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Abstract. A mixed plane graph is a plane graph whose edge set is partitioned
into a set of directed edges and a set of undirected edges. An orientation of a
mixed plane graph G is an assignment of directions to the undirected edges of G
resulting in a directed plane graph G. In this paper, we study the computational
complexity of testing whether a given mixed plane graph G is upward planar,
i.e., whether it admits an orientation resulting in a directed plane graph G such
that G admits a planar drawing in which each edge is represented by a curve
monotonically increasing in the y-direction according to its orientation.

Our contribution is threefold. First, we show that the upward planarity testing
problem is solvable in cubic time for mixed outerplane graphs. Second, we show
that the problem of testing the upward planarity of mixed plane graphs reduces
in quadratic time to the problem of testing the upward planarity of mixed plane
triangulations. Third, we exhibit linear-time testing algorithms for two classes of
mixed plane triangulations, namely mixed plane 3-trees and mixed plane triangu-
lations in which the undirected edges induce a forest.

1 Introduction

Upward planarity is the natural extension of planarity to directed graphs. When visu-
alizing a directed graph, one usually requires an upward drawing, that is, a drawing in
which the directed edges flow monotonically in the y-direction. A drawing is upward
planar if it is planar and upward. Testing whether a directed graph G admits an upward
planar drawing is NP-hard [9], however, it is polynomial-time solvable if G has a fixed
planar embedding [2], if it has a single-source [3,13], if it is outerplanar [15], or if it is
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a series-parallel graph [7]. Exponential-time algorithms [1] and FPT algorithms [12]
for upward planarity testing are known.

In this paper we deal with mixed graphs. A mixed graph is a graph whose edge set
is partitioned into a set of directed edges and a set of undirected edges. Mixed graphs
unify the expressive power of directed and undirected graphs, as they allow one to
simultaneously represent hierarchical and non-hierarchical relationships. A number of
problems on mixed graphs have been studied, e.g., coloring mixed graphs [11,17] and
orienting mixed graphs to satisfy connectivity requirements [5,6].

Upward planarity generalizes to mixed graphs as follows. A drawing of a mixed
graph is upward planar if it is planar, every undirected edge is a y-monotone curve, and
every directed edge is an arc with monotonically increasing y-coordinates. Hence, test-
ing the upward planarity of a mixed graph is equivalent to testing whether its undirected
edges can be oriented to produce an upward planar directed graph. Since the upward
planarity testing problem is NP-hard for directed graphs [9], it is NP-hard for mixed
graphs as well. Binucci and Didimo [4] studied the problem of testing the upward pla-
narity of mixed plane graphs, that is, of mixed graphs with a given plane embedding.
They describe an ILP formulation for the problem and present experiments showing the
efficiency of their solution. Different graph drawing questions on mixed graphs (related
to crossing and bend minimization) have been studied in [8,10].

We show the following results.
In Section 3 we show that the upward planarity testing problem can be solved in

O(n3) time for n-vertex mixed outerplane graphs. Our dynamic programming algo-
rithm uses a characterization for the upward planarity of directed plane graphs due to
Bertolazzi et al. [2], and it tests the upward planarity of a mixed outerplane graph G
based on the upward planarity of two subgraphs of G.

In Section 4 we show that, for every n-vertex mixed plane graph G, there exists an
O(n2)-vertex mixed plane triangulation G′ such that G is upward planar if and only if
G′ is upward planar. As a consequence, the problem of testing the upward planarity of
mixed plane graphs is polynomial-time solvable (NP-hard) if and only if the problem of
testing the upward planarity of mixed plane triangulations is polynomial-time solvable
(resp., NP-hard).

In Section 5, motivated by the previous result, we present linear-time algorithms to
test the upward planarity of two classes of mixed plane triangulations, namely mixed
plane 3-trees and mixed plane triangulations in which the undirected edges induce a
forest. The former algorithm uses dynamic programming, while the latter algorithm
uses induction on the number of undirected edges in the mixed plane triangulation.

Because of space limitations, some proofs are omitted or sketched in this extended
abstract. Complete proofs are available in the full version of the paper.

2 Preliminaries

A planar drawing of a graph determines a circular ordering of the edges incident to each
vertex. Two planar drawings of the same graph are equivalent if they determine the same
circular orderings around each vertex. A planar embedding is an equivalence class of
planar drawings. A planar drawing partitions the plane into topologically connected
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regions, called faces. The unbounded face is the outer face and the bounded faces are
the internal faces. An edge of G incident to the outer face (not incident to the outer
face) is called external (resp., internal). Two planar drawings with the same planar
embedding have the same faces. However, they could still differ in their outer faces.
A plane embedding is a planar embedding together with a choice for the outer face.
A plane graph is a graph with a given plane embedding. An outerplane graph is a
plane graph whose vertices are all incident to the outer face. A plane triangulation is a
plane graph whose faces are delimited by 3-cycles. An outerplane triangulation is an
outerplane graph whose internal faces are delimited by 3-cycles.

A block of a graph G(V,E) is a maximal (both in terms of vertices and in terms of
edges) 2-connected subgraph of G; in particular, an edge of G whose removal discon-
nects G is considered as a block of G. In this paper, when talking about the connectivity
of mixed graphs or directed graphs, we always refer to the connectivity of their under-
lying undirected graphs.

A vertex v in a directed graph is a sink (source) if every edge incident to v is incoming
at v (resp., outgoing at v). A vertex v in a directed plane graph is bimodal if the incoming
edges at v are consecutive in the cyclic ordering of edges incident to v (which implies
that the outgoing edges at v are also consecutive). A directed plane graph is bimodal
if every vertex is bimodal. A vertex v in a 2-connected directed outerplane graph is a
sink-switch (source-switch) if the two external edges incident to v are both incoming
(resp., outgoing) at v.

Bertolazzi et al. [2] characterized the directed plane graphs that are upward planar.
In this paper, we will use such a characterization when dealing with two specific classes
of directed plane graphs, namely directed outerplane triangulations and directed plane
triangulations. Thus, we state such a characterization directly for such graph classes.

Theorem 1 ([2]). A directed outerplane triangulation G is upward planar if and only
if it is acyclic, it is bimodal, and the number of sources plus the number of sinks in G
equals the number of sink-switches (or source-switches) plus one.

Theorem 2 ([2]). A directed plane triangulation G is upward planar if and only if it is
acyclic, it is bimodal, and G has exactly one source and one sink that are incident to
the outer face of G.

A mixed plane graph is upward planar if and only if each of its connected compo-
nents is upward planar. Thus, without loss of generality, we only consider connected
mixed plane graphs. In the following lemma, we show that a stronger condition can in
fact be assumed for each considered plane graph G, namely that G is 2-connected.

Lemma 1. Every n-vertex mixed plane graph G can be augmented with new edges
and vertices to a 2-connected mixed plane graph G′ with O(n) vertices such that G
is upward planar if and only if G′ is. If G is outerplane, than G′ is also outerplane.
Moreover, G′ can be constructed from G in O(n) time.

Proof Sketch: While G has a cutvertex c that is incident to a face f (if G is outerplane,
then f is its outer face), we consider two edges (v1, c) and (u2, c) that are consecutively
incident to c in G and that belong to different blocks of G. We add a vertex w inside
f and connect it to v1 and u2. The repetition of such an augmentation leads to a 2-
connected mixed plane graph G′ satisfying the conditions of the lemma. �
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3 Upward Planarity Testing for Mixed Outerplane Graphs

This section is devoted to the proof of the following theorem.

Theorem 3. The upward planarity of an n-vertex mixed outerplane graph can be tested
in O(n3) time.

Let G be any n-vertex mixed outerplane graph. By Lemma 1, an O(n)-vertex 2-
connected mixed outerplane graph G∗ can be constructed in O(n) time such that G is
upward planar if and only if G∗ is.

We introduce some notation and terminology. Let u and v be distinct vertices of G∗.
We denote by G∗ + (u, v) the graph obtained from G∗ by adding edge (u, v) if it is not
already in G∗, and by G∗−u the graph obtained from G∗ by deleting u and its incident
edges. Consider an orientation G∗ of G∗. A vertex is sinky (sourcey) in G∗ if it is a
sink-switch but not a sink (if it is a source-switch but not a source, resp.). A vertex that
is neither a sink, a source, sinky, nor sourcey is ordinary; that is, v is ordinary if the two
external edges incident to v are one incoming at v and one outgoing at v in G∗. We say
the status of a vertex of G∗ in G∗ is sink, source, sinky, sourcey, or ordinary.

First note that G∗ is upward planar if and only if there is an upward planar directed
outerplane triangulation T of G∗, that is, if and only if G∗ can be augmented to a mixed
outerplane triangulation, and the undirected edges of such a triangulation can be ori-
ented in such a way that the resulting directed outerplane triangulation T is upward
planar. The approach of our algorithm is to determine if there is such a T using recur-
sion. The algorithm can be easily modified to produce T if it exists.

We observe that a directed outerplane triangulation T is acyclic if and only if every
3-cycle in T is acyclic. One direction is trivial. Conversely, suppose that T contains a
directed cycle. Let C be a shortest directed cycle of T . If C is a 3-cycle, then we are
done. Otherwise, an edge (x, y) /∈ C exists in T between two vertices x and y both
in C. Thus, C + (x, y) contains two shorter cycles, one of which is a directed cycle,
contradicting the choice of C. Hence, to ensure the acyclicity of a directed outerplane
triangulation, it suffices to ensure that its internal faces are acyclic.

A potential edge ofG∗ is a pair of distinct vertices x and y in G∗ such that G∗+(x, y)
is outerplane, which is equivalent to saying that x and y are incident to a common
internal face of G∗ (notice that an edge of G∗ is a potential edge of G∗). Fix some
external edge r of G∗, called the root edge. Let e = {x, y} be an internal potential
edge of G∗. Then {x, y} separates G∗, that is, G∗ contains two subgraphs G∗

1 and G∗
2,

such that G∗ = G∗
1 ∪ G∗

2 and V (G∗
1 ∩ G∗

2) = {x, y}. (Thus, there is no edge between
G∗

1 − x − y and G∗
2 − x − y.) W.l.o.g., r ∈ E(G∗

1). Let G∗
e := G∗

2 + (x, y). Observe
that G∗

e is a 2-connected mixed outerplane graph with e incident to the outer face. Also,
let e = {x, y} �= r be an external potential edge of G∗. Then, we define G∗

e to be the 2-
vertex graph containing the single edge (x, y). Further, let G∗

r := G∗. For any (internal
or external) potential edge e = {x, y} of G∗ and for an orientation −→xy of e, let G∗−→xy be

G∗
e with e oriented −→xy. Define a partial order ≺ on the potential edges of G∗ as follows.

For distinct potential edges e and f of G∗, say e ≺ f if both end-vertices of f are in
G∗

e . Loosely speaking, e ≺ f if G∗ + e+ f is outerplane and e is “between” r and f .
A potential arc of G∗ is a potential edge that is assigned an orientation preserving

its orientation in G∗. So if e is an undirected edge of G∗ or a potential edge not in
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G∗, then there are two potential arcs associated with e, while if e is a directed edge
of G∗, then there is one potential arc associated with e. If a potential arc −→xy is part
of a triangulation T of G∗, then x is a source, sourcey, or ordinary, and y is a sink,
sinky, or ordinary in G∗−→xy. We define the status of −→xy in G∗−→xy as an ordered pair S of
S(x) ∈ {source, sourcey, ordinary} and S(y) ∈ {sink, sinky, ordinary}.

We now define a function UP(−→xy, S), that takes as an input a potential arc −→xy and
a status S of −→xy, and has value “true” if and only if there is an upward planar directed
outerplane triangulation T−→xy of G∗−→xy that respects S(x) and S(y); notice that, if −→xy is
external and does not correspond to r, then T−→xy is a single edge.

First, the values of UP(−→xy, S) can be computed in total O(n) time for all the exter-
nal potential arcs −→xy of G∗ not corresponding to r and for all statuses of −→xy. Indeed,
UP(−→xy, S) is true if and only if S(x) = source and S(y) = sink.

We show below that, for each potential arc −→xy in G∗ that is internal or that is external
and corresponds to r, and for each status S of −→xy, the value of UP(−→xy, S) can be com-
puted in O(n) time from values associated to potential arcs corresponding to potential
edges e with {x, y} ≺ e. Since there are at most n(n + 1) potential arcs and nine sta-
tuses for each potential arc, all the values of UP(−→xy, S) can be computed in O(n3) time
by dynamic programming in reverse order to a linear extension of ≺. Then, there is an
upward planar directed outerplane triangulation of G∗ if and only if UP(−→xy, S) is true
for some orientation −→xy of r and some status S of −→xy.

Let −→xy be a potential arc that is internal to G∗ or that corresponds to r. Let S be a
status of −→xy. Suppose that UP(−→xy, S) is true. Then, there is an upward planar directed
outerplane triangulation T−→xy of G∗−→xy that respects S(x) and S(y). Such a triangulation
contains a vertex z ∈ V (G∗

xy) − x − y such that (x, y, z) is an internal face of T−→xy.
Since T−→xy has edge (x, y) oriented from x to y, then edges (x, z) and (y, z) cannot be
simultaneously incoming at x and outgoing at y, respectively, as otherwise T−→xy would
contain a directed cycle, which is not possible by Theorem 1. Hence, edges (x, z) and
(y, z) in T−→xy are either outgoing at x and incoming at y, or outgoing at x and outgoing
at y, or incoming at x and incoming at y, respectively.

Now, for any status S of −→xy and for a particular vertex z ∈ V (G∗
xy) − x − y, we

characterize the conditions for which an upward planar directed outerplane triangula-
tion T−→xy exists that respects S(x) and S(y) and that contains edges (x, z) and (y, z)
oriented according to each of the three orientations described above.

Lemma 2. There is an upward planar directed outerplane triangulation T−→xy that re-
spects S(x) and S(y), that contains edge (x, z) outgoing at x, and that contains edge
(z, y) incoming at y, if and only if −→xz and −→zy are potential arcs of G∗ and there are
statuses S1 of −→xz and S2 of −→zy such that the following conditions hold: (a) S1(x) =
S(x) ∈ {source, sourcey, ordinary}, (b) S2(y) = S(y) ∈ {sink, sinky, ordinary},
(c) S1(z) ∈ {sink, ordinary}, (d) S2(z) ∈ {source, ordinary}, (e) S1(z) = sink or
S2(z) = source, and (f) both UP(−→xz, S1) and UP(−→zy, S2) are true.

Proof: (=⇒) Let T−→xy be an upward planar directed outerplane triangulation of G∗−→xy
that respects S(x) and S(y), that contains edge (x, z) outgoing at x, and that con-
tains edge (z, y) incoming at y. Then, −→xz and −→zy are potential arcs of G∗. Further, T−→xy
determines upward planar directed outerplane triangulations T−→xz and T−→zy
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respectively of G∗−→xz and G∗−→zy (where T−→xz and T−→zy are single edges if −→xz and −→zy are

external, respectively), as well as statuses S1 and S2 of −→xz and −→zy, respectively, such
that (f) both UP(−→xz, S1) and UP(−→zy, S2) are true. Since −→xy and −→xz are consecutive
outgoing arcs at x, we have (a) S1(x) = S(x) ∈ {source, sourcey, ordinary}. Simi-
larly, (b) S2(y) = S(y) ∈ {sink, sinky, ordinary}. Since −→xz is incoming at z, we have
S1(z) ∈ {sink, ordinary, sinky}. However, if S1(z) = sinky, then z is not bimodal
in T−→xy. Thus (c) S1(z) ∈ {sink, ordinary}. Similarly, (d) S2(z) ∈ {source, ordinary}.
Finally, if z is ordinary in both T−→xz and T−→zy , then z is not bimodal in T−→xy. Thus (e)
S1(z) = sink or S2(z) = source.

(⇐=) Let T−→xz be an upward planar directed outerplane triangulation of G∗−→xz respect-
ing S1 (T−→xz is a single edge if −→xz is external). Let T−→zy be an upward planar directed
outerplane triangulation of G∗−→zy respecting S2 (T−→zy is a single edge if −→zy is external).

Such triangulations exist because UP(−→xz, S1) and UP(−→zy, S2) are true. Let T−→xy be the
triangulation of G∗−→xy determined from T−→xz and T−→zy by adding the arc −→xy. Since T−→xz,
T−→zy, and (x, y, z) are acyclic, T−→xy is acyclic. Since x is bimodal in T−→xz, it is bimodal in
T−→xy. Similarly, y is bimodal in T−→xy. As described above, the conditions on S1(z) and
S2(z) imply that z is bimodal in T−→xy. Every other vertex is bimodal in T−→xy because it is
bimodal in T−→xz or in T−→zy. Hence, T−→xy is bimodal.

Let s1, t1 and w1 (s2, t2 and w2; s, t and w) be the number of sources, sinks, and
sink-switches in T−→xz (resp., in T−→zy; resp., in T−→xy), respectively. By Theorem 1, si+ ti =
wi + 1, for i ∈ {1, 2}. If z is a sink in T−→xz and ordinary in T−→zy , then s = s1 + s2,
t = t1 + t2 − 1 (for z), and w = w1 + w2. If z is a source in T−→zy and ordinary in
T−→xz, then s = s1 + s2 − 1 (for z), t = t1 + t2, and w = w1 + w2. If z is a sink in
T−→xz and a source in T−→zy, then s = s1 + s2 − 1 (for z) and t = t1 + t2 − 1 (for z) and
w = w1 + w2 − 1 (for z). In all three cases, it follows that s+ t = w + 1.

By Theorem 1, T−→xy is upward planar. By construction, T−→xy respects S(x) and S(y)
and contains edge (x, z) outgoing at x and edge (z, y) incoming at y. �

Lemma 3. There is an upward planar directed outerplane triangulation T−→xy that re-
spects S(x) and S(y) and that contains edges (x, z) and (y, z) incoming at z if and only
if −→xz and −→yz are potential arcs of G∗ and there are statuses S1 of −→xz and S2 of −→yz such
that the following conditions hold: (a) S1(x) = S(x) ∈ {source, sourcey, ordinary},
(b) S(y) ∈ {sinky, ordinary}, (c) S2(y) ∈ {source, ordinary}, (d) S(y) = ordinary
if and only if S2(y) = source, (e) S(y) = sinky if and only if S2(y) = ordinary,
(f) S1(z) ∈ {sink, sinky, ordinary}, (g) S2(z) ∈ {sink, sinky, ordinary}, (h) S1(z) ∈
{sink, ordinary} or S2(z) = sink, (i) S2(z) ∈ {sink, ordinary} or S1(z) = sink, and
(j) both UP(−→xz, S1) and UP(−→yz, S2) are true.

Lemma 4. There is an upward planar directed outerplane triangulation T−→xy that re-
spects S(x) and S(y) and that contains edges (z, x) and (z, y) outgoing at z if and
only if −→zx and −→zy are potential arcs of G∗ and there are statuses S1 of −→zx and S2 of −→zy
such that the following conditions hold: (a) S2(y) = S(y) ∈ {sink, sinky, ordinary},
(b) S(x) ∈ {sourcey, ordinary}, (c) S1(x) ∈ {sink, ordinary}, (d) S(x) = ordinary
if and only if S1(x) = sink, (e) S(x) = sourcey if and only if S1(x) = ordinary,
(f) S1(z) ∈ {source, sourcey, ordinary}, (g) S2(z) ∈ {source, sourcey, ordinary}, (h)
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S1(z) ∈ {source, ordinary} or S2(z) = source, (i) S2(z) ∈ {source, ordinary} or
S1(z)=source, and (j) both UP(−→zx, S1) and UP(−→zy, S2) are true.

For any status S of −→xy and for a particular vertex z ∈ V (G∗
xy) − x − y, it can be

checked in O(1) time whether an upward planar directed outerplane triangulation T−→xy
exists that respects S(x) and S(y) and that contains edges (x, z) and (y, z) by checking
whether the conditions in at least one of Lemmata 2-4 are satisfied. Further, UP(−→xy, S)
is true if and only if there exists a vertex z ∈ V (G∗

xy) − x − y such that an upward
planar directed outerplane triangulation T−→xy exists that respects S(x) and S(y) and that
contains edges (x, z) and (y, z). Thus, we can determine UP(−→xy, S) in O(n) time since
there are less than n possible choices for z.

This completes the proof of Theorem 3. The time complexity analysis can be strength-
ened as follows. Suppose that every internal face of G∗ has at most t vertices. Then each
vertex v is incident to less than t · degG∗(v) potential edges and the total number of po-
tential arcs is less than 2

∑
v t · degG∗(v) ≤ 8tn. Since each potential arc has nine

statuses, and since there are less than t choices for z, the time complexity is O(t2n). In
particular, if G∗ is an outerplane triangulation, then the time complexity is O(n).

4 Reducing Mixed Plane Graphs to Mixed Plane Triangulations

This section is devoted to the proof of the following theorem.

Theorem 4. Let G be an n-vertex mixed plane graph. There exists an O(n2)-vertex
mixed plane triangulation G′ such that G is upward planar if and only if G′ is. More-
over, G′ can be constructed from G in O(n2) time.

Proof: By Lemma 1, an O(n)-vertex 2-connected mixed plane graph G∗ can be con-
structed in O(n) time such that G is upward planar if and only if G∗ is.

We show how to construct a graph G′ satisfying the statement of the theorem. In
order to construct G′, we augment G∗ in several steps. At each step, vertices and edges
are inserted inside a face f of G∗ delimited by a cycle Cf with nf ≥ 4 vertices. Such
an insertion is done in such a way that one of the faces that is created by the insertion
of vertices and edges into f has nf − 1 vertices, while all the other such faces have 3
vertices. The repetition of such an augmentation yields the desired graph G′.

We now describe how to augment G∗. Consider any face f of G∗ delimited by a
cycle Cf with nf ≥ 4 vertices. Let (u1, u2, . . . , unf

) be the clockwise order of the
vertices along Cf starting at any vertex. Insert a cycle C′

f inside f with nf − 1 vertices
v1, v2, . . . , vnf−1 in this clockwise order alongC′

f . For any 1 ≤ i ≤ nf−1, insert edges
(vi, ui) and (vi, ui+1) inside Cf and outside C′

f ; also, insert edge (v1, unf
) inside cycle

(unf
, u1, v1, vnf−1). All the edges inserted in f are undirected. See Fig. 1. Denote by

G′
f the graph consisting of cycle Cf together with the vertices and edges inserted in f .

Observe that the face of G′
f delimited by C′

f has nf − 1 vertices, while all the other
faces into which f is split by the insertion of xf and of its incident edges have 3 vertices.

We show that G∗ before the augmentation is upward planar if and only if G∗ after
the augmentation is upward planar. One implication is trivial, given that G∗ before the
augmentation is a subgraph of G∗ after the augmentation. For the other implication,
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u1

u2
u3

unf

v1
v2

v3

unf−1

vnf−1

Fig. 1. Augmentation of a face f

it suffices to prove that, for any upward planar orientation Cf of Cf , there exists an
upward planar orientation G′

f of G′
f that coincides with Cf when restricted to Cf .

Consider an upward planar drawing Γf of Cf with orientation Cf . We shall place
the vertices of C′

f inside f in Γf , thus obtaining a drawing Γ ′
f of G′

f .
Pach and Tóth [14] proved that any planar drawing of a graph G in which all the

edges are y-monotone can be triangulated by the insertion of y-monotone edges inside
the faces of G (the result in [14] states that the addition of a vertex might be needed to
triangulate the outer face ofG, which however is not the case if the outer face is bounded
by a simple cycle, as in our case). Hence, there exists an index j, with 1 ≤ j ≤ nf ,
such that a y-monotone curve can be drawn connecting uj−1 and uj+1 inside f .

If j < nf , then for 1 ≤ i ≤ j−1, we place vi inside f close to ui, with y(vi) �=
y(ui), so that y-monotone curves can be drawn inside f connecting vi with ui−1, with
ui, and with ui+1 (we draw y-monotone curves corresponding to edges of G′

f ). Then,
we place vj inside f close to uj+1, with y(vj) �= y(uj+1), so that y-monotone curves
can be drawn inside f connecting vj with uj−1, with uj , with uj+1, and with uj+2

(we in fact draw y-monotone curves corresponding to edges of G′
f ). This is possible,

since a y-monotone curve can be drawn inside f connecting vj and uj , by construction,
and since a y-monotone curve can be drawn inside f connecting uj−1 and uj+1, by
assumption, hence a y-monotone curve can be drawn inside f connecting vj and uj−1.
Then, for j+1 ≤ i ≤ nf−1, we place vi inside f close to ui+1, with y(vi) �= y(ui+1),
so that y-monotone curves can be drawn inside f connecting vi with ui, with ui+1, and
with ui+2 (we in fact draw y-monotone curves corresponding to edges of G′

f ). For any
1 ≤ i ≤ nf−1, since y-monotone curves can be drawn inside f connecting vi with the
vertices of Cf to which vi−1 and vi+1 are close, y-monotone curves can be drawn inside
f representing the edges of C′

f (we in fact draw such curves). If j = nf , the drawing is
constructed analogously by placing vi inside f close to ui, for any 1 ≤ j ≤ nf−1.

The number of vertices of the mixed plane triangulation G′ resulting from the aug-
mentation is O(n2). Namely, the number of vertices inserted inside a face f of G∗ with
nf vertices is (nf − 1) + (nf − 2) + · · · + 3, hence the number of vertices of G′ is∑

f (nf (nf − 1)/2− 3) = O(n2), given that
∑

f nf ∈ O(n) (where the sums are over
all the faces of G∗). Finally, the augmentation of G∗ to G′ can be easily performed in a
time that is linear in the size of G′, hence quadratic in the size of the input graph. �

Corollary 1. The problem of testing the upward planarity of mixed plane graphs is
polynomial-time equivalent to the problem of testing the upward planarity of mixed
plane triangulations.
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5 Upward Planarity Testing of Mixed Plane Triangulations

In this section we show how to test in linear time the upward planarity of two classes of
mixed plane triangulations.

A plane 3-tree is a plane triangulation that can be constructed as follows. Denote by
Habc a plane 3-tree whose outer face is delimited by a cycle (a, b, c), with vertices a, b,
and c in this clockwise order along the cycle. A cycle (a, b, c) is the only plane 3-tree
Habc with three vertices. Any plane 3-tree Habc with n > 3 vertices can be constructed
from three plane 3-trees Habd, Hbcd, and Hcad by identifying the vertices incident to
their outer faces with the same label. See Fig. 2(a).

Theorem 5. The upward planarity of an n-vertex mixed plane 3-tree can be tested in
O(n) time.

Consider an n-vertex mixed plane 3-tree Huvw. We define a function UP(xy,Habc)
as follows. For each graph Habc in the construction of Huvw and for any distinct x, y ∈
{a, b, c} we have that UP(xy,Habc) is true if and only if there exists an upward planar
orientation of Habc in which cycle (a, b, c) has x has a source and y as a sink.

Observe that Huvw is upward planar if and only if UP(xy,Huvw) is true for some
x, y ∈ {u, v, w} with x �= y. The necessity comes from the fact that, in any upward
planar orientation of Huvw, the cycle delimiting the outer face of Huvw has exactly one
source x and one sink y, by Theorem 2. The sufficiency is trivial.

We show how to compute the value of UP(xy,Habc), for each graph Habc in the
construction of Huvw.

If |Habc| = 3, then let x, y, z ∈ {a, b, c} with x �= y, x �= z, and y �= z. Then,
UP(xy,Habc) is true if and only if edges (x, y), (x, z), and (z, y) are not prescribed to
be outgoing at y, outgoing at z, and outgoing at y, respectively. Hence, if |Habc| = 3
the value of UP(xy,Habc) can be computed in O(1) time.

Second, if |Habc| > 3, denote by Habd, Hbcd, and Hcad the three graphs that com-
pose H . We have the following:

Lemma 5. For any distinct x, y, z ∈ {a, b, c}, UP(xy,Habc) is true if and only if:
(1) UP(xy,Hxyd), UP(xd,Hzxd), and UP(zy,Hyzd) are all true; or
(2) UP(xy,Hxyd), UP(xz,Hzxd), and UP(dy,Hyzd) are all true.

Proof Sketch: (=⇒) Assume that Habc has an upward planar orientation Habc with x
and y as a source and sink in {a, b, c}, respectively, (let z ∈ {a, b, c} with z �= x, y).
Edge (z, d) might be outgoing or incoming at z, as in Figs. 2(b) and 2(c), respectively.
In the first case, UP(xy,Hxyd), UP(zy,Hyzd), and UP(xd,Hzxd) are all true, while in
the second case UP(xy,Hxyd), UP(dy,Hyzd), and UP(xz,Hzxd) are all true.

(⇐=) Consider the case in which UP(xy,Hxyd), UP(xd,Hzxd), and UP(zy,Hyzd)
are all true, the other case is analogous. Then, there exist upward planar orientations
Hxyd, Hzxd, and Hyzd of Hxyd, Hzxd, and Hyzd with x and y, with x and d, and with
z and y as a source and sink, respectively. OrientationsHxyd, Hzxd, andHyzd together
yield an orientation UP(xy,Hxyz) of Hxyz, which is upward planar by Theorem 2. �

For each graph Habc in the construction of Huvw and for any distinct x, y ∈ {a, b, c},
the conditions in Lemma 5 can be computed in O(1) time by dynamic programming.
Thus, the running time of the algorithm is O(n). This concludes the proof of Theorem 5.
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Fig. 2. (a) Construction of a plane 3-tree Habc with n > 3 vertices. (b)-(c) Distinct orientations
of edge (z, d) in two upward planar orientations of Habc.

We now deal with mixed plane triangulations with no cycle of undirected edges.

Theorem 6. The upward planarity of an n-vertex mixed plane triangulation in which
the undirected edges induce a forest can be tested in O(n) time.

Proof: Let G be an n-vertex mixed plane triangulation. Let F be the set of undirected
edges of G. We assume that F contains no external edge of G. Indeed, F contains at
most two external edges: We can guess the orientation of all the external edges in F ,
and for each of the four possibilities, independently, test the upward planarity for the
mixed graph G in which only the internal edges of F are undirected.

We prove the statement by induction on the size of F .
If |F | = 0, then G is a directed plane triangulation and its upward planarity can be

tested in linear time by checking whether G satisfies the conditions in Theorem 2.
If |F | > 0, consider a leaf v in the forest whose edge set is F . Denote by (v, w) the

only undirected edge of G incident to v. By the assumptions, (v, w) is an internal edge
of G. Let (v, w, x1) and (v, w, x2) be the internal faces of G incident to edge (v, w).

Suppose that both edges (x1, v) and (x2, v) are incoming at v. If v has an outgoing
incident edge, then by the bimodality condition in Theorem 2, edge (v, w) is incoming
at v in every upward planar orientation of G. Suppose that v has no outgoing incident
edge. If v is the sink of G (recall that the edges incident to the outer face of G are
directed), then edge (v, w) is incoming at v in every upward planar orientation of G, by
the single sink condition in Theorem 2. Otherwise, edge (v, w) is outgoing at v in every
upward planar orientation of G, again by the single sink condition in Theorem 2.

Analogously, if both (x1, v) and (x2, v) are outgoing at v, the orientation of edge
(v, w) can be decided without loss of generality.

Assume that (x1, v) and (x2, v) are incoming and outgoing at v, respectively, the
case in which they are outgoing and incoming at v is analogous. We have two cases.

Case 1: (x1, x2) is an edge of G. By the acyclicity condition in Theorem 2, edge
(x1, x2) is outgoing at x1 in every upward planar orientation of G.

If deg(v) = 3, then remove v and its incident edges from G, obtaining a mixed plane
triangulation G′ with one fewer undirected edge than G. Inductively test whether G′

admits an upward planar orientation. If not, then G does not admit any upward planar
orientation, either. If G′ admits an upward planar orientation G′, then construct an
upward drawing Γ ′ of G′; insert v in Γ ′ inside cycle (w, x1, x2), so that y(v) > y(x1),
y(v) < y(x2), and y(v) �= y(w). Draw y-monotone curves connecting v with each of
w, x1, and x2. The resulting drawing Γ of G is an upward planar orientation G of G,
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provided that it coincides with G′ when restricted to G′, the edges (x1, v) and (x2, v)
are drawn as y-monotone curves according to their orientations, and the edge (v, w) is
drawn as a y-monotone curve.

If deg(v) > 3, then the cycle (w, x1, x2) does not delimit a face of G, and it con-
tains non-empty sets V ′ and V ′′ of vertices in its interior and its exterior, respectively.
Then, two upward planarity tests can be performed, namely one for the subgraph G′

of G induced by V ′ ∪ {w, x1, x2}, and one for the subgraph G′′ of G induced by
V ′′ ∪ {w, x1, x2}. If one of the tests fails, then G admits no upward planar orientation.
Otherwise, upward planar orientations G′ of G′ and G′′ of G′′ together form an up-
ward planar orientation G of G, provided that each edge of (w, x1, x2) has the same
orientation in G′ and in G′′.

Case 2: (x1, x2) is not an edge of G. Remove (v, w) from G and insert a directed
edge (x1, x2) outgoing at x1 inside face (x1, v, x2, w). This results in a graph G′ with
one fewer undirected edge than G. We show that G is upward planar iff G′ is.

Suppose that G admits an upward planar orientation G. Let Γ be an upward planar
drawing of G. Remove edge (v, w) from G in Γ . Draw edge (x1, x2) inside cycle
Cf = (x1, v, x2, w), thus ensuring the planarity of the resulting drawing Γ ′ of G′,
following closely the drawing of path (x1, v, x2), thus ensuring the upwardness of Γ ′.

Suppose that G′ admits an upward planar orientationG′. Let Γ ′ be an upward planar
drawing of G′. Remove (x1, x2) from Γ ′. Since G′ is acyclic, Cf has three possible
orientations in G′. In Orientation 1, w is its source and x2 its sink; in Orientation 2, x1

is its source and w its sink; finally, in Orientation 3, x1 is its source and x2 its sink. If Cf

is oriented in G′ as in Orientation 1 (as in Orientation 2), then draw edge (v, w) inside
Cf in Γ ′, thus ensuring the planarity of the resulting drawing Γ of G, following closely
the drawing of path (w, x1, v) (resp., of path (v, x2, w)), thus ensuring the upwardness
of Γ . If Cf is oriented in G′ as in Orientation 3, slightly perturb the position of the
vertices in Γ ′ so that y(v) �= y(w). Draw edge (v, w) in Γ ′ as follows. Suppose that
y(v) < y(w), the other case being analogous. Draw a line segment inside Cf starting
at v and slightly increasing in the y-direction, until reaching path (x1, w, x2). Then,
follow such a path to reach w. This results in an upward drawing of edge (v, w) inside
Cf , hence in an upward planar drawing of G.

Finally, the running time of the described algorithm is clearly O(n). �

6 Conclusions

We considered the problem of testing the upward planarity of mixed plane graphs. We
proved that the upward planarity testing problem is O(n3)-time solvable for mixed
outerplane graphs. It would be interesting to investigate whether our techniques can be
strengthened to deal with larger classes of mixed plane graphs, e.g. series-parallel plane
graphs. Also, since testing upward planarity is a polynomial-time solvable problem
for directed outerplanar graphs [15], it might be polynomial-time solvable for mixed
outerplanar graphs without a prescribed plane embedding as well.

We proved that the upward planarity testing problem for mixed plane graphs is
polynomial-time equivalent to the upward planarity testing problem for mixed plane
triangulations (and showed two classes of mixed plane triangulations for which the
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problem can be solved efficiently). This, together with the characterization of the up-
ward planarity of directed plane triangulations in terms of acyclicity, bimodality, and
uniqueness of the sources and sinks (see [2] and Theorem 2), might indicate that a
polynomial-time algorithm for testing the upward planarity of mixed plane triangu-
lations should be pursued. On the other hand, Patrignani [16] proved that testing the
existence of an acyclic and bimodal orientation for a mixed plane graph is NP-hard.

Acknowledgments. Thanks to Hooman Reisi Dehkordi, Peter Eades, Graham Farr,
Seok-Hee Hong, and Brendan McKay for useful discussions on the problems consid-
ered in this paper.
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