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A Note on Hadwiger’s Conjecture
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Hadwiger’s Conjecture [7] states that every K, i-minor-free graph is t-colourable. It is
widely considered to be one of the most important conjectures in graph theory; see [21] for
a survey. If every K;;i-minor-free graph has minimum degree at most 9, then every K-
minor-free graph is (§ 4+ 1)-colourable by a minimum-degree-greedy algorithm. The purpose
of this note is to prove a slightly better upper bound.

Lemma 1. Fixt > 2. Assume that every K, 1-minor-free graph has minimum degree at most
0, and that every K;-minor-free graph with exactly 6 vertices has an independent set of size
a. Then every K;i1-minor-free graph is (6 — a + 2)-colourable.

Proof. We prove, by induction on n, that every n-vertex K;;1-minor-free graph is (0 —a+2)-
colourable. The base case with n = 1 is trivial since —a+2 > 2. Let G be a K;1-minor-free
graph. Let v be a vertex of minimum degree d in G. Thus d < 4. If d = 0 then, by induction,
G — v is (6 — a+ 2)-colourable, and by assigning to v any colour already in use, we obtain
a (0 — a+ 2)-colouring of G, as desired. Now assume that d > 1.

Let H be the subgraph of G induced by N(v). Thus H has d vertices and no K;-minor. Let
H' be the graph obtained from H by adding § — d isolated vertices. Then H’ has exactly ¢
vertices and H’ also has no K;-minor. By assumption, H' has an independent set of size a.
Thus H has an independent set T of size « — § 4 d.

Let G’ be the graph obtained from G by contracting each edge vw where w € T into a new
vertex z. Since G’ is a minor of G, G’ is K;1-minor-free. Since d > 1, G’ has less vertices
than G. By induction, G’ is (6 — a + 2)-colourable. Colour each vertex in T' by the colour
assigned to z. Colour each vertex in G — T — v by the colour assigned to the same vertex
in G'. Of the d neighbours of v, at least & — § + d have the same colour. Thus at most
d—(a—0d6+d)+1=0—a+1 colours are present on the neighbours of v. Hence, at least
one of the 6 — o + 2 colours is not assigned to a neighbour of v, and this colour may be
assigned to v. Thus G is (6 — a + 2)-colourable. O
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The next lemma summarises some results about independent sets in a Kj;ij-minor-free
graphs. Part (a) is the original result in this direction by Duchet and Meyniel [5] Part
(b), which is strong when t is small, is by the author [23]. Part (c), which builds upon a
similar result by Fox [6], is due to Balogh and Kostochka [2]. See [3, 9, 10, 14, 15] for related
results.

Lemma 2. Every K;ii-minor-free graph on n vertices has an independent set of size «,
where

(@) QRa—-Lt>n,

(b) (2a—-1)(2t—-5)>2n—-5fort>5,

(€ @2-mMatzn,
where v = (80 — v/5392)/126 ~ 0.0521....

Theorem 3. Fixt > 6. Assume that every K;i-minor-free graph G has minimum degree at
most 6. Then

20 — 5 3
X(@)<o-rT—ts
and .
A<of1l-— )42,
x(G) < <2—v><t—1>>

where v = (80 — v/5392) /126 ~ 0.0521 . . ..

Proof. Lemma 2(b) implies that every K;-minor-free graph with ¢ vertices has an independent

set of size , where (2ae — 1)(2(t — 1) — 5) > 20 — 5. Thus a > 423_—_1‘1 + 5. Lemma 1 implies

that x(G) <d—a+2<0— 423__1‘1 + 2. Similarly, Lemma 2(c) implies the second result. [J

Note that Kostochka [11, 12] and Thomason [19, 20] independently proved that § < ct\/logt is
the best possible upper bound on the minimum degree of K;i-minor-free graphs. Thus such
graphs are ct+/log t-colourable. Unfortunately, Theorem 3 makes no asymptotic improvement
to this result.

We now apply these results for particular values of .

t = 2: Ks-minor-free graphs are exactly the forests, and every forest has a vertex of degree
1. Thus x(G) <1—1+2=2 by Lemma 1, which is tight.

t = 3: Every K4-minor-free graph G has minimum degree at most 2, and every 2-vertex
graph has an independent set of size 1. Thus x(G) <2 —1+2 =3 by Lemma 1, which is
tight.

t = 4: Every Ks-minor-free graph with at least 3 vertices has at most 3n — 6 edges
[13]. Thus every Ks-minor-free graph has average degree less than 6 and minimum degree
at most 5. Every 5-vertex K4 -minor-free graph has an independent set of size 2. Thus



X(G) <5—2+2=5by Lemma 1. The 4-colour theorem and Wagner’s characterisation [22]
implies that x(G) < 4.

t = 5: Every Kg-minor-free graph with at least 4 vertices has at most 4n — 10 edges [13].
Thus Every Kg-minor-free graph has average degree less than 8, and minimum degree at
most 7. Every 7-vertex Ks-free graph has an independent set of size 2. Thus every Kg-
minor-free graph is 7-colourable by Lemma 1, which is inferior to the result by Robertson
et al. [16] who proved that such graphs are 5-colourable. Note that it is open whether every
Kg-minor-free graph has minimum degree at most 6 (see [4]).

t = 6: Every K;-minor-free graph with at least 5 vertices has at most 5n — 15 edges [13].
Thus every Ky-minor-free graph has average degree less than 10, and minimum degree at
most 9. Every 9-vertex Kg-free graph has an independent set of size 2. Thus every K7-
minor-free graph is 9-colourable by Lemma 1. Albar and Gongalves [1] proved that every
K7-minor-free graph is 8-colourable.

We conjecture that every K7-minor-free graph has minimum degree at most 7 (which would
be tight for K 2222). This conjecture would imply that every K7-minor-free graph is 7-
colourable. Hadwiger's conjecture says that Kr-minor-free graphs are 6-colourable.

t = T7: Every Kg-minor-free graph with at least 5 vertices has at most 6n — 20 edges [8],
Thus every Kg-minor-free graph has average degree less than 12, and minimum degree at
most 11. Every 11-vertex K7-free graph has an independent set of size 2. Thus every Kg-
minor-free graph is 11-colourable by Lemma 1. Albar and Gongalves [1] proved that every
Kr7-minor-free graph is 10-colourable.

Jorgensen [8] characterised the Kg-minor-free graphs with 6n — 20 edges as those obtained
from copies of K992 2 by pasting on 5-cliques. Such graphs have minimum degree 8. We
conjecture that every Kg-minor-free has minimum degree at most 8, which would imply that
such graphs are 8-colourable. Hadwiger’s conjecture says that Kg-minor-free graphs are
7-colourable.

t = 8: Every Ky-minor-free graph G has at most 7n— 27 edges [17], has average degree less
than 14, and minimum degree at most 13. Every 13-vertex Kg-free graph has an independent
set of size 2. Thus every Ko-minor-free graph is 13-colourable by Lemma 1.

Song and Thomas [17] characterised the Kg-minor-free graphs with 7n — 27 edges as those
obtained from copies of K32233 and Kj 22222 by pasting on 6-cliques. Such graphs have
minimum degree at most 10. We conjecture that every Kg-minor-free has minimum degree
at most 10, which would imply that such graphs are 10-colourable by Lemma 1. Hadwiger's
conjecture says that Kg-minor-free graphs are 8-colourable.

t = 9: Every Kjp-minor-free graph with at least 10 vertices has at most 11n — 66 edges
[18]. Thus every Kjp-minor-free graph has average degree less than 22, and minimum degree
at most 21. By Lemma 2(b), every Kg-minor-free 21-vertex graph has an independent set



of 3 vertices. Thus every Kjo-minor-free graph is 20-colourable by Lemma 1 (or directly by
Theorem 3).

t = 10: Every Kji-minor-free graph with at least 11 vertices has at most 13n — 89 edges
[18]. Thus every Kj1-minor-free graph has average degree less than 26, and minimum degree
at most 25. By Lemma 2(b), every Kjp-minor-free 25-vertex graph has an independent set
of 3 vertices. Thus every Kj;-minor-free graph is 24-colourable by Lemma 1 (or directly by
Theorem 3).

We emphasis that in the cases ¢ = 9 and ¢ = 10, while it is likely that all of the stated
bounds are far from optimal', the utility of our approach is evident, since we may take o = 3
in these cases.
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