

Contents lists available at ScienceDirect

European Journal of Combinatorics

On the maximum number of cliques in a graph embedded in a surface

Vida Dujmović ^{a,1}, Gašper Fijavž ^{b,2}, Gwenaël Joret ^{c,3}, Thom Sulanke ^d, David R. Wood ^{e,4}

ARTICLE INFO

Article history: Received 6 July 2009 Accepted 30 March 2011

ABSTRACT

This paper studies the following question: given a surface Σ and an integer n, what is the maximum number of cliques in an n-vertex graph embeddable in Σ ? We characterise the extremal graphs for this question, and prove that the answer is between $8(n-\omega)+2^\omega$ and $8n+\frac{5}{2}2^\omega+o(2^\omega)$, where ω is the maximum integer such that the complete graph K_ω embeds in Σ . For the surfaces \mathbb{S}_0 , \mathbb{S}_1 , \mathbb{S}_2 , \mathbb{N}_1 , \mathbb{N}_2 , \mathbb{N}_3 and \mathbb{N}_4 we establish an exact answer.

© 2011 David Wood, Published by Elsevier Ltd. All rights reserved.

1. Introduction

A *clique* in a graph⁵ is a set of pairwise adjacent vertices. Let c(G) be the number of cliques in a graph G. For example, every set of vertices in the complete graph K_n is a clique, and $c(K_n) = 2^n$. This paper studies the following question at the intersection of topological and extremal graph theory:

^a School of Computer Science, Carleton University, Ottawa, Canada

^b Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia

^c Département d'Informatique, Université Libre de Bruxelles, Brussels, Belgium

^d Department of Physics, Indiana University, Bloomington, IN, USA

^e Department of Mathematics and Statistics, The University of Melbourne, Melbourne, Australia

E-mail addresses: vida@cs.mcgill.ca (V. Dujmović), gasper.fijavz@fri.uni-lj.si (G. Fijavž), gjoret@ulb.ac.be (G. Joret), tsulanke@indiana.edu (T. Sulanke), woodd@unimelb.edu.au (D.R. Wood).

¹ Supported by the Natural Sciences and Engineering Research Council of Canada.

² Supported in part by the Slovenian Research Agency, Research Program P1-0297.

³ Postdoctoral Researcher of the Fonds National de la Recherche Scientifique (F.R.S.–FNRS). Supported in part by the Actions de Recherche Concertées (ARC) fund of the Communauté française de Belgique.

 $^{^{}m 4}$ Supported by a QEII Research Fellowship from the Australian Research Council.

⁵ We consider simple, finite, undirected graphs G with vertex set V(G) and edge set E(G). A K_3 subgraph of G is called a *triangle* of G. For background graph theory, see [4].

given a surface Σ and an integer n, what is the maximum number of cliques in an n-vertex graph embeddable in Σ ?

For previous bounds on the maximum number of cliques in certain graph families, see [5,6,13, 14,22,23] for example. For background on graphs embedded in surfaces, see [11,21]. Every surface is homeomorphic to \mathbb{S}_g , the orientable surface with g handles, or to \mathbb{N}_h , the non-orientable surface with g crosscaps. The Euler characteristic of \mathbb{S}_g is g can be Euler characteristic of \mathbb{N}_h is g can be the minimum integer g such that g embeds in \mathbb{N}_g . The non-orientable genus of a graph g is the minimum integer g such that g embeds in \mathbb{N}_h . The orientable genus of g is the minimum integer g such that g embeds in g is the orientable genus of g is g in g

Throughout the paper, fix a surface Σ with Euler characteristic χ . If $\Sigma = \mathbb{S}_0$ then let $\omega = 3$, otherwise let ω be the maximum integer such that K_ω embeds in Σ . Thus $\omega = \left\lfloor \frac{1}{2}(7 + \sqrt{49 - 24\chi}) \right\rfloor$ except for $\Sigma = \mathbb{S}_0$ and $\Sigma = \mathbb{N}_2$, in which case $\omega = 3$ and $\omega = 6$, respectively.

To avoid trivial exceptions, we implicitly assume that $|V(G)| \geq 3$ whenever $\Sigma = \mathbb{S}_0$.

Our first main result is to characterise the n-vertex graphs embeddable in Σ with the maximum number of cliques; see Theorem 1 in Section 2. Using this result we determine an exact formula for the maximum number of cliques in an n-vertex graph embeddable in each of the sphere \mathbb{S}_0 , the torus \mathbb{S}_1 , the double torus \mathbb{S}_2 , the projective plane \mathbb{N}_1 , the Klein bottle \mathbb{N}_2 , as well as \mathbb{N}_3 and \mathbb{N}_4 ; see Section 3. Our third main result estimates the maximum number of cliques in terms of ω . We prove that the maximum number of cliques in an n-vertex graph embeddable in Σ is between $8(n-\omega)+2^\omega$ and $8n+\frac{5}{2}2^\omega+o(2^\omega)$; see Theorem 2 in Section 4.

2. Characterisation of extremal graphs

The upper bounds proved in this paper are of the form: every graph G embeddable in Σ satisfies $c(G) \leq 8|V(G)| + f(\Sigma)$ for some function f. Define the *excess* of G to be c(G) - 8|V(G)|. Thus the excess of G is at most G if and only if G if G is at most G if and only if G is finite.

In this section, we characterise the graphs embeddable in Σ with maximum excess. A *triangulation* of Σ is an embedding of a graph in Σ in which each facial walk has three vertices and three edges with no repetitions. (We assume that every face of a graph embedding is homeomorphic to a disc.)

Lemma 1. Every graph G embeddable in Σ with maximum excess is a triangulation of Σ .

Proof. Since adding edges within a face increases the number of cliques, the vertices on the boundary of each face of *G* form a clique.

Suppose that some face f of G has at least four distinct vertices in its boundary. Let G' be the graph obtained from G by adding one new vertex adjacent to four distinct vertices of f. Thus G' is embeddable in Σ , has |V(G)|+1 vertices, and has c(G)+16 cliques, which contradicts the choice of G. Now assume that every face of G has at most three distinct vertices.

Suppose that some face f of G has repeated vertices. Thus the facial walk of f contains vertices u, v, w, v in this order (where v is repeated in f). Let G' be the graph obtained from G by adding two new vertices p and q, where p is adjacent to $\{u, v, w, q\}$, and q is adjacent to $\{u, v, w, p\}$. So G' is embeddable in E and has |V(G)| + 2 vertices. If $S \subseteq \{p, q\}$ and $S \ne \emptyset$ and $F \subseteq \{u, v, w\}$, then $F \cap G$ is a clique of $F \cap G$ but not of $F \cap G$. It follows that $F \cap G$ has repeated vertices, and $F \cap G$ is a triangulation of $F \cap G$.

Let G be a triangulation of Σ . An edge vw of G is reducible if vw is in exactly two triangles in G. We say G is irreducible if no edge of G is reducible [2,3,7,9,10,12,17,19,20]. Note that K_3 is a triangulation of \mathbb{S}_0 , and by the above definition, K_3 is irreducible. In fact, it is the only irreducible triangulation of \mathbb{S}_0 . We take this somewhat non-standard approach so that Theorem 1 holds for all surfaces.

Let vw be a reducible edge of a triangulation G of Σ . Let vwx and vwy be the two faces incident to vw in G. As illustrated in Fig. 1, let G/vw be the graph obtained from G by contracting vw; that is, delete the edges vw, wy, wx, and identify v and w into v. G/vw is a simple graph since x and y are the

Fig. 1. Contracting a reducible edge.

only common neighbours of v and w. Indeed, G/vw is a triangulation of Σ . Conversely, we say that G is obtained from G/vw by *splitting* the path xvy at v. If, in addition, $xy \in E(G)$, then we say that G is obtained from G/vw by *splitting* the triangle xvy at v. Note that xvy need not be a face of G/vw. In the case that xvy is a face, splitting xvy is equivalent to adding a new vertex adjacent to each of x, y, y.

Graphs embeddable in Σ with maximum excess are characterised in terms of irreducible triangulations as follows.

Theorem 1. Let Q be the maximum excess of an irreducible triangulation of Σ . Let X be the set of irreducible triangulations of Σ with excess Q. Then the excess of every graph G embeddable in Σ is at most Q, with equality if and only if G is obtained from some graph in X by repeatedly splitting triangles.

Proof. We proceed by induction on |V(G)|. By Lemma 1, we may assume that G is a triangulation of Σ . If G is irreducible, then the claim follows from the definition of X and Q. Otherwise, some edge vw of G is in exactly two triangles vwx and vwy. By induction, the excess of G/vw is at most Q, with equality if and only if G/vw is obtained from some $H \in X$ by repeatedly splitting triangles. Hence $c(G/vw) \le 8|V(G/vw)| + Q$.

Observe that every clique of G that is not in G/vw is in $\{A \cup \{w\} : A \subseteq \{x, v, y\}\}$. Thus $c(G) \le c(G/vw) + 8$, with equality if and only if xvy is a triangle. Hence $c(G) \le 8|V(G)| + Q$; that is, the excess of G is at most G.

Now suppose that the excess of G equals Q. Then the excess of G/vw equals Q, and c(G) = c(G/vw) + 8 (implying xvy is a triangle). By induction, G/vw is obtained from H by repeatedly splitting triangles. Therefore G is obtained from H by repeatedly splitting triangles.

Conversely, suppose that G is obtained from some $H \in X$ by repeatedly splitting triangles. Then xvy is a triangle and G/vw is obtained from H by repeatedly splitting triangles. By induction, the excess of G/vw equals Q, implying the excess of G equals Q. \Box

3. Low-genus surfaces

To prove an upper bound on the number of cliques in a graph embedded in Σ , by Theorem 1, it suffices to consider irreducible triangulations of Σ with maximum excess. The complete list of irreducible triangulations is known for \mathbb{S}_0 , \mathbb{S}_1 , \mathbb{S}_2 , \mathbb{N}_1 , \mathbb{N}_2 , \mathbb{N}_3 and \mathbb{N}_4 . In particular, Steinitz and Rademacher [16] proved that K_3 is the only irreducible triangulation of \mathbb{S}_0 (under our definition of irreducible). Lavrenchenko [9] proved that there are 21 irreducible triangulations of \mathbb{S}_1 , each with between 7 and 10 vertices. Sulanke [17] proved that there are 396,784 irreducible triangulations of \mathbb{S}_2 , each with between 10 and 17 vertices. Barnette [1] proved that the embeddings of K_6 and $K_7 - K_3$ in \mathbb{N}_1 are the only irreducible triangulations of \mathbb{N}_1 . Sulanke [20] proved that there are 29 irreducible triangulations of \mathbb{N}_2 , each with between 8 and 11 vertices (correcting an earlier result by Lawrencenko and Negami [10]). Sulanke [17] proved that there are 9708 irreducible triangulations of \mathbb{N}_3 , each with between 9 and 16 vertices. Sulanke [17] proved that there are 6,297,982 irreducible triangulations of \mathbb{N}_4 , each with between 9 and 22 vertices. Using the lists of all irreducible triangulations due to Sulanke [18] and a naive algorithm for counting cliques, we have computed the set X in Theorem 1 for each of the above surfaces; see Table 1. This data with Theorem 1 implies the following results.

⁶ The code is available from the authors upon request.

Fig. 2. K_7 embedded in the torus, and K_6 embedded in the projective plane.

Table 1 The maximum excess of an n-vertex irreducible triangulation of Σ .

Σ	χ	ω	n = 3 6	5	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	Max
\mathbb{S}_0	2	3	-16																		-16
\mathbb{S}_1	0	7			72	48	40	32													72
\mathbb{S}_2	-2	8						208	160	136	128	120	96	88	80						208
\mathbb{N}_1	1	6	1	16	8																16
\mathbb{N}_2	0	6				48	48	40	32												48
\mathbb{N}_3	-1	7					104	104	96	80	80	72	64	56							104
\mathbb{N}_4	-2	8					216	208	152	136	136	136	128	120	112	107	99	91	83	75	216

Proposition 1. Every planar graph G with $|V(G)| \ge 3$ has at most 8|V(G)| - 16 cliques, as proved by Wood [22]. Moreover, a planar graph G has 8|V(G)| - 16 cliques if and only if G is obtained from the embedding of K_3 in \mathbb{S}_0 by repeatedly splitting triangles.

Proposition 2. Every toroidal graph G has at most 8|V(G)| + 72 cliques. Moreover, a toroidal graph G has 8|V(G)| + 72 cliques if and only if G is obtained from the embedding of K_7 in \mathbb{S}_1 by repeatedly splitting triangles (see Fig. 2).

Proposition 3. Every graph G embeddable in \mathbb{S}_2 has at most 8|V(G)| + 208 cliques. Moreover, a graph G embeddable in \mathbb{S}_2 has 8|V(G)| + 208 cliques if and only if G is obtained from one of the following two graph embeddings in \mathbb{S}_2 by repeatedly splitting triangles⁷:

graph #1: bcde,aefdghic,abiehfgd,acgbfihe,adhcigfb,begchjid,bdcfeijh,bgjfcedi,bhdfjgec,fhgi graph #6: bcde,aefdghijc,abjehfgd,acgbfjihe,adhcjgfb,begchjd,bdcfejh,bgjfcedi,bhdj,bidfhgec.

Proposition 4. Every projective planar graph G has at most 8|V(G)|+16 cliques. Moreover, a projective planar graph G has 8|V(G)|+16 cliques if and only if G is obtained from the embedding of K_6 in \mathbb{N}_1 by repeatedly splitting triangles (see Fig. 2).

Proposition 5. Every graph G embeddable in the Klein bottle \mathbb{N}_2 has at most 8|V(G)|+48 cliques. Moreover, a graph G embeddable in \mathbb{N}_2 has 8|V(G)|+48 cliques if and only G is obtained from one of the following three graph embeddings in \mathbb{N}_2 by repeatedly splitting triangles (see Fig. 3):

graph #3: bcdef,afgdhec,abefd,acfhbge,adghbcf,aecdhgb,bfhed,bdfge

graph #6: bcde,aefdghc,abhegd,acgbfhe,adhcgfb,beghd,bdcefh,bgfdec

graph #26: bcdef,afghidec,abefd,acfhgibe,adbcf,aecdhigb,bfidh,bgdfi,bhfgd.

⁷ This representation describes a graph with vertex set $\{a, b, c, \ldots\}$ by adjacency lists of the vertices in order a, b, c, \ldots . The graph # refers to the position in Sulanke's file [18].

Fig. 3. Irreducible triangulations of \mathbb{N}_2 with maximum excess: left-to-right #3, #6, #26.

Proposition 6. Every graph G embeddable in \mathbb{N}_3 has at most 8|V(G)|+104 cliques. Moreover, a graph G embeddable in \mathbb{N}_3 has 8|V(G)|+104 cliques if and only if G is obtained from one of the following 15 graph embeddings in \mathbb{N}_3 by repeatedly splitting triangles:

graph #1: bcde,aefdghic,abiegfd,acfbgie,adicghfb,behigcd,bdifceh,bgefi,bhfgdec graph #3: bcde,aefdghic,abiehd,achfbgie,adichgfb,begihd,bdifeh,bgecdfi,bhfgdec graph #4: bcde,aefdghic,abiehd,achifbge,adgichfb,behgid,bdeifh,bgfecdi,bhdfgec graph #6: bcde,aefdghic,abiehff,acfbgihe,adhcifb,beighcd,bdifh,bgfcedi,bhdgfec graph #8: bcde,aefdghic,abiehgfd,acfbgihe,adhcigfb,begcd,bdiefch,bgcedi,bhdgec graph #10: bcde,aefdghic,abifegd,acgbfhie,adigcfb,becighd,bdceifh,bgfdi,bhdegfc graph #12: bcde,aefdghic,abifehd,achfbgie,adihcfb,becighd,bdifh,bgfdcei,bhedgfc graph #14: bcde,aefdghic,abigehd,achfbgie,adihcgfb,beghd,bdicefh,bgfdcei,bhedgc graph #16: bcde,aefgdhic,abiegd,acgbhfie,adicghfb,behdig,bfhecd,bdfegi,bhgfdec graph #19: bcde,aefghdic,abiehd,achbifge,adgichfb,behidg,bfdeih,bgifecd,bdfhgec graph #20: bcde,aefghdic,abigehd,achbifge,adgchifb,beidg,bfdecih,bgiecd,bdfehgc graph #21: bcde,aefghdic,abihegd,acgfhbie,adigchfb,behdg,bfdceih,bgicefd,bdeghc graph #22: bcde,aefghdic,abihegd,acgfibhe,adhcgifb,beidg,bfdceih,bgiced,bdfeghc graph #82: bcdef,afgdhiec,abefd,acfigbhe,adhgibcf,aecdhjgb,bfheid,bdegfi,bhfdge graph #2464: bcdef,afghijdec,abefd,acfhigjbe,adbcf,aecdhjigb,bfidjh,bgjfdi,bhdgfj,bifhgd.

Proposition 7. Every graph G embeddable in \mathbb{N}_4 has at most 8|V(G)| + 216 cliques. Moreover, a graph G embeddable in \mathbb{N}_4 has 8|V(G)| + 216 cliques if and only if G is obtained from one of the following three graph embeddings in \mathbb{N}_4 by repeatedly splitting triangles:

graph #1: bcdef,afdgehic,abiegfhd,achgbfie,adicgbhf,aehcgidb,bdhifce,befcdgi,bhgfdec graph #2: bcdef,afdgehic,abifehgd,acgbfhie,adigbhcf,aecighdb,bdchfie,becgfdi,bhdegfc graph #3: bcdef,afdgheic,abihfegd,acgbfihe,adhbigcf,aechgidb,bdceifh,bgfcide,begfdhc.

Note that the three embeddings in Proposition 7 are of the same graph.

4. A bound for all surfaces

Recall that Σ is a surface with Euler characteristic χ , and if $\Sigma = \mathbb{S}_0$ then $\omega = 3$, otherwise ω is the maximum integer such that K_{ω} embeds in Σ . We start with the following upper bound on the minimum degree of a graph.

Lemma 2. Assume $\Sigma \neq \mathbb{S}_0$. Then every graph G embeddable in Σ has minimum degree at most

$$6 + \frac{\omega^2 - 5\omega - 7}{|V(G)|}.$$

Proof. By the definition of ω , the complete graph $K_{\omega+1}$ cannot be embedded in Σ . Thus if $\Sigma = \mathbb{S}_g$ then $g = \frac{1}{2}(2-\chi) \le \left\lceil \frac{1}{12}(\omega-2)(\omega-3) \right\rceil - 1$, and if $\Sigma = \mathbb{N}_h$ then $h = 2-\chi \le \left\lceil \frac{1}{6}(\omega-2)(\omega-3) \right\rceil - 1$. In each case, it follows that $2-\chi \le \frac{1}{6}(\omega-2)(\omega-3) - \frac{1}{6}$. That is,

$$-6\chi < \omega^2 - 5\omega - 7. \tag{1}$$

Say G has minimum degree d. It follows from Euler's Formula that $|E(G)| \leq 3|V(G)| - 3\chi$. By (1),

$$d \le \frac{2|E(G)|}{|V(G)|} \le \frac{6|V(G)| - 6\chi}{|V(G)|} \le 6 + \frac{\omega^2 - 5\omega - 7}{|V(G)|}. \quad \Box$$

For graphs in which the number of vertices is slightly more than ω , Lemma 2 can be reinterpreted as follows.

Lemma 3. Assume $\Sigma \neq \mathbb{S}_0$. Let $s := \lceil \sqrt{\omega + 11} - 3 \rceil \geq 1$. Let G be a graph embeddable in Σ . If G has at most $\omega + 1$ vertices, then G has minimum degree at most $\omega - 1$. If G has at least $\omega + j$ vertices, where $j \in [2, s]$, then G has minimum degree at most $\omega - j + 1$.

Proof. Say G has minimum degree d. If $|V(G)| \le \omega$, then trivially $d \le \omega - 1$. If $|V(G)| = \omega + 1$, then G is not complete (by the definition of ω), again implying that $d \le \omega - 1$. Now assume $|V(G)| \ge \omega + j$ for some $j \in [2, s]$. By Lemma 2,

$$d \le 6 + \frac{\omega^2 - 5\omega - 7}{\omega + j} = \omega - j + 1 + \frac{j^2 + 5j - 7}{\omega + j}.$$

Since $j \le s < \sqrt{\omega + 11} - 2$, we have $j^2 + 5j - 7 \le s^2 + 4s - 7 + j < \omega + j$. It follows that $d \le \omega - j + 1$. \square

Now we prove our first upper bound on the number of cliques.

Lemma 4. Assume $\Sigma \neq \mathbb{S}_0$. Let $s := \lceil \sqrt{\omega + 11} - 3 \rceil \geq 1$. Let G be an n-vertex graph embeddable in Σ . Then

$$c(G) \leq \begin{cases} \frac{5}{2} 2^{\omega} & \text{if } n \leq \omega + s, \\ \frac{5}{2} 2^{\omega} + (n - \omega - s) 2^{\omega - s + 1} & \text{otherwise.} \end{cases}$$

Proof. Let v_1, v_2, \ldots, v_n be an ordering of the vertices of G such that v_i has minimum degree in the subgraph $G_i := G - \{v_1, \ldots, v_{i-1}\}$. Let d_i be the degree of v_i in G_i (which equals the minimum degree of G_i). Charge each non-empty clique G in G to the vertex $v_i \in G$ with G in G in G to the vertex G in G

We distinguish three types of vertices. Vertex v_i is type-1 if $i \in [1, n - \omega - s]$. Vertex v_i is type-2 if $i \in [n - \omega - s + 1, n - \omega]$. Vertex v_i is type-3 if $i \in [n - \omega + 1, n]$.

Each clique charged to a type-3 vertex is contained in $\{v_{n-\omega+1}, \ldots, v_n\}$, and there are at most 2^{ω} such cliques.

Say C is a clique charged to a type-1 or type-2 vertex v_i . Then $C - \{v_i\}$ is contained in $N_{G_i}(v_i)$, which consists of d_i vertices. Thus the number of cliques charged to v_i is at most 2^{d_i} . Recall that d_i equals the minimum degree of G_i , which has n - i + 1 vertices.

If v_i is type-2 then, by Lemma 3 with $j=n-\omega-i+1\in[1,s]$, we have $d_i\leq\omega-j+1$, and $d_i\leq\omega-j$ if j=1. Thus the number of cliques charged to type-2 vertices is at most

$$2^{\omega-1} + \sum_{i=2}^{s} 2^{\omega-j+1} \le 2^{\omega-1} + \sum_{i=1}^{\omega-1} 2^{i} < \frac{3}{2} 2^{\omega}.$$

If v_i is type-1 then G_i has more than $\omega + s$ vertices, and thus $d_i \le \omega - s + 1$ by Lemma 3 with j = s. Thus the number of cliques charged to type-1 vertices is at most $(n - \omega - s)2^{\omega - s + 1}$. \square

We now prove the main result of this section; it provides lower and upper bounds on the maximum number of cliques in a graph embeddable in Σ .

Theorem 2. Every n-vertex graph embeddable in Σ contains at most $8n + \frac{5}{2} 2^{\omega} + o(2^{\omega})$ cliques. Moreover, for each $n \geq \omega$, there is an n-vertex graph embeddable in Σ with $8(n - \omega) + 2^{\omega}$ cliques.

Proof. To prove the upper bound, we may assume that $\Sigma \neq \mathbb{S}_0$, and by Theorem 1, we need only consider *n*-vertex irreducible triangulations of Σ . Joret and Wood [7] proved that, in this case, $n \le 22 - 13\chi$. By Eq. (1),

$$n \le 22 - 13\chi \le 22 + \frac{13}{6}(\omega^2 - 5\omega - 7) < 3\omega^2.$$

If $n \le \omega + s$ then $c(G) \le \frac{5}{2}2^{\omega}$ by Lemma 4. If $n > \omega + s$ then by the same lemma,

$$c(G) \leq \frac{5}{2}2^{\omega} + (3\omega^2 - \omega - s)2^{\omega - s + 1} < \frac{5}{2}2^{\omega} + 3\omega^2 2^{\omega - s + 1} < \frac{5}{2}2^{\omega} + 2^{\omega - s + 2\log\omega + 3}.$$

Since $s \in \Theta(\sqrt{\omega})$, we have $c(G) \leq \frac{5}{2} 2^{\omega} + o(2^{\omega})$. To prove the lower bound, start with K_{ω} embedded in Σ (which has 2^{ω} cliques). Now, while there are less than n vertices, insert a new vertex adjacent to each vertex of a single face. Each new vertex adds at least 8 new cliques. Thus we obtain an n-vertex graph embedded in Σ with at least $8(n-\omega)+2^{\omega}$ cliques. \square

5. Concluding conjectures

We conjecture that the upper bound in Theorem 2 can be improved to more closely match the lower bound.

Conjecture 1. Every graph G embeddable in Σ has at most $8|V(G)| + 2^{\omega} + o(2^{\omega})$ cliques.

If K_{ω} triangulates Σ , then we conjecture the following exact answer.

Conjecture 2. Suppose that K_{ω} triangulates Σ . Then every graph G embeddable in Σ has at most $8(|V(G)|-\omega)+2^{\omega}$ cliques, with equality if and only if G is obtained from K_{ω} by repeatedly splitting triangles.

By Theorem 1, this conjecture is equivalent to the following.

Conjecture 3. Suppose that K_{ω} triangulates Σ . Then K_{ω} is the only irreducible triangulation of Σ with maximum excess.

The results in Section 3 confirm Conjectures 2 and 3 for S_0 , S_1 and N_1 .

Now consider surfaces possibly with no complete graph triangulation. Then the bound $c(G) \leq$ $8(|V(G)|-\omega)+2^{\omega}$ (in Conjecture 2) is false for $\mathbb{S}_2, \mathbb{N}_2, \mathbb{N}_3$ and \mathbb{N}_4 . Loosely speaking, this is because these surfaces have 'small' ω compared to χ . In particular, $\omega = \left| \frac{1}{2} (7 + \sqrt{49 - 24 \chi}) \right|$ except for \mathbb{S}_0 and \mathbb{N}_2 , and $\omega = \frac{1}{2}(7 + \sqrt{49 - 24\chi})$ if and only if K_ω triangulates $\Sigma \neq \mathbb{S}_0$. This phenomenon motivates the following conjecture.

Conjecture 4. Every graph G embeddable in Σ has at most

$$8|V(G)| - 4(7 + \sqrt{49 - 24\chi}) + 2^{(7 + \sqrt{49 - 24\chi})/2}$$

cliques, with equality if and only if K_{ω} triangulates Σ and G is obtained from K_{ω} by repeatedly splitting triangles.

Fig. 4. Triangulation #2464 of N₃.

There are two irreducible triangulations of \mathbb{S}_2 with maximum excess, there are three irreducible triangulations of \mathbb{N}_2 with maximum excess, there are 15 irreducible triangulations of \mathbb{N}_3 with maximum excess, and there are three irreducible triangulations of \mathbb{N}_4 with maximum excess. This suggests that for surfaces with no complete graph triangulation, a succinct characterisation of the extremal examples (as in Conjecture 3) might be difficult. Nevertheless, we conjecture the following strengthening of Conjecture 3 for all surfaces.

Conjecture 5. Every irreducible triangulation of Σ with maximum excess contains K_{ω} as a subgraph.

A triangulation of a surface Σ is *vertex-minimal* if it has the minimum number of vertices in a triangulation of Σ . Of course, every vertex-minimal triangulation is irreducible. Ringel [15] and Jungerman and Ringel [8] together proved that the order of a vertex-minimal triangulation is ω if K_{ω} triangulates Σ , is $\omega + 2$ if $\Sigma \in \{\mathbb{S}_2, \mathbb{N}_2, \mathbb{N}_3\}$, and is $\omega + 1$ for every other surface.

Triangulations #26 of \mathbb{N}_2 and #2464 of \mathbb{N}_3 are the only triangulations in Propositions 1–7 that are not vertex-minimal. Triangulation #26 of \mathbb{N}_2 is obtained from two embeddings of K_6 in \mathbb{N}_1 joined at the face bdf (see Fig. 3). Triangulation #2464 of \mathbb{N}_3 is obtained by joining an embedding of K_6 in \mathbb{N}_1 and an embedding of K_7 in \mathbb{S}_1 at the face bdf (see Fig. 4).

Every other triangulation in Propositions 1–7 is obtained from an embedding of K_{ω} by adding (at most two) vertices and edges until a vertex-minimal triangulation is obtained. This provides some evidence for our final conjecture.

Conjecture 6. For every surface Σ , the maximum excess is attained by some vertex-minimal triangulation of Σ that contains K_{ω} as a subgraph. Moreover, if $\Sigma \notin \{\mathbb{N}_2, \mathbb{N}_3\}$ then every irreducible triangulation with maximum excess is vertex-minimal and contains K_{ω} as a subgraph.

We have verified Conjectures 4–6 for \mathbb{S}_0 , \mathbb{S}_1 , \mathbb{S}_2 , \mathbb{N}_1 , \mathbb{N}_2 , \mathbb{N}_3 and \mathbb{N}_4 .

References

- [1] David W. Barnette, Generating the triangulations of the projective plane, J. Combin. Theory Ser. B 33 (3) (1982) 222–230. doi:10.1016/0095-8956(82)90041-7.
- [2] David W. Barnette, Allan L. Édelson, All 2-manifolds have finitely many minimal triangulations, Israel J. Math. 67 (1) (1989) 123–128. doi:10.1007/BF02764905.
- [3] Siu-Wing Cheng, Tamal K. Dey, Sheung-Hung Poon, Hierarchy of surface models and irreducible triangulations, Comput. Geom. 27 (2) (2004) 135–150. doi:10.1016/j.comgeo.2003.07.001.
- [4] Reinhard Diestel, Graph theory, 2nd ed., in: Graduate Texts in Mathematics, vol. 173, Springer, 2000, http://diestel-graph-theory.com/index.html.
- [5] Jürgen Eckhoff, The maximum number of triangles in a K_4 -free graph, Discrete Math. 194 (1–3) (1999) 95–106. doi:10.1016/S0012-365X(98)00120-4.
- [6] Fedor V. Fomin, Sang il Oum, Dimitrios M. Thilikos, Rank-width and tree-width of H-minor-free graphs, European J. Combin. 31 (7) (2010) 1617–1628. doi:10.1016/j.ejc.2010.05.003.
- [7] Gwenaël Joret, David R. Wood, Irreducible triangulations are small, J. Combin. Theory Ser. B 100 (5) (2010) 446–455. doi:10.1016/j.jctb.2010.01.004.

- [8] Mark Jungerman, Gerhard Ringel, Minimal triangulations on orientable surfaces, Acta Math. 145 (1-2) (1980) 121-154. doi:10.1007/BF02414187.
- [9] Serge Lavrenchenko, Irreducible triangulations of a torus, Ukrain, Geom. Sb. 30 (ii) (1987) 52-62. Translation in I. Soviet Math. 51 (5): 2537-2543, 1990.
- Serge Lawrencenko, Seiva Negami, Irreducible triangulations of the Klein bottle, I. Combin, Theory Ser. B 70 (2) (1997) 265-291. doi:10.1006/jctb.1997.9999.
- [11] Boian Mohar, Carsten Thomassen, Graphs on Surfaces, Johns Hopkins University Press, Baltimore, USA, 2001.
- [12] Atsuhiro Nakamoto, Katsuhiro Ota, Note on irreducible triangulations of surfaces, J. Graph Theory 20 (2) (1995) 227–233. doi:10.1002/jgt.3190200211.
- [13] Serguei Norine, Paul Seymour, Robin Thomas, Paul Wollan, Proper minor-closed families are small, J. Combin. Theory Ser. B 96 (5) (2006) 754-757. doi:10.1016/j.jctb.2006.01.006.
- [14] Bruce Reed, David R, Wood, A linear time algorithm to find a separator in a graph excluding a minor, ACM Trans. Algorithms 5 (4) (2009) #39. doi:10.1145/1597036.1597043.
- [15] Gerhard Ringel, Wie man die geschlossenen nichtorientierbaren Flächen in möglichst wenig Dreiecke zerlegen kann, Math. Ann. 130 (1955) 317-326.
- [16] Ernst Steinitz, Hans Rademacher, Vorlesungen über die Theorie der Polyeder, Springer, Berlin, 1934.
- [17] Thom Sulanke, Generating irreducible triangulations of surfaces, 2006. http://arxiv.org/abs/math/0606687. [18] Thom Sulanke, Generating triangulations of surfaces, 2006. http://hep.physics.indiana.edu/tsulanke/graphs/surftri/.
- [19] Thom Sulanke, Irreducible triangulations of low genus surfaces, 2006. http://arxiv.org/abs/math/0606690.
- [20] Thom Sulanke, Note on the irreducible triangulations of the Klein bottle, J. Combin. Theory Ser. B 96 (6) (2006) 964–972. doi:10.1016/j.ictb.2006.05.001.
- [21] Arthur T. White, Graphs, Groups and Surfaces, 2nd ed., North-Holland, 1984.
- [22] David R. Wood, On the maximum number of cliques in a graph, Graphs Combin. 23 (3) (2007) 337-352. doi:10.1007/s00373-007-0738-8.
- [23] Alexander A. Zykov, On some properties of linear complexes, Mat. Sb. (NS) 24 (66) (1949) 163-188.