} is a set of maximum size of pairwise disjoint edges such that
x1 < x2 < · · · < xi < v in one layer and y1 < y2 < · · · < yi < w in the other layer,
then assign vw to the (i + 1)-th set. Consider two disjoint edges v1w1 and v2w2. Without
loss of generality, v1 < v2 and w1 < w2. Suppose that by the above rule v1w1 is assigned
to the (i + 1)-th set and v2w2 is assigned to the (j + 1)-th set. Let {x1y1, . . . , xiyi} be a
set of maximum size of pairwise disjoint edges such that x1 < x2 < · · · < xi < v1 in one
layer and y1 < y2 < · · · < yi < w1 in the other layer. Then {x1y1, . . . , xiyi, v1w1} is a
set of pairwise disjoint edges such that x1 < x2 < · · · < xi < v1 < v2 in one layer and
y1 < y2 < · · · < yi < w1 < w2 in the other layer. Thus j ⩾ i + 1. That is, two edges that
are both assigned to the same set are not disjoint, and each such set is a 2-track thrackle. In
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the above rule, i ⩽ ℓ− 1. Thus this procedure partitions the edges into ℓ 2-track thrackles.
To partition the edges into k 2-track noncrossing subdrawings, simply reverse the order of
the vertices in one track, and apply the above procedure.

Consider the analogous question for queue layouts: Given a fixed vertex ordering
π of a graph G, determine the minimum value k such that π admits a k-queue layout of
G. We can again construct an auxillary graph H with V (H) = E(G), where two vertices
are adjacent if and only if the corresponding edges of G are nested in π. Then π admits a
k-queue layout of G if and only if χ(H) ⩽ k. A classical result by Dushnik and Miller [37]
implies that H is a permutation graph, and is thus perfect. Hence χ(H) = ω(H). A clique
in H corresponds to a set of edges of G that are pairwise nested in π, called a rainbow. Hence
π admits a k-queue layout of G if and only if π has no (k + 1)-edge rainbow, which was
also proved by Heath and Rosenberg [60]. Dujmović and Wood [34] observed the following
simple way to assign edges to queues: if the maximum number of edges that are pairwise
nested inside an edge e is i, then assign e to the (i+ 1)-th queue.

This procedure can also be used to prove that a convex drawing with at most k
pairwise disjoint edges has antithickness at most (1 + o(1))k log k. This is equivalent to the
result of Kostochka [68] mentioned above. Let π be any vertex ordering obtained from the
order of the vertices around the convex hull. Then π has no (k + 1)-edge rainbow. Assign
edges to k queues as described at the end of the previous paragraph. Partition the i-th
queue into sets of pairwise non-disjoint edges as follows. For each edge e in the i-th queue,
if the maximum number of pairwise disjoint edges with both end-vertices to the left of the
left end-vertex of e is j, then assign e to the (j + 1)-th set. Thus two edges in the i-th
queue that are both assigned to the same set are not disjoint. Let S be a maximum set of
pairwise disjoint edges in the i-th queue. Then j ⩽ |S| − 1. Thus the i-th queue can be
partitioned into |S| sets of pairwise non-disjoint edges. Now we bound |S|. Under each edge
in S is an (i − 1)-edge rainbow. This gives a set of |S| · i edges that are pairwise disjoint.
Thus |S| · i ⩽ k and |S| ⩽ ⌊k/i⌋. Thus we can partition the i-th queue into at most ⌊k/i⌋
sets of pairwise non-disjoint edges. In total we have at most

∑k
i=1⌊k/i⌋ sets, each with no

two disjoint edges, which is less than k(1 + ln k). Loosely speaking, this proof shows that
a convex drawing and an associated edge-partition into convex thrackles can be thought of
as a combination of a queue layout and an arch layout; see [34] for the definition of an arch
layout.

4 Thickness and Antithickness are Tied

The arboricity of a graph G is the minimum number of forests that partition E(G). Nash-
Williams [81] proved that the arboricity of G equals

max
H⊆G

⌈
|E(H)|

|V (H)| − 1

⌉
. (2)

We have the following connection between thickness, antithickness, and arboricity.

Theorem 16. Thickness, antithickness, and arboricity are pairwise tied. In particular, for
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every graph G with thickness t, antithickness k, and arboricity ℓ,

k ⩽ ℓ and
k

3
⩽ t ⩽ ℓ ⩽

⌈
3k

2

⌉
.

Proof. Every forest is planar. Thus a partition of G into ℓ forests is also a partition of G
into ℓ planar subgraphs. Thus t ⩽ ℓ.

Woodall [100] proved that every forest is thrackeable. Thus a partition of G into ℓ
forests is also a partition of G into ℓ thrackeable subgraphs. Thus k ⩽ ℓ.

Every planar graph G has arboricity at most 3 by (2) and since |E(G)| ⩽ 3|V (G)|−6.
(Indeed, much more is known about edge-partitions of planar graphs into three forests [95].)
Since every forest is thrackeable [100], every planar graph has antithickness at most 3. Thus
a partition of G into t planar subgraphs gives a partition of G into 3t thrackeable subgraphs.
Thus k ⩽ 3t.

It remains to prove that ℓ ⩽
⌈
3
2k

⌉
. By (2), it suffices to show that m

n−1 ⩽ 3k
2 for every

subgraph H of G with n vertices and m edges. Cairns and Nikolayevsky [15] proved that
every thrackle has at most 3

2(n− 1) edges. Since every subgraph of a thrackle is a thrackle,
H has antithickness at most k, and m ⩽ 3

2k(n− 1), as desired.

Theorem 16 with k = 1 implies that every thrackle has arboricity at most 2. It is
an open problem whether every thrackle is planar. It follows from a result by Cairns and
Nikolayevsky [16] that every thrackle has a crossing-free embedding in the projective plane.
Also note that the constant 3

2 in Theorem 16 can be improved to 167
117 using the result of

Fulek and Pach [48].

5 Separating Convex Antithickness and Geometric Thickness

As discussed in Section 1.3, the following lemma is a key step in showing that convex an-
tithickness and geometric antithickness are separated. Recall that K ′

n is the graph obtained
from Kn by subdividing each edge exactly once.

Lemma 17. K ′
n has geometric antithickness 2.

Proof. Let v1, . . . , vn be the original vertices of K ′
n. Position each vi at (2i, 0). For 1 ⩽

i < j ⩽ n, let xi,j be the division vertex of the edge vivj ; colour the edge vixi,j blue, and
colour the edge vjxi,j red. Orient each edge of K ′

n from the original endvertex to the division
endvertex. This orientation enables us to speak of the order of crossings along an edge.

We now construct a geometric drawing of K ′
n, such that every pair of blue edges

cross, and every pair of red edges cross. Thus the drawing has antithickness 2. In addition,
the following invariants are maintained for all i ∈ [1, n− 2] and j ∈ [i+ 2, n]:

(1) No blue edge crosses vixi,i+1 after the crossing between vixi,i+1 and vjxj−1,j .

(2) No red edge crosses vjxj−1,j after the crossing between vixi,i+1 and vjxj−1,j .
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v1 v2 vn−1 vn

xn−1,n x1,2x2,3x3,4

Figure 5: Initial vertex placement in a geometric drawing of K ′
n with antithickness 2.

The drawing is constructed in two stages. First, for i ∈ [n− 1], position xi,i+1 at (2(n− i)+
1, 1), as illustrated in Figure 5.

Observe that all the blue segments intersect at (n+ 1
2 ,

1
2), and all the red segments

intersect at (n + 3
2 ,

1
2). Thus the invariants hold in this subdrawing. Moreover, every blue

edge intersects every red edge (although this property will not be maintained).

For i ∈ [1, n − 2] and j ∈ [i + 2, n] (in an arbitrary order) position xi,j as follows.
The blue segment vixi,i+1 and the red segment vjxj−1,j were drawn in the first stage, and
thus cross at some point c. In the arrangement formed by the drawing produced so far, let
F be the face that contains c, such that the blue segment vixi,i+1 is on the left of F , and
the red segment vjxj−1,j is on the right of F . Position xi,j in the interior of F , as illustrated
in Figure 6.

vi vi+1

xi,i+1

vjvj−1

xj−1,j no blue
crossing

no red
crossing

Figure 6: Placing xi,j where i ∈ [1, n− 2] and j ∈ [i+ 2, n].

By invariant (1), no blue edge crosses vixi,i+1 after the red edge vjxj−1,j . It follows
that the new blue edge vixi,j crosses every blue edge already drawn, and invariant (1) is
maintained. By invariant (2), no red edge crosses vjxj−1,j after the blue edge vixi,i+1. It
follows that the new red edge vjxi,j crosses every red edge already drawn, and invariant (2)
is maintained.
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Dujmović and Wood [35, Lemma 10] proved that K ′
n has queue-number at least√

n/6. Since the queue-number of a graph is at most its convex antithickness (Lemma 6),
K ′

n has convex antithickness at least
√
n/6. This proves the claim in Section 1 that implies

that convex antithickness is not bounded by geometric antithickness.

6 Extremal Questions

This section studies the maximum number of edges in an n-vertex graph with topological (or
geometric or convex or 2-track) thickness (or antithickness) k. The results are summarised
in Table 1. First we describe results from the literature, followed by our original results.

For book thickness and 2-track thickness the maximum number of edges is known.
Bernhart and Kainen [6] proved that the maximum number of edges in an n-vertex graph
with book thickness k equals (k + 1)n − 3k. Dujmović and Wood [34] proved that the
maximum number of edges in an n-vertex graph with 2-track thickness k equals k(n− k).

Determining the maximum number of edges in a thrackle is a famous open problem
proposed by John Conway, who conjectured that every thrackle on n vertices has at most n
edges. Improving upon previous bounds by Lovász et al. [73] and Cairns and Nikolayevsky
[15], Fulek and Pach [48] proved that every thrackle has at most 167

117n edges. Thus every
graph with antithickness k has at most 167

117kn edges. For n ⩾ 2k+1, it is easy to construct an
n-vertex graph consisting of k edge-disjoint copies of Cn. Thus this graph has antithickness
k and kn edges.

Many authors have proved that every geometric thrackle has at most n edges [40,
62, 83, 100]. Thus every graph with geometric antithickness k has at most kn edges. For
convex antithickness, Fabila-Monroy and Wood [42] improved this upper bound to kn−

(
k
2

)
,

and Fabila-Monroy, Jonsson, Valtr, and Wood [41] established a matching lower bound.
This lower bound is the best known lower bound in the geometric setting. It is an open
problem to determine the maximum number of edges in an n-vertex graph with geometric
antithickness k.

We also mention that many authors have considered graph drawings, with at most
k pairwise crossing edges or at most k pairwise disjoint edges (instead of thickness k or
antithickness k). These weaker assumptions allow for more edges. See [3, 18, 19, 44, 49, 49,
71, 72, 96, 97].

6.1 Thickness

Since every planar graph with n ⩾ 3 vertices has at most 3(n− 2) edges, every graph with
n ⩾ 3 vertices and thickness k has at most 3k(n− 2) edges. We now prove a lower bound.

Theorem 18. For all k and infinitely many n there is a graph with n vertices, thickness k,
and exactly 3k(n− 2) edges.

Let G be a graph. Let f be a bijection of V (G). Let Gf be the graph with vertex
set V (Gf ) = V (G) and edge set E(Gf ) = {f(vw) : vw ∈ E(G)}, where f(vw) is an
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Table 1: The maximum number of edges in an n-vertex graph with given parameter k.

parameter lower bound upper bound reference

thickness k 3k(n− 2) 3k(n− 2) Theorem 18

geometric thickness 1 3n− 6 3n− 6

geometric thickness 2 6n− 20 6n− 18 [63]
geometric thickness k k(3n− 4k − 3) k(3n− k − 5) Theorem 20

book thickness k (k + 1)n− 3k (k + 1)n− 3k [6]
2-track thickness k k(n− k) k(n− k) [34]

antithickness 1 n 167
117 n [48]

antithickness k kn 167
117 kn

geometric antithickness 1 n n [40, 62, 83, 100]
geometric antithickness k kn−

(
k
2

)
kn

convex antithickness k kn−
(
k
2

)
kn−

(
k
2

)
[41, 42]

2-track antithickness k k(n− k) k(n− k) [34]

abbreviation for the edge f(v)f(w). Bijections f1 and f2 of V (G) are compatible if Gf1 and
Gf2 are edge-disjoint. By taking a union, the next lemma implies Theorem 18.

Lemma 19. For each integer k ⩾ 1 there are infinitely many edge-maximal planar graphs
that admits k pairwise compatible bijections.

Proof. Let n be a prime number greater than 3k2. Let G be the graph with vertex set

V (G) = {u⟨i⟩, v⟨i⟩, w⟨i⟩ : i ∈ [0, n− 1]}

and edge set E(G) = A ∪B ∪ C, where

A = {u⟨i⟩u⟨i+ 1⟩, v⟨i⟩v⟨i+ 1⟩, w⟨i⟩w⟨i+ 1⟩ : i ∈ [0, n− 2]},
B = {u⟨i⟩v⟨i⟩, v⟨i⟩w⟨i⟩, w⟨i⟩u⟨i⟩ : i ∈ [0, n− 1]},
C = {u⟨i⟩v⟨i+ 1⟩, v⟨i⟩w⟨i+ 1⟩, w⟨i⟩u⟨i+ 1⟩ : i ∈ [0, n− 2]}.

Then G is edge-maximal planar, as illustrated in Figure 7.

For each p ∈ [1, k], let fp : V (G) → V (G) be the function defined by

fp(u⟨i⟩) := u⟨pi⟩
fp(v⟨i⟩) := v⟨pi+ p(k + 1)⟩
fp(w⟨i⟩) := w⟨pi+ 2p(k + 1)⟩,

where vertex indices are always in the cyclic group Zn. Thus fp is a bijection.
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u0

u1

u2

u3

u4

u5

u6

v0

v1

v2

v3

v4

v5

v6

w0

w1

w2

w3

w4

w5

w6

Figure 7: The nested triangles graph.

Suppose to the contrary that Gfp and Gfq have an edge e in common, for some
distinct p, q ∈ [1, k]. Since {u⟨0⟩, . . . , u⟨n− 1⟩} is mapped to {u⟨0⟩, . . . , u⟨n− 1⟩} by both
fp and fq, and similarly for the v⟨i⟩ and w⟨i⟩, the following cases suffice. All congruences
are modulo n.

Case 1. e is from A in both Gfp and Gfq :

Case 1a. e = fp(u⟨i⟩u⟨i+ 1⟩) = fq(u⟨j⟩u⟨j + 1⟩) for some i, j: Thus
u⟨pi⟩u⟨p(i+ 1)⟩ = u⟨qj⟩u⟨q(j + 1)⟩. Then pi ≡ qj and pi + p ≡ qj + q (implying p ≡ q),
or pi ≡ qj + q and pi+ p ≡ qj (implying pi− qj ≡ q ≡ −p), which is a contradiction since
n > 2k ⩾ p+ q.

Case 1b. e = fp(v⟨i⟩v⟨i+ 1⟩) = fq(v⟨j⟩v⟨j + 1⟩) for some i, j: Thus
v⟨pi+ p(k + 1)⟩v⟨p(i+ 1) + p(k + 1)⟩ = v⟨qj + q(k + 1)⟩v⟨q(j + 1) + q(k + 1)⟩. If pi +
p(k + 1) ≡ qj + q(k + 1) and p(i + 1) + p(k + 1) ≡ q(j + 1) + q(k + 1), then p ≡ q,
which is a contradiction since n > k ⩾ p, q. Otherwise pi + p(k + 1) ≡ q(j + 1) + q(k + 1)
and p(i+ 1) + p(k + 1) ≡ qj + q(k + 1), implying p+ q ≡ 0, which is a contradiction since
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n > 2k ⩾ p+ q.

Case 1c. e = fp(w⟨i⟩w⟨i+ 1⟩) = fq(w⟨j⟩w⟨j + 1⟩) for some i, j: Thus
w⟨pi+ 2p(k + 1)⟩w⟨p(i+ 1) + 2p(k + 1)⟩ = w⟨qj + 2q(k + 1)⟩w⟨q(j + 1) + 2q(k + 1)⟩. If
pi+ 2p(k+ 1) ≡ qj + 2q(k+ 1) and p(i+ 1) + 2p(k+ 1) ≡ q(j + 1) + 2q(k+ 1), then p ≡ q,
which is a contradiction since n > k ⩾ p, q. Otherwise pi+ 2p(k+ 1) ≡ q(j + 1)+ 2q(k+ 1)
and p(i+1)+ 2p(k+1) ≡ qj +2q(k+1), implying p+ q ≡ 0, which is a contradiction since
n > 2k ⩾ p+ q.

Case 2. e is from B in both Gfp and Gfq :

Case 2a. e = fp(u⟨i⟩v⟨i⟩) = fq(u⟨j⟩v⟨j⟩) for some i, j. Thus u⟨pi⟩v⟨pi+ p(k + 1)⟩ =
u⟨qj⟩v⟨qj + q(k + 1)⟩. Then pi ≡ qj and pi + p(k + 1) ≡ qj + q(k + 1). Hence p(k + 1) ≡
q(k + 1) and p ≡ q since n is prime, which is a contradiction since n > k ⩾ p, q.

Case 2b. e = fp(v⟨i⟩w⟨i⟩) = fq(v⟨j⟩w⟨j⟩) for some i, j. Thus
v⟨pi+ p(k + 1)⟩w⟨pi+ 2p(k + 1)⟩ = v⟨qj + q(k + 1)⟩w⟨qj + 2q(k + 1)⟩. Then pi+p(k+1) ≡
qj+ q(k+1) and pi+2p(k+1) ≡ qj+2q(k+1). Hence p(k+1) ≡ q(k+1), implying p ≡ q
since n is prime, which is a contradiction since n > k ⩾ p, q.

Case 2c. e = fp(w⟨i⟩u⟨i⟩) = fq(w⟨j⟩u⟨j⟩) for some i, j. Thus
w⟨pi+ 2p(k + 1)⟩u⟨pi⟩ = w⟨qj + 2q(k + 1)⟩u⟨qj⟩. Then pi + 2p(k + 1) ≡ qj + 2q(k + 1)
and pi ≡ qj. Hence 2p(k + 1) ≡ 2q(k + 1), implying p ≡ q since n is prime, which is a
contradiction since n > k ⩾ p, q.

Case 3. e is from C in both Gfp and Gfq :

Case 3a. e = fp(u⟨i⟩v⟨i+ 1⟩) = fq(u⟨j⟩v⟨j + 1⟩) for some i, j. Thus
u⟨pi⟩v⟨p(i+ 1) + p(k + 1)⟩ = u⟨qj⟩v⟨q(j + 1) + q(k + 1)⟩. Thus pi ≡ qj and p(i + 1) +
p(k + 1) ≡ q(j + 1) + q(k + 1). Hence p(k + 2) ≡ q(k + 2), implying p ≡ q since n is prime,
which is a contradiction since n > k ⩾ p, q.

Case 3b. e = fp(v⟨i⟩w⟨i+ 1⟩) = fq(v⟨j⟩w⟨j + 1⟩) for some i, j. Thus
v⟨pi+ p(k + 1)⟩w⟨p(i+ 1) + 2p(k + 1)⟩ = v⟨qj + q(k + 1)⟩w⟨q(j + 1) + 2q(k + 1)⟩. Thus
pi + p(k + 1) ≡ qj + q(k + 1) and p(i + 1) + 2p(k + 1) ≡ q(j + 1) + 2q(k + 1). Hence
p(k + 2) ≡ q(k + 2), implying p ≡ q since n is prime, which is a contradiction since
n > k ⩾ p, q.

Case 3c. e = fp(w⟨i⟩u⟨i+ 1⟩) = fq(w⟨j⟩u⟨j + 1⟩) for some i, j. Thus
w⟨pi+ 2p(k + 1)⟩u⟨p(i+ 1)⟩ = w⟨qj + 2q(k + 1)⟩u⟨q(j + 1)⟩. Thus pi + 2p(k + 1) ≡
qj + 2q(k + 1) and p(i + 1) ≡ q(j + 1). Hence p(2k + 1) ≡ q(2k + 1), implying p ≡ q
since n is prime, which is a contradiction since n > k ⩾ p, q.

Case 4. e is from B in Gfp and from C in Gfq :

Case 4a. e = fp(u⟨i⟩v⟨i⟩) = fq(u⟨j⟩v⟨j + 1⟩) for some i, j. Thus
u⟨pi⟩v⟨pi+ p(k + 1)⟩ = u⟨qj⟩v⟨q(j + 1) + q(k + 1)⟩. Then pi ≡ qj and pi + p(k + 1) ≡
q(j+1)+ q(k+1), implying (p− q)(k+1) ≡ q. If p > q then (p− q)(k+1) ∈ [k+1, k2 − 1]
is not congruent to q ∈ [1, k] since n > k2. Otherwise p < q, implying (p − q)(k + 1) ∈
[−(k + 1),−(k2 − 1)] is not congruent to q ∈ [1, k] since n > 2k2.

Case 4b. e = fp(v⟨i⟩w⟨i⟩) = fq(v⟨j⟩w⟨j + 1⟩) for some i, j. Thus
v⟨pi+ p(k + 1)⟩w⟨pi+ 2p(k + 1)⟩ = v⟨qj + q(k + 1)⟩w⟨q(j + 1) + 2q(k + 1)⟩. Then pi +
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p(k+1) ≡ qj+ q(k+1) and pi+2p(k+1) ≡ q(j+1)+2q(k+1). Hence (p− q)(k+1) ≡ q.
As in Case 3a, this is a contradiction.

Case 4c. e = fp(w⟨i⟩u⟨i⟩) = fq(w⟨j⟩u⟨j + 1⟩) for some i, j. Thus
w⟨pi+ 2p(k + 1)⟩u⟨pi⟩ = w⟨qj + 2q(k + 1)⟩u⟨q(j + 1)⟩. Then pi+2p(k+1) ≡ qj+2q(k+1)
and pi ≡ q(j + 1). Hence pi − qj ≡ 2(q − p)(k + 1) ≡ q. If q > p then 2(q − p)(k + 1) ∈
[2k + 2, 2k2 − 2] is not congruent to q ∈ [1, k] since n > 3k2. Otherwise q < p, implying
2(q − p)(k + 1) ∈ [−2k2 + 2,−2k − 2] is not congruent to q ∈ [1, k] since n > 3k2.

Therefore f1, . . . , fk are pairwise compatible bijections of G.

6.2 Geometric Thickness

Every graph with n ⩾ 3 vertices and geometric thickness k has at most 3k(n− 2) edges. Of
course, this bound is tight for k = 1. But for k = 2, Hutchinson et al. [63] improved this
upper bound to 6n − 18, and constructed a graph with geometric thickness 2 and 6n − 20
edges. We have the following lower and upper bounds for general k. The proof is inspired
by the proofs of lower and upper bounds on the geometric thickness of complete graphs due
to Dillencourt, Eppstein, and Hirschberg [27].

Theorem 20. For k ⩾ 1 and n ⩾ max{2k, 3}, every graph with n vertices and geometric
thickness k has at most k(3n− k− 5) edges. Conversely, for all such n ≡ 0 (mod 2k), there
is an n-vertex graph with geometric thickness k and exactly k(3n− 4k − 3) edges.

Proof of Upper Bound. Let T1, . . . , Tk be triangulations of V (G) such that E(G) is contained
in T1 ∪ · · · ∪ Tk. Assume that no two vertices have the same x-coordinate. Let A be the
set of the k leftmost vertices. Let B be the set of the k rightmost vertices. Since n ⩾ 2k,
we have A ∩ B = ∅. For distinct vertices v, w ∈ A, the line segment vw crosses a number
of triangular faces in Ti. The left sides of these faces form a vw-path in Ti[A]. Thus Ti[A]
is connected. Similarly Ti[B] is connected. Thus Ti[A] and Ti[B] both have at least k − 1
edges. Hence Ti contains at most 3n − 6 − 2(k − 1) = 3n − 2k − 4 edges with at most
one end-vertex in A and at most one end-vertex in B. Thus |E(G)| ⩽ |E(T1 ∪ · · · ∪ Tk)| ⩽
2
(
k
2

)
+ k(3n− 2k − 4) = k(3n− k − 5).

Proof of Lower Bound. Fix a positive integer s. We construct a geometric graph G with
n = 2sk vertices and geometric thickness k. The vertices are partitioned into levels V1, . . . , Vs

each with 2k vertices, where Va := {(a, i) : i ∈ [1, 2k]} for a ∈ [1, s]. The vertices in each level
Va are evenly spaced on a circle Ca of radius ra centred at the origin, where 1 = r1 < · · · < rs
are specified below. The vertices in Va are ordered (a, 1), . . . , (a, 2k) clockwise around Ca.
Thus (a, j) is opposite (a, k + j), where the second coordinate is always modulo 2k. All
congruences below are modulo 2k.

The first level V1 induces a complete graph. For distinct i, j ∈ [1, 2k], the edge
(1, i)(1, j) is coloured by the ℓ ∈ [1, k] such that i + j ≡ 2ℓ or i + j ≡ 2ℓ − 1. The edges
coloured ℓ form a non-crossing path with end-vertices (1, ℓ) and (1, k + ℓ), as illustrated
in Figure 8. Note that (1, ℓ + ⌊k2⌋)(1, ℓ + ⌊3k2 ⌋) is the ‘long’ edge in this path. This is a
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well-known construction of a k-page book embedding of K2k; see [10] for example. This
contributes

(
2k
2

)
edges to G.

1

2

3
4

5

6

7
8

ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 4

1

2

3
4

5

6

7
8

1

2

3
4

5

6

7
8

1

2

3
4

5

6

7
8

Figure 8: The edges between vertices in Va with k = 4. The dashed edges are included only
for a = 1.

Every other level Va (where a ∈ [2, s]) induces a complete graph minus a perfect
matching. We use a partition into non-crossing paths, analogous to that used in the a = 1
case, except that the ‘long’ edge in each path is not included. More precisely, for distinct
i, j ∈ [1, 2k] with i ̸≡ k + j, the edge (a, i)(a, j) is coloured by the ℓ ∈ [1, k] such that
i + j ≡ 2ℓ or i + j ≡ 2ℓ − 1. The edges coloured ℓ form two non-crossing paths, one with
end-vertices (a, ℓ) and (a, ℓ + ⌊3k2 ⌋), the other with end-vertices (a, ℓ + ⌊k2⌋) and (a, k + ℓ),
as illustrated in Figure 8. This contributes (s− 1)(

(
2k
2

)
− k) edges to G.

We now define the edges between the layers, as illustrated in Figure 9. For a ∈ [2, s]
and i ∈ [1, k] and j ∈ [1, 2k], the edges (a, i + ⌊k2⌋)(a − 1, j) and (a, i + ⌊3k2 ⌋)(a − 1, j) are
present and are coloured i. This contributes 2(s−1)2k2 edges to G. Finally, for a ∈ [2, s−1]
and i ∈ [1, k], the edges (a+1, i+ ⌊k2⌋)(a− 1, k+ i) and (a+1, i+ ⌊3k2 ⌋)(a− 1, i) are present
and are coloured i. This contributes 2(s− 2)k edges to G.

As illustrated in Figure 9, given a drawing of the first a layers (which are defined by
r1, . . . , ra) there is a sufficiently large value of ra+1 such that the addition of the (a+ 1)-th
layer does not create any crossings between edges with the same colour.

In total, G contains
(
2k
2

)
+ (s − 1)(

(
2k
2

)
− k) + (s − 1)(

(
2k
2

)
− k) + 2(s − 2)k edges,

which equals 6ks− 4k2 − 3k = k(3n− 4k − 3).

Examples of the construction in Theorem 20 are given in Figures 10 and 11.

7 Antithickness of Complete Graphs

Let cat(G) be the convex antithickness of a graph G. We now consider cat(Kn). Araujo,
Dumitrescu, Hurtado, Noy, and Urrutia [4] proved5 that

2

⌊
n+ 1

3

⌋
− 1 ⩽ cat(Kn) < n− 1

2
⌊log n⌋ . (3)

5Araujo et al. [4] did not use the terminology of ‘antithickness’, but it is easily seen that their definition
of dc(n) equals cat(Kn).
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(a− 1, i)(a− 1, k + i)

(a, k + i)

(a, i)

(a+ 1, i+ ⌊ 3k

2
⌋)

(a+ 1, i+ ⌊k

2
⌋)

(a, i+ ⌊k

2
⌋)

(a, i+ ⌊ 3k

2
⌋)

Figure 9: Edges coloured i between layers.

In an early version of this paper (cited in [41, 42]), we improved both the lower and upper
bound to the following (see [36] for the proof):

3n− 6

4
⩽ cat(Kn) < n−

√
n

2
− lnn

2
+ 4. (4)
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Figure 10: The construction in Theorem 20 with k = 2 and s = 4.

In 2007, we conjectured that cat(Kn) = n − o(n). This conjecture was subsequently ver-
ified by Fabila-Monroy and Wood [42] who proved that every n-vertex graph with convex
antithickness k has at most kn−

(
k
2

)
edges, which implies that

cat(Kn) ⩾ n−
√
2n+ 1

4 + 1
2 . (5)

This is a significant improvement over the lower bound in (4). The upper bound in (4) has
since been improved by Fabila-Monroy et al. [41] to match the lower bound in (5). Thus

cat(Kn) = n−
⌊√

2n+ 1
4 − 1

2

⌋
.
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Figure 11: The construction in Theorem 20 with k = 3 and s = 3.

Now consider the antithickness of Kn.

Proposition 21. The antithickness of Kn is at least n
3 and at most ⌈n−1

2 ⌉.

Proof. The lower bound follows from the fact that every graph with antithickness at most
k has at most 3

2k(n − 1) edges; see Section 6. For the upper bound, first consider the case
of odd n. Walecki proved Kn has a edge-partition into n−1

2 Hamiltonian cycles [74]. Each
such cycle is a thrackle. By Corollary 2, the antithickness of Kn is at most n−1

2 . For even
n, (applying the odd case) there is an edge-partition into n−2

2 odd cycles of length n − 1,
plus one (n− 1)-edge star. Each such cycle and the star is a thrackle. By Corollary 2, the
antithickness of Kn is at most n−2

2 + 1 = ⌈n−1
2 ⌉.

We conjecture that the antithickness of Kn equals ⌈n−1
2 ⌉ (which is implied by Con-
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way’s thrackle conjecture). Determining the geometric antithickness of Kn is an open prob-

lem. The best known upper bound is n −
⌊√

2n+ 1
4 − 1

2

⌋
, which follows from the convex

case. The best lower bound is only n−1
2 , which follows from the fact that every n-vertex

graph with geometric antithickness k has at most kn edges.
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