A Note on Hadwiger's Conjecture

David R. Wood *

April 25, 2013

Hadwiger's Conjecture [7] states that every K_{t+1}-minor-free graph is t-colourable. It is widely considered to be one of the most important conjectures in graph theory; see [21] for a survey. If every $K_{t+1^{-}}$minor-free graph has minimum degree at most δ, then every $K_{t+1^{-}}$ minor-free graph is $(\delta+1)$-colourable by a minimum-degree-greedy algorithm. The purpose of this note is to prove a slightly better upper bound.

Lemma 1. Fix $t \geq 2$. Assume that every K_{t+1}-minor-free graph has minimum degree at most δ, and that every K_{t}-minor-free graph with exactly δ vertices has an independent set of size α. Then every K_{t+1}-minor-free graph is $(\delta-\alpha+2)$-colourable.

Proof. We prove, by induction on n, that every n-vertex K_{t+1}-minor-free graph is ($\delta-\alpha+2$)colourable. The base case with $n=1$ is trivial since $\delta-\alpha+2 \geq 2$. Let G be a K_{t+1}-minor-free graph. Let v be a vertex of minimum degree d in G. Thus $d \leq \delta$. If $d=0$ then, by induction, $G-v$ is $(\delta-\alpha+2)$-colourable, and by assigning to v any colour already in use, we obtain a $(\delta-\alpha+2)$-colouring of G, as desired. Now assume that $d \geq 1$.

Let H be the subgraph of G induced by $N(v)$. Thus H has d vertices and no K_{t}-minor. Let H^{\prime} be the graph obtained from H by adding $\delta-d$ isolated vertices. Then H^{\prime} has exactly δ vertices and H^{\prime} also has no K_{t}-minor. By assumption, H^{\prime} has an independent set of size α. Thus H has an independent set T of size $\alpha-\delta+d$.

Let G^{\prime} be the graph obtained from G by contracting each edge $v w$ where $w \in T$ into a new vertex z. Since G^{\prime} is a minor of G, G^{\prime} is K_{t+1}-minor-free. Since $d \geq 1, G^{\prime}$ has less vertices than G. By induction, G^{\prime} is $(\delta-\alpha+2)$-colourable. Colour each vertex in T by the colour assigned to z. Colour each vertex in $G-T-v$ by the colour assigned to the same vertex in G^{\prime}. Of the d neighbours of v, at least $\alpha-\delta+d$ have the same colour. Thus at most $d-(\alpha-\delta+d)+1=\delta-\alpha+1$ colours are present on the neighbours of v. Hence, at least one of the $\delta-\alpha+2$ colours is not assigned to a neighbour of v, and this colour may be assigned to v. Thus G is $(\delta-\alpha+2)$-colourable.

[^0]The next lemma summarises some results about independent sets in a K_{t+1}-minor-free graphs. Part (a) is the original result in this direction by Duchet and Meyniel [5]. Part (b), which is strong when t is small, is by the author [23]. Part (c), which builds upon a similar result by Fox [6], is due to Balogh and Kostochka [2]. See [3, 9, 10, 14, 15] for related results.

Lemma 2. Every K_{t+1}-minor-free graph on n vertices has an independent set of size α, where
(a) $(2 \alpha-1) t \geq n$,
(b) $(2 \alpha-1)(2 t-5) \geq 2 n-5$ for $t \geq 5$,
(c) $(2-\gamma) \alpha t \geq n$,
where $\gamma=(80-\sqrt{5392}) / 126 \approx 0.0521 \ldots$.
Theorem 3. Fix $t \geq 6$. Assume that every K_{t+1}-minor-free graph G has minimum degree at most δ. Then

$$
\chi(G) \leq \delta-\frac{2 \delta-5}{4 t-14}+\frac{3}{2}
$$

and

$$
\chi(G) \leq \delta\left(1-\frac{1}{(2-\gamma)(t-1)}\right)+2
$$

where $\gamma=(80-\sqrt{5392}) / 126 \approx 0.0521 \ldots$.

Proof. Lemma 2(b) implies that every K_{t}-minor-free graph with δ vertices has an independent set of size α, where $(2 \alpha-1)(2(t-1)-5) \geq 2 \delta-5$. Thus $\alpha \geq \frac{2 \delta-5}{4 t-14}+\frac{1}{2}$. Lemma 1 implies that $\chi(G) \leq \delta-\alpha+2 \leq \delta-\frac{2 \delta-5}{4 t-14}+\frac{3}{2}$. Similarly, Lemma 2 (c) implies the second result.

Note that Kostochka [11, 12] and Thomason [19, 20] independently proved that $\delta \leq c t \sqrt{\log t}$ is the best possible upper bound on the minimum degree of K_{t+1}-minor-free graphs. Thus such graphs are $c t \sqrt{\log t}$-colourable. Unfortunately, Theorem 3 makes no asymptotic improvement to this result.

We now apply these results for particular values of t.
$\boldsymbol{t}=2: K_{3}$-minor-free graphs are exactly the forests, and every forest has a vertex of degree 1. Thus $\chi(G) \leq 1-1+2=2$ by Lemma 1 , which is tight.
$\boldsymbol{t}=3:$ Every K_{4}-minor-free graph G has minimum degree at most 2, and every 2-vertex graph has an independent set of size 1 . Thus $\chi(G) \leq 2-1+2=3$ by Lemma 1 , which is tight.
$\boldsymbol{t}=4:$ Every K_{5}-minor-free graph with at least 3 vertices has at most $3 n-6$ edges [13]. Thus every K_{5}-minor-free graph has average degree less than 6 and minimum degree at most 5. Every 5-vertex K_{4}-minor-free graph has an independent set of size 2 . Thus
$\chi(G) \leq 5-2+2=5$ by Lemma 1. The 4-colour theorem and Wagner's characterisation [22] implies that $\chi(G) \leq 4$.
$\boldsymbol{t}=5:$ Every K_{6}-minor-free graph with at least 4 vertices has at most $4 n-10$ edges [13]. Thus Every K_{6}-minor-free graph has average degree less than 8, and minimum degree at most 7. Every 7 -vertex K_{5}-free graph has an independent set of size 2 . Thus every $K_{6}{ }^{-}$ minor-free graph is 7-colourable by Lemma 1, which is inferior to the result by Robertson et al. [16] who proved that such graphs are 5-colourable. Note that it is open whether every K_{6}-minor-free graph has minimum degree at most 6 (see [4]).
$\boldsymbol{t}=\mathbf{6}$: Every K_{7}-minor-free graph with at least 5 vertices has at most $5 n-15$ edges [13]. Thus every K_{7}-minor-free graph has average degree less than 10, and minimum degree at most 9. Every 9 -vertex K_{6}-free graph has an independent set of size 2 . Thus every K_{7} -minor-free graph is 9 -colourable by Lemma 1. Albar and Gonçalves [1] proved that every K_{7}-minor-free graph is 8-colourable.

We conjecture that every K_{7}-minor-free graph has minimum degree at most 7 (which would be tight for $K_{1,2,2,2,2}$. This conjecture would imply that every K_{7}-minor-free graph is 7colourable. Hadwiger's conjecture says that K_{7}-minor-free graphs are 6-colourable.
$\boldsymbol{t}=7$: Every K_{8}-minor-free graph with at least 5 vertices has at most $6 n-20$ edges [8], Thus every K_{8}-minor-free graph has average degree less than 12 , and minimum degree at most 11. Every 11-vertex K_{7}-free graph has an independent set of size 2 . Thus every K_{8} -minor-free graph is 11-colourable by Lemma 1. Albar and Gonçalves [1] proved that every K_{7}-minor-free graph is 10 -colourable.

Jørgensen [8] characterised the K_{8}-minor-free graphs with $6 n-20$ edges as those obtained from copies of $K_{2,2,2,2,2}$ by pasting on 5 -cliques. Such graphs have minimum degree 8 . We conjecture that every K_{8}-minor-free has minimum degree at most 8, which would imply that such graphs are 8-colourable. Hadwiger's conjecture says that K_{8}-minor-free graphs are 7-colourable.
$\boldsymbol{t}=8:$ Every K_{9}-minor-free graph G has at most $7 n-27$ edges [17], has average degree less than 14 , and minimum degree at most 13 . Every 13 -vertex K_{8}-free graph has an independent set of size 2 . Thus every K_{9}-minor-free graph is 13 -colourable by Lemma 1.

Song and Thomas [17] characterised the K_{9}-minor-free graphs with $7 n-27$ edges as those obtained from copies of $K_{2,2,2,3,3}$ and $K_{1,2,2,2,2,2}$ by pasting on 6 -cliques. Such graphs have minimum degree at most 10 . We conjecture that every K_{9}-minor-free has minimum degree at most 10, which would imply that such graphs are 10-colourable by Lemma 1. Hadwiger's conjecture says that K_{9}-minor-free graphs are 8-colourable.
$\boldsymbol{t}=\mathbf{9 :}$ Every K_{10}-minor-free graph with at least 10 vertices has at most $11 n-66$ edges [18]. Thus every K_{10}-minor-free graph has average degree less than 22 , and minimum degree at most 21. By Lemma 2(b), every K_{9}-minor-free 21 -vertex graph has an independent set
of 3 vertices. Thus every K_{10}-minor-free graph is 20 -colourable by Lemma 1 (or directly by Theorem 3).
$\boldsymbol{t}=10:$ Every K_{11}-minor-free graph with at least 11 vertices has at most $13 n-89$ edges [18]. Thus every K_{11}-minor-free graph has average degree less than 26, and minimum degree at most 25. By Lemma 2 (b), every K_{10}-minor-free 25 -vertex graph has an independent set of 3 vertices. Thus every K_{11}-minor-free graph is 24 -colourable by Lemma 1 (or directly by Theorem 3).

We emphasis that in the cases $t=9$ and $t=10$, while it is likely that all of the stated bounds are far from optimal ${ }^{1}$, the utility of our approach is evident, since we may take $\alpha=3$ in these cases.

References

[1] Boris Albar and Daniel Gonçalves. On triangles in K_{r}-minor free graphs. 2013. arXiv: 1304.5468.
[2] József Balogh and A. V. Kostochka. Large minors in graphs with given independence number. Discrete Math., 311(20):2203-2215, 2011. doi: 10.1016/j.disc.2011.07.003.
[3] József Balogh, John Lenz, and Hehui Wu. Complete minors, independent sets, and chordal graphs. Discuss. Math. Graph Theory, 31(4):639-674, 2011. doi: 10.7151/dmgt. 1571.
[4] János Barát, Gwenaël Joret, and David R. Wood. Disproof of the list Hadwiger conjecture. Electron. J. Combin., 18(1):P232, 2011. http://www. combinatorics.org/ojs/index.php/eljc/article/view/v18i1p232.
[5] Pierre Duchet and Henri Meyniel. On Hadwiger's number and the stability number. Annals of Discrete Mathematics, 13:71-73, 1982. MR: 0671905.
[6] Jасов Fox. Complete minors and independence number. SIAM J. Discrete Math., 24(4):1313-1321, 2010. doi: 10.1137/090766814.
[7] Hugo Hadwiger. Über eine Klassifikation der Streckenkomplexe. Vierteljschr. Naturforsch. Ges. Zürich, 88:133-142, 1943. MR: 0012237.
[8] Leif K. Jørgensen. Contractions to K_{8}. J. Graph Theory, 18(5):431-448, 1994. doi: 10.1002/jgt. 3190180502.
[9] Ken-ichi Kawarabayashi, Michael D. Plummer, and Bjarne Toft. Improvements of the theorem of Duchet and Meyniel on Hadwiger's conjecture. J. Combin. Theory Ser. B, 95(1):152-167, 2005. doi: 10.1016/j.jctb.2005.04.001.

[^1][10] Ken-ichi Kawarabayashi and Zi-Xia Song. Independence number and clique minors. J. Graph Theory, 56(3):219-226, 2007. doi: 10.1002/jgt.20268. MR: 2355127.
[11] Alexandr V. Kostochka. The minimum Hadwiger number for graphs with a given mean degree of vertices. Metody Diskret. Analiz., 38:37-58, 1982. MR: 0713722, Zbl: 0544.05037.
[12] Alexandr V. Коstochka. Lower bound of the Hadwiger number of graphs by their average degree. Combinatorica, 4(4):307-316, 1984. doi: 10.1007/BF02579141. MR: 0779891.
[13] Wolfgang Mader. Homomorphiesätze für Graphen. Math. Ann., 178:154-168, 1968. doi: 10.1007/BF01350657. MR: 0229550.
[14] Frédéric Maffray and Henri Meyniel. On a relationship between Hadwiger and stability numbers. Discrete Math., 64(1):39-42, 1987. doi:10.1016/0012-365X(87)90238-X. MR: 882610.
[15] Anders Sune Pedersen and Bjarne Toft. A basic elementary extension of the Duchet-Meyniel theorem. Discrete Math., 310(3):480-488, 2010. doi: 10.1016/j.disc.2009.03.023.
[16] Neil Robertson, Paul D. Seymour, and Robin Thomas. Hadwiger's conjecture for K_{6}-free graphs. Combinatorica, 13(3):279-361, 1993. doi:10.1007/BF01202354. MR: 1238823.
[17] Zi-Xia Song and Robin Thomas. The extremal function for K_{9} minors. J. Combin. Theory Ser. B, 96(2):240-252, 2006. doi: 10.1016/j.jctb.2005.07.008. MR: 2208353.
[18] Zixia Song. Extremal Functions for Contractions of Graphs. Ph.D. thesis, Georgia Institute of Technology, USA, 2004. CiteSeer:10.1.1.92.1275. MR: 2706190.
[19] Andrew Thomason. An extremal function for contractions of graphs. Math. Proc. Cambridge Philos. Soc., 95(2):261-265, 1984. doi:10.1017/S0305004100061521. MR: 0735367, Zbl: 0551.05047.
[20] Andrew Thomason. The extremal function for complete minors. J. Combin. Theory Ser. B, 81(2):318-338, 2001. doi: 10.1006/jctb.2000.2013. MR: 1814910, Zbl: 1024.05083.
[21] Bjarne Toft. A survey of Hadwiger's conjecture. Congr. Numer., 115:249-283, 1996. MR: 1411244.
[22] Klaus Wagner. Über eine Eigenschaft der ebene Komplexe. Math. Ann., 114:570-590, 1937. doi: 10.1007/BF01594196. MR: 1513158. Zbl: 0017.19005.
[23] David R. Wood. Independent sets in graphs with an excluded clique minor. Discrete Math. Theor. Comput. Sci., 9(1):171-175, 2007. http://www.dmtcs.org/dmtcs-ojs/index.php/dmtcs/article/view/617. MR: 2335892.

[^0]: *School of Mathematical Sciences, Monash University, Melbourne, Australia (david.wood@monash.edu). Research supported by the Australian Research Council.

[^1]: ${ }^{1}$ See Chapter 6 of the Ph.D. thesis of Song [18] for a discussion of the likely extremal graphs

