
Contemporary Mathematics

Three-Dimensional Grid Drawings
with Sub-Quadratic Volume

Vida Dujmović and David R. Wood

Abstract. A three-dimensional grid drawing of a graph is a placement of

the vertices at distinct points with integer coordinates, such that the straight
line-segments representing the edges are pairwise non-crossing. A O(n3/2)
volume bound is proved for three-dimensional grid drawings of graphs with

bounded degree, graphs with bounded genus, and graphs with no bounded
complete graph as a minor. The previous best bound for these graph families

was O(n2). These results (partially) solve open problems due to Pach, Thiele,

and Tóth (1997) and Felsner, Liotta, and Wismath (2001).

1. Introduction

A three-dimensional straight-line grid drawing of a graph, henceforth called a
3D drawing, is a placement of the vertices at distinct points in Z3 (called grid-
points), such that the straight line-segments representing the edges are pairwise
non-crossing. That is, distinct edges only intersect at common endpoints, and each
edge only intersects a vertex that is an endpoint of that edge. In contrast to the
case in the plane, it is well known that every graph has a 3D drawing. We are
therefore interested in optimising certain measures of the aesthetic quality of such
drawings.

The bounding box of a 3D drawing is the minimum axis-aligned box containing
the drawing. If the bounding box has side lengths X − 1, Y − 1 and Z − 1, then
we speak of an X × Y × Z drawing with volume X · Y · Z. That is, the volume
of a 3D drawing is the number of gridpoints in the bounding box. This definition
is formulated so that 2D drawings have positive volume. We are interested in
3D drawings with small volume, which is a widely studied problem [3, 4, 5, 6,
9, 10, 11, 14, 24, 25, 27]. Three-dimensional graph drawings in which the
vertices are allowed real coordinates have also been studied (see the references in
[10]). The authors have also established bounds on the volume of three-dimensional
polyline grid drawings, where bends in the edges are also at gridpoints [10]. Table 1
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summarises the best known upper bounds on the volume of 3D drawings, including
those established in this paper.

Table 1. Upper bounds on the volume of 3D drawings of graphs
with n vertices and m edges.

graph family volume reference
arbitrary O(n3) Cohen et al. [5]
arbitrary O(m4/3n) Theorem 4
maximum degree ∆ O(∆mn) Theorem 3
constant maximum degree O(n3/2) Theorem 10
constant chromatic number O(n2) Pach et al. [24]
constant chromatic number O(m2/3n) Theorem 6
no Kh-minor (h constant) O(n3/2) Theorem 9
constant genus O(n3/2) Theorem 8
constant tree-width O(n) Dujmović and Wood [11]

Cohen et al. [5] proved that every graph has a 3D drawing with O(n3) volume,
and that this bound is asymptotically optimal for complete graphs Kn. Our edge-
sensitive bounds of O(m4/3n) and O(∆mn) are greater than O(n3) in the worst
case. It is an open problem whether there are edge-sensitive bounds that match
the O(n3) bound in the case of complete graphs.

Pach et al. [24] proved that graphs with constant chromatic number have 3D
drawings with O(n2) volume. For c-colourable graphs the actual bound is O(c2n2).
Our edge-sensitive volume bound of O(m2/3n) is an improvement on this result for
graphs with constant chromatic number and o(n3/2) edges. Pach et al. [24] also
proved an Ω(n2) lower bound for the volume of 3D drawings of the complete bipar-
tite graph Kn,n. This lower bound was generalised to all graphs by Bose et al. [3],
who proved that every 3D drawing has volume at least 1

8 (n+m).
Graphs with constant maximum degree have constant chromatic number, and

thus, by the result of Pach et al. [24], have 3D drawings with O(n2) volume.
Pach et al. [24] conjectured that graphs with constant maximum degree have 3D
drawings with o(n2) volume. We verify this conjecture by proving that graphs with
constant maximum degree have 3D drawings with O(n3/2) volume.

The first O(n) upper bound on the volume of 3D drawings was established by
Felsner et al. [14] for outerplanar graphs. This result was generalised by the authors
for graphs with constant tree-width [11]. Felsner et al. [14] proposed the following
inviting open problem: does every planar graph have a 3D drawing with O(n)
volume? In this paper we provide a partial solution to this question, by proving
that planar graphs have 3D drawings with O(n3/2) volume. Note that O(n2) is the
optimal area for plane 2D grid drawings, and O(n2) was the previous best upper
bound on the volume of 3D drawings of planar graphs.

A graph H is a minor of a graph G if H is isomorphic to a graph obtained from
a subgraph of G by contracting edges. The genus of a graph G is the minimum γ
such that G can be embedded in the orientable surface with γ handles. Of course,
planar graphs have genus 0 and no K5-minor. A generalisation of our result for
planar graphs is that every graph with constant genus or with no Kh-minor for
constant h has a 3D drawing with O(n3/2) volume.
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2. Track Layouts

We consider undirected, finite, and simple graphs G with vertex set V (G) and
edge set E(G). The number of vertices and edges of G are respectively denoted
by n = |V (G)| and m = |E(G)|. A vertex c-colouring of G is a partition {Vi :
1 ≤ i ≤ c} of V (G), such that for every edge vw ∈ E(G), if v ∈ Vi and w ∈ Vj
then i 6= j. Each i ∈ {1, 2, . . . , c} is a colour, and each set Vi is a colour class. At
times it will be convenient to write col(v) = i rather than v ∈ Vi. If G has a vertex
c-colouring then G is c-colourable. The chromatic number of G, denoted by χ(G),
is the minimum c such that G is c-colourable.

Let {Vi : 1 ≤ i ≤ c} be a vertex c-colouring of a graph G. Let <i be a total order
on each colour class Vi. Then each pair (Vi, <i) is a track, and {(Vi, <i) : 1 ≤ i ≤ t}
is a t-track assignment of G. To ease the notation we denote track assignments by
{Vi : 1 ≤ i ≤ c} when the ordering on each colour class is implicit. An X-crossing
in a track assignment consists of two edges vw and xy such that v <i x and y <j w,
for distinct colours i and j. A t-track layout of G consists of a t-track assignment of
G with no X-crossing. The track-number of G, denoted by tn(G), is the minimum
t such that G has a t-track layout1.

Track layouts were introduced in [9, 11] although they are implicit in many
previous works [14, 18, 19]. Track layouts and 3D drawings are closely related, as
illustrated by the following result by Dujmović et al. [9]. Also note that there is
a tight relationship between track layouts and another type of graph layout called
a queue layout [27], which is a dual structure to a book embedding introduced by
Heath et al. [18, 19].

Theorem 1 ([9]). Every n-vertex graph G with track-number tn(G) ≤ t has
a 2t × 4t × 4tdnt e drawing with O(t2n) volume. Conversely, if a graph G has an
X × Y × Z drawing then G has track-number tn(G) ≤ 2XY .

We have the following upper bounds on the track-number.

Lemma 1. Let G be a graph with n vertices, maximum degree ∆, path-width p,
tree-width w, genus γ, and with no Kh-minor. Then the track-number of G satisfies:
(a) tn(G) ≤ p + 1, (b) tn(G) ≤ O(64w), (c) tn(G) ≤ 72w∆, (d) tn(G) ∈
O(γ1/2n1/2), (e) tn(G) ∈ O(h3/2n1/2) .

Proof. Part (a) is by Dujmović et al. [9]. Parts (b) and (c) are by the au-
thors [11]. Gilbert et al. [16] and Djidjev [8] independently proved that G has a
O(γ1/2n1/2)-separator, and thus has O(γ1/2n1/2) path-width (see Bodlaender [2,
Theorem 20(iii)]). Hence (d) follows from (a). Similarly (e) follows from the result
by Alon et al. [1] that G has a O(h3/2n1/2)-separator. �

The next result is the fundamental contribution of this section.

Theorem 2. Every graph G with m edges and maximum degree ∆ has track-
number tn(G) ≤ 14

√
∆m.

To prove Theorem 2 we introduce the following concept. A vertex colouring
is a strong star colouring if between every pair of colour classes, all edges (if any)
are incident to a single vertex. That is, each bichromatic subgraph consists of a
star and possibly some isolated vertices. The strong star chromatic number of a

1Note that this definition of track-number is unrelated to that of Gyárfás and West [17].
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graph G, denoted by χsst(G), is the minimum number of colours in a strong star
colouring of G. Note that star colourings, in which each bichromatic subgraph
is a forest of stars, have also been studied (see [15, 23] for example). The star
chromatic number of a graph G, denoted by χst(G), is the minimum number of
colours in a star-colouring of G.

With an arbitrary order on each colour class in a strong star colouring, there
is no X-crossing. Thus track-number tn(G) ≤ χsst(G) for every graph G, and
Theorem 2 is an immediate corollary of the next lemma.

Lemma 2. Every graph G with m edges and maximum degree ∆ ≥ 1 has strong
star chromatic number χsst(G) ≤ 14

√
∆m.

The proof of Lemma 2 uses the weighted version of the Lovász Local Lemma
[13].

Lemma 3 ([22, p. 221]). Let E = {A1, . . . , An} be a set of ‘bad’ events. Let
0 ≤ p ≤ 1

4 be a real number, and let t1, . . . , tn ≥ 1 be integers. Suppose that for all
Ai ∈ E,

(a) the probability P(Ai) ≤ pti ,
(b) Ai is mutually independent of E \ ({Ai} ∪Di) for some Di ⊆ E, and

(c)
∑
Aj∈Di

(2p)tj ≤ ti
2
.

Then with positive probability, no event in E occurs.

Proof of Lemma 2. Let c ≥ 4 be a positive integer to be specified later. Let
p = 1

c . Then 0 < p ≤ 1
4 . For each vertex v ∈ V (G), randomly and independently

choose col(v) from {1, 2, . . . , c}.
For each edge vw ∈ E(G), let Avw be the type-I event that col(v) = col(w).

Let E′ be the set of arcs E′ = {(v, w), (w, v) : vw ∈ E(G)}. For each pair of arcs
(v, w), (x, y) ∈ E′ with no endpoint in common, let B(v,w),(x,y) be the type-II event
that col(v) = col(x) and col(w) = col(y).

We will apply Lemma 3 to obtain a colour assignment such that no type-I event
and no type-II event occurs. No type-I event implies that we have a (proper) vertex
colouring. No type-II event implies that no two disjoint edges share the same pair
of colours; that is, we have a strong star colouring.

For each type-I event A, P(A) = 1
c . Let tA = 1. Then P(A) = ptA . For each

type-II event B, P(B) = 1
c2 . Let tB = 2. Then P(B) = ptB . Thus condition (a) of

Lemma 3 is satisfied.
An event involving a particular set of vertices is dependent only on other events

involving at least one of the vertices in that set. Each vertex is involved in at most
∆ type-I events, and at most 2∆|E′| = 4∆m type-II events. A type-I event involves
two vertices, and is thus mutually independent of all but at most 2∆ type-I events
and at most 8∆m type-II events. A type-II event involves four vertices, and is
thus mutually independent of all but at most 4∆ type-I events and at most 16∆m
type-II events.

For condition (c) of Lemma 3 to hold we need 2∆( 2
c )1 + 8∆m( 2

c )2 ≤ 1
2 for the

type-I events, and 4∆( 2
c )1 + 16∆m( 2

c )2 ≤ 1 for the type-II events. It is a happy
coincidence that these two equations are equivalent, and it is easily verified that
c = d4(∆ +

√
∆(1 + 4m) )e ≥ 4 is a solution.
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Thus by Lemma 3, with positive probability no type-I event and no type-II
event occurs. Thus for every vertex v ∈ V (G), there exists col(v) ∈ {1, . . . , c}
such that no type-I event and no type-II event occurs. As proved above such a
colouring is a strong star colouring. Since ∆ ≤

√
∆m, the number of colours

c ≤ d4(1 +
√

5)
√

∆me ≤ 14
√

∆m. �

Theorems 1 and 2 imply:

Theorem 3. Every graph with n vertices, m edges and maximum degree ∆ has
a O((∆m)1/2)×O((∆m)1/2)×O(n) drawing with O(∆mn) volume. �

We have the following corollary of Lemma 2.

Lemma 4. Every graph G with m edges has strong star chromatic number
χsst(G) ≤ 15m2/3.

Proof. Let X be the set of vertices of G with degree greater than 1
4m

1/3. Let
H be the subgraph of G induced by V (G)\X. Thus H has maximum degree at most
1
4m

1/3. By Lemma 2, H has a strong star colouring with at most 14( 1
4m

1/3m)1/2 =
7m2/3 colours. Now |X| ≤ 2m/( 1

4m
1/3) = 8m2/3. By adding each vertex in X to

its own colour class we obtain a strong star colouring of G with at most 15m2/3

colours. �

Since tn(G) ≤ χsst(G), Lemma 4 implies that tn(G) ≤ 15m2/3, and by Theo-
rem 1 we have:

Theorem 4. Every graph with n vertices and m edges has a O(m2/3)×O(m2/3)
×O(n) drawing with O(m4/3n) volume. �

3. Sub-Quadratic Volume Bounds

Vertex colourings [24] and track layouts [9] have previously been used to pro-
duce 3D drawings with small volume. In the following sequence of results we com-
bine vertex colourings and track layouts to reduce the quadratic dependence on t in
Theorem 1 to linear. This comes at the expense of a higher dependence on the chro-
matic number. However, in the intended applications, the chromatic number will
be constant, or at least will be independent of the size of the graph. The proof of
the next lemma is a further generalisation of the ‘moment curve’ method for three-
dimensional graph drawing [5, 9, 24], which dates to the seminal construction by
Erdös [12] for the no-three-in-line problem.

Lemma 5. Let G be a graph with a vertex c-colouring {Vi : 0 ≤ i ≤ c− 1}, and
a track layout {Ti,j : 0 ≤ i ≤ c − 1, 1 ≤ j ≤ ti}, such that each Ti,j ⊆ Vi. Then G
has a O(c)×O(c2 t)×O(c5 tn′) drawing, where t = max

i
ti and n′ = max

i,j
|Ti,j |.

Proof. Let p be the minimum prime such that p ≥ c. Then p < 2c by
Bertrand’s postulate. Let v(i, j, k) denote the kth vertex in track Ti,j . Define

Y (i, j) = p(2 i t+ j) + (i2 mod p), and

Z(i, j, k) = p(20 c i n′ · Y (i, j) + k) + (i3 mod p) .

Position each vertex v(i, j, k) at the gridpoint (i, Y (i, j), Z(i, j, k)), and draw each
edge as a line-segment between its endpoints. Since Y (i, j) ∈ O(c2 t) and Z(i, j, k) ∈
O(c3 n′ · Y (i, j)), the drawing is O(c)×O(c2 t)×O(c5 tn′).
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Observe that the tracks from a single colour class are within a distinct Y Z-
plane, each track occupies a distinct vertical line, and the Z-coordinates of the
vertices within a track preserve the given ordering of that track. In addition, the
Y -coordinates satisfy the following property.

Claim 1. For all distinct colours i1 and i2 and for all 1 ≤ j1, j2 ≤ t, we have
that 2c | (Y (i1, j1)− Y (i2, j2) | is greater than the Y -coordinate of any vertex.

Proof. Without loss of generality i1 > i2. Observe that every Y -coordinate
is less than p(2(c − 1)t + t) + p = p(2 c t − t + 1) ≤ 2cpt. Now 2c |Y (i1, j1) −
Y (i2, j2) | > 2c | p(2 i1 t+ 1)− p(2 i2 t+ t+ 1) | ≥ 2cp | 2(i2 + 1)t− (2i2t+ t) | =
2cpt. �

We first prove that the only vertices each edge intersects are its own endpoints.
It suffices to prove that if three tracks are collinear in the XY -plane then they are
all from the same colour class. Loosely speaking, an edge does not pass through any
track. Clearly two tracks from the same colour class are not collinear (in the XY -
plane) with a third track from a distinct colour class. Thus we need only consider
tracks {T (iα, jα) : 1 ≤ iα ≤ 3} from three distinct colour classes {i1, i2, i3}. Let R
be the determinant,

R =

∣∣∣∣∣∣
1 i1 Y (i1, j1)
1 i2 Y (i2, j2)
1 i3 Y (i3, j3)

∣∣∣∣∣∣ .
If the tracks {T (iα, jα) : 1 ≤ iα ≤ 3} are collinear in the XY -plane then R = 0.
However Y (i, j) ≡ i2 (mod p), and thus

R ≡

∣∣∣∣∣∣
1 i1 i21
1 i2 i22
1 i3 i23

∣∣∣∣∣∣ =
∏

1≤α<β≤3

(iα − iβ) 6≡ 0 (mod p) ,

since iα 6= iβ , and p is a prime greater than any iα − iβ . Thus R 6= 0, and the
tracks {T (iα, jα) : 1 ≤ iα ≤ 3} are not collinear in the XY -plane. Hence the only
vertices that an edge intersects are its own endpoints.

It remains to prove that there are no edge crossings. Consider two edges e and
e′ with distinct endpoints v(iα, jα, kα), 1 ≤ α ≤ 4. (Clearly edges with a common
endpoint do not cross.) Let Yα = Y (iα, jα). Consider the following determinant

D =

∣∣∣∣∣∣∣∣
1 i1 Y1 Z(i1, j1, k1)
1 i2 Y2 Z(i2, j2, k2)
1 i3 Y3 Z(i3, j3, k3)
1 i4 Y4 Z(i4, j4, k4)

∣∣∣∣∣∣∣∣ .
If e and e′ cross then their endpoints are coplanar, and D = 0. Thus it suffices to
prove that D 6= 0. We proceed by considering the number N = |{i1, i2, i3, i4}| of
distinct colours assigned to the four endpoints of e and e′. Clearly N ∈ {2, 3, 4}.

Case N = 4: Since Yα ≡ i2α (mod p) and Z(iα, jα, kα) ≡ i3α (mod p),

D ≡

∣∣∣∣∣∣∣∣
1 i1 i21 i31
1 i2 i22 i32
1 i3 i23 i33
1 i4 i24 i34

∣∣∣∣∣∣∣∣ =
∏

1≤α<β≤4

(iα − iβ) 6≡ 0 (mod p) ,

since iα 6= iβ , and p is a prime greater than any iα − iβ . Thus D 6= 0.
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Case N = 3: Without loss of generality i1 = i2. It follows that D = 5S0 +
S1 + S2 + S3 + S4 where

S0 = 4cpn′(i3 − i1)(i4 − i1)(Y2 − Y1)(Y3 − Y4)

S1 = p(Y2 − Y1)
(
k3(i4 − i1) − k4(i3 − i1)

)
S2 = p(i4 − i3)(k2Y1 − k1Y2)

S3 = p(k2 − k1)(Y4(i3 − i1)− Y3(i4 − i1))

S4 = (Y2 − Y1)
(

(i3 − i4)(i31 mod p) − (i3 − i1)(i34 mod p) + (i4 − i1)(i33 mod p)
)
.

If Y1 = Y2 then e and e′ do not cross, since no three tracks from distinct
colour classes are collinear in the XY -plane. Assume Y1 6= Y2. If i3 < i1 < i4 or
i4 < i1 < i3 then e and e′ do not cross, simply by considering the projection in the
XY -plane. Thus i1 < i3, i4 or i1 > i3, i4, which implies

(1) (i4 − i1)(i3 − i1) > |i4 − i3| .

Claim 2. If |S0| ≥ |S1|, |S0| ≥ |S2|, |S0| ≥ |S3| and |S0| ≥ |S4| then D 6= 0.

Proof. To prove that D = 5S0 + S1 + S2 + S3 + S4 is nonzero it suffices to
show that D′ = ±5|S0| ± |S1| ± |S2| ± |S3| ± |S4| is nonzero for all combinations of
pluses and minuses. Consider X = ±|S1| ± |S2| ± |S3| ± |S4| for some combination
of pluses and minuses. Since |S1| ≤ |S0|, |S2| ≤ |S0|, |S3| ≤ |S0|, and |S4| ≤ |S0|, we
have −4|S0| ≤ X ≤ 4|S0|. Since S0 6= 0, we have 5|S0|+X 6= 0 and −5|S0|+X 6= 0.
That is, all values of D′ are nonzero. Therefore D 6= 0. �

Therefore, to prove that D 6= 0 it suffices to show that |S0| ≥ |S1|, |S0| ≥
|S2|, |S0| ≥ |S3| and |S0| ≥ |S4|. We will use the following elementary facts
regarding absolute values:

∀a1, . . . , ak ∈ R
|a1a2 . . . ak| = |a1||a2| · · · |ak|
|a1 + a2 + · · ·+ ak| ≤ |a1|+ |a2|+ · · ·+ |ak| ≤ k ·max {|a1|, |a2|, . . . , |ak|} .

• First we prove that |S0| ≥ |S1|. That is,

|4cpn′(i3− i1)(i4− i1)(Y2−Y1)(Y3−Y4)| ≥ |p(Y2−Y1)
(
k3(i4− i1) − k4(i3− i1)

)
| .

Hence,

|S0| > |S1|
⇐= 2n′|i3 − i1||i4 − i1||Y3 − Y4| ≥ | k3(i4 − i1) − k4(i3 − i1)| .
⇐= 2n′|i3 − i1||i4 − i1||Y3 − Y4| ≥ 2 ·max {|k4(i3 − i1)|, |k3(i4 − i1)|} .

Since n′ ≥ k3, k4 and |Y3 − Y4| ≥ 1,

|S0| > |S1| ⇐= |i3 − i1||i4 − i1| ≥ max {|i3 − i1|, |i4 − i1|} .

Thus |S0| ≥ |S1| since |i3 − i1| ≥ 1 and |i4 − i1| ≥ 1.

• Now we prove that |S0| ≥ |S2|. That is,

|4cpn′(i3 − i1)(i4 − i1)(Y2 − Y1)(Y3 − Y4)| ≥ |p(i4 − i3)(k2Y1 − k1Y2)| .
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By (1) and since |Y2 − Y1| ≥ 1,

|S0| ≥ |S2| ⇐= |4cn′(Y3 − Y4)| ≥ |k2Y1 − k1Y2| .
⇐= |2cn′(Y3 − Y4)| ≥ max {|k2Y1|, |k1Y2|} ,

which holds since n′ ≥ k1, k2 and |2c(Y3 − Y4)| ≥ max{Y1, Y2} by Claim 1.
• Now we prove that |S0| ≥ |S3|. That is,

|4cpn′(i3− i1)(i4− i1)(Y2−Y1)(Y3−Y4)| ≥ |p(k2−k1)
(
Y4(i3− i1) − Y3(i4− i1)

)
| .

Since n′ ≥ |k2 − k1| and since |Y2 − Y1| ≥ 1,

|S0| ≥ |S3|
⇐= |4c(i3 − i1)(i4 − i1)(Y3 − Y4)| ≥ |Y4(i3 − i1) − Y3(i4 − i1) | .
⇐= |2c(i3 − i1)(i4 − i1)(Y3 − Y4)| ≥ max {|Y4(i3 − i1)| , |Y3(i4 − i1) |} ,

which holds since |2c(Y3 − Y4)| ≥ max{Y1, Y2} by Claim 1.
• Finally we prove that |S0| ≥ |S4|. That is,

|4cpn′(i3 − i1)(i4 − i1)(Y2 − Y1)(Y3 − Y4)| ≥
|(Y2 − Y1)

(
(i3 − i4)(i31 mod p) − (i3 − i1)(i34 mod p) + (i4 − i1)(i33 mod p)

)
| .

Since cn′|Y3 − Y4| ≥ 1,

|S0| > |S4|
⇐= |3p(i3 − i1)(i4 − i1)| ≥

| (i3 − i4)(i31 mod p) − (i3 − i1)(i34 mod p) + (i4 − i1)(i33 mod p) |
⇐= |3p(i3 − i1)(i4 − i1)| ≥

3 ·max {| (i3 − i4)(i31 mod p)| , |(i3 − i1)(i34 mod p)| , |(i4 − i1)(i33 mod p) |}
⇐= |(i3 − i1)(i4 − i1)| ≥ max {| i3 − i4| , |i3 − i1| , |i4 − i1 |} ,

which holds by (1).

Case N = 2: Without loss of generality i1 = i2 6= i3 = i4. If Y1 = Y2 and
Y3 = Y4 then e and e′ do not cross as otherwise there would be an X-crossing in
the track layout. If Y1 = Y2 and Y3 6= Y4 (or Y1 6= Y2 and Y3 = Y4) then e and e′

do not cross, by considering the projection in the XY -plane. Thus we can assume
that Y1 6= Y2 and Y3 6= Y4. It follows that

D = p(i1 − i3)
(

5 · 4cn′(Y2 − Y1)(Y4 − Y3)(i3 − i1) + (k1 − k2)(Y4 − Y3) +

(k4 − k3)(Y2 − Y1)
)
.

As in Claim 2, to show that D 6= 0 it suffices to show that

(2) | 4cn′(Y2 − Y1)(Y4 − Y3)(i3 − i1) | ≥ | (k1 − k2)(Y4 − Y3) | ,
and

(3) | 4cn′(Y2 − Y1)(Y4 − Y3)(i3 − i1) | ≥ | (k4 − k3)(Y2 − Y1) | .
Inequalities (2) and (3) hold since n′ > |k1 − k2| and n′ > |k4 − k3|. �

Note that the constant 20 in the definition of Z(i, j, k) in the proof of Lemma 5
is chosen to enable a relatively simple proof. It is easily seen that it can be reduced.
The proof of the next lemma is based on an idea of Pach et al. [24] for balancing
the size of the colour classes in a vertex colouring.
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Lemma 6. Let G be an n-vertex graph with a c-colouring {Vi : 0 ≤ i ≤ c − 1}
and a track layout {Ti,j : 0 ≤ i ≤ c − 1, 1 ≤ j ≤ ti}, such that each Ti,j ⊆ Vi.
Let k =

∑
i ti be the total number of tracks. Then G has a O(c)×O(ck)×O(c4n)

drawing.

Proof. Replace each track by tracks of size exactly dnk e, except for at most
one track of size at most dnk e. Order the vertices within each track according to
the original track, and consider the new tracks to belong to the same colour class
as the original. Clearly no X-crossing is created. Within Vi there are now at most
ti + |Vi|/dnk e tracks. The total number of tracks is

∑
i(ti + |Vi|/dnk e) ≤ 2k. For

each colour class Vi, partition the set of tracks in Vi into sets of size exactly d 2k
c e,

except for one set of size at most d 2k
c e. Consider each set to correspond to a colour.

The number of colours is now at most c+ 2k/d 2k
c e ≤ 2c. Applying Lemma 5 with

2c colours, n′ = dnk e, and t = d 2k
c e, we obtain the desired drawing. �

Theorem 5. Every c-colourable graph G with n vertices and track-number
tn(G) ≤ t has a O(c)×O(c2t)×O(c4n) drawing with O(c7tn) volume.

Proof. Let {Vi : 0 ≤ i ≤ c− 1} be a c-colouring of G. Let {Tj : 1 ≤ j ≤ t} be
a t-track layout of G. For all 0 ≤ i ≤ c− 1 and 1 ≤ j ≤ t, let Ti,j = Vi ∩ Tj . Then
{Vi : 0 ≤ i ≤ c − 1} and {Ti,j : 0 ≤ i ≤ c − 1, 1 ≤ j ≤ t} satisfy Lemma 6 with
k = ct. Thus G has the desired drawing. �

In the case of bipartite graphs we have a simple proof of Theorem 5 with
improved constants.

Lemma 7. Every n-vertex bipartite graph G with track-number tn(G) ≤ t has
a 2× t× n drawing.

Proof. Let {A,B} be the bipartition of V (G). Let {Ti : 1 ≤ i ≤ t} be a
t-track layout of G. For each 1 ≤ i ≤ t, let Ai = Ti ∩ A and Bi = Ti ∩ B. Order
each Ai and Bi as in Ti. Place the jth vertex in Ai at (0, i, j +

∑i−1
k=1 |Ak|). Place

the jth vertex in Bi at (1, t− i+ 1, j +
∑i−1
k=1 |Bk|). The drawing is thus 2× t× n.

Let AiBj be the set of edges with one endpoint in Ai and the other in Bj . There
is no crossing between edges in AiBj and AiBj as otherwise there would be an
X-crossing in the track layout. Clearly there is no crossing between edges in AiBj
and AiBk for j 6= k. Suppose there is a crossing between edges in AiBj and AkB`
with i 6= k and j 6= `, and without loss of generality i < k. Then the projections
of the edges in the XY -plane also cross, and thus j < `. This implies that the
projections of the edges in the XZ-plane do not cross, and thus the edges do not
cross. �

Lemma 4 with tn(G) ≤ χsst(G) and Theorem 5 imply:

Theorem 6. Every c-colourable graph with n vertices and m edges has a O(c)×
O(c2m2/3)×O(c4n) drawing with O(c6m2/3n) volume. �

The next result is one of the main contributions of this paper.

Theorem 7. Every planar graph with n vertices has a O(1)×O(n1/2)×O(n)
drawing with O(n3/2) volume.
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Proof. Planar graphs have O(n1/2) path-width [2], and thus have O(n1/2)
track-number by Lemma 1(a). The result follows from Theorem 5 since planar
graphs are 4-colourable. �

The following generalisation of Theorem 7 for graphs G with genus γ follows
from Lemma 1(d), Theorem 5, and the classical result of Heawood [20] that χ(G) ∈
O(γ1/2).

Theorem 8. Every n-vertex graph with genus γ has a O(γ1/2)×O(γ3/2n1/2)×
O(γ2n) drawing with O(γ4n3/2) volume. �

The next generalisation of Theorem 7 for graphs with no Kh-minor follows from
Lemma 1(e), Theorem 5, and the result independently due to Kostochka [21] and
Thomason [26] that χ(G) ∈ O(h log1/2 h) (see [7]).

Theorem 9. Every n-vertex graph with no Kh-minor has a O(h log1/2 h) ×
O(h7/2 log h·n1/2)×O(h4 log2 h·n) drawing with volume O(h17/2 log7/2 h·n3/2). �

Finally we consider the maximum degree as a parameter. By the sequential
greedy algorithm, G is (∆ + 1)-colourable. Thus by Theorems 2 and 5 we have:

Theorem 10. Every graph with n vertices, m edges, and maximum degree ∆
has a O(∆)×O(∆5/2m1/2)×O(∆4n) drawing with O(∆15/2m1/2n) volume. �

By Theorem 8, 9 and 10 and since graphs with constant maximum degree have
O(n) edges we have:

Corollary 1. Every n-vertex graph with constant genus, or with no Kh-minor
for some constant h, or with constant maximum degree has a O(1)×O(n1/2)×O(n)
drawing with O(n3/2) volume. �

We conclude with the following open problems: Does every graph have a 3D
drawing with O(nm) volume? Does every graph with constant chromatic number
have a 3D drawing with O(n

√
m) volume? These bounds match the lower bounds

forKn andKn,n, and would make edge-sensitive improvements to the existing upper
bounds of O(n3) and O(n2), respectively. These edge-sensitive bounds would be
implied by Theorems 1 and 5 should every graph have O(

√
m) track-number. In

turn, this track-number bound would be implied should every graph have O(
√
m)

strong star chromatic number. As far as the authors are aware, a O(
√
m) bound

is not even known for the star chromatic number. The best known bound in this
direction is χst(G) ≤ 11m3/5, which can be proved in a similar fashion to Lemma 4,
in conjunction with the result of Fertin et al. [15] that χst(G) ≤ d20∆3/2e (see
[10]).
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second author, whose research was completed at the Departament de Matemàtica
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