
The Treewidth of Line Graphs

Daniel J. Harvey † David R. Wood †

24th September 2014; revised 23rd February 2018

Abstract

The treewidth of a graph is an important invariant in structural and algorithmic graph
theory. This paper studies the treewidth of line graphs. We show that determining the
treewidth of the line graph of a graph G is equivalent to determining the minimum vertex
congestion of an embedding of G into a tree. Using this result, we prove sharp lower bounds
in terms of both the minimum degree and average degree of G. These results are precise
enough to exactly determine the treewidth of the line graph of a complete graph and other
interesting examples. We also improve the best known upper bound on the treewidth of a
line graph. Analogous results are proved for pathwidth.

1 Introduction

Treewidth is a graph parameter that measures how “tree-like” a graph is. It is of fundamental
importance in structural graph theory (especially in the graph minor theory of Robertson and
Seymour [23]) and in algorithmic graph theory, since many NP-complete problems are solvable
in polynomial time on graphs of bounded treewidth [4]. Let tw(G) denote the treewidth of
a graph G (defined below). This paper studies the treewidth of line graphs. For a graph G,
the line graph L(G) is the graph with vertex set E(G) where two vertices are adjacent if and
only if their corresponding edges are incident. (We shall refer to vertices in the line graph as
edges—vertices shall refer to the vertices of G itself unless explicitly noted.)

As a concrete example, the treewidth of L(Kn) is important in recent work by Grohe and
Marx [12] and Marx [21]. Specifically, Marx [21] showed that if tw(G) ≥ k then the lexicographic
product of G with Kp contains the lexicographic product of L(Kk) with Kq as a minor (for
choices of p and q depending on |V (G)| and k). Motivated by this result, the authors determined
the treewidth of L(Kn) exactly [14]. The techniques used were extended to determine the
treewidth of the line graph of a complete multipartite graph up to lower order terms, with an
exact result when the complete multipartite graph is regular [13]. These results also extend to
pathwidth (since the tree decompositions constructed have paths as the underlying trees.)

Lower Bounds. The following are two elementary lower bounds on tw(L(G)). First, if ∆(G)
is the maximum degree of G, then tw(L(G)) ≥ ∆(G)− 1 since the edges incident to a vertex in
G form a clique in L(G). Second, given a minimum width tree decomposition of L(G), replace
each edge with both of its endpoints to obtain a tree decomposition of G. It follows that

tw(L(G)) ≥ 1
2(tw(G) + 1)− 1. (1)

We prove the following lower bound on tw(L(G)) in terms of d(G)2, where d(G) is the
average degree of G.

†School of Mathematical Sciences, Monash University, Melbourne, Australia.
{Daniel.Harvey,David.Wood}@monash.edu. Supported by the Australian Research Council.

1

Theorem 1.1. For every graph G with average degree d(G),

pw(L(G)) ≥ tw(L(G)) > 1
8d(G)2 + 3

4d(G)− 2.

The bound in Theorem 1.1 is within ‘+1’ of optimal since we show that for all k and n there
is an n-vertex graph G with d(G) ≈ 2k and tw(L(G)) ≤ pw(L(G)) = 1

8(2k)
2 + 3

4(2k) − 1. All
these results are proven in Section 3.

We also prove a sharp lower bound in terms of δ(G)2, where δ(G) is the minimum degree of
G. (The constants in Theorem 1.1 and 1.2 are such that, depending on the graph, either result
could be stronger.)

Theorem 1.2. For every graph G with minimum degree δ(G),

pw(L(G)) ≥ tw(L(G)) ≥

{
1
4δ(G)2 + δ(G)− 1 when δ(G) is even
1
4δ(G)2 + δ(G)− 5

4 when δ(G) is odd.

The bound in Theorem 1.2 is sharp since for all n and k we describe a graph G with n
vertices and minimum degree k such that pw(L(G)) equals the bound in Theorem 1.2 when n
is even or k is even, and is within ‘+1’ when n is odd and k is odd. All these results are proven
in Section 4.

A weaker version of Theorem 1.2 first appeared in the first author’s PhD thesis [13]. The-
orems 1.1 and 1.2 are significant improvements for line graphs over the standard results that
tw(G) ≥ δ(G) and tw(G) > 1

2d(G) (which hold for all graphs), since δ(L(G)), d(L(G)), δ(G) and
d(G) can be quite close. For example, δ(L(G)) = d(L(G)) = 2 δ(G)− 2 = 2d(G)− 2 when G is
regular.

In order to prove these results, we first show (in Section 2) that constructing a tree decom-
position of L(G) is equivalent to determining a particular embedding of G into a tree. This
in turn allows us to prove a strong relationship between the treewidth of L(G) and the vertex
congestion of G, together with a similar relationship for the pathwidth of L(G) and the vertex
congestion of G when embedded into a path. This second relationship can be interpreted in
terms of a cutwidth-type parameter.

In Section 7 we show that Theorems 1.1 and 1.2 cannot be improved by replacing one of the
d(G) (or δ(G)) terms by tw(G).

Finally, we mention a related conjecture of Seymour, which was recently proved by DeVos,
Dvořák, Fox, McDonald, Mohar, and Scheide [9] using the theory of immersions. It states that,
given a graph G with average degree d(G), the Hadwiger number of L(G) satisfies had(L(G)) ≥
c d(G)

3
2 for some constant c > 0. They also show that the exponent 3

2 is sharp due to the
complete graph. Given that tw(L(G)) ≥ had(L(G)), this gives a lower bound on tw(L(G)) in

terms of d(G)
3
2 .

Upper Bounds. Now consider upper bounds on tw(L(G)). Equivalent results by Atserias
[1], Bienstock [3] and Călinescu, Fernandes, and Reed [7] all show that

tw(L(G)) ≤ (tw(G) + 1)∆(G)− 1. (2)

To see this, consider a minimum width tree decomposition of G, and replace each bag X by the
set of edges incident with a vertex in X. This creates a tree decomposition of L(G), where each
bag contains at most (tw(G) + 1)∆(G) edges. A similar argument can be used to prove that

pw(L(G)) ≤ (pw(G) + 1)∆(G)− 1. (3)

In Section 5, we establish the following improvement.

2

Theorem 1.3. For every graph G,

tw(L(G)) ≤ 2
3(tw(G) + 1)∆(G) + 1

3 tw(G)2 + 1
3∆(G)− 1, and

pw(L(G)) ≤ 1
2(pw(G) + 1)∆(G) + 1

2pw(G)2 + 1
2∆(G)− 1.

Theorem 1.3 is of primary interest when ∆(G) ≫ tw(G) or ∆(G) ≫ pw(G), in which case
the upper bounds are (23 + o(1))∆(G)tw(G) and (12 + o(1))∆(G)pw(G). When ∆(G) < tw(G)
or ∆(G) < pw(G), the bounds in (2) and (3) are better than those in Theorem 1.3.

In Section 6, we show that this upper bound on pw(L(G)) is sharp ignoring lower order
terms. The key example here is G = Kp,q, which is of independent interest. Since tw(Kp,q) =
pw(Kp,q) = q and ∆(Kp,q) = p for p ≥ q, Theorem 1.3 implies that pw(L(Kp,q)) ≤ (12 + o(1))pq.
Hence the following theorem is sufficient.

Theorem 1.4. For all p ≥ q ≥ 1,

1
2pq − 1 ≤ tw(L(Kp,q)) ≤ pw(L(Kp,q)).

Theorem 1.4 extends a previous result of Lucena [19], who determined tw(L(Kn,n) exactly,
and a previous result from the PhD thesis of the first author [13], which determined upper and
lower bounds on the treewidth of line graphs of complete multipartite graphs. The bounds in
[13] are equal when the graphs are regular, and are close when the graphs are almost regular.
However, they say nothing when p ≫ q, which is handled by Theorem 1.4.

2 Treewidth and the Congestion of Embeddings

For a graph G, a tree decomposition (T,X) of G is a tree T , together with X , a collection of
sets of vertices (called bags) indexed by the nodes of T , such that:

• for all v ∈ V (G), v appears in at least one bag,
• for all v ∈ V (G), the nodes indexing the bags containing v form a connected subtree of

T , and
• for all vw ∈ E(G), there is a bag containing both v and w.

(Often, we conflate a node and the bag indexed by that node, and refer to two bags being
adjacent when their indexing nodes are adjacent and so on, for simplicity.) The width of a tree
decomposition is the size of the largest bag, minus 1. The treewidth of G, denoted tw(G), is
the minimum width over all tree decompositions of G.

A path decomposition is a tree decompositions where the underlying tree is a path. Path-
width pw is defined analogously to treewidth but with respect to path decompositions.

Given a tree decomposition of L(G) with underlying tree T , for each edge vw of G, let Svw

denote the subtree of T induced by the bags containing vw. (Recall each bag contains vertices
of L(G), which are edges of G.)

Lemma 2.1. For every graph G there exists a minimum width tree decomposition (T,X) of
L(G) together with an assignment b : V (G) → V (T) such that for each edge vw ∈ E(G), Svw

is exactly the path in T between b(v) and b(w).

Proof. Let (T,X) be a minimum width tree decomposition of L(G) such that
∑

vw∈E(G) |V (Svw)|
is minimised. For each vertex v of G, the edges incident to v form a clique in L(G) and thus,
by the Helly property, there exists a bag of T containing all edges incident to v. Hence for each
v choose one such node and declare it b(v).

3

Consider an edge vw ∈ E(G). Denote the path between b(v) and b(w) by Pvw. Since vw is
in the bags at b(v) and b(w), it follows Pvw ⊆ Svw. If |V (Pvw)| < |V (Svw)| then we could obtain
another tree decomposition of L(G) by removing vw from the bags of V (Svw)− V (Pvw), since
each edge incident to vw appears in b(v) ∪ b(w). However, such a tree decomposition would
contradict our choice of (T,X). Hence Pvw = Svw, as required.

We call b(v) the base node of v. What Lemma 2.1 shows is that, in some sense, the best
way to construct a tree decomposition of L(G) is to choose a tree T , assign a base node for each
v ∈ V (G), and then place each edge in exactly the bags between the base nodes assigned to its
endpoints—any other tree decomposition “contains” such a tree decomposition inside of it.

We can obtain a slightly stronger result that will be useful when proving our major theorems.
Given (T,X) and b as guaranteed by Lemma 2.1, we can also ensure that each base node is a
leaf and that b is a bijection between vertices of G and leaves of T . This is done as follows.
If b(v) is not a leaf, then simply add a leaf adjacent to b(v), and let b(v) be this leaf instead.
Such an operation does not change the width of the tree decomposition. If some leaf x is the
base node for several vertices of G, then add a leaf adjacent to x for each vertex assigned to x.
Finally, if x is a leaf that is not a base node, then delete x; this maintains the desired properties
since a leaf is never an internal node of a path.

We can improve this further. Given a tree T , we can root it at a node and orient all edges
away from the root (that is, from the parent, to the child). In such a tree, a leaf is a node with
outdegree 0. Say a rooted tree is binary if every non-leaf node has outdegree 2. (That means
that every non-leaf node has degree 3 except the root which has degree 2.)

Given a tree decomposition, it is possible to root it and then modify the underlying tree
so that each node has outdegree at most 2, by (repeatedly) splitting a node with outdegree
3 or more and distributing the children evenly amongst the two new nodes, where both new
bags contain exactly the edges of the original bag. This maintains all the properties of the tree
decomposition and does not increase the width. If b is a mapping into the leaves, then this
property is maintained by the splitting. In fact, in such a case, we can go further to obtain a
binary tree; if x is a non-root node with outdegree 1 then delete x and an edge from its parent
to its child, and if x is a root with outdegree 1 then delete x and declare its child to be the new
root. All of these results give the following key theorem.

Theorem 2.2. For every graph G there exists a minimum width tree decomposition (T,X) of
L(G) together with an assignment b : V (G) → V (T) such that:

• T is a binary tree,
• b is an injection onto the leaves of T ,
• for each vw ∈ E(G), Svw is exactly the path from b(v) to b(w).

Theorem 2.2 has all the properties we require in order to prove our main results. It also
leads to the following lower bound on tw(L(G)) that is slightly stronger than (1).

Proposition 2.3. tw(L(G)) ≥ tw(G)− 1.

Proof. Let k = tw(L(G)) + 1, and let (T,X) be a tree decomposition of L(G) of width k − 1,
together with an assignment b as ensured by Lemma 2.1. Partially construct a tree decomposi-
tion of G as follows: for each edge vw ∈ E(G), arbitrarily choose one endpoint (say v) and place
v in all bags of Svw except b(w), in which we place w. The size of a bag is at most k since each
edge contributes only one endpoint to a given bag. This is a tree decomposition of G, except if
vw ∈ E(G) then it is possible that v and w do not share a bag, but do appear in adjacent bags.
For each such edge vw ∈ E(G), call the edge XY ∈ E(T) with v ∈ X − Y and w ∈ Y −X the

4

edge corresponding to vw. If XY is the edge corresponding to both vw, uz ∈ E(G), then sub-
divide it to create a new bag X ′ = (X −{v})∪{w}. Now XX ′ corresponds to vw, and nothing
else, and X ′Y corresponds to uz. Repeat this process so that every edge in T corresponds to
at most one edge of G. Finally, arbitrarily root T , and if XY is the edge corresponding to vw
such that Y is the child of X, then add v to Y . Note that this increases the size of each bag
by at most 1, and creates a tree decomposition for G. Thus tw(G) ≤ k = tw(L(G)) + 1, as
required.

Theorem 2.2 also shows a connection between tw(L(G)) and embeddings of G into a tree.
Consider the following definition by Bienstock [3]. Define an embedding as an injective map
from V (G) into the leaves of a sub-cubic tree T . If π is such an embedding and vw ∈ E(G)
then let Pvw be the path from π(v) to π(w). The vertex congestion of π is

max
u∈V (T)

|{vw ∈ E(G) : u ∈ V (Pvw)}|.

The vertex congestion of G, denoted con(G), is the minimum congestion over all sub-cubic trees
T and choices of π. (Bienstock [3] also considered the edge congestion of G which counts the
maximum number of paths Pvw using an edge e ∈ E(T). Bienstock showed that vertex and
edge congestion are within a factor of 3

2 of each other.) Graph embeddings into paths (which we
discuss below) and infinite grids (for example [2]) were studied prior to Bienstock. Embeddings
have also been considered for hypercubes, see [22] for example. Determining con(G) is NP-hard
[25].

Observe that embeddings into sub-cubic trees are similar to our construction of tree decom-
positions in Theorem 2.2, and lead to the following theorem.

Theorem 2.4. For every graph G,

tw(L(G)) + 1 = con(G).

Proof. An embedding into the leaves of a sub-cubic tree is equivalent to an assignment of base
nodes into the leaves. An edge vw contributes to the congestion at a vertex u of T under an
embedding π if and only if vw is in the bag of u when π is treated as an assignment. Thus
tw(L(G))+1 ≤ con(G). Equality holds by Theorem 2.2 since every binary tree is sub-cubic.

Pathwidth of Line graphs. The following lemma is an analogue of Theorem 2.2 for path
decompositions, and is proved in essentially the same way. It is easily seen we can ensure that
b is a bijection between vertices of G and nodes of P .

Lemma 2.5. For every graph G there exists a minimum width path decomposition (P,X) of
L(G) together with a bijection b : V (G) → V (P) such that for each vw ∈ E(G), Svw is exactly
the path from b(v) to b(w).

Lemma 2.5 implies the following result, via an analogous argument to the proof of Theo-
rem 2.4.

Theorem 2.6. For every graph G, let P be a |V (G)|-vertex path and Π be the set of all bijections
π : V (G) → V (P). Then

pw(L(G)) + 1 = min
π∈Π

max
u∈V (P)

|{vw ∈ E(G) : u ∈ V (Pvw)}|,

where Pvw is the path from π(v) to π(w).

5

Theorem 2.6 can be interpreted in terms of a notion similar to cutwidth, as we now explain.
A linear ordering of a graph G is a bijection from V (G) to {1, . . . , |V (G)|}. The cutwidth of a
linear ordering π is defined as

max
1≤i≤|V (G)|

|{vw ∈ E(G) : π(v) ≤ i < π(w)}|.

The cutwidth of G, denoted cw(G), is the minimum cutwidth over all choices of π; see [8, 17, 26,
27] for example. Determining the cutwidth of a graph is NP-complete [10]. Note that cw(G) can
be thought of as the minimum edge congestion of an embedding of G into a path. Previously,
Golovach [11] investigated connections between cutwidth and the pathwidth of line graphs. In
particular, Golovach [11] proved that if ∆(G) ≥ 2 then

pw(L(G))− ⌊∆(G)
2 ⌋+ 1 ≤ cw(G) ≤ pw(L(G)).

(This result is actually written in terms of ‘vertex separation number’, which equals pathwidth
[16].) Several authors [5, 6, 18, 20] have studied the following variant of cutwidth. The modified
cutwidth of a linear ordering π of G is defined as

max
1≤i≤|V (G)|

|{vw ∈ E(G) : π(v) < i < π(w)}|.

The modified cutwidth of G, denoted mcw(G), is the minimum modified cutwidth over all
choices of π. Similarly, Theorem 2.6 can be rewritten as follows:

pw(L(G)) + 1 = min
π

max
1≤i≤|V (G)|

|{vw ∈ E(G) : π(v) ≤ i < π(w) or π(v) < i ≤ π(w)}|.

This gives a precise interpretation of pw(L(G)) in terms of a cutwidth-type parameter. The
following example distinguishes pw(L(G)) from cw(G) and mcw(G). If G is the n-edge star
graph, then L(G) is the complete graph Kn and pw(L(G)) = n− 1, whereas cw(G) = ⌈n2 ⌉ and
mcw(G) = ⌈n2 ⌉ − 1.

3 Lower Bound in Terms of Average Degree

This section proves Theorem 1.1. Say a graph G is minimal if d(G−S) < d(G) for all non-empty
S ⊊ V (G). For example, every connected regular graph is minimal. Given a set X ⊆ V (G),
let e(X) denote the set of edges with both endpoints in X. Given X,Y ⊆ V (G) such that
X ∩ Y = ∅, let e(X,Y) denote the set of edges with one endpoint in each of X and Y .

Lemma 3.1. If G is a minimal graph and S is a non-empty proper subset of V (G), then

1

2
d(G) <

1

|S|

((∑
v∈S

deg(v)

)
− |e(S)|

)
.

Proof. Let G′ := G− S, and note that d(G′) < d(G). Let m := |E(G)| and n := |V (G)|. So,

2m

n
= d(G) > d(G′) =

2(m− |e(S, V (G)− S)| − |e(S)|)
n− |S|

.

Hence, (m−|e(S, V (G)−S)|−|e(S)|)n < m(n−|S|) and −|e(S, V (G)−S)|n−|e(S)|n < −m|S|.
Thus

1

2
d(G) =

m

n
<

1

|S|
(|e(S, V (G)− S)|+ |e(S)|) = 1

|S|

((∑
v∈S

deg(v)

)
− |e(S)|

)
.

6

Theorem 1.1 follows from the following lemma since every graph G contains a minimal
subgraph H with d(H) ≥ d(G), in which case L(H) ⊆ L(G) and tw(L(G)) ≥ tw(L(H)).

Lemma 3.2. For every minimal graph G with average degree d(G),

tw(L(G)) >
1

8
d(G)2 +

3

4
d(G)− 2.

Proof. If d(G) = 0, then the lemma holds trivially. If 0 < d(G) < 2, then tw(L(G)) ≥ 0 =
1
2 + 3

2 − 2 = 1
82

2 + 3
42− 2 > 1

8d(G)2 + 3
4d(G)− 2, as required. Now assume that d(G) ≥ 2.

Let (T,X) be a tree decomposition for L(G) as guaranteed by Theorem 2.2. For each node
u of T , let Tu denote the subtree of T rooted at u containing exactly u and the descendants
of u. Let z(Tu) be the set of vertices of G with base nodes in Tu. (Recall all base nodes are
leaves.) Call a node u of T significant if |z(Tu)| > 1

2d(G) but |z(Tv)| ≤ 1
2d(G) for each child v

of u.

Claim 1. There exists a non-root, non-leaf significant node u.

Proof. Starting at the root of T , begin traversing down the tree by the following rule: if some
child v of the current node has |z(Tv)| > 1

2d(G), then traverse to v, otherwise halt. Clearly this
algorithm halts.

For a leaf v, |z(Tv)| = 1. We only traverse to v if |z(Tv)| > 1
2d(G) ≥ 1

22 = 1. Hence the
algorithm halts at a non-leaf.

Let u be the node where the algorithm halts, and suppose for the sake of a contradiction
that u is the root. If v, w are the children of u then |z(Tv)|, |z(Tw)| ≤ 1

2d(G). Thus |z(Tu)| =
|z(Tv)|+ |z(Tw)| ≤ d(G) < |V (G)|. But every base node is in z(Tu). Hence the algorithm does
not halt at the root.

Thus u is not the root nor is it a leaf. First, |z(Tu)| > 1
2d(G) given that we traversed to

u. Second, if v is a child of u, then |z(Tv)| ≤ 1
2d(G). This shows that u is a significant, as

required.

If a, b are the children of u, let A := z(Ta) and B := z(Tb). Hence |A|, |B| ≤ 1
2d(G) but

|A ∪B| > 1
2d(G). Also A ∩B = ∅. Define

g(A,B) :=

(∑
v∈A

deg(v)

)
+

(∑
v∈B

deg(v)

)
− |e(A)| − |e(B)| − |e(A,B)|.

Claim 2. g(A,B) > 1
2(|A|+ |B|)d(G).

Proof. Given that |A ∪ B| > 1
2d(G) ≥ 1

22, it follows that A ∪ B ̸= ∅. Also, since u is not the
root and z(Tu) = A ∪ B, it follows that A ∪ B ⊊ V (G). Hence we may apply Lemma 3.1 to
A ∪B. Hence

1

2
d(G) <

1

|A ∪B|

((∑
v∈A∪B

deg(v)

)
− |e(A ∪B)|

)
.

By substitution,

1

2
(|A|+ |B|)d(G) <

(∑
v∈A

deg(v)

)
+

(∑
v∈B

deg(v)

)
− |e(A)| − |e(B)| − |e(A,B)| = g(A,B).

7

Let X be the bag indexed by u. The bag X consists of every edge with exactly one endpoint
in A and every edge with exactly one endpoint in B. Thus,

|X| = |e(A, V (G)−A)|+ |e(B, V (G)−B)| − |e(A,B)|

=

(∑
v∈A

deg(v)

)
− 2|e(A)|+

(∑
v∈B

deg(v)

)
− 2|e(B)| − |e(A,B)|

= g(A,B)− |e(A)| − |e(B)|
≥ g(A,B)− 1

2 |A|(|A| − 1)− 1
2 |B|(|B| − 1)

> 1
2(|A|+ |B|)d(G)− 1

2 |A|(|A| − 1)− 1
2 |B|(|B| − 1). (4)

Define α, β such that |A| = αd(G) and |B| = βd(G), and define s := 1
d(G) . Recall |A|, |B| ≤

1
2d(G) and |A| + |B| > 1

2d(G). Hence |A|, |B| > 0 and so |A|, |B| ≥ 1. Thus s ≤ α, β ≤ 1
2 and

α+ β > 1
2 . Substituting |A| = αd(G) and |B| = βd(G) into (4) gives

|X| > 1
2(αd(G) + βd(G))d(G)− 1

2αd(G)(αd(G)− 1)− 1
2βd(G)(βd(G)− 1)

= 1
2d(G)2(α+ β − α2 − β2) + 1

2d(G)(α+ β)

= 1
2d(G)2(α+ β − α2 − β2 + αs+ βs)

= 1
2d(G)2((1 + s)α+ (1 + s)β − α2 − β2).

In Appendix A we prove that (1 + s)α+ (1 + s)β − α2 − β2 ≥ 1
4 + 3

2s− 2s2. Hence

tw(L(G)) + 1 ≥ |X| > 1
2d(G)2(14 + 3

2s− 2s2) = 1
8d(G)2 + 3

4d(G)− 1.

Consider the case when G = P k
n , the kth-power of an n-vertex path. As n → ∞, d(G) =

2k − γ where γ → 0. So Theorem 1.1 states that tw(L(G)) > 1
2k

2 + 3
2k − 2− γ(12k + 3

4 − 1
8γ).

Since 1
2k

2 + 3
2k − 2 is an integer, tw(L(G)) ≥ 1

2k
2 + 3

2k − 2. For an upper bound take a path
decomposition of L(G) in the form suggested by Lemma 2.5, ordering the base nodes in the same
order as in the path in G. The largest bag contains (

∑k−1
i=1 i)+2k = 1

2(k
2−k)+2k = 1

2k
2+ 3

2k.
Hence pw(L(P k

n)) ≤ 1
2k

2 + 3
2k − 1, and thus Theorem 1.1 is almost precisely sharp for both

treewidth and pathwidth—it is out by only 1.

4 Lower Bound in Terms of Minimum Degree

We use similar techniques to those in Section 3 to prove a lower bound on tw(L(G)) in terms
of δ(G) instead of d(G). This bound is superior when G is regular or close to regular. Because
this proof is so similar to that of Lemma 3.2, we omit some of the details. However, we also
take particular care with lower order terms, so that this result is sharp.

Proof of Theorem 1.2. If δ(G) < 2, then the result is trivial, since tw(L(G)) ≥ 0 whenever L(G)
contains at least one vertex. Now assume that δ(G) ≥ 2.

Let (T,X) be a tree decomposition for L(G) as guaranteed by Theorem 2.2. For each node
u of T , let Tu denote the subtree of T rooted at u containing exactly u and the descendants of
u. For any Tu, let z(Tu) be the set of vertices of G with base nodes in Tu.

Call a node u of T significant if |z(Tu)| > 1
2δ(G) but |z(Tv)| ≤ 1

2δ(G) for each child v of u.
There exists a non-root, non-leaf significant node u. This result follows by a argument similar
to Claim 1; run a similar traversal but only traverse down an edge when |z(Tu)| > 1

2δ(G). Let
a, b be the children of u, and define A := z(Ta) and B := z(Tb). Hence |A|, |B| ≤ 1

2δ(G) and
|A| + |B| > 1

2δ(G). Since |A|, |B| are integers, if δ(G) is odd then |A| + |B| ≥ 1
2δ(G) + 1

2 , and

8

if δ(G) is even then |A|+ |B| ≥ 1
2δ(G) + 1. It also follows that |A|, |B| ≥ 1. Define α, β, s such

that |A| = αδ(G), |B| = βδ(G) and s = 1
δ(G) . Thus

s ≤ α,β ≤ 1

2

α+ β ≥

{
1
2 + 1

2s when δ(G) is odd
1
2 + s when δ(G) is even

Let X be the bag indexed by u. Our goal is to show that |X| is large. As in Lemma 3.2,

|X| = |e(A, V (G)−A)|+ |e(B, V (G)−B)| − |e(A,B)|.

Note the following:

|e(A, V (G)−A)| ≥

(∑
v∈A

deg(v)− |A|+ 1

)
≥ |A|δ(G)− |A|2 + |A| = ((1 + s)α− α2)δ(G)2.

A similar result holds for |e(B, V (G)−B)|, and |e(A,B)| ≤ |A||B| = αβδ(G)2. Hence

|X| ≥ ((1 + s)α− α2 + (1 + s)β − β2 − αβ)δ(G)2.

In Appendix B we prove that

(1 + s)α− α2 + (1 + s)β − β2 − αβ ≥

{
1
4 + s when δ(G) is even
1
4 + s− 1

4s
2 when δ(G) is odd.

Thus

tw(L(G)) + 1 ≥ |X| ≥

{
1
4δ(G)2 + δ(G) when δ(G) is even
1
4δ(G)2 + δ(G)− 1

4 when δ(G) is odd.

We now show that Theorem 1.2 is sharp. Let Ck
n be the kth-power of an n-vertex cycle

(1, . . . , n). Let the ith node in an n-vertex path be the base node for the ith vertex of Ck
n.

It is easily seen each resulting bag has size at most k2 + 2k. So pw(L(Ck
n)) ≤ k2 + 2k − 1 =

1
4δ(C

k
n)

2+δ(Ck
n)−1, since δ(Ck

n) = 2k. Hence Theorem 1.2 is precisely sharp when δ(G) is even.
Now consider the odd case. Define the matching X1 := {1(n−k+1), 2(n−k+2), . . . , kn}, and
if n is even, also define the matching X2 := {(k+1)(k+2), (k+3)(k+4), . . . , (n−k−1)(n−k)}.
If n is odd, let H be the graph obtained from Ck

n by deleting X1; if n is even instead delete
X1 ∪X2. Then using the same base node assignment as above, it is easily seen that

pw(L(H)) ≤

{
k2 + k − 1 if n is odd,

k2 + k − 2 if n is even.

Since δ(H) = 2k−1, Theorem 1.2 is precisely sharp when n is even and δ(G) is odd, and within
‘+1’ when n, δ(G) are both odd. Finally, applying Theorem 1.2 when G = Kn agrees with the
exact determination of pw(L(Kn)) as given in [13, 14], for both even and odd cases.

9

5 Upper Bounds

Proof of Theorem 1.3. Let (T,X) be a tree decomposition of G with width k−1 such that T has
maximum degree at most 3. By the discussion in Section 1, we may assume that ∆(G) ≥ k− 1.
(The existence of such a (T,X) is well known, and follows by a similar argument to Theorem 2.2.)

Say a vertex v of G is small if deg(v) ≤ k − 1 and large otherwise. For each v ∈ V (G), let
T (v) denote the subtree of T induced by the bags containing v. For each edge e ∈ E(T), let
A(e), B(e) denote the two component subtrees of T − e. If e is also an edge of T (v) for some v,
then let A(e, v), B(e, v) denote the two component subtrees of T (v) − e, where A(e, v) ⊆ A(e)
and B(e, v) ⊆ B(e). Let α(e, v) denote the set of neighbours of v that appear in a bag of
A(e, v) and β(e, v) denote the set of neighbours of v that appear in a bag of B(e, v). Any vertex
in both of these sets must be in the bags at both ends of e, but cannot be v itself, and so
|α(e, v) ∩ β(e, v)| ≤ k − 1.

Claim 3. For every large v ∈ V (G) there exists an edge e ∈ T (v) such that |α(e, v)|, |β(e, v)| ≤
2
3 deg(v) +

1
3(k − 1). Moreover, if T (v) is a path, then there exists an edge e ∈ T (v) such that

|α(e, v)|, |β(e, v)| ≤ 1
2 deg(v) +

1
2(k − 1).

Proof. Assume for the sake of a contradiction that no such e exists. Hence for all e ∈ T (v),
either |α(e, v)| or |β(e, v)| is too large. Direct the edge e towards A(e, v) or B(e, v) respectively.
(If both |α(e, v)|, |β(e, v)| are too large, then direct e arbitrarily.) Given this orientation of T (v),
there must be a sink, which we label u, and label the bag of u by Xu.

Let e1, . . . , ed be the edges of T (v) incident to u, where d ∈ {1, 2, 3}. Without loss of
generality say that ei was directed towards B(ei, v) for all ei.

First, consider the case when T (v) is not a path. Hence |β(ei, v)| > 2
3 deg(v) +

1
3(k − 1)

for all i. If d = 3, then
∑3

i=1 |β(ei, v)| > 2 deg(v) + (k − 1). However,
∑3

i=1 |β(ei, v)| counts
every neighbour of v that is not in Xu twice, since each subtree of T (v)−u is in β(ei, v) for two
choices of i. It counts the neighbours of v in Xu three times, and there are at most k−1 of these
(since v ∈ Xu). Thus

∑3
i=1 |β(ei, v)| ≤ 2 deg(v) + (k − 1), which is a contradiction. If d = 2,

then
∑2

i=1 |β(ei, v)| >
4
3 deg(v) +

2
3(k − 1). However,

∑2
i=1 |β(ei, v)| counts every neighbour of

v not in Xu once, and every neighbour of v in Xu twice, so
∑2

i=1 |β(ei, v)| ≤ deg(v) + (k − 1).
But then deg(v) < k − 1, contradicting the fact that v is large. If d = 1, then |β(e1, v)| >
2
3 deg(v) +

1
3(k − 1). However, β(e1, v) is contained within X − u and so |β(e1, v)| ≤ k − 1, and

again deg(v) < k − 1, a contradiction.
Now, consider the case when T (v) is a path. Hence |β(e1, v)|, |β(e2, v)| > 1

2 deg(v)+
1
2(k−1).

If both ei exist then
∑2

i=1 |β(ei, v)| > deg(v)+(k−1), but
∑2

i=1 |β(ei, v)| counts every neighbour
of v not in Xu once, and the neighbours of v in Xu twice. Thus

∑2
i=1 |β(ei, v)| ≤ deg(v)+(k−1),

a contradiction. If u has degree 1, then |β(e1, v)| > 1
2 deg(v)+

1
2(k−1) but β(e1, v) is contained

within Xu, and so deg(v) < k − 1, a contradiction.

For each small vertex v of G, arbitrarily select a base node in T (v). For each large vertex v
of G, select an edge e of T (v) as guaranteed by Claim 3. Subdivide e and declare the new node
to be b(v), the base node of v. If e is selected for several different vertices, then subdivide it
multiple times and assign a different base node for each vertex of G that selected e. Denote the
tree T after all of these subdivisions as T ′. Together, this underlying tree T ′ and the assignment
b gives a tree decomposition of L(G) in the same form as Lemma 2.1. Label the set of bags
for this tree decomposition by X ′, so the tree decomposition of L(G) is (T ′,X ′). It remains to
bound the width of this tree decomposition.

For each bag X ′ of X ′, define a corresponding bag in X as follows. If X ′ is indexed by a
node x in T ′ that is also in T , then the corresponding bag is simply the bag of X indexed by

10

x in T . If X ′ is indexed by a subdivision node created by subdividing the edge e, then the
corresponding bag is one of the bags of X indexed by the endpoints of e, chosen arbitrarily.

The following two claims give enough information to bound the width of (T ′,X ′).

Claim 4. If X ′ is a bag of X ′ with corresponding bag X, and vw is an edge of G in X ′, then
v ∈ X or w ∈ X.

Proof. Assume for the sake of a contradiction that vw ∈ X ′ but neither v nor w is in X. Hence
X /∈ V (T (v)) ∪ V (T (w)). Thus T (v) and T (w) are contained in T − X. If T (v) and T (w)
are contained in different components of T −X, then V (T (v)) ∩ V (T (w)) = ∅, but this is not
possible given that vw ∈ E(G). Thus T (v) and T (w) are contained in the same component of
T −X. However, b(v) and b(w) are assigned inside of T (v) and T (w) respectively (perhaps after
some edges are subdivided, but this does not alter their positions relative to X). Hence the
path from b(v) to b(w) in T ′ does not include X ′, and so vw /∈ X ′. This is a contradiction.

Claim 5. If v is a large vertex and X ′ ∈ X ′ is not b(v), then X ′ contains at most 2
3 deg(v)+

1
3(k−

1) edges incident to v. Moreover, if T (v) is a path, then X ′ contains at most 1
2 deg(v)+

1
2(k−1)

edges incident to v.

Proof. Since X ′ is not b(v), there exists a component of T ′−b(v) containing X ′, which we label
T ′′. Let vw be an edge in X ′. Thus X ′ is a bag on the unique path in T ′ between b(v) and
b(w). Hence in T ′−b(v) both X ′ and b(w) must be in the same component, which is T ′′. Hence
if vw ∈ X ′ then b(w) ∈ V (T ′′).

Since v is a large vertex, b(v) is a subdivision node, and thus let e ∈ E(T) be the edge that
was subdivided to create b(v). (The edge e is also the edge guaranteed by Claim 3.) Hence V (T ′′)
has non-empty intersection with exactly one of V (A(e)) and V (B(e)), without loss of generality
say V (T ′′)∩V (A(e)) ̸= ∅. If b(w) ∈ V (T ′′) then w ∈ α(e, v). But |α(e, v)| ≤ 2

3 deg(v)+
1
3(k−1)

by Claim 3. Hence if vw ∈ X ′ then w ∈ α(e, v), and thus X ′ contains at most 2
3 deg(v)+

1
3(k−1)

edges incident to v.
If T (v) is a path, then the result follows from the alternate upper bound in Claim 3.

We now determine an upper bound on the size of a bag X ′ ∈ X ′. We count the edges of X ′

by considering the number of edges a given vertex v of G contributes to X ′. By Claim 4, only
the at most k vertices of the corresponding bag X contribute anything to X ′.

• If v is small, it contributes at most deg(v) ≤ k − 1 edges to X ′.
• If v is large and X ′ ̸= b(v), then by Claim 5, v contributes at most 2

3∆(G) + 1
3(k − 1)

edges to X ′. Given that ∆(G) ≥ k − 1, this is at least k − 1.
• If v is large and X ′ = b(v), then v contributes at most ∆(G) edges. This is at least

2
3∆(G) + 1

3(k − 1) as ∆(G) ≥ k − 1. However, X ′ = b(v) for at most one v.

So in the worst case, there are k vertices in the corresponding bag, all of which are large
and contribute the maximum number of edges, which is 2

3∆(G)+ 1
3(k−1) for k−1 vertices and

∆(G) for one vertex. Hence

|X ′| ≤ (k − 1)(23∆(G) + 1
3(k − 1)) + ∆(G) = 2

3k∆(G) + 1
3(k − 1)2 + 1

3∆(G).

If we set (T,X) to be a minimum width tree decomposition, then k − 1 = tw(G), and so

tw(L(G)) ≤ 2
3(tw(G) + 1)∆(G) + 1

3 tw(G)2 + 1
3∆(G)− 1.

Alternatively, if we let (T,X) be a minimum width path decomposition, then k−1 = pw(G),
and we can use the alternate upper bound in Claim 5 given that T (v) is always a path. Since
T ′ was created by subdividing edges, T ′ is also a path. Hence

11

pw(L(G)) ≤ 1
2(pw(G) + 1)∆(G) + 1

2pw(G)2 + 1
2∆(G)− 1.

We now consider a few extensions of Theorem 1.3. For an outerplanar graph G, which
has treewidth at most 2, (2) proves that tw(L(G)) ≤ 3∆(G) − 1. Theorem 1.3 proves that
tw(L(G)) ≤ 7

3∆(G) + 1
3 . We can do better as follows.

Corollary 5.1. If G is outerplanar, then tw(L(G)) ≤ 2∆(G) + 1.

Proof Sketch. In Theorem 1.3, if it were possible to select a tree decomposition such that T (v)
was a path for each v ∈ V (G), then it would be possible to achieve an upper bound of tw(L(G)) ≤
1
2(tw(G) + 1)∆(G) + 1

2 tw(G)2 + 1
2∆(G) − 1. Since G is outerplanar, let G′ be an outerplanar

triangulation such that G ⊆ G′, and let T be the weak dual of G′. Take (T, (Bx)x∈V (T)) as the
tree decomposition of G, where the bag Bx is the set of three vertices on the boundary of the
face corresponding to x ∈ V (T). Note that this tree decomposition has width 2 and T (v) is a
path for all v ∈ V (G). Hence the result follows.

It is plausible that Theorem 1.3 can be further improved. The following conjecture is the
strongest possible in this direction.

Conjecture 5.2. For every graph G with maximum degree ∆(G),

tw(L(G)) ≤ 1
2(tw(G) + 1)∆(G)− 1.

This conjecture seems very strong, and indeed it seems challenging even in the treewidth 2
case. Nevertheless, we now prove it for trees, thus providing some supporting evidence.

Proposition 5.3. If tw(G) = 1 then tw(L(G)) = ∆(G)− 1.

Proof. We may assume G is a tree. Construct a tree decomposition for L(G) by taking the
underlying tree to be G itself and letting b(v) = v. Then each bag contains exactly the edges
of G incident to the vertex, and so tw(L(G)) ≤ ∆(G)− 1. This is also a lower bound given that
L(G) contains a clique of order ∆(G).

6 Treewidth of L(Kp,q)

Proof of Theorem 1.4. The graph L(Kp,q) is isomorphic to Kp□Kq, the Cartesian product of
Kp and Kq, which can be thought of as a grid with p rows and q columns such that each row
and column is a clique. A separator of G is a set of vertices X such that V (G − X) can be
partitioned into at most three parts A1, A2, A3 such that |Ai| ≤ 1

2 |V (G −X)| for all i, and no
edge of G −X has an endpoint in more than one part. (See [13, 15] for more explanation on
separators.) A well-known result of Robertson and Seymour [24] states that every graph G has
a separator of order tw(G) + 1. Let G = L(Kp,q) = Kp□Kq. It is sufficient to show that if X is
a separator of G then |X| ≥ 1

2pq.
Label the parts of V (G−X) by A1, A2, A3. Clearly |A1|+ |A2|+ |A3|+ |X| = |V (Kp□Kq)| =

pq. Consider a row R of G. No two vertices of R are in different parts, since R forms a clique.
Thus R is a subset of Ai ∪ X for some i; colour R by i. If no vertex of R is in G − X, then
colour R arbitrarily. Colour columns similarly. Thus a vertex is in Ai only if its row and column
are both coloured i. (However, such vertices are not necessarily in Ai; they may also be in X.)
Define xi, yi, zi such that xip is the number of rows coloured i, yiq is the number of columns
coloured i, and zipq is the number of vertices not in Ai whose row and column is coloured i.

12

Then |Ai| = (xiyi − zi)pq. Define αi :=
|Ai|
pq . Clearly, these variables satisfy the following basic

constraints:

0 ≤ xi, yi ∀i 0 ≤ zi ≤ xiyi ∀i x1 + x2 + x3 = 1 y1 + y2 + y3 = 1,

and the following balance constraints (since |Ai| ≤ 1
2(|A1|+ |A2|+ |A3|)):

α1 ≤ α2 + α3 α2 ≤ α3 + α1 α3 ≤ α1 + α2.

In Appendix C we prove that α1 + α2 + α3 ≤ 1
2 , implying |A1| + |A2| + |A3| ≤ 1

2pq and
|X| ≥ 1

2pq, as desired.

7 Alternate Lower Bounds

Given the format of Theorem 1.3 and Conjecture 5.2, we might hope for some analogous lower
bound in terms of minimum degree and treewidth, or average degree and treewidth. In partic-
ular, does there exist some constant c > 0 such that any of the following hold?

tw(L(G)) ≥ c tw(G)δ(G) tw(L(G)) ≥ c tw(G)d(G)

pw(L(G)) ≥ c pw(G)δ(G) pw(L(G)) ≥ c pw(G)d(G) (5)

Each of these inequalities would be qualitative strengthenings of our results in Sections 3
and 4, since pw(G) ≥ tw(G) ≥ δ(G) and pw(G) ≥ tw(G) > 1

2d(G). However, we now prove
that none of these inequalities hold—thanks to Bruce Reed for this example. This implies that
Theorems 1.1 and 1.2 are best possible in the sense that we cannot replace δ(G) or d(G) by
tw(G).

For positive integers n, k construct the following graph Hn,k. Begin with the n×n grid, and
for each vertex v of the grid, have k−deg(v) disjoint cliques of order k+1. For each such clique
C, add a single edge from a single vertex of C to v. Every vertex of this graph has degree k,
except those vertices of the cliques that are adjacent to vertices of the grid, which have degree
k + 1. Hence δ(Hn,k) = k and d(Hn,k) > k. Since Hn,k contains an n × n grid, it follows that
tw(Hn,k) ≥ n. We now prove a weak upper bound on tw(L(Hn,k)).

Lemma 7.1. tw(L(Hn,k)) ≤ pw(L(Hn,k)) ≤ 4n+O(k3).

Proof. Let v be a vertex of the grid in Hn,k, and let Av be the set containing the vertex
v together with all vertices of the cliques C where there is an edge from C to v. The sets
Av form a partition of V (Hn,k). Let P be an n2-node path, and label the vertices of the
grid 1, . . . , n2 considering rows from top to bottom, and going along each row from left to
right. Then let the ith node of P be the base node for all w ∈ Ai. This defines a path
decomposition of L(Hn,k). Let Xi be the bag indexed by the ith node. By the labelling,
for each edge ab of the grid, |b − a| ≤ n. Hence if ab ∈ Xi then without loss of generality,
i − n ≤ a ≤ i. Thus there are n + 1 possible choices of a, and each such a may contribute
at most 4 such edges, and thus Xi contains at most 4n + 4 such edges. Now consider edges
without both endpoints in the grid. If w ∈ Aj − {j}, then every neighbour of w is in Aj , and
as such the edges with at least one endpoint in Aj − {j} appear in Xi only when i = j. Thus
|Xi| ≤ 4n+ 4 + |{e : e has at least one endpoint in Ai − {i}}| ≤ 4n+O(k3).

Each possible strengthening in (5) would imply that tw(L(Hn,k)) ≥ cnk or pw(L(Hn,k)) ≥
cnk where c is some constant, which contradicts Lemma 7.1 for n ≫ k ≫ 1

c . Hence none of
these strengthenings hold.

13

A Appendix A

Here we prove that for s ≤ α, β ≤ 1
2 and α+ β > 1

2 and 0 < s ≤ 1
2 ,

f(α, β) := (1 + s)α+ (1 + s)β − α2 − β2 ≥ 1
4 + 3

2s− 2s2.

We do this using calculus of two variables. Any minimum point is either at a critical point,
along the boundary of the defined region, or at a corner point. It is sufficient to show that
f(α, β) evaluates to 1

4 + 3
2s− 2s2 at a minimum point.

For any critical point, the second partial derivative test shows that it is a local maximum:

fαα(α, β) = −2 fββ(α, β) = −2 fαβ(α, β) = 0.

Hence

D(α, β) = fαα(α, β)fββ(α, β)− (fαβ(α, β))
2 = 4 > 0.

Since fαα(α, β) < 0, this shows any critical point is a local maximum.
Along the boundary of the region, we consider functions of one variable. However, along

most of the boundary, either α or β is constant (either s or 1
2), and in such cases our one variable

functions are equivalent to either fα,α or fβ,β . By the second derivative test any critical point
will be a local maximum.

Slightly more care is required along the boundary defined by α+ β = 1
2 .

An easy rearrangement gives f(α, β) = (1 + s)(α+ β)− α2 − β2. Then

f(α, 12 − α) = (1 + s)12 − α2 − (12 − α)2 = 1
4 + 1

2s+ α− 2α2.

Interpreting the above as a function in one variable, the second derivative test shows any critical
point along the boundary is a local maximum.

All that remains is to consider the corner points; the smallest evaluation at a corner will be
the minimum of f(α, β) in the given region. The corner points are (12 ,

1
2), (

1
2 , s), (

1
2−s, s), (s, 12−s)

and (s, 12). Given that f(α, β) = f(β, α), it suffices to check the following three points.

f(12 ,
1
2) = (1 + s)12 + (1 + s)12 − 1

4 − 1
4 = 1 + s− 1

2 = 1
2 + s

f(12 , s) = (1 + s)12 + (1 + s)s− 1
4 − s2 = 1

4 + 3
2s

f(12 − s, s) = (1 + s)12 − (12 − s)2 − s2 = 1
2 + 1

2s−
1
4 + s− s2 − s2 = 1

4 + 3
2s− 2s2

If 1
4 + 3

2s > 1
2 + s, then s > 1

2 . Given that s ≤ 1
2 , it follows that f(

1
2 ,

1
2) ≥ f(12 , s). As s > 0, it

follows f(12−s, s) < f(12 , s). Hence f(α, β) is minimal at (12−s, s), and so f(α, β) ≥ 1
4+

3
2s−2s2.

B Appendix B

Here we prove that

h(α, β) := (1 + s)α− α2 + (1 + s)β − β2 − αβ ≥

{
1
4 + s when δ(G) is even
1
4 + s− 1

4s
2 when δ(G) is odd.

given that 0 < s ≤ α, β ≤ 1
2 and that

α+ β ≥

{
1
2 + s when δ(G) is even
1
2 + 1

2s when δ(G) is odd.

14

For any critical point, the second partial derivative test shows that it is a local maximum:

hαα(α, β) = −2 hββ(α, β) = −2 hαβ(α, β) = −1.

Hence

D(α, β) = hαα(α, β)hββ(α, β)− (hαβ(α, β))
2 = 3 > 0.

Since hαα(α, β) < 0, this shows any critical point is a local maximum.
Along the boundary of the region, we consider functions of one variable. However, along

most of the boundary, either α or β is constant (either s or 1
2), and in such cases our one variable

functions are equivalent to either hα,α or hβ,β . By the second derivative test any critical point
will be a local maximum.

Slightly more care is required along the boundary defined by

α+ β =

{
1
2 + s when δ(G) is even
1
2 + 1

2s when δ(G) is odd.

An easy rearrangement gives h(α, β) = (1 + s)(α+ β)− α2 − β(α+ β). Then

h(α, 12 + s− α) = (1 + s)(12 + s)− α2 − (12 + s− α)(12 + s)

h(α, 12 + 1
2s− α) = (1 + s)(12 + 1

2s)− α2 − (12 + 1
2s− α)(12 + 1

2s).

Interpreting the above as functions in one variable, the second derivative test shows any critical
point along the boundary is a local maximum.

All that remains is to consider the corner points; the smallest evaluation at a corner will
be the minimum of h(α, β) in the given region. When δ(G) is even, the corner points are
(12 ,

1
2), (

1
2 , s) and (s, 12). When δ(G) is odd, the corner points are (12 ,

1
2), (

1
2 , s), (s,

1
2), (s,

1
2 −

1
2s)

and (12 − 1
2s, s). Given that h(α, β) = h(β, α), it suffices to check the following three points.

h(12 ,
1
2) = (1 + s)12 − 1

4 + (1 + s)12 − 1
4 − 1

4 = 1 + s− 3
4 = 1

4 + s

h(12 , s) = (1 + s)12 − 1
4 + (1 + s)s− s2 − 1

2s =
1
2 + 1

2s−
1
4 + s+ s2 − s2 − 1

2s =
1
4 + s

h(12 − 1
2s, s) = (1 + s)(12 − 1

2s)− (12 − 1
2s)

2 + (1 + s)s− s2 − (12 − 1
2s)s

= (12 − 1
2s)− (12 − 1

2s)
2 + s

= (12 − 1
2s)(

1
2 + 1

2s) + s

= 1
4 − 1

4s
2 + s.

Since s > 0, it follows that h(12 − 1
2s, s) < h(12 ,

1
2), h(

1
2 , s), which proves our result.

C Appendix C

Recall αi = xiyi − zi for i = 1, 2, 3. Choose x1, y1, z1, x2, y2, z2, x3, y3, z3 to maximise

α1 + α2 + α3 (6)

subject to the following basic constraints:

0 ≤ xi, yi ∀i 0 ≤ zi ≤ xiyi ∀i x1 + x2 + x3 = 1 y1 + y2 + y3 = 1

and also the following balance constraints:

α1 ≤ α2 + α3 (7)

15

α2 ≤ α3 + α1 (8)

α3 ≤ α1 + α2 (9)

We prove that α1 + α2 + α3 ≤ 1
2 .

Claim 6. At most one of the balance constraints is a strict inequality.

Proof. Assume for the sake of a contradiction that two of the balance constraints are strict
inequalities, without loss of generality α2 < α3 + α1 and α3 < α1 + α2. Without loss of
generality, x2 + y2 ≥ x3 + y3. If x3 = 0 then α3 = x3y3 − z3 ≤ 0, and so α3 = 0. Similarly, if
y3 = 0 then α3 = 0, and if z3 = x3y3 then α3 = 0. However if α3 = 0 then the first two balance
constraints give that α1 ≤ α2 and α2 ≤ α1. But this means that α1 = α2 and as such our
assumption that α2 < α3 + α1 does not hold. Hence x3, y3 > 0 and z3 < x3y3. Choose ϵ > 0
such that ϵ ≤ x3, y3,

x3y3−z3
x3+y3

, α1+α3−α2
x2+y2+x3+y3

.

Define x′2 = x2 + ϵ, y′2 = y2 + ϵ, x′3 = x3 − ϵ and y′3 = y3 − ϵ. We now show that
by replacing x2 with x′2 and so on, we contradict our assumption that x1, y1, z1, . . . , x3, y3, z3
maximise α1 + α2 + α3 with respect to all our constraints.

First, check the basic constraints. By the choice of ϵ, we have x3 − ϵ, y3 − ϵ ≥ 0. Also,
(x3 − ϵ)(y3 − ϵ) = x3y3 − ϵ(x3 + y3) + ϵ2 ≥ x3y3 − (x3y3 − z3) + ϵ2 > z3, as required. All other
basic constraints hold trivially.

Now we check the balance constraints. First consider (7). We prove this by contradiction.
Suppose that x1y1 − z1 > x′2y

′
2 − z2 + x′3y

′
3 − z3. Thus

α1 = x1y1 − z1 > (x2 + ϵ)(y2 + ϵ)− z2 + (x3 − ϵ)(y3 − ϵ)− z3

= x2y2 − z2 + x3y3 − z3 + ϵ(x2 + y2 + ϵ− x3 − y3 + ϵ)

= α2 + α3 + ϵ(x2 + y2 − x3 − y3 + 2ϵ).

However, since x2 + y2 ≥ x3 + y3, it follows that α1 > α2 + α3, which contradicts the fact that
x1, y1, z1, . . . , x3, y3, z3 satisfy the balance constraints. To prove (8), suppose that x′2y

′
2 − z2 >

x1y1 − z1 + x′3y
′
3 − z3. Thus

(x2 + ϵ)(y2 + ϵ)− z2 > x1y1 − z1 + (x3 − ϵ)(y3 − ϵ)− z3

x2y2 − z2 + ϵ(x2 + y2 + ϵ) > x1y1 − z1 + x3y3 − z3 − ϵ(x3 + y3 − ϵ)

α2 + ϵ(x2 + y2 + ϵ) > α1 + α3 − ϵ(x3 + y3 − ϵ)

ϵ(x2 + y2 + x3 + y3) > α1 + α3 − α2.

This contradicts our choice of ϵ. Now consider (9) and suppose that x′3y
′
3 − z3 > x1y1 − z1 +

x′2y
′
2 − z2. Thus

x3y3 − z3 − ϵ(x3 + y3 − ϵ) > x1y1 − z1 + x2y2 − z2 + ϵ(x2 + y2 + ϵ)

α3 > α1 + α2 + ϵ(x2 + y2 + x3 + y3).

Since ϵ(x2 + y2 + x3 + y3) ≥ 0, this again contradicts our choice of x1, y1, z1, . . . , x3, y3, z3.
Finally, we now show that replacing x2 with x′2 and so on increases α1 + α2 + α3.

x1y1 − z1 + x′2y
′
2 − z2 + x′3y

′
3 − z3

= α1 + α2 + ϵ(x2 + y2 + ϵ) + α3 − ϵ(x3 + y3 − ϵ)

= α1 + α2 + α3 + ϵ(x2 + y2 + ϵ− x3 − y3 + ϵ)

This is a strict improvement since x2 + y2 ≥ x3 + y3 and 2ϵ > 0.

16

Thus, at least two of the balance constraints are equalities. Without loss of generality,
α1 = α2 + α3 and α2 = α3 + α1. This forces α3 = 0.

If z1, z2 > 0 then let ϵ = min{z1, z2}. If we replace z1, z2 with z1− ϵ, z2− ϵ this maintains all
constraints and increases α1 +α2 +α3. (We omit the proof of this as it is clear.) Thus without
loss of generality z2 = 0.

Now replace the balance constraints with the following two equivalent constraints:

x1y1 − z1 = x2y2 (10)

x3y3 = z3 (11)

From this, it also follows that maximising (6) is equivalent to maximising 2x2y2.

Claim 7. z1 = 0.

Proof. Assume that z1 > 0. Also assume that 2x2y2 > 0 (for otherwise the entire result is
proven). If x1 = 0 or y1 = 0, then x2y2 = −z1 < 0, and so we may assume x1, y1 > 0.
Choose ϵ > 0 such that x1 − ϵ, y1 − ϵ, z1 − 2ϵ ≥ 0. As in Claim 6, we replace some choices
of x1, y1, z1, . . . , x3, y3, z3 and show that our initial set of choices was not optimal. Let x′1 =
x1 − ϵ, y′1 = y1 − ϵ, x′2 = x2 + ϵ, y′2 = y2 + ϵ, z′1 = z1 − 2ϵ. It is clear replacing x1 with x′1 and so
on still satisfies the basic constraints, and increases 2x2y2. The only difficult step is checking
(10).

x′1y
′
1 − z′1

= (x1 − ϵ)(y1 − ϵ)− z1 + 2ϵ

= x1y1 − ϵ(x1 + y1) + ϵ2 − z1 + 2ϵ

= x1y1 − z1 − ϵ(2− x2 − y2) + ϵ2 + 2ϵ

= x2y2 + ϵ(x2 + y2) + ϵ2

= (x2 + ϵ)(y2 + ϵ)

= x′2y
′
2

Hence (10) still holds, and thus our choice of x1, y1, z1, . . . , x3, y3, z3 was not optimal, a contra-
diction.

Thus x1y1 = x2y2. Define c, d ∈ [−1
2 ,

1
2] such that x2 = 1

2 + c and y2 = 1
2 + d. Thus

x1 ≤ 1
2 − c, y1 ≤ 1

2 − d. Hence (12 − c)(12 − d) ≥ (12 + c)(12 + d), and so c ≤ −d. Finally, this
means that

α1 + α2 + α3 = 2x2y2 = 2(12 + c)(12 + d) ≤ 2(12 − d)(12 + d) = 1
2 − 2d2 ≤ 1

2 .

References

[1] A. Atserias. On digraph coloring problems and treewidth duality. Eur. J. Comb., 29(4):
796–820, 2008. doi:10.1016/j.ejc.2007.11.004.

[2] S. N. Bhatt and F. T. Leighton. A framework for solving VLSI graph layout problems.
Journal of Computer and System Sciences, 28(2):300 – 343, 1984. doi:10.1016/0022-
0000(84)90071-0.

[3] D. Bienstock. On embedding graphs in trees. J. Combin. Theory Ser. B, 49(1):103–136,
1990. doi:10.1016/0095-8956(90)90066-9.

17

http://dx.doi.org/10.1016/j.ejc.2007.11.004
http://dx.doi.org/10.1016/0022-0000(84)90071-0
http://dx.doi.org/10.1016/0022-0000(84)90071-0
http://dx.doi.org/10.1016/0095-8956(90)90066-9

[4] H. L. Bodlaender. A tourist guide through treewidth. Acta Cybernet., 11(1-2):1–21, 1993.
URL www.cs.uu.nl/research/techreps/repo/CS-1992/1992-12.pdf.

[5] H. L. Bodlaender, M. R. Fellows, M. T. Hallett, H. T. Wareham, and T. J. Warnow.
The hardness of perfect phylogeny, feasible register assignment and other problems on
thin colored graphs. Theoret. Comput. Sci., 244(1-2):167–188, 2000. doi:10.1016/S0304-
3975(98)00342-9.

[6] H. L. Bodlaender, M. R. Fellows, and D. M. Thilikos. Derivation of algorithms for
cutwidth and related graph layout parameters. J. Comput. System Sci., 75(4):231–244,
2009. doi:10.1016/j.jcss.2008.10.003.

[7] G. Călinescu, C. G. Fernandes, and B. Reed. Multicuts in unweighted graphs and di-
graphs with bounded degree and bounded tree-width. J. Algorithms, 48(2):333–359, 2003.
doi:10.1016/S0196-6774(03)00073-7.

[8] F. R. K. Chung. On the cutwidth and the topological bandwidth of a tree. SIAM J.
Algebraic Discrete Methods, 6(2):268–277, 1985. doi:10.1137/0606026.

[9] M. DeVos, Z. Dvořák, J. Fox, J. McDonald, B. Mohar, and D. Scheide. A minimum
degree condition forcing complete graph immersion. Combinatorica, 34(3):279–298, 2014.
doi:10.1007/s00493-014-2806-z.

[10] F. Gavril. Some NP-complete problems on graphs. In Proceedings of the 11th Conference on
Information Sciences and Systems, Johns Hopkins University, Baltimore, MD, pages 91–95,
1977. URL http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-info.cgi/2011/

CS/CS-2011-05.

[11] P. A. Golovach. The cut width of a graph and the vertex separation number of the line
graph. Discrete Math. Appl., 3(5):517–521, 1993. doi:10.1515/dma.1993.3.5.517.

[12] M. Grohe and D. Marx. On tree width, bramble size, and expansion. J. Combinat. Theory,
Series B, 99(1):218–228, 2009. doi:10.1016/j.jctb.2008.06.004.

[13] D. J. Harvey. On Treewidth and Graph Minors. PhD thesis, The University of Melbourne,
2014. URL http://hdl.handle.net/11343/40752.

[14] D. J. Harvey and D. R. Wood. Treewidth of the line graph of a complete graph. J. Graph
Theory, 79(1):48–54, 2015. doi:10.1002/jgt.21813.

[15] D. J. Harvey and D. R. Wood. Parameters tied to treewidth. J. Graph Theory, 84(4):
364–385, 2017. doi:10.1002/jgt.22030.

[16] N. G. Kinnersley. The vertex separation number of a graph equals its path-width. Infor-
mation Processing Letters, 42(6):345 – 350, 1992. doi:10.1016/0020-0190(92)90234-M.

[17] E. Korach and N. Solel. Tree-width, path-width, and cutwidth. Discrete Appl. Math., 43
(1):97–101, 1993. doi:10.1016/0166-218X(93)90171-J.

[18] T. Lengauer. Black-white pebbles and graph separation. Acta Inform., 16(4):465–475,
1981. doi:10.1007/BF00264496.

[19] B. Lucena. Achievable sets, brambles, and sparse treewidth obstructions. Discrete Appl.
Math., 155(8):1055–1065, 2007. doi:10.1016/j.dam.2006.11.006.

18

www.cs.uu.nl/research/techreps/repo/CS-1992/1992-12.pdf
http://dx.doi.org/10.1016/S0304-3975(98)00342-9
http://dx.doi.org/10.1016/S0304-3975(98)00342-9
http://dx.doi.org/10.1016/j.jcss.2008.10.003
http://dx.doi.org/10.1016/S0196-6774(03)00073-7
http://dx.doi.org/10.1137/0606026
http://dx.doi.org/10.1007/s00493-014-2806-z
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-info.cgi/2011/CS/CS-2011-05
http://www.cs.technion.ac.il/users/wwwb/cgi-bin/tr-info.cgi/2011/CS/CS-2011-05
http://dx.doi.org/10.1515/dma.1993.3.5.517
http://dx.doi.org/10.1016/j.jctb.2008.06.004
http://hdl.handle.net/11343/40752
http://dx.doi.org/10.1002/jgt.21813
http://dx.doi.org/10.1002/jgt.22030
http://dx.doi.org/10.1016/0020-0190(92)90234-M
http://dx.doi.org/10.1016/0166-218X(93)90171-J
http://dx.doi.org/10.1007/BF00264496
http://dx.doi.org/10.1016/j.dam.2006.11.006

[20] F. S. Makedon, C. H. Papadimitriou, and I. H. Sudborough. Topological bandwidth. SIAM
J. Algebraic Discrete Methods, 6(3):418–444, 1985. doi:10.1137/0606044.

[21] D. Marx. Can you beat treewidth? Theory of Computing, 6(5):85–112, 2010.
doi:10.4086/toc.2010.v006a005.

[22] A. Matsubayashi and S. Ueno. Small congestion embedding of graphs into hyper-
cubes. Networks, 33(1):71–77, 1999. doi:10.1002/(SICI)1097-0037(199901)33:1<71::AID-
NET5>3.0.CO;2-3.

[23] N. Robertson and P. D. Seymour. Graph minors I–XXIII. J. Combinat. Theory, Series B,
1983–2012.

[24] N. Robertson and P. D. Seymour. Graph minors. II. Algorithmic aspects of tree-width. J.
Algorithms, 7(3):309–322, 1986. doi:10.1016/0196-6774(86)90023-4.

[25] M. Saks. Personal communication to D. Bienstock, reported in [3].

[26] D. M. Thilikos, M. Serna, and H. L. Bodlaender. Cutwidth. I. A linear time fixed parameter
algorithm. J. Algorithms, 56(1):1–24, 2005. doi:10.1016/j.jalgor.2004.12.001.

[27] D. M. Thilikos, M. Serna, and H. L. Bodlaender. Cutwidth. II. Algorithms for partial w-
trees of bounded degree. J. Algorithms, 56(1):25–49, 2005. doi:10.1016/j.jalgor.2004.12.003.

19

http://dx.doi.org/10.1137/0606044
http://dx.doi.org/10.4086/toc.2010.v006a005
http://dx.doi.org/10.1002/(SICI)1097-0037(199901)33:1%3C71::AID-NET5%3E3.0.CO;2-3
http://dx.doi.org/10.1002/(SICI)1097-0037(199901)33:1%3C71::AID-NET5%3E3.0.CO;2-3
http://dx.doi.org/10.1016/0196-6774(86)90023-4
http://dx.doi.org/10.1016/j.jalgor.2004.12.001
http://dx.doi.org/10.1016/j.jalgor.2004.12.003

	Introduction
	Treewidth and the Congestion of Embeddings
	Lower Bound in Terms of Average Degree
	Lower Bound in Terms of Minimum Degree
	Upper Bounds
	Treewidth of L(K(p,q))
	Alternate Lower Bounds
	Appendix A
	Appendix B
	Appendix C

