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Abstract A three-dimensional grid drawing of a graph is a placement of the vertices
at distinct points with integer coordinates, such that the straight line segments
representing the edges do not cross. Our aim is to produce three-dimensional grid
drawings with small bounding box volume. Our first main result is that every n-
vertex graph with bounded degeneracy has a three-dimensional grid drawing with
O

(
n3/2

)
volume. This is the largest known class of graphs that have such drawings. A

three-dimensional grid drawing of a directed acyclic graph (dag) is upward if every
arc points up in the z-direction. We prove that every dag has an upward three-
dimensional grid drawing with O

(
n3

)
volume, which is tight for the complete dag.

The previous best upper bound was O
(
n4

)
. Our main result concerning upward

drawings is that every c-colourable dag (c constant) has an upward three-dimensional
grid drawing with O

(
n2

)
volume. This result matches the bound in the undirected

case, and improves the best known bound from O
(
n3

)
for many classes of dags,

including planar, series parallel, and outerplanar. Improved bounds are also obtained
for tree dags. We prove a strong relationship between upward three-dimensional grid
drawings, upward track layouts, and upward queue layouts. Finally, we study upward
three-dimensional grid drawings with bends in the edges.
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1. Introduction

Graph drawing is the study of aesthetically pleasing geometric representations of
graphs. Graph drawing in the plane is well-studied; see [7, 28]. Motivated by experi-
mental evidence suggesting that displaying a graph in three dimensions is better than
in two [35, 36], and applications including information visualisation [35], VLSI circuit
design [29], and software engineering [37], there is a growing body of research in
three-dimensional graph drawing.

A three-dimensional straight line grid drawing of a graph, henceforth called a 3D
drawing, is a placement of the vertices at distinct points in Z3 (called gridpoints), such
that the straight line segments representing the edges are pairwise non-crossing. That
is, distinct edges only intersect at common endpoints, and each edge only intersects
a vertex that is an endpoint of that edge. The coordinates of a vertex v are denoted
by (x(v), y(v), z(v)). It is well known that every graph has a 3D drawing. We are
therefore interested in optimising certain measures of the aesthetic quality of such
drawings.

The bounding box of a 3D drawing is the minimum axis-aligned box that contains
the drawing. If the bounding box has side lengths X − 1, Y − 1 and Z − 1, then we
speak of an X×Y×Z drawing with width X, depth Y, height Z, and volume X ·Y ·Z.
That is, the volume of a 3D drawing is the number of gridpoints in the bounding
box. This definition is formulated so that 2D drawings have positive volume. We are
interested in 3D drawings with small volume, which are widely studied [3–5, 8, 10, 11,
14, 15, 18, 22, 32, 34].

3D drawings have been generalised in a number of ways. Multi-dimensional grid
drawings have been studied [33, 38], as have 3D polyline grid drawings, where
edges are allowed to bend at gridpoints [6, 15, 30]. The focus of this paper is
upward 3D drawings of directed graphs, which have previously been investigated by
Poranen [34] and Di Giacomo et al. [9]. A 3D drawing of a directed graph G is upward
if z(v) < z(w) for every arc −→vw of G. Obviously an upward 3D drawing can only exist
if G is acyclic (a dag). Upward two-dimensional drawings have been widely studied;
see [2, 20, 27] for example.

As described in Table I, our main results are improved upper bounds on the
volume of upward 3D drawings of dags. These results are presented in Sections 3
and 4, and in Section 9 in the case of trees. In addition, we prove that (undirected)
graphs with bounded degeneracy have 3D drawings with O

(
n3/2

)
volume. This is the

largest known class of graphs that have such drawings.
Other results in this paper include the following. In Section 5 we study upward

track layouts, and show how they can be used to produce upward 3D drawings with
small volume. These results are used in Section 9 to produce upward 3D drawings
of trees. In Section 7 we explore the relationship between upward track layouts
and upward queue layouts, which is a structure introduced by Heath et al. [24, 25].
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Table I Upper bounds on the volume of 3D drawings of graphs and upward 3D
drawings of dags with n vertices, m edges, chromatic number χ , and degener-
acy d.

Graph family Undirected Upward dags

Previous best This paper

Arbitrary 2(n3) [5] O(n4) [9] 2(n3) §3
Arbitrary O(m4/3n) [14]
Arbitrary O(dmn) §6
Arbitrary O(χ2n2) [32] O(χ4n2) §4
Constant χ 2(n2) [32] 2(n2) §4
Constant χ O(m2/3n) [14] O(n2) §4
Minor–closed O(n3/2) [14] O(n2) §4
Constant d O(n3/2) §6 O(n2) §4
Planar O(n3/2) [14] O(n3) [9] O(n2) §4
Constant treewidth O(n) [11] O(n3) [9] O(n2) §4
Series parallel O(n) [11] O(n3) [34] O(n2) §4
Outerplanar 2 × 2 × n [18] O(n3) [9] O(n2) §4
Trees 2 × 2 × n [18] 7 × 7 × 7n [9] 4 × 4 ×

7
5 n §9

Caterpillars 2 × 2 × n [18] 2 × 2 × n §9

In Section 8 we describe an outerplanar graph that highlights the key differences
between 3D drawings and upward 3D drawings. Finally in Section 10 we study
upward layouts of graph subdivisions, and conclude with some bounds on the volume
of upward 3D polyline drawings.

2. Preliminaries

The following notation is used throughout the paper. We consider finite simple
graphs G with vertex set V(G). If G is undirected then its edge set is denoted by
E(G). If G is directed then its arc set is denoted by A(G). A vertex ordering of G is
a bijection σ : V(G) → {1, 2, . . . , n}, sometimes written as σ = (v1, v2, . . . , vn) where
σ(vi) = i. A vertex ordering σ of a directed graph G is topological if σ(v) < σ(w) for
every arc −→vw ∈ A(G). It is well known that a directed graph is acyclic if and only if it
has a topological vertex ordering.

A (vertex) c-colouring of a graph G is a partition {Vi : i ∈ I} of V(G), such that
|I| = c, and for every edge vw ∈ E(G), if v ∈ Vi and w ∈ V j then i 6= j. Each i ∈ I
is a colour, each set Vi is a colour class, and if v ∈ Vi then v is coloured i. If G has
a vertex c-colouring then G is c-colourable. The chromatic number of G, denoted by
χ(G), is the minimum integer c such that G is c-colourable.

A graph G is d-degenerate if every subgraph of G has a vertex of degree at most
d. The degeneracy of G is the minimum integer d such that G is d-degenerate. A
d-degenerate graph is (d + 1)-colourable by a greedy algorithm. For example, every
forest is 1-degenerate, every outerplanar graph is 2-degenerate, and every planar
graph is 5-degenerate. In general, a d-degenerate n-vertex graph has less than dn
edges.
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3. Arbitrary Digraphs

Cohen et al. [5] proved that every graph has a 3D drawing with O(n3) volume. The
proof generalises for upward 3D drawings as follows.

THEOREM 3.1. Every dag G on n vertices has an upward 2n × 2n × n drawing with
4n3 volume. Moreover, the bounding box of every upward 3D drawing of the complete
dag on n vertices is at least n

4 ×
n
4 × n, and thus has �(n3) volume.

Proof. Let (v1, v2, . . . , vn) be a topological vertex ordering of G. By Bertrand’s
Postulate there is a prime number p such that n < p ≤ 2n. Position each vertex vi at
(i3 mod p, i2 mod p, i). Cohen et al. [5] proved that no two arcs cross (with the x− and
z-coordinates switched). Clearly every arc is upward. The bounding box is at most
2n × 2n × n. Cohen et al. [5] observed that the bounding box in every 3D drawing
of K n is at least n

4 ×
n
4 ×

n
4 (since at most four vertices can lie in a single gridplane).

The same lower bound holds for upward 3D drawings of the n-vertex complete dag.
In addition, the height is at least n, since the complete dag contains a Hamiltonian
directed path; see Observation 4.4 below. �

4. Coloured Digraphs

Pach et al. [32] proved that every c-colourable graph has a O(c) ×O(n) ×

O(cn) drawing with O(c2n2) volume. The proof implicitly relied on the following
constructions.

LEMMA 4.1. ([32]). Let {Vi : 0 ≤ i ≤ c − 1} be a c-colouring of a graph G. Let p ≥

2c − 1 be a prime number. Place each vertex in Vi at a distinct gridpoint (i, t, it), where
t ≡ i2 mod p. Then a (crossing-free) 3D drawing of G is obtained.

LEMMA 4.2. ([32]). Let {Vi : 0 ≤ i ≤ c − 1} be a c-colouring of an n-vertex graph
G. Then G has a O(c) ×O(n) ×O(cn) drawing, such that x(v) < x(w) for all vertices
v ∈ Vi and w ∈ V j with i < j.

The result of Pach et al. [32] generalises for upward 3D drawings as follows.

THEOREM 4.3. Every n-vertex c-colourable dag G has an upward c × 4c2n × 4cn
drawing with volume O(c4n2).

Proof. Let p be a prime number with 2c − 1 ≤ p < 4c. Let {Vi : 0 ≤ i ≤ c − 1} be
a c-colouring of G. Let (v1, v2, . . . , vn) be a topological ordering of G. Position each
vertex v j ∈ Vi at (x j, y j, z j) ∈ Z3, where x j := i and y j := i · z j. It remains to compute
the z j. If v1 ∈ Vi, then set z1 := i2 mod p. Now for all j = 2, 3, . . . , n, let z j be the
integer in {z j−1 + 1, z j−1 + 2, . . . , z j−1 + p} such that z j ≡ i2 (mod p). Thus z j−1 <

z j. Hence arcs are upward, and no two vertices are mapped to the same point. By
Lemma 4.1 with the y- and z-coordinates switched, the drawing is crossing-free. Since
0 ≤ x j ≤ c − 1, the width is c. Since z j ≤ z j−1 + p, the height is at most pn ≤ 4cn.
Since y j < c · z j, the depth is less than cpn ≤ 4c2n. �
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Many dags are c-colourable, for some constant c. These include dags whose
underlying undirected graph is outerplanar, is series parallel, is planar, or more
generally, is from a proper minor-closed class, or has bounded degeneracy. Theorem
4.3 implies that all such dags have upward 3D drawings with O(n2) volume.

Pach et al. [32] proved that the compete bipartite graph Kn,n requires �(n2)

volume in every 3D drawing. Thus every acyclic orientation of Kn,n requires �(n2)

volume in every upward 3D drawing. Hence Theorem 4.3 is tight for constant c.
More generally, Bose et al. [3] proved that every 3D drawing of every n-vertex
m-edge graph has at least 1

8 (n + m) volume.

4.1. Long Paths

We have the following lower bound, since every vertex in a directed path must be
assigned a distinct z-coordinate in an upward 3D drawing.

OBSERVATION 4.4. Let G be a dag that contains a directed path on ` vertices. Then
the height of every upward 3D drawing of G is at least `.

Conversely, we have the following upper bound.

THEOREM 4.5. Every n-vertex dag G with no directed path on ` vertices, has an
upward O(`n) ×O(n) ×O(`) drawing with O(`2n2) volume.

Proof. Colour each vertex v ∈ V(G) by the number of vertices in the longest
directed path ending at v. (This is well defined since G is a dag.) The number of
colours is at most `. Consider an arc −→vw ∈ A(G) such that v is coloured i. Thus there
is an i-vertex path P ending at v. Moreover, w 6∈ P as otherwise G would contain a
directed cycle. Hence (P, −→vw) is an (i + 1)-vertex path ending at w. Thus the colour of
w is at least i + 1. In particular, we have a proper `-colouring of G. The result follows
from Lemma 4.2 with the x- and z-coordinates switched. �

Theorem 4.5 is an improvement over Theorem 4.3 whenever ` < χ(G)2.

5. Upward Track Layouts

Let {Vi : i ∈ I} be a t-colouring of a graph G. Let <i be a total order on each colour
class Vi. Then each pair (Vi, <i) is a track, and {(Vi, <i) : i ∈ I} is a t-track assignment
of G. To ease the notation we denote track assignments by {Vi : i ∈ I} when the
ordering on each colour class is implicit. An X-crossing in a track assignment consists
of two edges vw and xy such that v <i x and y < j w, for distinct colours i and j. A
t-track layout of G is a t-track assignment of G with no X-crossing. The track-number
of G, denoted by tn(G), is the minimum integer t such that G has a t-track layout.1

1 Some authors [8–10] use a slightly different definition of track layout, in which intra-track edges
are allowed between consecutive vertices in a track. In keeping with the terminology of Dujmović
et al. [11] and for consistency with the notion of an improper colouring, we call this structure an
improper track layout, and use improper track-number for the minimum number of tracks in this
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Figure 1 A 3D drawing
produced from a 6-track
layout.

Track layouts and track-number were introduced by Dujmović et al. [11] although
they are implicit in many previous works [18, 23, 26]. Track layouts and 3D drawings
are closely related, as illustrated by the following results by Dujmović et al. [11, 14].

THEOREM 5.1. ([11, 14]). Let G be an n-vertex graph with chromatic number χ(G) ≤

c and track-number tn(G) ≤ t. Then:

(a) G has a O(t) ×O(t) ×O(n) drawing with O(t2n) volume (see Figure 1), and
(b) G has a O(c) ×O(c2t) ×O(c4n) drawing with O(c7tn) volume.

Conversely, if a graph G has an X × Y × Z drawing, then G has track-number
tn(G) ≤ 2XY (and improper track-number at most XY).

The proof of Theorem 5.1(a) implicitly used the following lemma.

LEMMA 5.2. ([11]). Let {(Vi, <i) : 1 ≤ i ≤ t} be a t-track layout of a graph G. Let p >

t be a prime number. Let d v be an integer for each vertex v ∈ V(G), such that d v < dw

for all vertices v, w ∈ Vi with v <i w. If each vertex v is placed at (i, i2 mod p, p · d v +

i3 mod p), then we obtain a (crossing-free) 3D drawing of G.

Di Giacomo et al. [9] extended the definition of track layouts to dags as follows.2

An upward track layout of a dag G is a track layout of the underlying undirected
graph of G, such that if G+ is the directed graph obtained from G by adding an arc
from each vertex v to the successor vertex in the track that contains v (if it exists),
then G+ is still acyclic. The upward track-number of G, denoted by utn(G), is the
minimum integer t such that G has an upward t-track layout. Di Giacomo et al. [9]
observed that the following analogue of Theorem 5.1(a) follows from Lemma 5.2 by
Dujmović et al. [11].

THEOREM 5.3. ([9, 11]). Let G be an n-vertex graph with upward track-number
utn(G) ≤ t. Then G has an upward O(t) ×O(t) ×O(tn) drawing with O(t3n) volume.

setting. The improper track-number is at most the track-number, and the track-number is at most
twice the improper track-number [11]. Moreover, for every graph class G that includes all series
parallel graphs, every graph in G has track-number at most some constant t if and only if every graph
in G has improper track-number at most t [11].
2 Di Giacomo et al. [9] allow intra-track arcs in their definition of upward track layout.
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Conversely, if a dag G has an upward X × Y × Z drawing then G has upward track-
number utn(G) ≤ 2XY (and improper upward track-number at most XY).

Proof. Let p be a prime number with t < p ≤ 2t. For each vertex v ∈ V(G), let d v

be the maximum number of vertices in a directed path in G+ that ends at v. Since
each track induces a directed path in G+, we have d v < dw for all vertices v and w

with v < w in a single track. For each vertex v in the i-th track, position v at (i, i2

mod p, p · d v + i3 mod p). Draw the arcs straight. By Lemma 5.2, we obtain a
crossing-free drawing. As in Theorem 4.5, d v < dw for every arc −→vw ∈ A(G). Thus
the drawing is upward. The claimed volume bound holds since d v ≤ n. The converse
results are proved in the same way as the converse results in Theorem 5.1. �

For small values of t, the constants in Theorem 5.3 can be greatly improved.

LEMMA 5.4. Every n-vertex dag G that has an upward 3-track layout {V1, V2, V3} has
an upward 2 × 2 × n drawing with 4n volume.

Proof. Put the i-th vertex v in a topological ordering of G+ at (0, 0, i) if v ∈ V1, at
(1, 0, i) if v ∈ V2, and at (0, 1, i) if v ∈ V3. Draw each arc straight. Clearly we obtain
an upward crossing-free drawing of G. �

LEMMA 5.5. Every n-vertex dag G that has an upward 4-track layout {V1, V2, V3, V4}

has an upward 2 × 2 × 2n drawing with 8n volume.

Proof. Put the i-th vertex v in a topological ordering of G+ at (0, 0, 2i) if v ∈ V1, at
(1, 0, 2i) if v ∈ V2, at (0, 1, 2i) if v ∈ V3, and at (1, 1, 2i − 1) if v ∈ V4. Draw each arc
straight. Every arc is upward, and the bounding box is at most 2 × 2 × 2n. Dujmović
and Wood [15, Lemma 36] proved that no two edges cross. �

LEMMA 5.6. Every n-vertex dag G that has an upward 5-track layout {V1, V2, V3,

V4, V5} has an upward 4 × 4 ×
7
5 n drawing with volume 22.4n.

Proof. Without loss of generality, |V3| + |V5| ≤
2
5 n. Clearly we can assign distinct

z-coordinates to the vertices such that

• z(v) < z(w) for every arc −→vw ∈ A(G),
• z(v) is odd for every vertex v ∈ V3,
• z(v) is even for every vertex v ∈ V5, and
• 1 ≤ z(v) ≤ n + |V3| + |V5| ≤

7
5 n for every vertex v ∈ V(G).

As illustrated in Figure 2, put each vertex v at (1, 1, z(v)) if v∈V1, at (2, 3, z(v)) if
v∈V2, at (2, 4, z(v)) if v∈V3, at (3, 2, z(v)) if v ∈ V4, and at (4, 2, z(v)) if v ∈ V5. Draw
each arc straight. Every arc is upward, and the bounding box is at most 4 × 4 ×

7
5 n.

Suppose that edges vw and pq cross. Since there is no X-crossing in the track layout,
vw and pq do not run between the same pair of tracks. The projection of the
drawing onto the xy-plane is a subgraph of K5 drawn with one crossing at ( 8

3 , 8
3 ). The

crossing is between the pairs of tracks V2V5 and V3V4. Thus without loss of generality
v ∈ V2, w ∈ V5, p ∈ V3, and q ∈ V4. Now vw and pq intersect the line {( 8

3 , 8
3 , t) :

t ∈ R}, respectively, at ( 8
3 , 8

3 , 1
3 (2z(v) + z(w))) and ( 8

3 , 8
3 , 1

3 (2z(q) + z(p))). Thus
2z(v) + z(w) = 2z(q) + z(p). This is a contradiction since z(w) is even and z(p) is
odd. Hence the drawing is crossing-free. �
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Figure 2 Construction of a 3D
drawing from a 5-track layout.

6. Strong Star Colourings

Dujmović and Wood [14] defined a vertex colouring to be a strong star colouring if
between each pair of colour classes, all edges (if any) are incident to a single vertex.
That is, each bichromatic subgraph consists of a star and possibly some isolated
vertices. The strong star chromatic number of a graph G, denoted by χsst(G), is the
minimum number of colours in a strong star colouring of G. Star colourings, in which
each bichromatic subgraph is a star forest, have also been studied; see [1, 19, 31] for
example.

With an arbitrary order of each colour class in a strong star colouring, there is no
X-crossing. Thus track-number tn(G) ≤ χsst(G), as observed by Dujmović and Wood
[14]. Moreover, for a dag, each track can be ordered by a topological vertex ordering,
to obtain an upward track layout. Thus utn(G) ≤ χsst(G), as observed by Di Giacomo
et al. [9].

Dujmović and Wood [14] proved that χsst(G) ≤ 14
√

1m and χsst(G) ≤ 15m2/3 for
every graph G with maximum degree 1 and m edges.3 In what follows we improve
these bounds, by essentially replacing 1 by the weaker notion of degeneracy. The
following concept will be useful. A colouring is harmonious if every bichromatic
subgraph has at most one edge; see [16]. The harmonious chromatic number of G,
denoted by h(G), is the minimum number of colours in a harmonious colouring of G.
Edwards and McDiarmid [17] proved the following upper bound on h(G).

LEMMA 6.1. ([17]). Let G be a d-degenerate graph with m edges and maximum degree
1. Then G has harmonious chromatic number h(G) ≤ 2

√
2dm + (2d − 1)1.

3 Patrice Ossona de Mendez [personal communication] and Jéan-Sebastien Sereni and Stéphan
Thomassé [personal communication] independently observed that if H is the graph consisting of
k copies of Kk (which has m = 2(k 3) edges), then χsst(H) = 2(k 2) = 2(m2/3). Thus the general
upper bound χsst(G) ≤ O(m2/3) is best possible.
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Lemma 6.1 implies the following upper bound on the strong star chromatic
number.

LEMMA 6.2. Let G be a d-degenerate graph G with m edges. Then the strong star
chromatic number of G satisfies χsst(G) ≤ 5

√
2dm and χsst(G) ≤ (4 + 2

√
2)m2/3.

Proof. For the first bound, let A be the set of vertices of G with degree at least√
2m/d. Then |A| ≤

√
2dm. Now G \ A has maximum degree at most

√
2m/d. Thus

h(G \ A) ≤ 2
√

2dm + (2d − 1)
√

2m/d < 4
√

2dm by Lemma 6.1. Using one colour for
each vertex in A, we obtain a strong star colouring of G with 5

√
2dm colours. The

second proof is similar, where A is the set of vertices with degree at least m1/3. �

Since tn(G) ≤ χsst(G) and utn(G) ≤ χsst(G) we have the following corollary of
Lemma 6.2.

COROLLARY 6.3. Let G be a d-degenerate graph with n vertices and m edges. Then
the track-number of G satisfies tn(G) ≤ 5

√
2dm < 5d

√
2n and tn(G) ≤ (4 + 2

√
2)m2/3.

The same bounds hold for the upward track-number of every acyclic orientation of G.

Corollary 6.3 does not give better bounds on the volume of upward 3D drawings
than Theorem 4.3 because of the cubic dependence on the upward track-number
in Theorem 5.3. However, for 3D drawings of undirected graphs, Theorem 5.1 and
Corollary 6.3 imply the following.

THEOREM 6.4. Let G be an n-vertex graph with degeneracy d. Then G has
O(

√
dm) ×O(

√
dm) ×O(n) drawing with O(dnm) volume. If d is bounded, then G

has a O(1) ×O(
√

n) ×O(n) drawing with O(n3/2) volume.

A number of notes on Theorem 6.4 are in order.

• The above-mentioned bounds on the strong star chromatic number due to
Dujmović and Wood [14] were non-constructive (since the proof was based
on the Lovász Local Lemma). On the other hand, the proof of Lemma 6.1
is deterministic, and is easily seen to lead to polynomial time algorithms for
computing the colouring in Lemma 6.2 and the drawing in Theorem 6.4.

• TheO(dnm) volume bound in Theorem 6.4 represents a qualitative improvement
over the best previous comparable bound of O(1nm) in [14].

• Proper minor-closed graph families were the largest class of graphs for which a
O(n3/2) volume bound was previously known [14]. The second part of Theorem
6.4 is strictly stronger, since there are graph classes with bounded degeneracy but
with unbounded clique minors. For example, the graph K′

n obtained from K n by
subdividing every edge once has degeneracy 2, yet contains a K n minor.

It is unknown what is the best possible bound on the track-number of graphs with
bounded degeneracy. The graph K′

n seems to be an important example.

PROPOSITION 6.5. tn(K′
n) = 2(n2/3).

Proof. First we prove the lower bound. Say K′
n has a t-track layout. Some track

contains a set S of at least p := dn/te ‘original’ vertices of K n. We can assume that p
is even. Say S is ordered v1, v2, . . . , vp in this track. Let T be the set of edges viv j of K n
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Figure 3 Construction of a track layout of K′
n.

such that 1 ≤ i ≤ p/2 < j ≤ p. Observe that |T| = p2/4. For all edges e and f in T,
the division vertex of K′

n that corresponds to e and f cannot be on the same track, as
otherwise there will be an X-crossing. Thus the number of tracks t ≥ |T| ≥ (n/t)2/4.
Hence t ≥ (n/2)2/3.

Now we prove the upper bound. We can suppose that p := n1/3 is an integer. Par-
tition the original vertices of K′

n into p2 sets, each with p vertices. Place each set in its
own track. Let vi,k be the k-th original vertex in the i-th track (1 ≤ i ≤ p2, 1 ≤ k ≤ p).
For each such k, let Sk := {vi,k : 1 ≤ i ≤ p2

}. It remains to place the division vertices.
As illustrated in Figure 3(a), the division vertices that correspond to edges with both
endpoints in some Sk are placed in one track ordered by increasing k. Since every
vertex in each Sk is in a distinct track, there is no X-crossing. For all 1 ≤ k < ` ≤ p,
let Tk,` be the set {vi,kv j,` : 1 ≤ i, j ≤ p2

} of edges of K n. Place the division vertices of
the edges in Tk,` on two tracks as follows. Let Ak,` := {vi,kv j,` ∈ Tk,` : 1 ≤ i ≤ j ≤ p2

}

and Bk,` := {vi,kv j,` ∈ Tk,` : 1 ≤ j < i ≤ p2
}. As illustrated in Figure 3(b), the division

vertices that correspond to the edges in Ak,` are placed on one track ordered by
non-increasing i, breaking ties by decreasing j. The division vertices that correspond
to the edges in Bk,` are placed on one track ordered by non-decreasing j, breaking
ties by increasing i. It is easily seen that there is no X-crossing. In total we have
p2

+ 1 + 2
(p

2

)
∼ 2p2

∼ 2n2/3 tracks. (Note that the constant in this upper bound can
be improved by combining tracks Ak,` and A k ′,`′ when k < ` < k ′ < `′; we omit the
details.) �

7. Upward Queue Layouts

A k-queue layout of a graph G consists of a vertex ordering σ of G, and a partition
{E1,E2,. . . ,Ek} of E(G), such that no two edges in each Ei are nested in σ . That is,
for all edges vw, xy ∈ Ei, we do not have σ(v) < σ(x) < σ(y) < σ(w). The queue-
number of G, denoted by qn(G), is the minimum integer k such that G has a k-queue
layout. Queue layouts were introduced by Heath et al. [23, 26]; see [13] for references
and results.

Heath et al. [24, 25] extended the definition of queue layouts to dags as follows.
An upward k-queue layout of a dag G is a k-queue layout of the underlying undirected
graph of G such that the vertex ordering σ is topological. For example, every tree has
a 1-queue layout [26], and every tree dag has an upward 2-queue layout [25]. The
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upward queue-number of G, denoted by uqn(G), is the minimum integer k such that
G has an upward k-queue layout.

Consider a vertex colouring {Vi : i ∈ Z} of a graph G in which the colours are
integers. An edge vw ∈ E(G) with v ∈ Vi and w ∈ V j has span | j − i|. This definition
naturally extends to track layouts {(Vi, <i) : i ∈ Z}. Let (. . . , V−1, V0, V1, . . . ) denote
the vertex ordering σ in which σ(v) < σ(w) whenever v ∈ Vi and w ∈ V j for some
i < j, or v <i w within some Vi. Dujmović et al. [12, Lemma 19] proved a charac-
terisation of 1-queue graphs in terms of track layouts with span 2 that immediately
generalises for upward 1-queue layouts as follows.

LEMMA 7.1. A dag G has an upward 1-queue layout if and only if G has a track
layout {Vi : i ∈ Z}, such that for every arc −→vw ∈ A(G) with v ∈ Vi and w ∈ V j, we have
i < j ≤ i + 2, and if j = i + 2 then w is the first vertex in V j, and there is no arc −→xy
with v < x ∈ Vi and y ∈ Vi+1. In particular, (. . . , V−1, V0, V1, . . . ) defines an upward
1-queue layout of G.

An important technique for ‘wrapping’ an undirected track layout is generalised
for a particular type of upward track layout as follows.

LEMMA 7.2. Let {Vi : i ∈ Z} be a track layout of a dag G, such that for every arc
−→vw ∈ A(G) with v ∈ Vi and w ∈ V j, we have i < j ≤ i + s.

(a) Then {Vi : i ∈ Z} is an upward track layout.
(b) The vertex ordering σ = (. . . , V−1, V0, V1, . . . ) defines an upward s-queue layout

of G, and G has upward queue-number uqn(G) ≤ s.
(c) For each 0 ≤ i ≤ 2s, define

Wi := (. . . , Vi−2(2s+1), Vi−(2s+1), Vi, Vi+2s+1, Vi+2(2s+1), . . . ).

Then {W0, W1, . . . , W2 s} is an upward (2s + 1)-track layout of G, and G has
upward track-number utn(G) ≤ 2s + 1.

Proof. Observe that σ is a topological ordering of G+. Thus G+ is acyclic, and {Vi :

i ∈ Z} is an upward track layout. This proves (a). Now we prove (b). Two arcs with the
same span are not nested in σ [11, 26]. Thus we can partition the arcs into s queues in
σ according to their span. Now we prove (c). The track assignment {W0, W1, . . . , W2 s}

is upward since the corresponding graph G+ is acyclic. Dujmović et al. [11, Lemma
3.4] proved that there is no X-crossing in {W0, W1, . . . , W2 s}. �

A (k,t)-track layout of a graph G is a t-track assignment of G in which every edge
is assigned one of k colours, such that there is no monochromatic X-crossing. By
tnk(G) we denote the minimum integer t such that G has a (k, t)-track layout. Thus
tn(G) = tn1(G). These definitions immediately generalise to the setting of upward
(k, t)-track layouts.

Dujmović et al. [12] proved that queue-number and track-number are tied, in
the sense that there is a function f such that for every graph G, we have tn(G) ≤

f (qn(G)) and qn(G) ≤ f (tn(G)). In one direction the proof is easy. Given a (k, t)-
track layout {V1, V2, . . . , Vt} of G, Dujmović et al. [12] proved that the vertex order-
ing (V1, V2, . . . , Vt) admits a k(t − 1)-queue layout, and thus qn(G) ≤ k(tnk(G) − 1).
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Di Giacomo et al. [9] proved the case k = 1 of the following analogous relationship
between upward track-number and upward queue-number.

LEMMA 7.3. For all k ≥ 1 and for every graph G, uqn(G) ≤ k ·

(
utnk(G )

2

)
.

Proof. Let σ be a topological ordering of G+ (defined with respect to a given (k, t)-
track layout). Thus the order of each track is preserved in σ . Monochromatic arcs
between each pair of tracks form a queue in σ [12, Lemma 14]. �

LEMMA 7.4. Upward track-number is bounded by upward queue-number. In partic-
ular, every dag G with upward queue-number uqn(G) ≤ q has upward track-number
utn(G) ≤ 4q · 4q(2q−1)(4q−1).

Proof. Dujmović et al. [12, Theorem 8] proved that every (undirected) graph G
with queue-number qn(G) ≤ q has track-number tn(G) ≤ 4q · 4q(2q−1)(4q−1). In the
proof, the ordering of V(G) in the given q-queue layout is preserved in every track of
the track layout. Thus the result also holds for upward track-number. �

Lemmas 7.3 and 7.4 imply the following theorem.

THEOREM 7.5. Upward track-number and upward queue-number are tied.

8. An Example

As illustrated in Figure 4, let Gn be the dag with vertex set {ui : 1 ≤ i ≤ 2n} and arc
set {

−−−→uiui+1 : 1 ≤ i ≤ 2n − 1} ∪ {
−−−−−→uiu2n−i+1 : 1 ≤ i ≤ n}.

Observe that Gn is outerplanar and has a Hamiltonian directed path (u1, u2,

. . . , u2n). Thus (u1, u2, . . . , u2n) is the only topological ordering of Gn, in which
the edges {uiu2n−i+1 : 1 ≤ i ≤ n} are pairwise nested. Thus uqn(Gn) ≥ n; it is easily
seen that in fact uqn(Gn) = n. These observations were made by Heath et al. [25].
Theorem 7.5 implies that Gn has unbounded upward track-number. Di Giacomo
et al. [9] proved the same result with the stronger bound of utn(Gn) ≥

√
2n, which

follows from Lemma 7.3 with k = 1 and since uqn(Gn) ≥ n. An upper bound of
utn(Gn) ≤ O(

√
n) follows from Corollary 6.3 (and since Gn has bounded degree,

from the earlier bounds on track-number in [14]). Di Giacomo et al. [9] gave an
elegant construction of an improper O(

√
n)-track layout of Gn. Suppose that Gn has

an upward X × Y × Z drawing. Then Z ≥ 2n by Observation 4.4. The second part
of Theorem 5.3 implies that 2XY ≥ utn(Gn) ≥

√
2n. Hence the volume is �(n3/2), as

proved by Di Giacomo et al. [9].

Figure 4 Illustration of G5.
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This example highlights a substantial difference between 3D drawings of undi-
rected graphs and upward 3D drawings of dags, since every (undirected) outerplanar
graph has a 3D drawing with linear volume [18]. In the full version of their paper,
Di Giacomo et al. [9] constructed an upward 3D drawing of Gn with O(n3/2) volume.
It is unknown whether every n-vertex outerplanar dag has an upward 3D drawing
with O(n3/2) volume.

9. Upward Layouts of Trees

A caterpillar is a tree, such that deleting the leaves gives a path (called the spine).
A graph has a 2-track layout if and only if it is a caterpillar forest [21]. Felsner et al.
[18] proved that every tree has a 3-track layout. Using this result, Di Giacomo et al.
[9] proved that every tree dag has an upward 7-track layout, and that there exist tree
dags with no upward 3-track layout. We improve this upper bound as follows.

THEOREM 9.1. Every tree dag has an upward 5-track layout.

Theorem 9.1 follows from Lemma 7.2(c) with s = 2 and the following lemma.
Similarly, Lemma 7.2(b) with s = 2 and following lemma imply that every tree dag
has upward queue-number at most 2, as proved by Heath et al. [25].

LEMMA 9.2. Every tree dag T has a track layout {Vi : i ∈ Z}, such that for every arc
−→vw ∈ A(T) with v ∈ Vi and w ∈ V j, we have i < j ≤ i + 2.

Proof. Choose an arbitrary vertex r of T. Consider a vertex v. The distance d(v)

is the distance between v and r in the underlying undirected tree of T. Let a(v) be
the number of arcs on the path from v to r that are directed toward r. Let b(v) be
the number of arcs on the path from v to r that are directed away from r. Thus
d(v) = a(v) + b(v). As illustrated in Figure 5, put v in track V2b(v)−a(v). Within each
track the vertices are ordered in non-decreasing order of distance from r. It remains

Figure 5 An upward track layout of a tree dag with span 2.
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to order the vertices in a single track at the same distance. We do so inductively
by increasing distance. Suppose the vertices at distance at most d − 1 are ordered.
Consider two vertices v1, v2 in the same track and at distance d. Let w1, w2 be their
respective parent vertices at distance d − 1. If w1 < w2 in the same track, then place
v1 < v2. If w1 and w2 are in different tracks, then the relative order of v1 and v2 is
irrelevant. This completes the construction.

Consider an arc −→vw ∈ A(T) with v ∈ Vi and w ∈ V j. First suppose that −→vw is
directed toward r. Then b(w) = b(v) and a(v) = a(w) + 1. Thus j = i + 1 and −→vw

has span 1. Now suppose that −→vw is directed away from r. Then a(w) = a(v) and
b(w) = b(v) + 1. Thus j = i + 2 and −→vw has span 2. It remains to prove that there
is no X-crossing. Consider arcs −→vw and −→xy between the same pair of tracks. Thus
both arcs have the same span. First suppose their span is 1. Thus both −→vw and −→xy
are directed towards r. Hence d(v) = d(w) + 1 and d(x) = d(y) + 1. Without loss
of generality v < x in their track. By construction d(v) ≤ d(w). If d(v) < d(x) then
d(w) < d(y), and w < y in their track since tracks are ordered by non-decreasing
distance. If d(v) = d(x) then d(w) = d(y), and by construction w < y in their track.
In both cases, the arcs do not form an X-crossing. If −→vw and −→xy have span 2, then both
−→vw and −→xy are directed away from r, and an analogous argument proves that the arcs
do not form an X-crossing. �

Di Giacomo et al. [9] proved that every tree dag has an upward 7 × 7 × 7n drawing.
Lemma 5.6 and Theorem 9.1 imply the following improved bound.

THEOREM 9.3. Every n-vertex tree dag has an upward 4 × 4 ×
7
5 n drawing.

The next result generalises and improves upon the result of Di Giacomo et al. [9]
that every directed path has an improper upward 3-track layout.

THEOREM 9.4. Every caterpillar dag has an upward 3-track layout and an upward
1-queue layout.

Theorem 9.4 follows from the following lemma and Lemma 7.2 with s = 1.

LEMMA 9.5. Every caterpillar dag C has a track layout {Vi : i ∈ Z} such that for every
arc −→vw ∈ A(C), if v ∈ Vi then w ∈ Vi+1.

Figure 6 An upward track layout of a caterpillar dag with span 1.
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Proof. Let P = (v1, v2, . . . , vn) be the spine of C. Put v1 in track V0. For j =

2, 3, . . . , n, place v j as follows. Say v j−1 ∈ Vi. If −−−→v j−1v j ∈ A(P) then put v j rightmost
in track Vi+1. Otherwise −−−→v jv j−1 ∈ A(P), in which case put v j rightmost in track Vi−1.
Clearly {Vi : i ∈ Z} is a track layout of P. Consider a leaf vertex w adjacent to v j ∈ Vi.
If −→wv j ∈ A(C) then put w in Vi−1. Otherwise −→v jw ∈ A(C), in which case put w in Vi+1.
Order each track as shown in Figure 6. Clearly {Vi : i ∈ Z} is a track layout of C. �

Note the converse result.

PROPOSITION 9.6. Suppose that every orientation of a tree T has an upward track
layout {Vi : i ∈ Z} such that for every arc −→vw, if v ∈ Vi then w ∈ Vi+1. Then T is a
caterpillar.

Proof. Suppose that T is a tree that is not a caterpillar, and every orientation of
T has the desired track layout. Then T contains a 2-claw [21], which is the tree with
vertices r, u, v, w, x, y, z and edges ru, rv, rw, ux, vy, wz. Orient the edges −→ru,

−→rv ,
−→rw,

−→xu,
−→yv,

−→zw. Then this directed 2-claw has the desired upward track layout. Say r ∈ Vi.
Then u, v, w ∈ Vi+1 and x, y, z ∈ Vi. Without loss of generality, v is between u and
w in Vi+1. Thus −→yv forms an X-crossing with either −→ru or −→rw, which is the desired
contradiction. �

Lemma 5.4 and Theorem 9.4 imply the following.

COROLLARY 9.7. Every n-vertex caterpillar dag has a 2 × 2 × n upward 3D
drawing.

10. Upward Layouts of Subdivisions

A subdivision of a graph G is a graph obtained from G by replacing each edge vw ∈

E(G) by a path with endpoints v and w. Each vertex of G is called an original vertex
of the subdivision. Dujmović and Wood [15] proved that every graph G has a 2-queue
subdivision with O(log qn(G)) division vertices per edge, and that this bound is best
possible. We now prove a similar result for upward queue layouts. A subdivision of
a dag G is a graph obtained from G by replacing each arc −→vw ∈ A(G) by a path from
v to w.

Let σ be a vertex ordering of a graph G. The bandwidth of σ is

max{|σ(w) − σ(v)| : vw ∈ E(G)}.

The bandwidth of G is the minimum bandwidth of a vertex ordering of G. The
directed bandwidth of a dag G is the minimum bandwidth of a topological vertex
ordering of G.

THEOREM 10.1. Every dag G with directed bandwidth b has an upward 2-queue
subdivision with at most 1

2 (b − 1) division vertices per edge.
Proof. Let (v1, v2, . . . , vn) be a topological ordering of G with bandwidth b .

Consider each arc −→viv j ∈ A(G). If j − i is even, then replace −→viv j by the directed path

(vi, x(i, j, i + 2), x(i, j, i + 4), . . . , x(i, j, j − 4), x(i, j, j − 2), v j)
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Figure 7 (2, n)-track layout in the proof of Theorem 10.1.

with 1
2 ( j − i − 2) division vertices. If j = i + 1 then −→viv j is not subdivided. If

j − i is odd and j − i ≥ 3, then replace −→viv j by the directed path

(vi, x(i, j, i + 1), x(i, j, i + 3), . . . , x(i, j, j − 4), x(i, j, j − 2), v j)

with 1
2 ( j − i − 1) division vertices.

First we construct an upward (2, n)-track layout of this subdivision of G. Place
each vertex vi leftmost in track Vi. Position every vertex x(i, j, `) in track V`. It
remains to order the vertices within each track. Observe that V1 = {v1}. Order V2

arbitrarily (with v2 leftmost). Now order V3, then V4, and so on up to Vn = {vn}. In
track V`, except for the original vertex v`, each vertex has exactly one neighbour
in ∪{Vi : 1 ≤ i < `}. Thus we can order V` with v` leftmost, so that no two edges
incident to vertices in V` \ {v`} form an X-crossing. The only possible X-crossing
involves an edge incident to v`. Thus we can colour all arcs −−−→vivi+1,

−−−−−−−−−→
vix(i, j, i + 1),

and
−−−−−−−−−−→
x(i, `, ` − 2)v` green, colour all other arcs blue, and there is no monochromatic

X-crossing. Hence we have a (2, n)-track layout as illustrated in Figure 7.
Observe that the green arcs satisfy Lemma 7.1. Thus the green arcs form a single

queue in the vertex ordering σ :=(V1,V2,. . . ,Vn). Every blue arc has span 2. Thus, as
in Lemma 7.2(b), the blue arcs form a single queue in σ . Hence σ admits an upward
2-queue layout of the subdivision of G. �

Dujmović and Wood [15] proved that every graph has a 4-track subdivision with
O(log qn(G)) division vertices per edge, and that this bound is best possible. We have
the following similar result for upward track layouts.

THEOREM 10.2. Every dag G with directed bandwidth b has an upward 4-track
subdivision with at most bdivision vertices per arc.
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Figure 8 Track layouts in the proof of Theorem 10.2.

Proof. The proof proceeds in three steps. First,we construct an upward(2,n)-track
layout of a subdivisionG′ ofGthat has at most b −1 division vertices per arc. Second,
we construct an upward (n + 1)-track layout of a subdivision G′′ of G that has at most
b division vertices per arc. Finally, we wrap n of the tracks into three tracks, to obtain
an upward 4-track layout of G′′.

Let (v0, v1, . . . , vn−1) be a topological ordering of G with bandwidth b . Let G′ be
the subdivision of G obtained by replacing each arc −→viv j ∈ A(G) for which j ≥ i + 2
by the directed path

(vi, x(i, j, i + 1), x(i, j, i + 2), . . . , x(i, j, j − 1), v j).

Note that G′ has at most b − 1 division vertices per arc. Let g(i, j) denote the final
arc (x(i, j, i − 1), v j) in each such path. Colour g(i, j) green, and colour the remaining
arcs in G′ blue (including the non-subdivided arcs −−−→vivi+1).

As illustrated in Figure 8(b), create a (2, n)-track layout of G′ as follows. Place
each original vertex v` leftmost in track V` followed by the division vertices x(i, j, `)
for all arcs −→viv j ∈ A(G) with i < ` < j. Order the division vertices in V` by non-
increasing i, breaking ties by increasing j. Clearly no two monochromatic edges form
an X-crossing.
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Order the green arcs g(i, j) by non-decreasing j, breaking ties by decreasing i.
Let π be the total order obtained. Consider two green arcs g1 and g2 with g1 <π g2.
Observe that if g1 has an endpoint p in the same track as an endpoint q of g2, then
p ≤ q in this track. Call this property (?).

For every arc −→viv j ∈ A(G) with j ≥ i + 2, subdivide the green arc g(i, j) once to
obtain a subdivision G′′ of G with at most b division vertices per arc. Denote the
division vertex by y(i, j). As illustrated in Figure 8(c), place all the vertices y(i, j) in
a new track Y ordered by π . By property (?), we obtain an (n + 1)-track layout of G′′

with no X-crossing.
Now {V1,V2,. . . ,Vn} is an upward track layout of the subgraph ofG′′ consisting

of the blue arcs, all of which have span 2. By Lemma 7.2(c), {V1,V2,. . . ,Vn} can be
wrapped into an upward 3-track layout {X 0,X1,X2}, where Xi = (Vi, Vi+3, Vi+4, . . . ).
Observe that property (?) is maintained. Hence {X 0, X1, X2, Y} is a 4-track layout of
G′′. To see that {X 0,X1,X2,Y} is upward, think of the y(i, j) vertices as being in the
middle of the corresponding green arcs in Figure 8(b); then all the arcs in (G′′)+ point
up or to the right. Thus (G′′)+ is acyclic, and {X 0, X1, X2, Y} is an upward 4-track
layout of G′′. �

Theorems 10.1 and 10.2 are best possible in the sense that every subdivision
H of a non-planar dag has uqn(H) ≥ 2 and utn(H) ≥ 4 (since 1-queue graphs and
3-track graphs are planar, and subdividing edges preserves planarity). In the undi-
rected case, Dujmović and Wood [15] proved that planarity characterises those
graphs with 1-queue or 3-track subdivisions. That is, a graph G is planar if and only
if G has a 1-queue subdivision if and only if G has a 3-track subdivision. While we
have not found such a characterisation for upward layouts, the proof of sufficiency
by Dujmović and Wood [15, Lemma 32] generalises as follows. A dag G is upward
planar if G has a crossing-free drawing in the plane, such that every arc −→vw∈ A(G) is
represented by a y-monotone curve with y(v) < y(w).

PROPOSITION 10.3. Every upward planar dag G has a subdivision that admits an
upward 1-queue layout and an upward 3-track layout.

Proof. Given an upward planar drawing of G, draw a horizontal line through every
vertex. Now subdivide every edge whenever it crosses such a horizontal line. We
obtain an upward track layout with span 1, which by Lemma 7.1 has an upward
1-queue layout and an upward 3-track layout. �

10.1. Upward Polyline Drawings

A b-bend 3D drawing of a graph G is a 3D drawing of a subdivision of G with at most
b division vertices per edge. Lemma 5.5 and Theorem 10.2 imply the following result.

COROLLARY 10.4. Let G be an n-vertex m-arc dag with directed bandwidth b. Then
G has an upward b-bend 2 × 2 × (n + bm) drawing.

The following theorem is a generalisation of a result by Dujmović and Wood [15].

THEOREM 10.5. Every n-vertex dag G with upward queue-number uqn(G) ≤ k has
an upward 2-bend 2k × 2 × 2n drawing.
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Proof. Let (v1, v2, . . . , vn) be a topological vertex ordering of G that admits
an upward k-queue layout. Number the queues 0, 1, . . . , k − 1. Put each vertex vi

at (0, 0, 2i). Draw each arc −−−→vivi+1 straight. For all j ≥ i + 2, draw each arc −→viv j

in queue ` with the 2-bend polyline (0, 0, 2i) → (2 `, 1, i + j) → (2 ` + 1, 1, i + j +
1) → (0, 0, 2 j). Since 2i < i + j < i + j + 1 < 2 j, the drawing is upward. No two arcs
cross [15, Theorem 26]. �

It follows from results of Heath and Rosenberg [26] that the upward queue-
number of every n-vertex graph is at most b

n
2 c (which is tight for the complete dag).

Thus we have the following corollary of Theorem 10.5.

COROLLARY 10.6. Every n-vertex dag G has an upward 2-bend n × 2 × 2n drawing
with volume 4n2.

Acknowledgement Thanks to both referees for many helpful suggestions.

References

1. Albertson, M.O., Chappell, G.G., Kierstead, H.A., Kündgen, A., Ramamurthi, R.: Coloring with
no 2-colored P4’s. Electron. J. Combin. 11 #R26 (2004)

2. Bertolazzi, P., Di Battista, G., Mannino, C., Tamassia, R.: Optimal upward planarity testing of
single-source digraphs. SIAM J. Comput. 27(1), 132–169 (1998)

3. Bose, P., Czyzowicz, J., Morin, P., Wood, D.R.: The maximum number of edges in a three-
dimensional grid-drawing. J. Graph Algorithms Appl. 8(1), 21–26 (2004)

4. Calamoneri, T., Sterbini, A.: 3D straight-line grid drawing of 4-colorable graphs. Inf. Process.
Lett. 63(2), 97–102 (1997)

5. Cohen, R.F., Eades, P., Lin, T., Ruskey, F.: Three-dimensional graph drawing. Algorithmica
17(2), 199–208 (1996)

6. Devillers, O., Everett, H., Lazard, S., Pentcheva, M., Wismath, S.: Drawing K n in three dimen-
sions with one bend per edge. In: Healy, P., Nikolov, N.S. (eds.) Proc. 13th International Symp. on
Graph Drawing (GD ’05). Lecture Notes in Comput. Sci., vol. 3843, pp. 83–88. Springer, Berlin
Heidelberg New York (2006)

7. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visual-
ization of Graphs. Prentice-Hall, Englewood Cliffs, NJ (1999)

8. Di Giacomo, E., Liotta, G., Meijer, H.: Computing straight-line 3D grid drawings of graphs in
linear volume. Comput. Geom. 32(1), 26–58 (2005)

9. Di Giacomo, E., Liotta, G., Meijer, H., Wismath, S.K.: Volume requirements of 3D upward
drawings. In: Healy, P., Nikolov, N.S. (eds) Proc. 13th International Symp. on Graph Drawing
(GD ’05). Lecture Notes in Comput. Sci., vol. 3843, pp. 101–110. Springer, Berlin Heidelberg
New York (2006)

10. Di Giacomo, E., Meijer, H.: Track drawings of graphs with constant queue number. In: Liotta,
G. (ed.) Proc. 11th International Symp. on Graph Drawing (GD ’03). Lecture Notes in Comput.
Sci., vol. 2912, pp. 214–225. Springer, Berlin Heidelberg New York (2004)
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