ON MULTIPLICATIVE SIDON SETS

David Wakeham
Department of Mathematics and Statistics, The University of Melbourne, Melbourne, Australia
d.wakeham@student.unimelb.edu.au
David R. Wood ${ }^{1}$
School of Mathematical Sciences, Monash University, Melbourne, Australia
david.wood@monash.edu

Received: 9/20/12, Accepted: 4/21/13, Published: 5/10/13

Abstract

Fix integers $b>a \geq 1$ with $g:=\operatorname{gcd}(a, b)$. A set $S \subseteq \mathbb{N}$ is $\{a, b\}$-multiplicative if $a x \neq b y$ for all $x, y \in S$. For all n, we determine an $\{a, b\}$-multiplicative set with maximum cardinality in $[n]$, and conclude that the maximum density of an $\{a, b\}$-multiplicative set is $\frac{b}{b+g}$. For $A, B \subseteq \mathbb{N}$, a set $S \subseteq \mathbb{N}$ is $\{A, B\}$-multiplicative if for all $a \in A$ and $b \in B$ and $x, y \in S$, the only solutions to $a x=b y$ have $a=b$ and $x=y$. For $1<a<b<c$ and a, b, c coprime, we give a $\mathcal{O}(1)$ time algorithm to approximate the maximum density of an $\{\{a\},\{b, c\}\}$-multiplicative set to arbitrary given precision.

1. Introduction

Erdős [3], Erdős [4], Erdős [5] defined a set $S \subseteq \mathbb{N}$ to be multiplicative Sidon ${ }^{2}$ if $a b=c d$ implies $\{a, b\}=\{c, d\}$ for all $a, b, c, d \in S$; see [9, 10, 11]. In a similar direction, Wang [14] defined a set $S \subseteq \mathbb{N}$ to be double-free if $x \neq 2 y$ for all $x, y \in S$, and proved that the maximum density of a double-free set is $\frac{2}{3}$; see [1] for related results. Here $\mathbb{N}:=\{1,2, \ldots\}, \mathbb{N}_{0}=\mathbb{N} \cup\{0\},[n]:=\{1,2, \ldots, n\}$, and the density of $S \subseteq \mathbb{N}$ is

$$
\lim _{n \rightarrow \infty} \frac{|S \cap[n]|}{n}
$$

Motivated by some questions in graph colouring, Pór and Wood [8] generalised the notion of double-free sets as follows. For $k \in \mathbb{N}$, a set $S \subseteq \mathbb{N}$ is k-multiplicative

[^0](Sidon) if $a x=b y$ implies $a=b$ and $x=y$ for all $a, b \in[k]$ and $x, y \in S$. Pór and Wood [8] proved that the maximum density of a k-multiplicative set is $\Theta\left(\frac{1}{\log k}\right)$.

Here we study the following alternative generalization of double-free sets. For distinct $a, b \in \mathbb{N}$, a set $S \subseteq \mathbb{N}$ is $\{a, b\}$-multiplicative if $a x \neq b y$ for all $x, y \in S$. Our first result is to determine the maximum density of an $\{a, b\}$-multiplicative set. Assume that $a<b$ throughout.

Say $x \in \mathbb{N}$ is an i-th subpower of b if $x=b^{i} y$ for some $y \not \equiv 0(\bmod b)$. If x is an i-th subpower of b for some even/odd i then x is an even/odd subpower of b. The following table gives the even subpowers of $b \in\{2,3,4\}$ and the corresponding entry in The On-Line Encyclopedia of Integer Sequences.

| $b=2$ | $1,3,4,5,7,9,11,12,13,15,16,17,19,20,21,23, \ldots$ | $[\mathrm{~A} 003159]$ |
| :--- | :--- | :--- | :--- |
| $b=3$ | $1,2,4,5,7,8,9,10,11,13,14,16,17,18,19,20,22, \ldots$ | $[\mathrm{~A} 007417]$ |
| $b=4$ | $1,2,3,5,6,7,9,10,11,13,14,15,16,17,18,19,21, \ldots$ | $[\mathrm{~A} 171948]$ |

We prove the following result:
Theorem 1. Fix integers $b>a \geqslant 1$. Let $g:=\operatorname{gcd}(a, b)$. Then for every integer $n \in \mathbb{N}$, the even subpowers of $\frac{b}{g}$ in $[n]$ are an $\{a, b\}$-multiplicative set in $[n]$ with maximum cardinality. And the even subpowers of $\frac{b}{g}$ are an $\{a, b\}$-multiplicative set with density $\frac{b}{b+g}$, which is maximum.

Note that if $g=a$ then $b \geqslant 2 g$ and $b+g \leqslant \frac{3}{2} b$, and if $g<a$ then $a \geqslant 2 g$ and $b+g \leqslant b+a<\frac{3}{2} b$. In both cases the density bound $\frac{b}{b+g}$ in Theorem 1 is at least $\frac{2}{3}$, which is the bound obtained by Wang [14] for the $a=1$ and $b=2$ case.

We propose a further generalization of double-free sets. Let $A, B \subseteq \mathbb{N}$. Say $S \subseteq \mathbb{N}$ is $\{A, B\}$-multiplicative if $a x=b y$ implies $a=b$ and $x=y$ for all $a \in A$ and $b \in B$, and $x, y \in S$. One case is easily dealt with. If $B:=\{b\}$ and b is coprime to each element of A, and there is some element $a \in A$ such that $a<b$, then, by the reasoning above, the even subpowers of b form an $\{A, B\}$-multiplicative set of (maximum) density $\frac{b}{b+1}$.

The simplest nontrivial case (not covered by Theorem 1) is $\{A, B\}$ multiplicativity for $A=\{a\}, B=\{b, c\}, 1<a<b<c$, with a, b, c pairwise coprime. We have the following theorem:

Theorem 2. Consider $a, b, c \in \mathbb{N}$ pairwise coprime, with $1<a<b<c$. For all fixed $\epsilon>0$, there is a $\mathcal{O}(1)$ time algorithm that computes the maximum density of an $\{\{a\},\{b, c\}\}$-multiplicative set to within ϵ.

2. Proof of Theorem 1

First suppose that $\operatorname{gcd}(a, b)=1$. Let T be the set of even subpowers of b. We now prove that T is an $\{a, b\}$-multiplicative set with maximum density. In fact, for all $[n]$, we prove that $T_{n}:=T \cap[n]$ has maximum cardinality out of all $\{a, b\}$-multiplicative sets contained in $[n]$.

The key to our proof is to model the problem using a directed graph. Let G be the directed graph with $V(G):=[n]$ where $(x, y) \in E(G)$ whenever $b x=a y$ (implying $x<y)$. Thus $S \subseteq[n]$ is $\{a, b\}$-multiplicative if and only if S is an independent set in G. If (x, y, z) is a directed path in G, then $x=\frac{a}{b} y$ and $z=\frac{b}{a} y$. Thus each vertex y has indegree and outdegree at most 1 . Since $(x, y) \in E(G)$ implies $x<y$, G contains no directed cycles. Thus G is a collection of disjoint directed paths. Hence a maximum independent set in G is obtained by taking all the vertices at even distance from the source vertices ${ }^{3}$, where a vertex y is a source (indegree 0) if and only if $\frac{a}{b} y$ is not an integer; that is, if $y \not \equiv 0(\bmod b)$.

We now prove that the vertices at distance d from a source vertex are precisely the d-th subpowers of b. We proceed by induction on $d \geqslant 0$. Each vertex y of G has an incoming edge if and only if $\frac{a}{b} y \in \mathbb{N}$, which occurs if and only if $y \equiv 0(\bmod b)$ since $\operatorname{gcd}(a, b)=1$. Thus the source vertices of G are precisely the 0 -th subpowers of b. This proves the $d=0$ case of the induction hypothesis. Now consider a vertex y at distance d from a source vertex. Thus $y=\frac{b}{a} x$ for some vertex x at distance $d-1$ from a source vertex. By induction, x is a $(d-1)$-th subpower of b. That is, $x=b^{d-1} z$ for some $z \not \equiv 0(\bmod b)$. Thus $y=b^{d} \frac{z}{a}$, which, since $\operatorname{gcd}(a, b)=1$, implies that $\frac{z}{a}$ is an integer. Hence $\frac{z}{a} \not \equiv 0(\bmod b)$ and y is a d-th subpower of b, as claimed.

This proves that the even subpowers of b form a maximum independent set in G. That is, T_{n} is an $\{a, b\}$-multiplicative set of maximum cardinality in $[n]$. To illustrate this proof, the following table shows two examples of the graph G with $b=3$. Observe that the i-th row consists of the i-th subpowers of 3 regardless of a.

$a=1$ and $b=3$									$a=2$ and $b=3$										
1	2	4	5	7	8	10	11	\cdots	12	4	5	7	8	10	11	13	14	16	.
\downarrow		\downarrow	\downarrow			\downarrow	\downarrow			\downarrow	\downarrow								
3	6	12	15	21	24	30	33	\ldots	3	6			12	15			21	24	\ldots
\downarrow			\downarrow			\downarrow					\downarrow								
9	18	36	45	63	72	90	99	\ldots		9			18					36	
\downarrow						\downarrow					\downarrow								
27	48	108	135	189	216	270	297	\ldots					27					48	\ldots
:	\vdots	:																	

[^1]We now bound $\left|T_{n}\right|$ from above. Observe that

$$
T_{n}=\left\{b^{2 i} y: 0 \leqslant i \leqslant \frac{1}{2} \log _{b} n, 1 \leqslant y \leqslant \frac{n}{b^{2 i}}, y \not \equiv 0(\bmod b)\right\}
$$

Thus

$$
\begin{aligned}
\left|T_{n}\right| & \leqslant \sum_{i=0}^{\left\lfloor\left(\log _{b} n\right) / 2\right\rfloor}\left[\frac{b-1}{b} \frac{n}{b^{2 i}}\right] \\
& \leqslant 1+\frac{1}{2}\left(\log _{b} n\right)+\frac{(b-1) n}{b} \sum_{i \geqslant 0} \frac{1}{b^{2 i}} \\
& \leqslant 1+\frac{1}{2}\left(\log _{b} n\right)+\frac{(b-1) n}{b} \frac{b^{2}}{b^{2}-1} \\
& =1+\frac{1}{2}\left(\log _{b} n\right)+\frac{b}{b+1} n .
\end{aligned}
$$

We now bound $\left|T_{n}\right|$ from below. Observe that

$$
T_{n}=[n] \backslash\left\{b^{2 i+1} y: 0 \leqslant i \leqslant \frac{1}{2}\left(\left(\log _{b} n\right)-1\right), 1 \leqslant y \leqslant \frac{n}{b^{2 i+1}}, y \not \equiv 0 \quad(\bmod b)\right\}
$$

Thus

$$
\begin{aligned}
\left|T_{n}\right| & \geqslant n-\sum_{i=0}^{\left\lfloor\left(\left(\log _{b} n\right)-1\right) / 2\right\rfloor}\left[\frac{b-1}{b} \frac{n}{b^{2 i+1}}\right] \\
& \geqslant n-\frac{1}{2}\left(\left(\log _{b} n\right)+1\right)-\frac{(b-1) n}{b^{2}} \sum_{i \geqslant 0} \frac{1}{b^{2 i}} \\
& \geqslant n-\frac{1}{2}\left(\left(\log _{b} n\right)+1\right)-\frac{(b-1) n}{b^{2}} \frac{b^{2}}{b^{2}-1} \\
& =n-\frac{1}{2}\left(\left(\log _{b} n\right)+1\right)-\frac{n}{b+1} \\
& =\frac{b}{b+1} n-\frac{1}{2}\left(\left(\log _{b} n\right)+1\right) .
\end{aligned}
$$

These upper and lower bounds on $\left|T_{n}\right|$ imply that

$$
\left|T_{n}\right|=\frac{b}{b+1} n+\Theta\left(\log _{b} n\right)
$$

Hence the density of T is $\frac{b}{b+1}$, and because T_{n} is optimal for each n, no $\{a, b\}$ multiplicative set has density greater than $\frac{b}{b+1}$.

We now drop the assumption that $\operatorname{gcd}(a, b)=1$. Let $g:=\operatorname{gcd}(a, b)$. Since $a x=b y$ if and only if $\frac{a}{g} x=\frac{b}{g} y$, a set S is $\{a, b\}$-multiplicative if and only if S is $\left\{\frac{a}{g}, \frac{b}{g}\right\}$-multiplicative. Since $\frac{b / g}{b / g+1}=\frac{b}{b+g}$, the theorem is proved.

3. Proof of Theorem 2

Fix $A=\{a\}$ and $B=\{b, c\}$, where $1<a<b<c$, and a, b, c are pairwise coprime. For convenience, we use the infinite graph G with vertex set \mathbb{N} and edge set

$$
E(G)=\{\{x, y\}: b x=a y \text { or } c x=a y, \text { and } x, y \in \mathbb{N}\}
$$

Let G_{n} denote the subgraph of G induced by the vertex set $[n]$. Let δ be the maximum density of an $\{\{a\},\{b, c\}\}$-multiplicative set. Then

$$
\delta=\lim _{n \rightarrow \infty} \frac{\alpha\left(G_{n}\right)}{n}
$$

where $\alpha\left(G_{n}\right)$ is the size of a maximum independent set in G_{n}.
The infinite graph G has components $C_{p, q}$ with vertex set

$$
V\left(C_{p, q}\right)=\left\{a^{p-x-y} b^{x} c^{y} q: x, y \in \mathbb{N}_{0}\right\}
$$

for all $p \in \mathbb{N}_{0}, q \in \mathbb{N}$, and q not divisible by a, b, or c. Note that each $C_{p, q}$ is finite. Define p as the height of the component, and subsets of constant $x+y$ as rows. Note that the maximum and minimum vertices in $C_{p, q}$ are $c^{p} q$ and $a^{p} q$ respectively. The first few components of G for $a=2, b=3$, and $c=5$ are shown below:
(1)

(5) 7

For a, b, c as above and fixed $\epsilon>0$, let d be a non-negative integer $d \in \mathbb{N}_{0}$, to be specified later. Basically, d is a cutoff height which allows us to partition the components of G_{n} into three types, for any given $n \in \mathbb{N}$. The first are complete components $C_{p, q}$ where $n>c^{p} q$. The second are small incomplete components $S_{p, q}$ where $p \leqslant d$ and $a^{p} q \leqslant n<c^{p} q$. The third are large incomplete components $L_{p, q}$ with $p>d$ and $a^{p} q \leqslant n<c^{p} q$.

Let $\alpha_{T}\left(G_{n}\right)$ denote the size of a maximum independent set in the components of type T in G_{n}, for $T \in\{C, S, L\}$. We clearly have

$$
\alpha\left(G_{n}\right)=\alpha_{C}\left(G_{n}\right)+\alpha_{S}\left(G_{n}\right)+\alpha_{L}\left(G_{n}\right)
$$

Thus,

$$
\delta=\lim _{n \rightarrow \infty} \frac{\alpha_{C}\left(G_{n}\right)}{n}+\lim _{n \rightarrow \infty} \frac{\alpha_{S}\left(G_{n}\right)}{n}+\lim _{n \rightarrow \infty} \frac{\alpha_{L}\left(G_{n}\right)}{n}=\delta_{C}+\delta_{S}+\delta_{L}
$$

where

$$
\delta_{T}=\lim _{n \rightarrow \infty} \frac{\alpha_{T}\left(G_{n}\right)}{n}
$$

Below we show that these limits exist, and we determine δ_{C} and δ_{S} explicitly. Then we show that, for any $\epsilon>0$, we can choose d so that $\delta_{L}<\epsilon$. Hence, we can calculate δ to arbitrary precision.

3.1. Complete Components

We require the following lemma about independent sets in grid-like graphs by Cassaigne and Zimmerman [2].

Lemma 1. Define a graph H by $V(H):=\mathbb{N}_{0} \times \mathbb{N}_{0}$ and

$$
E(H):=\left\{\{\mathbf{v}, \mathbf{w}\}: \mathbf{v}, \mathbf{w} \in V(H),\left|v_{1}-w_{1}\right|+\left|v_{2}-w_{2}\right|=1\right\} .
$$

Suppose that F is a finite subgraph of H such that $(x, y) \in V(F)$ implies $(x-1, y) \in$ $V(F)$ unless $x=0$, and $(x, y-1) \in V(F)$ unless $y=0$. Then one of the sets

$$
\begin{aligned}
& O:=\{(x, y) \in V(F): x+y \text { is odd }\} \text { or } \\
& E:=\{(x, y) \in V(F): x+y \text { is even }\}
\end{aligned}
$$

is a maximum independent set in F.
Now, consider a complete component $C_{p, 1}$ of G_{n}. Note that every complete component $C_{p, q}$ of height q is isomorphic to $C_{p, 1}$, and can be obtained by multiplying each vertex by q. Thus, we call $C_{p, q}$ a q-copy of $C_{p, 1}$. In general, we use this terminology for isomorphic components of any type obtained by multiplying each vertex by q.

Observe that we can apply Lemma 1 to $C_{p, 1}$, since it is isomorphic to a subgraph of H with the required properties. Define a function $\varphi: V\left(C_{p, 1}\right) \rightarrow \mathbb{N}_{0} \times \mathbb{N}_{0}$ by

$$
\varphi\left(a^{p-x-y} b^{x} c^{y}\right)=(x, y)
$$

If $a^{p-x-y} b^{x} c^{y}$ is adjacent to $a^{p-x^{\prime}-y^{\prime}} b^{x^{\prime}} c^{y^{\prime}}$, then $\left|x-x^{\prime}\right|+\left|y-y^{\prime}\right|=1$ since they must differ by a factor of b / a or c / a. Thus, since φ is injective, it defines an isomorphism from $C_{p, 1}$ to a subgraph of H. Assume $a^{p-x-y} b^{x} c^{y} \in V\left(C_{p, 1}\right)$. Then $a^{p-x-y+1} b^{x-1} c^{y} \in V\left(C_{p, 1}\right)$ unless $x=0$, and similarly $a^{p-x-y+1} b^{x} c^{y-1} \in V\left(C_{p, 1}\right)$ unless $y=0$. Under φ, these are clearly equivalent to the conditions required for Lemma 1.

Hence, by Lemma 1 and the definition of φ, a maximum independent set in $C_{p, 1}$ is given by choosing all rows with $x+y$ even, or all rows with $x+y$ odd. In fact, it is clear that a maximum independent set is obtained by choosing the bottom row first, then alternating between remaining rows. Thus, if $p=2 i-1$, then $\alpha\left(C_{p, 1}\right)=i(i+1)$. If $p=2 i$, then $\alpha\left(C_{p, 1}\right)=(i+1)^{2}$. Since the largest vertex in such a component is c^{p}, we must have $p \leqslant \log _{c} n$ for the component $C_{p, 1}$ to be complete. Hence, the maximum height of a complete component is $\left\lfloor\log _{c} n\right\rfloor$.

Now we multiply by the number of components of height p that are complete. For a given p, we require $1 \leqslant q \leqslant n c^{-p}$. Since a, b, c are pairwise coprime, the density of numbers not divisible by a, b, or c is

$$
\frac{(a-1)(b-1)(c-1)}{a b c},
$$

the number of components of height p in G_{n} is

$$
\frac{(a-1)(b-1)(c-1) n}{c^{p} a b c}+o(n) .
$$

Let $M(n)=\frac{1}{2}\left\lfloor\log _{c} n\right\rfloor$. The total number of vertices in a maximum independent set in complete components is therefore

$$
\alpha_{C}\left(G_{n}\right)=\frac{(a-1)(b-1)(c-1) n}{a b c} \sum_{i=0}^{M(n)}\left[\frac{i(i+1)}{c^{2 i-1}}+\frac{(i+1)^{2}}{c^{2 i}}\right]+o(n) .
$$

Thus, the density contribution is

$$
\begin{aligned}
\delta_{C}=\lim _{n \rightarrow \infty} \frac{\alpha_{C}\left(G_{n}\right)}{n} & =\lim _{n \rightarrow \infty} \frac{1}{n} \cdot \frac{(a-1)(b-1)(c-1) n}{a b c} \sum_{i=0}^{M(n)}\left[\frac{i(i+1)}{c^{2 i-1}}+\frac{(i+1)^{2}}{c^{2 i}}\right] \\
& =\frac{(a-1)(b-1)(c-1)}{a b c} \sum_{i=0}^{\infty}\left[\frac{i(i+1)}{c^{2 i-1}}+\frac{(i+1)^{2}}{c^{2 i}}\right] \\
& =\frac{(a-1)(b-1)(c-1)}{a b c} \cdot \frac{c^{4}}{(c-1)^{3}(c+1)} \\
& =\frac{(a-1)(b-1) c^{3}}{a b(c-1)^{2}(c+1)}
\end{aligned}
$$

3.2. Small Incomplete Components

Now we consider the small incomplete components. Let $C_{p, 1}[r]$ be the subgraph of $C_{p, 1}$ induced by $[r]$. Define

$$
f(p, r):=\alpha\left(C_{p, 1}[r]\right)
$$

for $r \in \mathbb{N}$. We can calculate all f for $p \leqslant d$ in $\mathcal{O}\left(c^{d}\right)$ time with a computer, again using Lemma 1. (In fact, these components have bounded size, so any exponential time maximum independent set algorithm runs in $O(1)$ time.) Note that $C_{p, q}[n]$ is a q-copy of $C_{p, 1}[\lfloor n / q\rfloor]$, and therefore $\alpha\left(C_{p, q}[n]\right)=f(p,\lfloor n / q\rfloor)$. So we can find the size of maximum independent sets in the small components using the f 's.

More precisely, given $p \leqslant d$ and n, for how many values of q is $C_{p, q}[n]$ a q-copy of $C_{p, 1}[r]$, where $r=\lfloor n / q\rfloor$? First note that

$$
\frac{n}{r+1}<q \leqslant \frac{n}{r} .
$$

Thus, there are

$$
\frac{(a-1)(b-1)(c-1) n}{a b c}\left(\frac{1}{r}-\frac{1}{r+1}\right)+o(n)=\frac{(a-1)(b-1)(c-1) n}{a b c r(r+1)}+o(n)
$$

q-copies of $C_{p, 1}[r]$. The only restriction on r is that $a^{p} \leqslant r \leqslant c^{p}-1$. Hence, the size of a maximum independent set in components of type S is

$$
\sum_{p=0}^{d} \sum_{r=a^{p}}^{c^{p}-1} \frac{(a-1)(b-1)(c-1) n}{a b c r(r+1)} f(p, r)+o(n)
$$

As $n \rightarrow \infty$, the density contribution of small components is therefore

$$
\begin{aligned}
\delta_{S} & =\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{p=0}^{d} \sum_{r=a^{p}}^{c^{p}-1} \frac{(a-1)(b-1)(c-1) n}{a b c r(r+1)} f(p, r) \\
& =\sum_{p=0}^{d} \sum_{r=a^{p}}^{c^{p}-1} \frac{(a-1)(b-1)(c-1)}{a b c r(r+1)} f(p, r) .
\end{aligned}
$$

Since a, b and c are constants and d will be chosen so that it is bounded by a function of a, b and c (see the next section for details), δ_{S} can be computed in $\mathcal{O}(1)$ time.

3.3. Large Incomplete Components

Finally, we show that we can choose d so that the density of a maximum independent set in components of type L is less than ϵ. For large components,

$$
p>d \text { and } a^{p} q \leqslant n<c^{p} q .
$$

The latter implies $c^{-p} n<q \leqslant a^{-p} n$. From the density of q, the number of large incomplete components $L_{p, q}$ for a given $p>d$ is

$$
\frac{(a-1)(b-1)(c-1) n}{a b c}\left(\frac{1}{a^{p}}-\frac{1}{c^{p}}\right)+o(n) .
$$

Since there are less than p^{2} vertices in a component of height p,

$$
\begin{aligned}
\alpha_{L}\left(G_{n}\right) & \leqslant \sum_{p=d}^{\infty} p^{2} \cdot \frac{(a-1)(b-1)(c-1) n}{a b c}\left(\frac{1}{a^{p}}-\frac{1}{c^{p}}\right) \\
& \leqslant \frac{(a-1)(b-1)(c-1) n}{a b c} \sum_{p=d}^{\infty} \frac{p^{2}}{a^{p}} \\
& =\frac{(a-1)(b-1)(c-1) n}{a b c} \cdot \frac{a^{1-d}\left((a-1)^{2} d^{2}+2(a-1) d+a+1\right)}{(a-1)^{3}}
\end{aligned}
$$

$$
\leqslant \frac{(b-1)(c-1) n}{b c} \cdot a^{-d / 2}
$$

where the last inequality holds for $d \geqslant 22$. Define $\beta:=(b-1)(c-1) / b c$. Hence,

$$
\delta_{L}=\lim _{n \rightarrow \infty} \frac{\alpha_{L}\left(G_{n}\right)}{n} \leqslant \lim _{n \rightarrow \infty} \frac{1}{n} \cdot \beta n \cdot a^{-d / 2}=\beta a^{-d / 2} .
$$

So, to obtain a precision of ϵ in the approximation $\delta \approx \delta_{C}+\delta_{S}$, we pick

$$
d=\max \left\{2 \log _{a}(\beta / \epsilon), 22\right\}
$$

which is a function of a, b, c, and ϵ. This completes the proof of Theorem 2 .
The following table gives approximate values of δ for small a, b, and c :

a	b	c	δ
2	3	5	0.7292
2	3	7	0.7407
2	5	7	0.8235
2	5	9	0.8187
2	7	9	0.8709
3	4	5	0.7093
3	4	7	0.7934
3	5	7	0.8239
3	5	8	0.8212
3	7	8	0.8727

These results were obtained by incrementing d and looking for convergence to 4 decimal places. We also approximated δ_{S} using a naive algorithm (based on Lemma 1) for large n. Numerical convergence occurred at values of d slightly lower than the bound given above.

References

[1] Jean-Paul Allouche, André Arnold, Jean Berstel, Srečko Brlek, William Jockusch, Simon Plouffe, and Bruce E. Sagan. A relative of the Thue-Morse sequence. Discrete Math., 139(1-3):455-461, 1995. doi:10.1016/0012-365X (93)00147-W.
[2] Julien Cassaigne and Paul Zimmerman. Numerical evaluation of the strongly triple-free set constant, 1996. http://iml.univ-mrs.fr/~cassaign/publis/cz.ps.gz.
[3] Paul Erdős. On sequences of integers no one of which divides the product of two others and some related problems. Izvestiya Naustno-Issl. Inst. Mat. i Meh. Tomsk, 2:74-82, 1938. http://www.renyi.hu/~p_erdos/1938-07.pdf.
[4] Paul Erdős. On some applications of graph theory to number theoretic problems. Publ. Ramanujan Inst. No., 1:131-136, 1968/1969. http://www.renyi.hu/~ ${ }^{\text {p }}$ erdos/1968-09.pdf.
[5] Paul Erdős. Some applications of graph theory to number theory. In The Many Facets of Graph Theory (Proc. Conf., Western Mich. Univ., Kalamazoo, Mich., 1968), pp. 77-82. Springer, Berlin, 1969. http://www.renyi.hu/ ${ }^{\text {p }}$ _erdos/1969-14.pdf.
[6] Paul Erdős and Pál Turán. On a problem of Sidon in additive number theory, and on some related problems. J. London Math. Soc., 16:212-215, 1941. doi:10.1112/j1ms/s1-16.4.212.
[7] Kevin O'Bryant. A complete annotated bibliography of work related to Sidon sequences. Electron. J. Combin., DS11, 2004. http://www.combinatorics.org/ojs/index.php/eljc/ article/view/ds11.
[8] Attila Pór and David R. Wood. Colourings of the Cartesian product of graphs and multiplicative Sidon sets. Combinatorica, 29(4):449-466, 2009. doi:10.1007/s00493-009-2257-0.
[9] Imre Z. Ruzsa. Erdős and the integers. J. Number Theory, 79(1):115-163, 1999. doi:10.1006/jnth.1999.2395.
[10] Imre Z. Ruzsa. Additive and multiplicative Sidon sets. Acta Math. Hungar., 112(4):345-354, 2006. doi:10.1007/s10474-006-0102-0.
[11] András SÁrközy. Unsolved problems in number theory. Period. Math. Hungar., 42(1-2):1735, 2001. doi:10.1023/A:1015236305093.
[12] Simon Sidon. Ein Satz űber trigonometrische Polynome und seine Anwendung in der Theorie der Fourier-Reihen. Math. Ann., 106:536-539, 1932. MR: 1512772.
[13] James Singer. A theorem in finite projective geometry and some applications to number theory. Trans. Amer. Math. Soc., 43(3):377-385, 1938. doi:10.2307/1990067.
[14] Edward T. H. Wang. On double-free sets of integers. Ars Combin., 28:97-100, 1989. MR: 1039135.

[^0]: ${ }^{1}$ Research supported by the Australian Research Council.
 ${ }^{2}$ Additive Sidon sets have been more widely studied; see the classical papers $[6,12,13]$ and the survey by O'Bryant [7].

[^1]: ${ }^{3}$ Note that this is not necessarily the only maximum independent set-for a path component with odd length, we may take the vertices at odd distance from the source of this path. This observation readily leads to a characterization of all maximum independent sets in G, and thus of all $\{a, b\}$-multiplicative sets in $[n]$ with maximum cardinality. Details omitted.

