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a b s t r a c t

This paper studies the following question: given a surfaceΣ and an
integer n, what is the maximum number of cliques in an n-vertex
graph embeddable in Σ? We characterise the extremal graphs for
this question, and prove that the answer is between 8(n−ω)+ 2ω

and 8n+
5
2 2ω

+ o(2ω), where ω is the maximum integer such that
the complete graph Kω embeds in Σ . For the surfaces S0, S1, S2, N1,
N2, N3 and N4 we establish an exact answer.
© 2011 David Wood. Published by Elsevier Ltd. All rights reserved.

1. Introduction

A clique in a graph5 is a set of pairwise adjacent vertices. Let c(G) be the number of cliques in a
graph G. For example, every set of vertices in the complete graph Kn is a clique, and c(Kn) = 2n. This
paper studies the following question at the intersection of topological and extremal graph theory:
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given a surface Σ and an integer n, what is the maximum number of cliques in an n-vertex graph
embeddable in Σ?

For previous bounds on the maximum number of cliques in certain graph families, see [5,6,13,
14,22,23] for example. For background on graphs embedded in surfaces, see [11,21]. Every surface
is homeomorphic to Sg , the orientable surface with g handles, or to Nh, the non-orientable surface
with h crosscaps. The Euler characteristic of Sg is 2 − 2g . The Euler characteristic of Nh is 2 − h. The
orientable genus of a graph G is the minimum integer g such that G embeds in Sg . The non-orientable
genus of a graph G is the minimum integer h such that G embeds in Nh. The orientable genus of
Kn (n ≥ 3) is

 1
12 (n − 3)(n − 4)


, and its non-orientable genus is

 1
6 (n − 3)(n − 4)


, except that

the non-orientable genus of K7 is 3.
Throughout the paper, fix a surface Σ with Euler characteristic χ . If Σ = S0 then let ω = 3,

otherwise let ω be the maximum integer such that Kω embeds in Σ . Thus ω =
 1

2 (7 +
√
49 − 24χ)


except for Σ = S0 and Σ = N2, in which case ω = 3 and ω = 6, respectively.

To avoid trivial exceptions, we implicitly assume that |V (G)| ≥ 3 whenever Σ = S0.
Our first main result is to characterise the n-vertex graphs embeddable in Σ with the maximum

number of cliques; see Theorem 1 in Section 2. Using this result we determine an exact formula for the
maximum number of cliques in an n-vertex graph embeddable in each of the sphere S0, the torus S1,
the double torus S2, the projective plane N1, the Klein bottle N2, as well as N3 and N4; see Section 3.
Our third main result estimates the maximum number of cliques in terms of ω. We prove that the
maximum number of cliques in an n-vertex graph embeddable in Σ is between 8(n − ω) + 2ω and
8n +

5
2 2ω

+ o(2ω); see Theorem 2 in Section 4.

2. Characterisation of extremal graphs

The upper bounds proved in this paper are of the form: every graph G embeddable in Σ satisfies
c(G) ≤ 8|V (G)|+f (Σ) for some function f . Define the excess ofG to be c(G)−8|V (G)|. Thus the excess
of G is at most Q if and only if c(G) ≤ 8|V (G)| + Q . Theorem 2 proves that the maximum excess of a
graph embeddable in Σ is finite.

In this section, we characterise the graphs embeddable inΣ withmaximum excess. A triangulation
of Σ is an embedding of a graph in Σ in which each facial walk has three vertices and three edges
with no repetitions. (We assume that every face of a graph embedding is homeomorphic to a disc.)

Lemma 1. Every graph G embeddable in Σ with maximum excess is a triangulation of Σ .

Proof. Since adding edges within a face increases the number of cliques, the vertices on the boundary
of each face of G form a clique.

Suppose that some face f of G has at least four distinct vertices in its boundary. Let G′ be the graph
obtained fromG by adding one newvertex adjacent to four distinct vertices of f . ThusG′ is embeddable
inΣ , has |V (G)|+1 vertices, and has c(G)+16 cliques, which contradicts the choice ofG. Now assume
that every face of G has at most three distinct vertices.

Suppose that some face f of G has repeated vertices. Thus the facial walk of f contains vertices
u, v, w, v in this order (where v is repeated in f ). Let G′ be the graph obtained from G by adding two
new vertices p and q, where p is adjacent to {u, v, w, q}, and q is adjacent to {u, v, w, p}. So G′ is
embeddable in Σ and has |V (G)| + 2 vertices. If S ⊆ {p, q} and S ≠ ∅ and T ⊆ {u, v, w}, then S ∪ T is
a clique of G′ but not of G. It follows that G′ has c(G) + 24 cliques, which contradicts the choice of G.
Hence no face of G has repeated vertices, and G is a triangulation of Σ . �

Let G be a triangulation of Σ . An edge vw of G is reducible if vw is in exactly two triangles in G. We
say G is irreducible if no edge of G is reducible [2,3,7,9,10,12,17,19,20]. Note that K3 is a triangulation
of S0, and by the above definition, K3 is irreducible. In fact, it is the only irreducible triangulation of
S0. We take this somewhat non-standard approach so that Theorem 1 holds for all surfaces.

Let vw be a reducible edge of a triangulation G of Σ . Let vwx and vwy be the two faces incident
to vw in G. As illustrated in Fig. 1, let G/vw be the graph obtained from G by contracting vw; that is,
delete the edges vw, wy, wx, and identify v andw into v. G/vw is a simple graph since x and y are the
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Fig. 1. Contracting a reducible edge.

only common neighbours of v and w. Indeed, G/vw is a triangulation of Σ . Conversely, we say that G
is obtained from G/vw by splitting the path xvy at v. If, in addition, xy ∈ E(G), then we say that G is
obtained from G/vw by splitting the triangle xvy at v. Note that xvy need not be a face of G/vw. In the
case that xvy is a face, splitting xvy is equivalent to adding a new vertex adjacent to each of x, v, y.

Graphs embeddable in Σ with maximum excess are characterised in terms of irreducible triangu-
lations as follows.

Theorem 1. Let Q be the maximum excess of an irreducible triangulation of Σ . Let X be the set of
irreducible triangulations of Σ with excess Q . Then the excess of every graph G embeddable in Σ is at
most Q , with equality if and only if G is obtained from some graph in X by repeatedly splitting triangles.

Proof. We proceed by induction on |V (G)|. By Lemma 1, we may assume that G is a triangulation of
Σ . If G is irreducible, then the claim follows from the definition of X and Q . Otherwise, some edge
vw of G is in exactly two triangles vwx and vwy. By induction, the excess of G/vw is at most Q , with
equality if and only if G/vw is obtained from some H ∈ X by repeatedly splitting triangles. Hence
c(G/vw) ≤ 8|V (G/vw)| + Q .

Observe that every clique of G that is not in G/vw is in {A ∪ {w} : A ⊆ {x, v, y}}. Thus c(G) ≤

c(G/vw) + 8, with equality if and only if xvy is a triangle. Hence c(G) ≤ 8|V (G)| + Q ; that is, the
excess of G is at most Q .

Now suppose that the excess of G equals Q . Then the excess of G/vw equals Q , and c(G) =

c(G/vw)+8 (implying xvy is a triangle). By induction,G/vw is obtained fromH by repeatedly splitting
triangles. Therefore G is obtained from H by repeatedly splitting triangles.

Conversely, suppose thatG is obtained from someH ∈ X by repeatedly splitting triangles. Then xvy
is a triangle and G/vw is obtained from H by repeatedly splitting triangles. By induction, the excess
of G/vw equals Q , implying the excess of G equals Q . �

3. Low-genus surfaces

To prove an upper bound on the number of cliques in a graph embedded in Σ , by Theorem 1,
it suffices to consider irreducible triangulations of Σ with maximum excess. The complete list
of irreducible triangulations is known for S0, S1, S2, N1, N2, N3 and N4. In particular, Steinitz and
Rademacher [16] proved that K3 is the only irreducible triangulation of S0 (under our definition of
irreducible). Lavrenchenko [9] proved that there are 21 irreducible triangulations of S1, each with
between 7 and 10 vertices. Sulanke [17] proved that there are 396,784 irreducible triangulations of
S2, each with between 10 and 17 vertices. Barnette [1] proved that the embeddings of K6 and K7 − K3
in N1 are the only irreducible triangulations of N1. Sulanke [20] proved that there are 29 irreducible
triangulations ofN2, eachwith between 8 and 11 vertices (correcting an earlier result by Lawrencenko
and Negami [10]). Sulanke [17] proved that there are 9708 irreducible triangulations of N3, each with
between 9 and 16 vertices. Sulanke [17] proved that there are 6,297,982 irreducible triangulations
of N4, each with between 9 and 22 vertices. Using the lists of all irreducible triangulations due to
Sulanke [18] and a naive algorithm for counting cliques,6 we have computed the set X in Theorem 1
for each of the above surfaces; see Table 1. This data with Theorem 1 implies the following results.

6 The code is available from the authors upon request.
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Fig. 2. K7 embedded in the torus, and K6 embedded in the projective plane.

Table 1
The maximum excess of an n-vertex irreducible triangulation of Σ .

Σ χ ω n = 3 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Max

S0 2 3 −16 −16
S1 0 7 72 48 40 32 72
S2 −2 8 208 160 136 128 120 96 88 80 208
N1 1 6 16 8 16
N2 0 6 48 48 40 32 48
N3 −1 7 104 104 96 80 80 72 64 56 104
N4 −2 8 216 208 152 136 136 136 128 120 112 107 99 91 83 75 216

Proposition 1. Every planar graph G with |V (G)| ≥ 3 has at most 8|V (G)| − 16 cliques, as proved by
Wood [22]. Moreover, a planar graph G has 8|V (G)| − 16 cliques if and only if G is obtained from the
embedding of K3 in S0 by repeatedly splitting triangles.

Proposition 2. Every toroidal graph G has at most 8|V (G)|+72 cliques. Moreover, a toroidal graph G has
8|V (G)| + 72 cliques if and only if G is obtained from the embedding of K7 in S1 by repeatedly splitting
triangles (see Fig. 2).

Proposition 3. Every graph G embeddable in S2 has at most 8|V (G)| + 208 cliques. Moreover, a graph
G embeddable in S2 has 8|V (G)| + 208 cliques if and only if G is obtained from one of the following two
graph embeddings in S2 by repeatedly splitting triangles7:

graph #1: bcde,aefdghic,abiehfgd,acgbfihe,adhcigfb,begchjid,bdcfeijh,bgjfcedi,bhdfjgec,fhgi
graph #6: bcde,aefdghijc,abjehfgd,acgbfjihe,adhcjgfb,begchjd,bdcfejh,bgjfcedi,bhdj,bidfhgec.

Proposition 4. Every projective planar graph G has at most 8|V (G)| + 16 cliques. Moreover, a projective
planar graph G has 8|V (G)| + 16 cliques if and only if G is obtained from the embedding of K6 in N1 by
repeatedly splitting triangles (see Fig. 2).

Proposition 5. Every graph G embeddable in the Klein bottle N2 has at most 8|V (G)| + 48 cliques.
Moreover, a graph G embeddable in N2 has 8|V (G)| + 48 cliques if and only G is obtained from one of
the following three graph embeddings in N2 by repeatedly splitting triangles (see Fig. 3):

graph #3: bcdef,afgdhec,abefd,acfhbge,adghbcf,aecdhgb,bfhed,bdfge
graph #6: bcde,aefdghc,abhegd,acgbfhe,adhcgfb,beghd,bdcefh,bgfdec
graph #26: bcdef,afghidec,abefd,acfhgibe,adbcf,aecdhigb,bfidh,bgdfi,bhfgd.

7 This representation describes a graph with vertex set {a, b, c, . . .} by adjacency lists of the vertices in order a, b, c, . . . . The
graph # refers to the position in Sulanke’s file [18].
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Fig. 3. Irreducible triangulations of N2 with maximum excess: left-to-right #3, #6, #26.

Proposition 6. Every graph G embeddable in N3 has at most 8|V (G)| + 104 cliques. Moreover, a graph
G embeddable in N3 has 8|V (G)| + 104 cliques if and only if G is obtained from one of the following 15
graph embeddings in N3 by repeatedly splitting triangles:

graph #1: bcde,aefdghic,abiegfd,acfbgie,adicghfb,behigcd,bdifceh,bgefi,bhfgdec
graph #3: bcde,aefdghic,abiehd,achfbgie,adichgfb,begihd,bdifeh,bgecdfi,bhfgdec
graph #4: bcde,aefdghic,abiehd,achifbge,adgichfb,behgid,bdeifh,bgfecdi,bhdfgec
graph #6: bcde,aefdghic,abiehfd,acfbgihe,adhcifb,beighcd,bdifh,bgfcedi,bhdgfec
graph #8: bcde,aefdghic,abiehgfd,acfbgihe,adhcigfb,begcd,bdiefch,bgcedi,bhdgec
graph #10: bcde,aefdghic,abifegd,acgbfhie,adigcfb,becighd,bdceifh,bgfdi,bhdegfc
graph #12: bcde,aefdghic,abifehd,achfbgie,adihcfb,becighd,bdifh,bgfdcei,bhedgfc
graph #14: bcde,aefdghic,abigehd,achfbgie,adihcgfb,beghd,bdicefh,bgfdcei,bhedgc
graph #16: bcde,aefgdhic,abiegd,acgbhfie,adicghfb,behdig,bfihecd,bdfegi,bhgfdec
graph #19: bcde,aefghdic,abiehd,achbifge,adgichfb,behidg,bfdeih,bgifecd,bdfhgec
graph #20: bcde,aefghdic,abigehd,achbifge,adgchifb,beidg,bfdecih,bgiecd,bdfehgc
graph #21: bcde,aefghdic,abihegd,acgfhbie,adigchfb,behdg,bfdceih,bgicefd,bdeghc
graph #22: bcde,aefghdic,abihegd,acgfibhe,adhcgifb,beidg,bfdceih,bgiced,bdfeghc
graph #82: bcdef,afgdhiec,abefd,acfigbhe,adhgibcf,aecdihgb,bfheid,bdegfi,bhfdge
graph #2464: bcdef,afghijdec,abefd,acfhigjbe,adbcf,aecdhjigb,bfidjh,bgjfdi,bhdgfj,bifhgd.

Proposition 7. Every graph G embeddable in N4 has at most 8|V (G)| + 216 cliques. Moreover, a graph
G embeddable in N4 has 8|V (G)| + 216 cliques if and only if G is obtained from one of the following three
graph embeddings in N4 by repeatedly splitting triangles:

graph #1: bcdef,afdgehic,abiegfhd,achgbfie,adicgbhf,aehcgidb,bdhifce,befcdgi,bhgfdec
graph #2: bcdef,afdgehic,abifehgd,acgbfhie,adigbhcf,aecighdb,bdchfie,becgfdi,bhdegfc
graph #3: bcdef,afdgheic,abihfegd,acgbfihe,adhbigcf,aechgidb,bdceifh,bgfcide,begfdhc.

Note that the three embeddings in Proposition 7 are of the same graph.

4. A bound for all surfaces

Recall that Σ is a surface with Euler characteristic χ , and if Σ = S0 then ω = 3, otherwise ω is
the maximum integer such that Kω embeds in Σ . We start with the following upper bound on the
minimum degree of a graph.

Lemma 2. Assume Σ ≠ S0. Then every graph G embeddable in Σ has minimum degree at most

6 +
ω2

− 5ω − 7
|V (G)|

.
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Proof. By the definition ofω, the complete graph Kω+1 cannot be embedded inΣ . Thus ifΣ = Sg then
g =

1
2 (2−χ) ≤

 1
12 (ω − 2)(ω − 3)


− 1, and if Σ = Nh then h = 2−χ ≤

 1
6 (ω − 2)(ω − 3)


− 1.

In each case, it follows that 2 − χ ≤
1
6 (ω − 2)(ω − 3) −

1
6 . That is,

− 6χ ≤ ω2
− 5ω − 7. (1)

Say G has minimum degree d. It follows from Euler’s Formula that |E(G)| ≤ 3|V (G)| − 3χ . By (1),

d ≤
2|E(G)|

|V (G)|
≤

6|V (G)| − 6χ
|V (G)|

≤ 6 +
ω2

− 5ω − 7
|V (G)|

. �

For graphs in which the number of vertices is slightly more than ω, Lemma 2 can be reinterpreted
as follows.

Lemma 3. Assume Σ ≠ S0. Let s :=
√

ω + 11 − 3


≥ 1. Let G be a graph embeddable in Σ . If G has
at most ω + 1 vertices, then G has minimum degree at most ω − 1. If G has at least ω + j vertices, where
j ∈ [2, s], then G has minimum degree at most ω − j + 1.

Proof. Say G has minimum degree d. If |V (G)| ≤ ω, then trivially d ≤ ω − 1. If |V (G)| = ω + 1, then
G is not complete (by the definition of ω), again implying that d ≤ ω − 1. Now assume |V (G)| ≥ ω + j
for some j ∈ [2, s]. By Lemma 2,

d ≤ 6 +
ω2

− 5ω − 7
ω + j

= ω − j + 1 +
j2 + 5j − 7

ω + j
.

Since j ≤ s <
√

ω + 11 − 2, we have j2 + 5j − 7 ≤ s2 + 4s − 7 + j < ω + j. It follows that
d ≤ ω − j + 1. �

Now we prove our first upper bound on the number of cliques.

Lemma 4. Assume Σ ≠ S0. Let s :=
√

ω + 11 − 3


≥ 1. Let G be an n-vertex graph embeddable in
Σ . Then

c(G) ≤


5
2
2ω if n ≤ ω + s,

5
2
2ω

+ (n − ω − s)2ω−s+1 otherwise.

Proof. Let v1, v2, . . . , vn be an ordering of the vertices of G such that vi has minimum degree in the
subgraph Gi := G − {v1, . . . , vi−1}. Let di be the degree of vi in Gi (which equals the minimum degree
of Gi). Charge each non-empty clique C in G to the vertex vi ∈ C with iminimum. Charge the clique ∅

to vn.
We distinguish three types of vertices. Vertex vi is type-1 if i ∈ [1, n − ω − s]. Vertex vi is type-2

if i ∈ [n − ω − s + 1, n − ω]. Vertex vi is type-3 if i ∈ [n − ω + 1, n].
Each clique charged to a type-3 vertex is contained in {vn−ω+1, . . . , vn}, and there are at most 2ω

such cliques.
Say C is a clique charged to a type-1 or type-2 vertex vi. Then C −{vi} is contained inNGi(vi), which

consists of di vertices. Thus the number of cliques charged to vi is at most 2di . Recall that di equals the
minimum degree of Gi, which has n − i + 1 vertices.

If vi is type-2 then, by Lemma 3 with j = n − ω − i + 1 ∈ [1, s], we have di ≤ ω − j + 1, and
di ≤ ω − j if j = 1. Thus the number of cliques charged to type-2 vertices is at most

2ω−1
+

s
j=2

2ω−j+1
≤ 2ω−1

+

ω−1
j=1

2j <
3
2
2ω.

If vi is type-1 then Gi has more than ω + s vertices, and thus di ≤ ω − s+1 by Lemma 3 with j = s.
Thus the number of cliques charged to type-1 vertices is at most (n − ω − s)2ω−s+1. �
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Wenowprove themain result of this section; it provides lower and upper bounds on themaximum
number of cliques in a graph embeddable in Σ .

Theorem 2. Every n-vertex graph embeddable inΣ contains atmost 8n+
5
2 2ω

+o(2ω) cliques.Moreover,
for each n ≥ ω, there is an n-vertex graph embeddable in Σ with 8(n − ω) + 2ω cliques.

Proof. To prove the upper bound, we may assume that Σ ≠ S0, and by Theorem 1, we need
only consider n-vertex irreducible triangulations of Σ . Joret and Wood [7] proved that, in this case,
n ≤ 22 − 13χ . By Eq. (1),

n ≤ 22 − 13χ ≤ 22 +
13
6

(ω2
− 5ω − 7) < 3ω2.

If n ≤ ω + s then c(G) ≤
5
22

ω by Lemma 4. If n > ω + s then by the same lemma,

c(G) ≤
5
2
2ω

+ (3ω2
− ω − s)2ω−s+1 <

5
2
2ω

+ 3ω22ω−s+1 <
5
2
2ω

+ 2ω−s+2 logω+3.

Since s ∈ Θ(
√

ω), we have c(G) ≤
5
2 2ω

+ o(2ω).
To prove the lower bound, start with Kω embedded in Σ (which has 2ω cliques). Now, while

there are less than n vertices, insert a new vertex adjacent to each vertex of a single face. Each new
vertex adds at least 8 new cliques. Thus we obtain an n-vertex graph embedded in Σ with at least
8(n − ω) + 2ω cliques. �

5. Concluding conjectures

We conjecture that the upper bound in Theorem 2 can be improved to more closely match the
lower bound.

Conjecture 1. Every graph G embeddable in Σ has at most 8|V (G)| + 2ω
+ o(2ω) cliques.

If Kω triangulates Σ , then we conjecture the following exact answer.

Conjecture 2. Suppose that Kω triangulates Σ . Then every graph G embeddable in Σ has at most
8(|V (G)| − ω) + 2ω cliques, with equality if and only if G is obtained from Kω by repeatedly splitting
triangles.

By Theorem 1, this conjecture is equivalent to the following.

Conjecture 3. Suppose that Kω triangulates Σ . Then Kω is the only irreducible triangulation of Σ with
maximum excess.

The results in Section 3 confirm Conjectures 2 and 3 for S0, S1 and N1.
Now consider surfaces possibly with no complete graph triangulation. Then the bound c(G) ≤

8(|V (G)| − ω) + 2ω (in Conjecture 2) is false for S2, N2, N3 and N4. Loosely speaking, this is because
these surfaces have ‘small’ ω compared to χ . In particular, ω =

 1
2 (7 +

√
49 − 24χ)


except for

S0 and N2, and ω =
1
2 (7 +

√
49 − 24χ) if and only if Kω triangulates Σ ≠ S0. This phenomenon

motivates the following conjecture.

Conjecture 4. Every graph G embeddable in Σ has at most

8|V (G)| − 4(7 +

49 − 24χ) + 2(7+

√
49−24χ)/2

cliques, with equality if and only if Kω triangulates Σ and G is obtained from Kω by repeatedly splitting
triangles.
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Fig. 4. Triangulation #2464 of N3 .

There are two irreducible triangulations of S2 with maximum excess, there are three irreducible
triangulations of N2 with maximum excess, there are 15 irreducible triangulations of N3 with
maximum excess, and there are three irreducible triangulations of N4 with maximum excess. This
suggests that for surfaces with no complete graph triangulation, a succinct characterisation of the
extremal examples (as in Conjecture 3) might be difficult. Nevertheless, we conjecture the following
strengthening of Conjecture 3 for all surfaces.

Conjecture 5. Every irreducible triangulation of Σ with maximum excess contains Kω as a subgraph.

A triangulation of a surface Σ is vertex-minimal if it has the minimum number of vertices in
a triangulation of Σ . Of course, every vertex-minimal triangulation is irreducible. Ringel [15] and
Jungerman and Ringel [8] together proved that the order of a vertex-minimal triangulation is ω if
Kω triangulates Σ , is ω + 2 if Σ ∈ {S2, N2, N3}, and is ω + 1 for every other surface.

Triangulations #26 of N2 and #2464 of N3 are the only triangulations in Propositions 1–7 that are
not vertex-minimal. Triangulation #26 of N2 is obtained from two embeddings of K6 in N1 joined at
the face bdf (see Fig. 3). Triangulation #2464 of N3 is obtained by joining an embedding of K6 in N1
and an embedding of K7 in S1 at the face bdf (see Fig. 4).

Every other triangulation in Propositions 1–7 is obtained from an embedding of Kω by adding (at
most two) vertices and edges until a vertex-minimal triangulation is obtained. This provides some
evidence for our final conjecture.

Conjecture 6. For every surfaceΣ , themaximum excess is attained by some vertex-minimal triangulation
of Σ that contains Kω as a subgraph. Moreover, if Σ ∉ {N2, N3} then every irreducible triangulation with
maximum excess is vertex-minimal and contains Kω as a subgraph.

We have verified Conjectures 4–6 for S0, S1, S2, N1, N2, N3 and N4.
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