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A Note on Hadwiger’s Conjecture
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April 25, 2013

Hadwiger’s Conjecture [7] states that every Kt+1-minor-free graph is t-colourable. It is

widely considered to be one of the most important conjectures in graph theory; see [21] for

a survey. If every Kt+1-minor-free graph has minimum degree at most δ, then every Kt+1-

minor-free graph is (δ+1)-colourable by a minimum-degree-greedy algorithm. The purpose

of this note is to prove a slightly better upper bound.

Lemma 1. Fix t ≥ 2. Assume that every Kt+1-minor-free graph has minimum degree at most

δ, and that every Kt-minor-free graph with exactly δ vertices has an independent set of size

α. Then every Kt+1-minor-free graph is (δ − α+ 2)-colourable.

Proof. We prove, by induction on n, that every n-vertex Kt+1-minor-free graph is (δ−α+2)-

colourable. The base case with n = 1 is trivial since δ−α+2 ≥ 2. Let G be a Kt+1-minor-free

graph. Let v be a vertex of minimum degree d in G. Thus d ≤ δ. If d = 0 then, by induction,

G− v is (δ − α+ 2)-colourable, and by assigning to v any colour already in use, we obtain

a (δ − α+ 2)-colouring of G, as desired. Now assume that d ≥ 1.

Let H be the subgraph of G induced by N(v). Thus H has d vertices and no Kt-minor. Let

H ′ be the graph obtained from H by adding δ − d isolated vertices. Then H ′ has exactly δ

vertices and H ′ also has no Kt-minor. By assumption, H ′ has an independent set of size α.

Thus H has an independent set T of size α− δ + d.

Let G′ be the graph obtained from G by contracting each edge vw where w ∈ T into a new

vertex z. Since G′ is a minor of G, G′ is Kt+1-minor-free. Since d ≥ 1, G′ has less vertices

than G. By induction, G′ is (δ − α + 2)-colourable. Colour each vertex in T by the colour

assigned to z. Colour each vertex in G − T − v by the colour assigned to the same vertex

in G′. Of the d neighbours of v, at least α − δ + d have the same colour. Thus at most

d− (α− δ + d) + 1 = δ − α+ 1 colours are present on the neighbours of v. Hence, at least

one of the δ − α + 2 colours is not assigned to a neighbour of v, and this colour may be

assigned to v. Thus G is (δ − α+ 2)-colourable.
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The next lemma summarises some results about independent sets in a Kt+1-minor-free

graphs. Part (a) is the original result in this direction by Duchet and Meyniel [5]. Part

(b), which is strong when t is small, is by the author [23]. Part (c), which builds upon a

similar result by Fox [6], is due to Balogh and Kostochka [2]. See [3, 9, 10, 14, 15] for related

results.

Lemma 2. Every Kt+1-minor-free graph on n vertices has an independent set of size α,

where

(a) (2α− 1)t ≥ n ,

(b) (2α− 1)(2t − 5) ≥ 2n− 5 for t ≥ 5 ,

(c) (2− γ)αt ≥ n ,

where γ = (80−
√
5392)/126 ≈ 0.0521 . . . .

Theorem 3. Fix t ≥ 6. Assume that every Kt+1-minor-free graph G has minimum degree at

most δ. Then

χ(G) ≤ δ −
2δ − 5

4t− 14
+

3

2

and

χ(G) ≤ δ

(

1−
1

(2− γ)(t− 1)

)

+ 2 ,

where γ = (80−
√
5392)/126 ≈ 0.0521 . . . .

Proof. Lemma 2(b) implies that every Kt-minor-free graph with δ vertices has an independent

set of size α, where (2α− 1)(2(t− 1)− 5) ≥ 2δ − 5. Thus α ≥ 2δ−5

4t−14
+ 1

2
. Lemma 1 implies

that χ(G) ≤ δ−α+2 ≤ δ− 2δ−5

4t−14
+ 3

2
. Similarly, Lemma 2(c) implies the second result.

Note that Kostochka [11, 12] and Thomason [19, 20] independently proved that δ ≤ ct
√
log t is

the best possible upper bound on the minimum degree of Kt+1-minor-free graphs. Thus such

graphs are ct
√
log t-colourable. Unfortunately, Theorem 3 makes no asymptotic improvement

to this result.

We now apply these results for particular values of t.

t = 2: K3-minor-free graphs are exactly the forests, and every forest has a vertex of degree

1. Thus χ(G) ≤ 1− 1 + 2 = 2 by Lemma 1, which is tight.

t = 3: Every K4-minor-free graph G has minimum degree at most 2, and every 2-vertex

graph has an independent set of size 1. Thus χ(G) ≤ 2 − 1 + 2 = 3 by Lemma 1, which is

tight.

t = 4: Every K5-minor-free graph with at least 3 vertices has at most 3n − 6 edges

[13]. Thus every K5-minor-free graph has average degree less than 6 and minimum degree

at most 5. Every 5-vertex K4-minor-free graph has an independent set of size 2. Thus
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χ(G) ≤ 5− 2+2 = 5 by Lemma 1. The 4-colour theorem and Wagner’s characterisation [22]

implies that χ(G) ≤ 4.

t = 5: Every K6-minor-free graph with at least 4 vertices has at most 4n − 10 edges [13].

Thus Every K6-minor-free graph has average degree less than 8, and minimum degree at

most 7. Every 7-vertex K5-free graph has an independent set of size 2. Thus every K6-

minor-free graph is 7-colourable by Lemma 1, which is inferior to the result by Robertson

et al. [16] who proved that such graphs are 5-colourable. Note that it is open whether every

K6-minor-free graph has minimum degree at most 6 (see [4]).

t = 6: Every K7-minor-free graph with at least 5 vertices has at most 5n − 15 edges [13].

Thus every K7-minor-free graph has average degree less than 10, and minimum degree at

most 9. Every 9-vertex K6-free graph has an independent set of size 2. Thus every K7-

minor-free graph is 9-colourable by Lemma 1. Albar and Gonçalves [1] proved that every

K7-minor-free graph is 8-colourable.

We conjecture that every K7-minor-free graph has minimum degree at most 7 (which would

be tight for K1,2,2,2,2). This conjecture would imply that every K7-minor-free graph is 7-

colourable. Hadwiger’s conjecture says that K7-minor-free graphs are 6-colourable.

t = 7: Every K8-minor-free graph with at least 5 vertices has at most 6n − 20 edges [8],

Thus every K8-minor-free graph has average degree less than 12, and minimum degree at

most 11. Every 11-vertex K7-free graph has an independent set of size 2. Thus every K8-

minor-free graph is 11-colourable by Lemma 1. Albar and Gonçalves [1] proved that every

K7-minor-free graph is 10-colourable.

Jørgensen [8] characterised the K8-minor-free graphs with 6n− 20 edges as those obtained

from copies of K2,2,2,2,2 by pasting on 5-cliques. Such graphs have minimum degree 8. We

conjecture that every K8-minor-free has minimum degree at most 8, which would imply that

such graphs are 8-colourable. Hadwiger’s conjecture says that K8-minor-free graphs are

7-colourable.

t = 8: Every K9-minor-free graph G has at most 7n−27 edges [17], has average degree less

than 14, and minimum degree at most 13. Every 13-vertex K8-free graph has an independent

set of size 2. Thus every K9-minor-free graph is 13-colourable by Lemma 1.

Song and Thomas [17] characterised the K9-minor-free graphs with 7n− 27 edges as those

obtained from copies of K2,2,2,3,3 and K1,2,2,2,2,2 by pasting on 6-cliques. Such graphs have

minimum degree at most 10. We conjecture that every K9-minor-free has minimum degree

at most 10, which would imply that such graphs are 10-colourable by Lemma 1. Hadwiger’s

conjecture says that K9-minor-free graphs are 8-colourable.

t = 9: Every K10-minor-free graph with at least 10 vertices has at most 11n − 66 edges

[18]. Thus every K10-minor-free graph has average degree less than 22, and minimum degree

at most 21. By Lemma 2(b), every K9-minor-free 21-vertex graph has an independent set
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of 3 vertices. Thus every K10-minor-free graph is 20-colourable by Lemma 1 (or directly by

Theorem 3).

t = 10: Every K11-minor-free graph with at least 11 vertices has at most 13n − 89 edges

[18]. Thus every K11-minor-free graph has average degree less than 26, and minimum degree

at most 25. By Lemma 2(b), every K10-minor-free 25-vertex graph has an independent set

of 3 vertices. Thus every K11-minor-free graph is 24-colourable by Lemma 1 (or directly by

Theorem 3).

We emphasis that in the cases t = 9 and t = 10, while it is likely that all of the stated

bounds are far from optimal1, the utility of our approach is evident, since we may take α = 3

in these cases.
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[7] Hugo Hadwiger. Über eine Klassifikation der Streckenkomplexe. Vierteljschr. Natur-
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