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Attila Pór1 and David R. Wood1,2

1 Department of Applied Mathematics, Charles University, Prague, Czech Republic
por@kam.mff.cuni.cz

2 School of Computer Science, Carleton University, Ottawa, Canada
davidw@scs.carleton.ca

Abstract. The no-three-in-line problem, introduced by Dudeney in
1917, asks for the maximum number of points in the n × n grid with
no three points collinear. In 1951, Erdös proved that the answer is Θ(n).
We consider the analogous three-dimensional problem, and prove that
the maximum number of points in the n × n × n grid with no three
collinear is Θ(n2). This result is generalised by the notion of a 3D draw-
ing of a graph. Here each vertex is represented by a distinct gridpoint in
Z

3, such that the line-segment representing each edge does not intersect
any vertex, except for its own endpoints. Note that edges may cross.
A 3D drawing of a complete graph Kn is nothing more than a set of
n gridpoints with no three collinear. A slight generalisation of our first
result is that the minimum volume for a 3D drawing of Kn is Θ(n3/2).
This compares favourably to Θ(n3) when edges are not allowed to cross.
Generalising the construction for Kn, we prove that every k-colourable
graph on n vertices has a 3D drawing with O(n

√
k) volume. For the

k-partite Turán graph, we prove a lower bound of Ω((kn)3/4).

1 Introduction

In 1917, Dudeney [10] asked what is the maximum number of points in the
n × n grid with no three points collinear? This question, dubbed the no-three-
in-line problem, has since been widely studied [1, 2, 7, 14, 16–19, 21]. A break-
through came in 1951, when Erdős [14] proved that for any prime p, the set
{(x, x2 mod p) : 0 ≤ x ≤ p−1} contains no three collinear points. If follows that
the n× n grid contains n/2 points with no three collinear, and for all ε > 0 and
n > n(ε), there are (1 − ε)n points with no three collinear. The result has been
improved to (3/2 − ε)n by Hall et al. [18] using a different construction. These
bounds are optimal if we ignore constant factors, since each gridline contains at
most two points, and thus the number of points is at most 2n. Guy and Kelly
[17] conjectured that the maximum number of points in the n × n grid with no
three collinear tends to (2π2/3)

1
3 n as n → ∞.

In this paper we study the no-three-in-line-in-3D problem: what is the max-
imum number of points in the n×n×n grid with no three points collinear? The
following is our primary result.
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Theorem 1. The maximum number of points in the n×n×n grid with no three
collinear is Θ(n2).

Cohen et al. [6] generalised the no-three-in-line problem in a similar direction.
They proved that for any prime p, the set {(x, x2 mod p, x3 mod p) : 0 ≤ x ≤
p−1} contains no four coplanar points. It follows that the n×n×n grid contains
at least n/2 and (1 − ε)n points with no four coplanar. Each gridplane contains
at most three points; thus we have an upper bound of 3n.

Cohen et al. [6] were motivated by three-dimensional graph visualisation. Let
G be an (undirected, finite, simple) graph with vertex set V (G) and edge set
E(G). A 3D drawing of G represents each vertex by a distinct point in Z

3 (a
gridpoint), such that with each edge represented by the line-segment between its
endpoints, the only vertices that an edge intersects are its own endpoints. That
is, an edge does not ‘pass through’ a vertex. The bounding box of a 3D drawing
is the minimum axis-aligned box containing the drawing. If the bounding box
has side lengths X − 1, Y − 1 and Z − 1, then we speak of an X × Y × Z
drawing with volume X · Y · Z. That is, the volume of a 3D drawing is the
number of gridpoints in the bounding box. This definition is formulated so that
2D drawings have positive volume.

Distinct edges in a 3D drawing cross if they intersect at a point other than
a common endpoint. Based on the observation that the endpoints of a pair of
crossing edges are coplanar, Cohen et al. [6] proved that the minimum volume
for a crossing-free 3D drawing of Kn is Θ(n3). The lower bound here is based on
the observation that no axis-perpendicular gridplane can contain five vertices, as
otherwise there is a planar K5. Note that it is possible for four vertices to be in
a single gridplane, provided that they are not in convex position. Subsequent to
the work of Cohen et al. [6], crossing-free 3D drawings have been widely studied
[4–6, 8, 9, 11, 12, 15, 20, 23]. This paper initiates the study of volume bounds for
3D drawings of graphs, in which crossings are allowed. The following simple
observation is immediate.

Observation 1. A set V of n gridpoints in Z
3 determines a 3D drawing of Kn

if and only if no three points in V are collinear. ��
Thus, the following result is a slight strengthening of Theorem 1.

Theorem 2. The minimum volume for a 3D drawing of Kn is Θ(n3/2).

A k-colouring of a graph G is an assignment of one of k colours to each vertex,
so that adjacent vertices receive distinct colours. We say G is k-colourable. The
chromatic number χ(G) is the minimum k such that G is k-colourable. The
Turán graph T (n, k) is the n-vertex complete k-partite graph with �n/k� or
�n/k	 vertices in each colour class. Theorem 2 generalises as follows.

Theorem 3. Every k-colourable graph on n vertices has a 3D drawing with
O(n

√
k) volume. Moreover, every 3D drawing of the Turán graph T (n, k) has

Ω((kn)3/4) volume.

Note that 2D drawings of k-colourable graphs were studied by Wood [25],
who proved an O(kn) area bound, which is best possible for the Turán graph.
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The remainder of this paper is organised as follows. In Section 2 we prove the
lower bounds in Theorems 1 and 2, which imply the upper bound in Theorem 1.
In Section 3 we prove the upper bounds in Theorems 1 and 2, which imply the
lower bound in Theorem 1.

2 Lower Bounds

An axis-parallel line through a gridpoint is called a gridline. A gridline that is
parallel to the X-axis (respectively, Y-axis and Z-axis) is called an X-line (Y-
line and Z-line). An axis-perpendicular plane through a gridpoint is called a
gridplane.

Lemma 1. There are at most 2n2 points in the n × n × n grid with no three
collinear.

Proof. Every X-line contains at most two points, and there are n2 X-lines. ��
The idea in Lemma 1 can be generalised to give a universal lower bound on

the volume of a 3D drawing of a graph.

Lemma 2. Every 3D drawing of a graph G has at least χ(G)3/2/
√

8 volume.

Proof. Say G has an A× B × C drawing. The vertices on a single Z-line induce
a set of paths, as otherwise an edge passes through a vertex. The set of paths is
2-colourable. Using a distinct pair of colours for each Z-line, we obtain a 2AB-
colouring of G. Thus χ(G) ≤ 2AB. Similarly, χ(G) ≤ 2AC and χ(G) ≤ 2BC.
Thus 8(ABC)2 ≥ χ(G)3, and the volume ABC ≥ √

χ(G)3/8. ��
The bound in Lemma 2 is only of interest if χ(G) ≥ 2n2/3, since n is a trivial

lower bound on the volume of a 3D drawing.
The following lemma proves the lower bound in Theorem 3.

Lemma 3. For all n ≡ 0 (mod k), every 3D drawing of T (n, k) has at least
(kn)3/4/

√
8 volume.

Proof. Consider an A×B×C drawing of T (n, k). Let ai (respectively, bi and ci)
be the number of X-lines (Y-lines and Z-lines) that contain a vertex in the i-th
colour class. Considering the arithmetic and harmonic means of {ai : 1 ≤ i ≤ k}
we have,

k2 ≤
(

∑

i

ai

) (
∑

i

1
ai

)

.

The X- and Y-lines that contain a vertex coloured i intersect in at most aibi

gridpoints. There are n/k vertices coloured i. Thus aibi ≥ n/k, implying 1/ai ≤
kbi/n.

Hence,

k2 ≤
(

∑

i

ai

) (
∑

i

kbi

n

)

.
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That is,

kn ≤
(

∑

i

ai

)(
∑

i

bi

)

.

There are at most two distinct colours represented in each gridline, as otherwise
an edge passes through a vertex. There are BC distinct X-lines. Thus

∑
i ai ≤

2BC. Similarly,
∑

i bi ≤ 2AC. Thus kn ≤ (2BC) (2AC). That is, ABC2 ≥ kn/4.
By symmetry, ACB2 ≥ kn/4 and BCA2 ≥ kn/4. Thus (ABC)4 ≥ (kn/4)3,
implying that the volume ABC ≥ (kn/4)3/4. ��

Since χ(Kn) = n and Kn = T (n, n), Lemmata 2 and 3 both prove the lower
bound in Theorem 2.

Corollary 1. Every 3D drawing of Kn has volume at least n3/2/
√

8. ��

3 Upper Bounds

The next lemma is the main component in the proof of our upper bounds. For
all primes p, define

Vp =
{(

x, y, (x2 + y2) mod p
)

: 0 ≤ x, y ≤ p − 1
}

.

Lemma 4. For all primes p, the set Vp contains three collinear points if and
only if p ≡ 1 (mod 4).

Proof. The result is trivial for p = 2. Now assume that p is odd. Suppose Vp con-
tains three collinear points a, b, and c. Then there exists a vector v = (vx, vy, vz)
such that b = kv + a and c = �v + a, for distinct nonzero integers k and
�. (Precisely, vx = gcd(bx − ax, cx − ax), vy = gcd(by − ay, cy − ay), and
vz = gcd(bz − az , cz − az).) Since b ∈ Vp,

(kvx + ax)2 + (kvy + ay)2 ≡ kvz + az (mod p) .

That is,

k2(v2
x + v2

y) + a2
x + a2

y ≡ kvz + az − 2k(vxax + vyay) (mod p) .

Since a ∈ Vp, we have a2
x + a2

y ≡ az (mod p). Since p is a prime and k �= 0,

k(v2
x + v2

y) ≡ vz − 2(vxax + vyay) (mod p) .

By the same argument applied to c,

�(v2
x + v2

y) ≡ vz − 2(vxax + vyay) (mod p) .

Thus,
k(v2

x + v2
y) ≡ �(v2

x + v2
y) (mod p) .
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That is,
(k − �)(v2

x + v2
y) ≡ 0 (mod p) .

Since k �= � and p is a prime,

v2
x + v2

y ≡ 0 (mod p) .

Now vx and vy are both not zero, as otherwise a, b and c would be in a single
Z-line. Without loss of generality, vx �= 0. Thus vx has a multiplicative inverse
modulo p, and

(vyv−1
x )2 ≡ −1 (mod p) .

That is, −1 is a quadratic residue. A classical result found in any number theory
textbook states that −1 is a quadratic residue modulo an odd prime p if and
only if p ≡ 1 (mod 4).

Now we prove the converse. Suppose that p ≡ 1 (mod 4). By the above-
mentioned result there is an integer t such that 1 + t2 ≡ 0 (mod p). We can
assume that 0 ≤ t ≤ (p − 1)/2 as otherwise p − t would do. Thus (1, t, 0) ∈ Vp

and (2, 2t, 0) ∈ Vp, and the three points {(0, 0, 0), (1, t, 0), (2, 2t, 0)} are collinear.
��

To apply Lemma 4 we need primes p �≡ 1 (mod 4).

Lemma 5 ([3, 13]).

(a) For all t ∈ N, there is a prime p �≡ 1 (mod 4) with t ≤ p ≤ 2t.
(b) For all ε > 0 and t > t(ε), there is a prime p ≡ 3 (mod 4) with t ≤ p ≤

(1 + ε)t.

Proof. Part (a) is a strengthening of Bertrand’s Postulate due to Erdős [13].
Baker et al. [3] proved that for all sufficiently large t, the interval [t, t + t0.525]
contains a prime. The proof can be modified to give primes ≡ 3 (mod 4) in
the same interval [Glyn Harman, personal communication, 2004]. Clearly this
implies (b). ��

We can now prove the upper bound in Theorem 2.

Lemma 6. Every complete graph Kn has a 3D drawing with (2 + o(1))n3/2

volume, and for all ε > 0 and n > n(ε), Kn has a 3D drawing with (1 + ε)n3/2

volume.

Proof. By Lemma 5 with t = �√n�, there is a prime p �≡ 1 (mod 4) with �√n� ≤
p ≤ 2�√n� and p ≤ (1 + ε)�√n�. By Observation 1 and Lemma 4, the set Vp

defines a p×p×p drawing of Kp2 . By choosing the appropriate vertices, we obtain
a �n/p�×p×p drawing of Kn. The volume is (2+ o(1))n3/2 and (1+ ε)n3/2. ��

The same proof gives the lower bound in Theorem 1.

Lemma 7. There are at least n2/4 points in the n × n × n grid with no three
collinear. For all ε > 0 and n > n(ε), there are at least (1 − ε)n2 points in the
n × n × n grid with no three collinear. ��

Lemma 6 generalises to give the following construction of a 3D drawing of
T (n, k).
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Lemma 8. Every Turán graph T (n, k) has a 3D drawing with (2 + o(1))n
√

k
volume. For all ε > 0 and k > k(ε), T (n, k) has a 3D drawing with (1 + ε)n

√
k

volume.

Proof. Index the colour classes {(x, y) : 0 ≤ x, y ≤ �√k� − 1}. By Lemma 5,
there is a prime p �≡ 1 (mod 4) with �√k� ≤ p ≤ 2�√k� and p ≤ (1+ε)�√k�. For
each 1 ≤ i ≤ �n/k�, put the i-th vertex in colour class (x, y) at

(
x, y, ip + (x2 +

y2) mod p
)
. Each colour class occupies its own Z-line. Thus, if an edge passes

through a vertex, then three vertices from distinct colour classes are collinear.
Observe that for every vertex at (ax, ay, az), we have a2

x + a2
y ≡ az (mod p).

Thus the same argument from Lemma 4 applies here, and no three vertices from
distinct colour classes are collinear. Thus no edge passes through a vertex, and
we obtain a 3D drawing of T (n, k). The bounding box is �√k�× �√k�× p�n/k�.
The volume is (1 + o(1))np, which is (2 + o(1))n

√
k and (1 + ε)n

√
k. ��

Pach et al. [23] proved that every k-colourable graph on n vertices is a sub-
graph of T (2n+2k, 2k−1). Thus Lemma 8 implies the upper bound in Theorem 3.

Lemma 9. Every k-colourable graph on n vertices has a 3D drawing with (4
√

2+
o(1))n

√
k volume. For all ε > 0 and k > k(ε), every k-colourable graph on n

vertices has a 3D drawing with (2
√

2 + ε)n
√

k volume. ��

4 Open Problems

Open Problem 1. Does every k-colourable graph have a crossing-free 3D
drawing with O(kn2) volume? The best known upper bound is O(k2n2) due
to Pach et al. [23]. A O(kn2) bound would match the Θ(n3) bound for the
minimum volume of a crossing-free 3D drawing of Kn.

For 1 ≤ � ≤ d − 1, let vol(n, d, �) be the minimum bounding box volume for
n vertices in Z

d, such that no � + 2 vertices are in any �-dimensional subspace.
We have the following lower bound.

Lemma 10. For 1 ≤ � ≤ d − 1, vol(n, d, �) ≥
(

n

� + 1

)d/(d−�)

.

Proof. Consider n vertices in a d-dimensional box of volume vol(n, d, �), such that
no � + 2 vertices are in any �-dimensional subspace. The box can be partitioned
into vol(n, d, �)(d−�)/d subspaces of dimension �, each of which have at most �+1
vertices by assumption. Thus n ≤ (� + 1) vol(n, d, �)(d−�)/d, and vol(n, d, �) is as
claimed. ��
Open Problem 2. What is vol(n, d, �)?

Consider the case of vol(n, d, d−1). Erdős [14] and Cohen et al. [6] proved that
vol(n, 2, 1) ∈ Θ(n2) and vol(n, 3, 2) ∈ Θ(n3), respectively. Let V = {(x, x2 mod
p, . . . , xd mod p) : 0 ≤ x ≤ n − 1}, where p is a prime with n − 1 ≤ p ≤ 2n. The
proofs of Erdős [14] and Cohen et al. [6] generalise to show that V contains no
d+1 points in any (d−1)-dimensional subspace. Thus vol(n, d, d−1) ≤ 2d−1nd.
By Lemma 10, vol(n, d, d − 1) ∈ Θ(nd) for any constant d.
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Open Problem 3. What is vol(n, d, 1)? Erdős [14] proved that vol(n, 2, 1) ∈
Θ(n2). Theorem 2 proves that vol(n, 3, 1) ∈ Θ(n3/2). This problem is unsolved
for all constant d ≥ 4. Note that for d ≥ log2 n the problem becomes trivial.
Just place the vertices at {(x1, . . . , xd) : xi ∈ {0, 1}}, and vol(n, d, 1) ∈ Θ(n).

Open Problem 4. What is vol(n, d, 2)? This case is interesting as it relates to
crossing-free drawings. Cohen et al. [6] proved vol(n, 3, 2) ∈ Θ(n3). Wood [24]
proved that for d = 2 log n + O(1), we have vol(n, d, 2) ∈ O(n2). In particular,
Kn has a 2×2×· · ·×2 crossing-free d-dimensional drawing with O(n2) volume.
What is the minimum volume for a crossing-free drawing of Kn, irrespective of
dimension, is of some interest.
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13. Paul Erdős. A theorem of Sylvester and Schur. J. London Math. Soc., 9:282–288,
1934.
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