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Abstract. A k-stack layout (respectively, k-queue layout) of a graph
consists of a total order of the vertices, and a partition of the edges into
k sets of non-crossing (non-nested) edges with respect to the vertex or-
dering. A k-track layout of a graph consists of a vertex k-colouring, and
a total order of each vertex colour class, such that between each pair
of colour classes no two edges cross. The stack-number (respectively,
queue-number, track-number) of a graph G, denoted by sn(G) (qn(G),
tn(G)), is the minimum k such that G has a k-stack (k-queue, k-track)
layout. This paper studies stack, queue, and track layouts of graph sub-
divisions. It is known that every graph has a 3-stack subdivision. The
best known upper bound on the number of division vertices per edge in a
3-stack subdivision of an n-vertex graph G is improved from O(log n) to
O(log min{sn(G), qn(G)}). This result reduces the question of whether
queue-number is bounded by stack-number to whether 3-stack graphs
have bounded queue number. It is proved that every graph has a 2-
queue subdivision, a 4-track subdivision, and a mixed 1-stack 1-queue
subdivision. All these values are optimal for every non-planar graph. In
addition, we characterise those graphs with k-stack, k-queue, and k-track
subdivisions, for all values of k. The number of division vertices per edge
in the case of 2-queue and 4-track subdivisions, namely O(log qn(G)), is
optimal to within a constant factor, for every graph G. Applications to
3D polyline grid drawings are presented. For example, it is proved that
every graph G has a 3D polyline grid drawing with the vertices on a
rectangular prism, and with O(log qn(G)) bends per edge.

1 Introduction

This paper studies stack, queue and track layouts of subdivisions of graphs. The
contributions of this paper are three-fold. First, we characterise those graphs
admitting k-stack, k-queue or k-track subdivisions, for all k. In addition, we
prove bounds on the number of division vertices per edge that are asymptoti-
cally tight in a number of cases. These results are presented in Section 3. Second,
we use these subdivision layouts to reduce two of the major open problems in
the theory of stack and queue layouts to certain special cases. These results,
along with relationships amongst various thickness parameters, are presented in
� Research supported by NSERC and COMBSTRU.
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Section 4. As the third contribution, we apply our results concerning track lay-
outs of subdivisions to the study of three-dimensional polyline graph drawings.
These results are presented in Section 5. Due to space limitations, many proofs
and some references are omitted – see [7] for all the details. All logarithms are
base 2 unless stated otherwise.

2 Preliminaries

We consider undirected, finite, and simple graphs G with vertex set V (G) and
edge set E(G). The number of vertices and edges of G are respectively denoted
by n = |V (G)| and m = |E(G)|. A subdivision of G is a graph obtained from
G by replacing each edge vw ∈ E(G) by a path with at least one edge whose
endpoints are v and w. Internal vertices on this path are called division vertices.
Let G′ be the subdivision of G with one division vertex per edge.

A graph parameter is a function α that assigns to every graph G a non-
negative integer α(G). Let G be a class of graphs. By α(G) we denote the function
f : N → N, where f(n) is the maximum of α(G), taken over all n-vertex graphs
G ∈ G. We say G has bounded α if α(G) ∈ O(1). A graph parameter α is bounded
by a graph parameter β (for some class G), if there exists a binding function g
such that α(G) ≤ g(β(G)) for every graph G (in G). If α is bounded by β (in G)
and β is bounded by α (in G) then α and β are tied (in G).

A vertex ordering of a graph G is a total order σ of the vertex set V (G). Let
L(e) and R(e) denote the endpoints of each edge e ∈ E(G) such that L(e) <σ

R(e). Consider two edges e, f ∈ E(G) with no common endpoint such that
L(e) <σ L(f). If L(e) <σ L(f) <σ R(e) <σ R(f) then e and f cross, and if
L(e) <σ L(f) <σ R(f) <σ R(e) then e and f nest. A stack (respectively, queue)
is a set of edges E′ ⊆ E(G) such that no two edges in E′ cross (nest). Observe
that when traversing the vertex ordering, edges in a stack (queue) appear in
LIFO (FIFO) order – hence the names. A k-stack (queue) layout of G consists
of a vertex ordering σ of G and a partition {E� : 1 ≤ � ≤ k} of E(G), such that
each E� is a stack (queue) in σ. A graph admitting a k-stack (queue) layout
is called a k-stack (queue) graph. The stack-number of a graph G, denoted by
sn(G), is the minimum k such that G is a k-stack graph. The queue-number of a
graph G, denoted by qn(G), is the minimum k such that G is a k-queue graph.
For a summary of results regarding stack and queue layouts see [8].

A vertex t-colouring of a graph G is a partition {Vi : 1 ≤ i ≤ t} of V (G)
such that for every edge vw ∈ E(G), if v ∈ Vi and w ∈ Vj then i �= j. Suppose
that <i is a total order of each colour class Vi. Then the pair (Vi, <i) is called
a track, and {(Vi, <i) : 1 ≤ i ≤ t} is a t-track assignment of G. We denote
track assignments by {Vi : 1 ≤ i ≤ t} when the ordering on each colour class is
implicit. An X-crossing in a track assignment consists of two edges vw and xy
such that v <i x and y <j w, for distinct colours i and j. A (k, t)-track layout
of G consists of a t-track assignment of G and a (non-proper) edge k-colouring
of G with no monochromatic X-crossing. (1, t)-track layouts (that is, with no
X-crossing) are of particular interest due to applications in three-dimensional
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graph drawing (see Section 5). A (1, t)-track layout is called a t-track layout. A
graph admitting a t-track layout is called a t-track graph. The track-number of
G, denoted by tn(G), is the minimum t such that G is a t-track graph. For a
summary of bounds on the track-number see [6].

3 Layouts of Subdivisions

Stack and queue layouts of graph subdivisions are a central topic of this paper.
That every graph has a 3-stack subdivision has been observed by many authors
[10, 17, 11, 1]. Note that 3-stack layouts are important in complexity theory, and
3-stack layouts of knots and links, so called Dynnikov digrams, have also recently
been considered (see the references in [7]). It is interesting to determine the
minimum number of division vertices in a 3-stack subdivision of a given graph.
The previously best known bounds are due to Enomoto and Miyauchi [10], who
proved that every graph has a 3-stack subdivision with O(log n) division vertices
per edge. Moreover, Enomoto et al. [12] proved that this bound is tight up
to a constant factor for Kn (and some slightly more general families). Thus
Enomoto et al. [12] claimed that the O(log n) upper bound is ‘essentially best
possible’. We prove the following refinement of the upper bound of Enomoto and
Miyauchi [10], in which the number of division vertices per edge depends on the
stack-number or queue-number of the given graph. Moreover, we characterise
those graphs admitting k-stack subdivisions for all k.

Theorem 1. (a) Every graph G has a 3-stack subdivision with
O(log min{sn(G), qn(G)}) division vertices per edge.

(b) A graph has a 2-stack subdivision if and only if it is planar. Every planar
graph has a 2-stack subdivision with at most one division vertex per edge.

(c) A graph has a 1-stack subdivision if and only if it is outerplanar. Every
outerplanar graph has a 1-stack layout (with no division vertices).

Proof Outline. Let H be the subdivision of G with 2�log sn(G)� − 2 division
vertices per edge. As illustrated in Figure 1, we now prove that H has a 3-stack
subdivision. Consider a sn(G)-stack layout of G. Let T be the complete binary
tree of height �log sn(G)�. Consider each stack of G to correspond to a distinct
leaf of T . Now define a mapping of the vertices of H into the nodes of T such that
adjacent vertices of H are mapped to adjacent nodes of T or to the same leaf
of T . In particular, the original vertices of G are mapped to the root, and each
subdivided edge e is mapped to a walk from the root to the leaf corresponding
to the stack containing e, and then back to the root. A depth-first ordering of
V (T ) gives a 3-stack layout of T in which edges with a common endpoint are in
distinct stacks. From this layout of T we can obtain the desired 3-stack layout of
H by appropriately ordering the vertices of H that are mapped to a single node
of T , and by assigning each edge e of H to the same stack as the edge of T that
e is mapped to. The proof that G has a 3-stack subdivision with O(log qn(G))
division vertices per edge is similar. Parts (b) and (c) are easy extensions of
known results. �	
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Fig. 1. 3-stack subdivision of a 16-stack graph; one edge is indicated.

Since sn(G) and qn(G) are both no more than n, our bound in Theorem 1(a)
is at most the O(log n) bound of Enomoto and Miyauchi [10] (ignoring constant
factors). We prove the following analogous result for queue layouts, in which,
additionally, the number of division vertices per edge is optimal.

Theorem 2. (a) Every graph G has a 2-queue subdivision with O(log qn(G))
division vertices per edge, and every 2-queue subdivision of G has an edge
with Ω(log qn(G)) division vertices per edge.

(b) A graph has a 1-queue subdivision if and only if it is planar.

Thus, at least for the representation of graph subdivisions, two queues suffice
rather than three stacks. In this sense, queues are more powerful than stacks.
We have the following analogous result for track layouts.

Theorem 3. (a) Every graph G has a 4-track subdivision with O(log qn(G))
division vertices per edge, and every 4-track subdivision of G has an edge
with Ω(log qn(G)) division vertices.

(b) A graph has a 3-track subdivision if and only if it is planar.
(c) A graph has a 2-track subdivision if and only if it is a forest of caterpillars.

A trade-off between the number of stacks and the number of division vertices
in 3-stack subdivisions was observed by Enomoto and Miyauchi [11], who proved
that for all s ≥ 3, every graph has an s-stack subdivision with O(logs−1 n)
division vertices per edge. Again Enomoto et al. [12] proved that this bound is
tight up to a constant factor for Kn. As described in Table 1, our results for
3-stack subdivisions, 2-queue subdivisions, and 4-track subdivisions generalise
in a similar fashion to the result of Enomoto and Miyauchi [11]. Moreover, we

Fig. 2. A 2-queue subdivision of an 8-queue graph.
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Table 1. Layouts of a subdivision of a graph G.

graph type of layout # division vertices per edge

arbitrary s-stack (s ≥ 3) O(logs−1 sn(G))
arbitrary s-stack (s ≥ 3) O(logs−1 qn(G))
planar 2-stack 1

arbitrary q-queue (q ≥ 2) Θ(logq qn(G))
planar 1-queue n − 2

arbitrary s-stack q-queue (s ≥ 1, q ≥ 1) O(log(s+q)q sn(G))

arbitrary s-stack q-queue (s ≥ 1, q ≥ 1) O(log(s+q)q qn(G))

planar 1-stack 1-queue 4

arbitrary (d + 1, 2)-track (d ≥ 2) Θ(logd qn(G))
arbitrary (d, 3)-track (d ≥ 2) Θ(logd qn(G))
arbitrary (d + 2)-track (d ≥ 2) Θ(logd qn(G))
planar 3-track n − 2

generalise stack and queue layouts through the notion of a mixed layout. Here
each edge is assigned to a stack or to a queue, defined with respect to a common
vertex ordering. We speak of an s-stack q-queue mixed layout and an s-stack q-
queue graph. Part of the motivation for studying mixed stack and queue layouts
is that they model the double-ended queue (dequeue) data structure, since a
dequeue may be simulated by two stacks and one queue.

4 Relationships

The following lemma highlights the fundamental relationship between track lay-
outs, and queue and stack layouts. Its proof follows immediately from the defi-
nitions, and is illustrated in Figure 3 for k = 1.

Lemma 1. Let {A, B} be a track assignment of a bipartite graph G. Then the
following are equivalent:

(a) {A, B} admits a (k, 2)-track layout of G,
(b) the vertex ordering with A followed by B admits a k-queue layout of G, and
(c) the vertex ordering with A followed by the reversal of B admits a k-stack

layout of G.

The relationship between queue and track layouts in Lemma 1 was extended
by Dujmović et al. [6] who proved that queue-number and track-number are
tied. Despite a wealth of research on stack and queue layouts, the following
fundamental questions of Heath et al. [15] remain unanswered1.
1 Heath et al. [15], in their study of the relationship between stack- and queue-number,

restricted themselves to linear binding functions. For example, for stack-number to
be bounded by queue-number meant that sn(G) ∈ O(qn(G)) for every graph G.
Thus Heath et al. [15] considered Open Problem 1 to be solved in the negative by
displaying an infinite class of graphs G, such that sn(G) ∈ Ω(3qn(G)). In our more
liberal definition of a binding function, this result merely provides a lower bound on
a potential binding function.
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(a) (b) (c)

Fig. 3. Layouts of a caterpillar: (a) 2-track, (b) 1-queue, (c) 1-stack.

Open Problem 1. [15] Is stack-number bounded by queue-number?

Open Problem 2. [15] Is queue-number bounded by stack-number?

Suppose that stack-number is bounded by queue-number, but queue-number
is not bounded by stack-number. This would happen, for example, if there exists
a constant s such that for every q there exists an s-stack graph with no q-queue
layout. Then we would consider stacks to be more ‘powerful’ than queues. In
the remainder of this section we show that the study of stack, queue and track
layouts of subdivisions provides insights into these open problems.

Let α be a graph parameter. Let sub-α be the graph parameter defined by
sub-α(G) = α(G′) for every graph G. We say α is topological if α and sub-α are
tied. For example, chromatic number is not topological since G′ is bipartite. On
the other hand tree-width is topological. In fact, the tree-width of G equals the
tree-width of every subdivision of G. Similarly crossing number is topological.

The thickness of a graph G, denoted by θ(G), is the minimum number of sub-
graphs in a partition of E(G) into planar subgraphs. Thickness is not topological
since it is easily seen that θ(G′) ≤ 2. The geometric thickness of a graph G, de-
noted by θ(G), is the minimum number of colours such that G can be drawn
in the plane with edges as coloured straight-line segments, such that monochro-
matic edges do not cross. Eppstein [13] proved that θ(G′) ≤ 2 for every graph G.
Thus geometric thickness is not topological.

Stack-number (or book-thickness) is equivalent to geometric thickness with
the additional requirement that the vertices are in convex position. Thus

∀ graph G, θ(G) ≤ θ(G) ≤ sn(G) . (1)

Blankenship and Oporowski [1], Enomoto and Miyauchi [10], and Eppstein [13]
independently proved that sn(Kn) is bounded by sn(K ′

n). The proofs by Blanken-
ship and Oporowski [1] and Eppstein [13] use essentially the same Ramsey-
theoretic argument. Since θ(K ′

n) = 2, Eppstein [13] observed that stack-number
is not bounded by geometric thickness. Using a more elaborate Ramsey-theoretic
argument, Eppstein [13] proved that geometric thickness is not bounded by thick-
ness. In particular, for every t there exists a graph with thickness three and
geometric thickness at least t. Blankenship and Oporowski [1] conjecture that
their result for complete graphs extends to all graphs.

Conjecture 1. [1] There exists a function f , such that for every graph G and
every subdivision H of G with at most one division vertex per edge, we have
sn(G) ≤ f(sn(H)).

We now prove that Conjecture 1 is related to Open Problem 1.
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Theorem 4. If Conjecture 1 is true then stack-number is topological, and stack-
number is bounded by queue-number.

Proof Outline. Conjecture 1 would imply that sn is bounded by sub-sn, which
would imply that stack-number is topological since it is easily seen that sn(G′) ≤
sn(G)+ 1. It follows from Conjecture 1 that there exists a function f∗ such that
for any s-stack subdivision of a graph G with k division vertices per edge, G has a
f∗(s, k)-stack layout. By Theorem 1(a), every graph G has a 3-stack subdivision
with O(log qn(G)) division vertices per edge. Thus sn(G) ≤ f∗(3,O(log qn(G))),
and stack-number is bounded by queue-number. �	

We now turn our attention to the question of whether queue-number is topo-
logical. The next lemma is proved by repeated application of the Erdös-Szekeres
Theorem regarding monotone subsequences.

Lemma 2. If a q-queue subdivision of a graph G has at most k division vertices
per edge, then qn(G) ∈ O(q2k).

Lemma 2 is used to prove the lower bounds on the number of division vertices
per edge in Theorem 2(a) and Theorem 3(a). It follows from Lemma 2 that:

Theorem 5. Queue-number is topological (for all graphs), and track-number is
topological for any proper minor-closed graph family.

We now relate queue-number to a new thickness parameter. Let the 2-track
thickness of a bipartite graph G, denoted by θ2(G), be the minimum k such that
G has a (k, 2)-track layout. By (1) and Lemma 1(c),

∀ bipartite graphs G, θ(G) ≤ θ(G) ≤ sn(G) ≤ θ2(G) .

Let the 2-track sub-thickness of a graph G, denoted by sub-θ2(G), be the
2-track thickness of G′. This is well-defined since G′ is bipartite.

Theorem 6. Queue-number is tied to 2-track thickness for bipartite graphs, and
queue-number is tied to 2-track sub-thickness (for all graphs).

Theorem 6 is somewhat counterintuitive since, at first glance, queue layouts
may have many crossings, as opposed to the various thickness parameters. The
immediate implication for Open Problem 1 is that stack-number is bounded by
queue-number if and only if stack-number is bounded by 2-track sub-thickness.
While it is an open problem whether stack number is bounded by track-number
or by queue-number, in [6] we prove the weaker result that geometric thickness
is bounded by track-number, which implies that geometric thickness is bounded
by queue-number. We have the following reductions for Open Problem 2.

Theorem 7. The following are equivalent:

(a) queue-number is bounded by stack-number,
(b) bipartite 3-stack graphs have bounded queue-number,
(c) bipartite 3-stack graphs have bounded 2-track thickness.

Moreover, if queue-number is bounded by stack-number then queue-number is
bounded by a polynomial function of stack-number.
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Proof Outline. That (a) implies (b) is immediate. Theorem 6 proves that (b) and
(c) are equivalent. It remains to prove that (b) implies (a). Suppose that every
bipartite 3-stack graph has queue-number at most some constant q. Consider
an arbitrary graph G. An easy extension of Theorem 1(a) proves that G has
a 3-stack bipartite subdivision D with O(log sn(G)) division vertices per edge.
By assumption, qn(D) ≤ q. By Lemma 2, and with an abuse of O( ) notation,
qn(G) ∈ O(qO(log sn(G))) ∈ O(sn(G)O(q)). Thus queue-number is bounded by a
polynomial function of stack-number. �	

For Theorem 7 to hold, it is essential that the number of division vertices per
edge in Theorem 1(a) is some function of sn(G), thus emphasising the significance
of our bound in comparison with previous results.

5 Three-Dimensional Polyline Drawings

A 3D polyline drawing of a graph represents the vertices by distinct points in Z
3

(called gridpoints), and represents each edge as a polyline between its endpoints
with bends (if any) also at gridpoints, such that distinct edges only intersect at
common endpoints, and each edge only intersects a vertex that is an endpoint
of that edge. A 3D polyline drawing with at most b bends per edge is called a
3D b-bend drawing. A 3D 0-bend drawing is called a 3D straight-line drawing. Of
course, a 3D b-bend drawing of a graph G is precisely a 3D straight-line drawing
of a subdivision of G with at most b division vertices per edge. The bounding
box of a 3D polyline drawing is the minimum axis-aligned box containing the
drawing. If the bounding box has side lengths X − 1, Y − 1 and Z − 1, then we
speak of an X × Y × Z polyline drawing with volume X · Y · Z. That is, the
volume of a 3D drawing is the number of gridpoints in the bounding box.

This paper initiates the study of upper bounds on the volume and number
of bends per edge in arbitrary 3D polyline drawings. The volume of 3D straight-
line drawings has been widely studied [4, 3, 14, 19, 2]. Table 2 summarises the
best known upper bounds on the volume and bends per edge, including those
established in this paper. Our upper bound of O(m log q) is within a factor of
O(log q) of being optimal for all q-queue graphs, since Bose et al. [2] proved that
3D polyline drawings have at least 1

8 (n + m) volume.
Track layouts have previously been used to produce 3D drawings with small

volume (see [5]). The principle idea is to position the vertices in a single track
on a vertical ‘rod’. Since there are no X-crossings in the track layout, no edges
between the same pair of tracks can cross.
Theorem 8. [9, 5] Let G be a c-colourable t-track graph. Then
(a) G has a O(t) ×O(t) ×O(n) straight-line drawing with O(t2n) volume, and
(b) G has a O(c)×O(c2t)×O(c4n) straight-line drawing with O(c7tn) volume.
Moreover, if G has an X ×Y ×Z straight-line drawing then G has track-number
tn(G) ≤ 2XY .

By Theorem 3(a), every graph has a 4-track subdivision with O(log n) di-
vision vertices per edge, and hence a 3D polyline drawing with O(n + m log n)
volume by Theorem 8(a). We have the following specific results.
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Table 2. Volume of 3D polyline drawings of graphs with n vertices and m ≥ n edges.

graph family bends per edge volume reference

arbitrary 0 O(n3) Cohen et al. [3]

arbitrary 0 O(m4/3n) Dujmović and Wood [9]
maximum degree ∆ 0 O(∆mn) Dujmović and Wood [9]

bounded maximum degree 0 O(m1/2n) Dujmović and Wood [9]
bounded chromatic number 0 O(n2) Pach et al. [19]

bounded chromatic number 0 O(m2/3n) Dujmović and Wood [9]

H-minor free (H fixed) 0 O(n3/2) Dujmović and Wood [9]
bounded tree-width 0 O(n) Dujmović et al. [5]
c-colourable q-queue 1 O(cqm) Theorem 9(a)
arbitrary 1 O(nm) Theorem 9(b)
q-queue 2 O(qn) Theorem 9(c)
q-queue (constant ε > 0) O(1) O(mqε) Theorem 10
q-queue O(log q) O(m log q) Theorem 12

Theorem 9. Every c-colourable q-queue graph has: (a) a 2× c(q +1)× (n+m)
polyline 1-bend drawing, (b) an n × m × 2 polyline 1-bend drawing, and (c) a
2 × 2q × (2n − 3) polyline 2-bend drawing.

The next result highlights the apparent trade-off between few bends and
small volume.

Theorem 10. For every ε > 0, every q-queue graph has a 2×O(qε)×O(n+m/ε)
polyline drawing with O(1/ε) bends per edge.

Felsner et al. [14] introduced 3D straight-line graph drawings with the vertices
positioned on the edges of a triangular or rectangular prism.

Theorem 11. Every planar graph has a 2 × 2 × O(n2) polyline drawing on a
triangular prism with at most n − 2 bends per edge. Only planar graphs have
polyline drawings on a triangular prism.

Theorem 12. Every q-queue graph G has a 2 × 2 × O(n + m log q) polyline
drawing on a rectangular prism with O(log q) bends per edge.

Proof. By Theorem 3(a), G has a 4-track subdivision D with O(log q) divi-
sion vertices per edge. The number of vertices of D is O(n + m log q). Let
{V1, V2, V3, V4} be the tracks. Let n′ = max{|V1|, |V2|, |V3|, |V4|}. Position the ith

vertex in V1 at (0, 0, 2i). Position the ith vertex in V2 at (1, 0, 2i). Position the
ith vertex in V3 at (0, 1, 2i). Position the ith vertex in V4 at (1, 1, 2i + 1). Clearly
the only possible crossing is between edges vw and xy with v ∈ V1, w ∈ V4,
x ∈ V2, and y ∈ V3. Such a crossing point is on the line L = {(1

2 , 1
2 , z) : z ∈ R}.

However, vw intersects L at (1
2 , 1

2 , α+ 1
2 ) for some integer α, and xy intersects L

at (1
2 , 1

2 , β) for some integer β. Thus vw and xy do not intersect. The bounding
box is 2 × 2 × 2n′, which is 2 × 2 ×O(n + m log q). �	

Note that Di Giacomo and Meijer [4] proved that a 4-track graph has a
2 × 2 × n drawing. When n′ < n

2 the above construction has less volume.
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6 Planar Graphs

Felsner et al. [14] asked the following question (in their conference paper).

Open Problem 3. [14] Does every n-vertex planar graph have a 3D straight-
line drawing with O(n) volume?

By Theorem 8, this question has an affirmative answer if planar graphs have
bounded track-number. Whether planar graphs have bounded track-number is
an open problem due to Hubert de Fraysseix [private communication, 2000], and
since queue-number is tied to track-number for planar graphs [5, 6], is equivalent
to the following open problem due to Heath et al. [15]. Note that the best known
upper bound on the queue-number of planar graphs is O(

√
n).

Open Problem 4. [15] Do planar graphs have bounded queue-number?

We make the following contribution to the study of this problem, which is
analogous to Theorem 7, since 2-stack graphs are precisely the subgraphs of
Hamiltonian planar graphs.

Theorem 13. Let F(n) be the family of functions O(1) or O(polylog n). The
following are equivalent:

(a) n-vertex planar graphs have queue-number in F(n),
(b) n-vertex bipartite Hamiltonian planar graphs have queue-number in F(n),
(c) n-vertex bipartite Hamiltonian planar graphs have 2-track thickness in F(n).
(d) n-vertex planar graphs have O(1)×O(1)×O(n) polyline O(1)-bend drawings.
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