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Abstract

Graph-theoretic properties of certain proximity graphs defined on planar point sets are

investigated. We first consider some of the most common proximity graphs of the family

of the Delaunay graph, and study their number of edges, minimum and maximum degree,

clique number, and chromatic number. In the second part of the paper we focus on the

higher order versions of some of these graphs and give bounds on the same properties.
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1 Introduction

Loosely speaking, a proximity graph has as its vertex set a set of points in the plane, and

adjacency in the graph attempts to describe some of the proximity relations of the point set.

Examples of proximity graphs include relative neighborhood graphs, sphere-of-influence graphs,

Yao graphs, and Gabriel graphs (see [23] for a survey). Proximity graphs extract the relevant

structure or shape of point sets, and thus find applications in areas where this structure is im-

portant, which include pattern recognition, computer vision, and cluster analysis. Additionally,

some proximity graphs have other desirable properties (for example, planarity) which, combined

with the correlation between adjacency and proximity, makes them a useful tool in disciplines

such as wireless networks, graph drawing, and terrain representation.

This paper considers a family of proximity graphs comprising several graphs —and some

of their variations— that are subgraphs of the Delaunay triangulation. We study some of
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the classical graph-theoretic properties of these graphs; namely, number of edges, minimum

and maximum degree, chromatic number, and clique number (see the definitions below). These

parameters provide relevant information of the graphs and have in fact been considered before in

the literature. The existing results, though, leave some gaps, have been developed under different

degrees of non-degeneracy assumptions for the point sets, and have never been gathered to allow

comparisons between distinct classes of proximity graphs. In this paper we try to address these

issues by fixing the same assumptions on the point sets for all graphs, reviewing previous work

on this setting and developing new bounds in order to close or narrow the existing gaps.

The first part of the paper, Section 2, is devoted to order-0 proximity graphs. We consider

seven graphs of the family of the Delaunay graph, namely, the minimum spanning tree, the

union of the minimum spanning trees, the relatively closest graph, the relative neighborhood

graph, the Gabriel graph, the modified Gabriel graph, and the Delaunay graph (the definitions

of these graphs are given below). These graphs were quite popular in the eighties and early

nineties, and many of their properties can be found in [13, 23, 27, 29, 31, 32]. Specifically, a

variety of properties have been investigated for the Gabriel graph and the relative neighborhood

graph in [27] and [32], respectively, and also for two variations of these graphs in [13]. This

group of properties comprises the size of the minimum cycle/wheel that might be contained as a

subgraph, the size of the maximum complete/complete bipartite graph that might appear in the

graph, constraints on the structure of the trees that can be represented as a proximity graph,

maximum number of edges, expected vertex degree... In relation to expected case analysis, the

size of several proximity graphs defined on points drawn at random has been determined in [14],

and the expected maximum degree of Gabriel graphs has been given in [15]. Additionally, some

properties of the Delaunay triangulation of random points have been considered, such as the

average and maximum edge length, the minimum and maximum angles, and the expected weight

of the triangulation [6, 12, 28]. Other graph-theoretic properties of the Delaunay triangulation

that have been investigated are hamiltonicity and toughness [17, 18]. Finally, there exists an

ample body of literature on characterizations of which combinatorial graphs can be drawn as

proximity graphs of some set of points; the interested reader is referred to [25].

In this paper we focus on the basic properties mentioned earlier. First, we study the seven

order-0 proximity graphs indicated, and we do not make any non-degeneracy assumption on

the set of points on which the graphs are defined, since we believe that the analysis is more

interesting in this case. Nevertheless, in some occasions we make remarks on the differences

between the non-degenerate and the degenerate situations.

In the second part of the paper, Section 3, we look at higher order proximity graphs. Except

for minimum spanning trees, all graphs in Section 2 can be generalized to order-k graphs. We

focus on some of the most common, i.e., the k-relative neighborhood graph, the k-Gabriel graph,

and the k-Delaunay graph. We also consider the shared k-nearest neighbor graph and the k-

nearest neighbor graph, which are not analyzed in Section 2 because all bounds given in Section 3

for these graphs are tight for all values of k, and thus also for k = 1. Here we assume that points

are in certain general position, which is partially enforced by the definitions of the graphs.

Order-k graphs have not been so extensively studied as their order-0 counterparts. The

2



authors of [30] obtained asymptotic bounds for the size of the k-Gabriel graph and the k-

Delaunay graph, and the results for the latter were refined in [1]. There are also some results on

the number of edges of the k-relative neighborhood graph [9, 10, 11]. The chromatic number,

diameter, and connectivity of the k-Gabriel and k-Delaunay graphs have been studied in [7],

and the number of crossings of several order-k proximity graphs have been considered in [2]. As

for nearest neighbor graphs, some interesting properties are given in [20], including the expected

number of components of the graph and the relationship between the size of a component and

its diameter.

Definitions and results All graphs considered are undirected, finite and simple, unless stated

otherwise. Let G be such a graph. We denote by V (G) (respectively, E(G)) the set of vertices

(respectively, edges) of G, and by |V (G)| (respectively, |E(G)|) the cardinality of this set. If v

is a vertex in V (G), we denote by dG(v) the degree of v in G. The minimum degree of G is

δ(G) = min{dG(v) : v ∈ V (G)}. The maximum degree of G is ∆(G) = max{dG(v) : v ∈ V (G)}.
A clique of G is a set of pairwise adjacent vertices. The clique number of G, denoted by

ω(G), is the maximum number of vertices in a clique of G. A k-coloring of G is a mapping

f : V (G) → {1, 2, . . . , k} such that f(v) 6= f(w) for every edge vw of G. The chromatic number

of G, denoted by χ(G), is the minimum k such that G is k-colorable.

We denote by S a generic set of n points in the plane. When we describe a concrete example

of a point set satisfying a specific property we use S. We next list the definitions of the graphs

we consider in this paper. All of them are geometric graphs on S, that is, their set of vertices is

S and their edges consist of straight-line segments with endpoints in S. They are all undirected

except for k-NNG(S), which is directed. Points in S are usually denoted by p1, . . . , pi, . . . , pn.

Definition 1.1. Let T be a spanning tree of S. The weight of T is the sum of the lengths of

the edges of T . A spanning tree of S with minimum weight is a minimum spanning tree of S,

and the set of minimum spanning trees of S is denoted by MST(S). The graph with vertex set

S consisting of the union of all T ∈ MST(S) is denoted by U-MST(S).

We associate two lenses1 to any pair pi, pj :

O-LENS(pi, pj) ={x ∈ R2 : |pix| < |pipj | and |pjx| < |pipj |}

C-LENS(pi, pj) ={x ∈ R2 : |pix| ≤ |pipj | and |pjx| ≤ |pipj |} .

Definition 1.2. The relative neighborhood graph, denoted by RNG(S), is the graph in which

pi, pj are adjacent if O-LENS(pi, pj) ∩ S = ∅. The relatively closest graph, denoted by RCG(S),

is the graph in which pi, pj are adjacent if C-LENS(pi, pj) ∩ S = {pi, pj}.

We also associate two discs to pi, pj , namely the open and the closed disc centered at the mid-

point of pipj with both pi and pj on their boundary, denoted by O-DISC(pi, pj) and C-DISC(pi, pj)

respectively.

1It is standard in the computational geometry literature that a lens is incorrectly called a lune.
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Definition 1.3. The modified Gabriel graph, denoted by MGG(S), is the graph in which pi, pj

are adjacent if O-DISC(pi, pj) ∩ S = ∅. The Gabriel graph, denoted by GG(S), is the graph in

which pi, pj are adjacent if C-DISC(pi, pj) ∩ S = {pi, pj}.

Definition 1.4. The Delaunay graph, denoted by DG(S), is the graph in which pi, pj are adjacent

if there exists a closed disk containing pi and pj , and no other point from S.

If S does not contain three collinear or four concyclic points, DG(S) is a triangulation. In

that case this graph is also denoted by DT(S).

The graphs defined so far are the order-0 graphs considered in Section 2. They satisfy some

hierarchical relations. In particular, for every point set S, it holds that

U-MST(S) ⊆ RNG(S) ⊆ GG(S) ⊆ DG(S),

RCG(S) ⊆ RNG(S),

GG(S) ⊆ MGG(S).

(See [13, 27, 31, 32].)

We next define the higher order proximity graphs we study in Section 3.

Definition 1.5. The k-nearest neighbor graph, denoted by k-NNG(S), is the graph in which

every point is connected with a directed segment to its k closest neighbors. The undirected

graph consisting of the bidirectional edges of k-NNG(S) is called the shared k-nearest neighbor

graph, k-SNNG(S).

Definition 1.6. The k-relative neighborhood graph, denoted by k-RNG(S), is the graph in which

pi, pj are adjacent if |O-LENS(pi, pj) ∩ S| ≤ k.

Definition 1.7. The k-Gabriel graph, denoted by k-GG(S), is the graph in which pi, pj are

adjacent if |C-DISC(pi, pj) ∩ S| ≤ k + 2.

Definition 1.8. The k-Delaunay graph, denoted by k-DG(S), is the graph in which pi, pj are

adjacent if there exists a circle through pi and pj that contains at most k points from S in its

interior.

It is well known that, for every point set S,

(k + 1)-SNNG(S) ⊆ (k + 1)-NNG(S) ⊆ k-RNG(S) ⊆ k-GG(S) ⊆ k-DG(S)2.

The results we review in this paper and the ones we prove are summarized in Tables 1 and 2.

Subscripts containing a reference mean that the corresponding bound is proved in that reference.

The asterisks indicate results that are well-known or trivial.

2Notice that (k + 1)-NNG(S) is a directed graph, while the other graphs in the expression are undirected.

When we write (k + 1)-SNNG(S) ⊆ (k + 1)-NNG(S) ⊆ k-RNG(S) we actually mean that the undirected graph

resulting from suppressing the directions of the edges of (k + 1)-NNG(S) satisfies these relations.
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Table 1: Bounds on graph-theoretic properties for proximity graphs defined on a set of n points.

No non-degeneracy assumptions are made.

T ∈ MST U-MST RCG RNG GG MGG DG

min |E| n− 1 ∗ n− 1 0 [13] n− 1 n− 1 n− 1 n− 1 ∗

max |E| ≥ n− 1 ∗ 3n− 8 2n− 6 3n− 8 3n− 8 [27] 4n− 6
√
n+ 2 3n− 6 ∗

max |E| ≤ n− 1 ∗ 3n− 8 2n− 5 [13] 3n− 8 3n− 8 [27] 4n− 2
√
n

3 3n− 6 ∗

max δ 1 ∗ 5 3 [13] 5 5 [27] ∈ {6, 7} 5 [27]

max∆ 6 [29] n− 1 5 n− 1 n− 1 [27] n− 1 n− 1 [27]

maxχ 2 ∗ 4 3 [13] 4 4 ∈ {4, . . . , 8} 4 ∗

maxω 2 ∗ 3 2 3 [32] 3 [27] 4 4 ∗

Table 2: Bounds on properties for higher order proximity graphs. Several non-degeneracy as-

sumptions are made. Some results only hold for specific ranges of k; see the complete statements

throughout the paper.

k-SNNG k-NNG k-RNG k-GG k-DG

min |E| ≥
(
k+1
2

)
kn
2 ∗

(k+1)n
2

(k+1)n
2 (k + 1)n [1]

min |E| ≤
(
k+1
2

)
kn
2 ∗ kn+ o(kn) kn+ o(kn) 3kn

2 + o(kn)

max |E| ≥ kn
2 ∗ kn−

(
k+1
2

)
3π

4π−3
√
3
nk 2kn+ o(nk) 3kn+ o(nk)

max |E| ≤ kn
2 ∗ kn−

(
k+1
2

) 5(k+1)n
2 3kn+ o(nk) [1] 3kn+ o(nk) [1]

max δ ≥ k k 2k + 2 3k + 2 4k + 3

max δ ≤ k k 3k + 3 6k + 5 6k + 5

max∆ k 5k 5(k + 1) n− 1 ∗ n− 1 ∗

maxχ ≥ k + 1 k + 1 k + 2 3k + 3 [7] 4k + 4 [7]

maxχ ≤ k + 1 k + 1 3k + 4 6k + 6 [7] 6k + 6 [7]

maxω ≥ k + 1 k + 1 k + 2 3k + 3 4k + 4

maxω ≤ k + 1 k + 1 k + 2 3k + 3 4.74k + 14

2 Order-0 graphs

In this section we look at the classical versions of proximity graphs, i.e., we consider the specific

case k = 0. These graphs were introduced earlier than their higher order counterparts, and thus

much more is known about them. We review previous work on their graph-theoretic properties,

and we also give some new bounds.

Throughout this section we do not make any non-degeneracy assumption. However, we make

the effort whenever possible that our worst-case constructions are not degenerate.
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2.1 Number of edges

We start by looking at the minimum number of edges of the graphs.

Let T ∈ MST(S). Since T is a tree, |E(T )| = n− 1. Consequently, for every point set S, we

have that |E(U-MST(S))| ≥ n− 1, |E(RNG(S))| ≥ n− 1, |E(GG(S))| ≥ n− 1, |E(MGG(S))| ≥
n − 1, and |E(DG(S))| ≥ n − 1. In the next proposition we show that these bounds can be

attained:

Proposition 2.1. There exists a point set S such that |E(U-MST(S))| = |E(RNG(S))| =

|E(GG(S))| = |E(MGG(S))| = |E(DG(S))| = n− 1.

Proof. Let S be a set of points lying on a line l. Then all these graphs are a path, namely

the one connecting consecutive points in l. The configuration can even be perturbed so that no

three points lie in a common line and the structure of all graphs except for DG(S) is maintained.

In fact, since for any S the graph DG(S) contains the edges of the convex hull of S, DG(S) has

at least 2n− 3 edges when this convex hull encloses a region with positive area. �

As shown in [13], RCG(S) might be empty; this is the case when the points are placed in a

triangular grid.

We next try to determine the maximum number of edges of these graphs. This question is

more complicated, and in some cases the number of edges of our worst-case construction does

not match our upper bound.

It is well known that the Delaunay graph is a plane graph. As a consequence, |E(DG(S))| ≤
3n− 6, and also |E(U-MST(S))| ≤ 3n− 6, |E(RNG(S))| ≤ 3n− 6, and |E(GG(S))| ≤ 3n− 6. For

some of the graphs this upper bound can be strengthened and for others it cannot.

The Delaunay graph of S is a triangulation provided that S is in general position (no three

points are collinear and no four points are concyclic). Therefore, if S is in general position and

the convex hull of S is a triangle, DG(S) contains exactly 3n − 6 edges. In contrast, Gabriel

graphs cannot have so many edges: it has been shown (see [27]) that every Gabriel graph on n

points has at most 3n− 8 edges, and that this bound is tight for an infinite number of values of

n.

The bound for the Gabriel graph implies that |E(U-MST(S))| ≤ 3n− 8. We next show that

this can be attained:

Proposition 2.2. There exist point sets S such that |E(U-MST(S))| = 3n− 8, where |S| = n.

Proof. We first prove the claim for RNG and then we show that, for the particular point set

S that we describe, U-MST(S) = RNG(S).
Let pi, pj , pk be three points of a set S. If the three edges pipj , pipk, and pjpk belong

to RNG(S), then these points form either an equilateral triangle or an isosceles triangles in

which the unequal side is shorter. Therefore, if there exist point configurations S such that

|E(RNG(S))| = 3n − 8, then RNG(S) must look like a maximal plane graph (except for two

edges) and all its interior triangles must be either equilateral or isosceles in which the unequal

side is shorter. We have been able to prove that such configurations, quite twisted, exist for

some values of n. We next describe an example with fourteen points.
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We start with an equilateral triangle 4q2q3q4. Then we place two points q5 and q6 that are

symmetric with respect to the perpendicular bisector of q2 and q3, and such that |q2q4| = |q2q6|
and |q3q4| = |q3q5| (see Figure 1). We next place a point q1 on the perpendicular bisector of q5

and q6, and such that q1 is on the convex hull of the point set. In order for the edges in Figure 1

to be in RNG(S), the remaining points must lie in the region delimited by the circular arcs in

dotted lines q4q6, q6q5, and q5q4. Furthermore, they must be added so that the point set can

be triangulated in such a way that all triangles are either equilateral or isosceles in which the

unequal side is shorter. A possible way to do this is illustrated in Figure 2.

q4

q5

q1

q2

q6

q3

Figure 1: First steps of the construction of the point set of Proposition 2.2.

q4

q5

q9q11
q7

q10 q8

q6

q4

q9

q11

q7

q10

q8

q12

q13q14

Figure 2: The region delimited by q4, q5, and q6 in Figure 1 is filled with points so that we can

triangulate it with isosceles triangles in which the unequal side is shorter. In the left figure,

some points have been suppressed for the sake of clarity; they are shown in the right figure.

Apart from the edges in the figure, RNG of the resulting point set also contains q1q7, q2q8, and

q3q9.

It remains to argue that, for this set S, U-MST(S) = RNG(S). Indeed let us suppose that we

use Kruskal’s algorithm to compute a particular minimum spanning tree T of S. First we would
add the edge q12q13 to T , and then either q14q12 or q14q13, so both edges belong to U-MST(S).
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Next we would connect q10 and q11 to T using q10q12 or q10q14, and q11q13 or q11q14, respectively.

Using similar arguments we conclude that U-MST(S) = RNG(S). �

By adding points in the interior of the inner-most triangle of the previous example, we

have constructed point sets S of larger size such that |E(U-MST(S))| = |E(RNG(S))| = 3n− 8.

However, we do not have a proof that point sets with this property can be effectively constructed

for arbitrarily big values of n. Using a different construction, we can prove that there exist point

sets S of arbitrarily large size such that |S| = n and |E(U-MST(S))| = |E(RNG(S))| = 3n− 9.

Let us next look at the relative neighborhood graph. The following theorem was formulated

in [32]:

Theorem 2.3 (Urquhart 1983). A relative neighborhood graph on n vertices has at most

(i) 3n− 8 edges for n ≥ 5,

(ii) 3n− 9 edges for n ≥ 6,

(iii) exactly 3n− 10 edges for n = 7m+ 1 for any m ≥ 1, and

(iv) either 3n− 10 or 3n− 11 edges for all n ≥ 8.

The claims (ii), (iii), and (iv) are clearly not true, as shown by the example in Figures 1

and 2. In fact, the author does not attempt to prove (iii) and (iv), but gives examples of

graphs achieving these bounds. As for (ii), the proof is incorrect, because it is partially based

on Lemma 4.2 of [32], which is not true. This lemma states that the wheel graph Wn (the

graph formed by connecting a single vertex to all vertices of an (n− 1)-cycle) may be a relative

neighborhood graph if and only if n ≥ 7. However, the example in Figure 3 shows that W6 may

indeed be a relative neighborhood graph.

Figure 3: W6 may be a relative neighborhood graph.

The above upper bounds on the number of edges of RNG(S) and the result on the drawability

of RNG as a wheel graph have been cited several times in the literature (see the survey [23],

and also [8, 24, 26]). We take this opportunity to stress that, after the previous considerations,

the best upper bound on the maximum number of edges of RNG(S) is 3n − 8 (consequence of

|E(GG(S))| ≤ 3n− 8), and this can be attained, as shown in Proposition 2.2.

The question of determining the maximum number of edges of the relatively closest graph

has been considered in [13], where the following lemma is proved:

Lemma 2.4 (Cimikowski 1992). Every relatively closest graph RCG(S) is a triangle-free plane

graph.
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This lemma is used to prove that |E(RCG(S))| ≤ 2n− 5 (see [13]). Next we give an example

that almost achieves this bound. For all n ≡ 0 (mod 7), consider a set of regular heptagons with

the same center and orientation. Choose the size of the heptagons so that their edges are in the

relatively closest graph of their vertices. Then this graph has 2n− 7 edges (see Figure 4, left).

The example can be further improved by slightly modifying the inner-most heptagon so that

one of the chords of the heptagon belongs to RCG (see Figure 4, right). The relatively closest

graph of the new point set contains 2n− 6 edges.

Figure 4: Left: a RCG with 2n − 7 edges. Right: modification of the inner-most heptagon to

add an extra edge to RCG.

Let us finally focus on the modified Gabriel graph. This graph was studied in [13] under the

assumption that no four points of S are concyclic. Since we do not make this requirement, our

results are significantly different.

Lemma 2.5. Let H = (S,E) be a plane geometric graph formed by 4-cycles pipjplpmpi ∈ F4

such that pi, pj , pl, pm ∈ S are the vertices of a closed rectangle which is empty of points from

S, except for pi, pj , pl, pm. Let |F4| be the number of such 4-cycles. We say that an edge e ∈ E

is red if it belongs to exactly one of these 4-cycles. The number of red edges of H is at least

4
√

|F4|.

Proof. We partition the 4-cycles of H into groups as follows. Let ci, cj be two 4-cycles

of H. We say that ci and cj belong to the same group if there exists a sequence of cycles

ci, ci+1, . . . , cj−1, cj such that any pair of consecutive cycles of the sequence shares one edge

(see Figure 5, left for an example of a group of 4-cycles). Suppose that the 4-cycles of H are

subdivided into l groups F 1
4 , F

2
4 , . . . , F

l
4, and that, for each group F i

4, we can prove that the

number of red edges of the group is at least 4
√

|F i
4|. By definition of the groups, any red edge

of some group is also a red edge of H. Therefore, the number of red edges of H is at least

4
√

|F 1
4 | + 4

√
|F 2

4 | + · · · + 4
√

|F l
4|, which is greater than 4

√
|F 1

4 |+ |F 2
4 |+ · · ·+ |F l

4| = 4
√

|F4|.
Thus it suffices to prove the result for one group of 4-cycles.

Let F 1
4 be a group of 4-cycles. Observe that all the rectangles associated to the cycles
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pi

Figure 5: Left: a group of 4-cycles; in dashed lines, its red edges. Right: in dotted lines, the

horizontal red edges associated to each value x′ ∈ xm (the white points correspond to the centers

of rectangles Ri such that x′ = x(mi)).

of F 1
4 have the same orientation. Without loss of generality, we assume that they are axis-

aligned. For each 4-cycle ci ∈ F 1
4 , let Ri be the rectangle associated to ci, and mi be the center

of Ri. We denote by x(mi) and y(mi) respectively the x and y coordinates of mi. We define

xm = {x(mi)}ci∈F 1
4
and ym = {y(mi)}ci∈F 1

4
.

Let x′ ∈ xm. Then x′ = x(mi), for some mi center of a rectangle Ri associated to a cycle

ci ∈ F 1
4 . If the top horizontal edge of this rectangle is red, we associate it to x′. Otherwise, there

exists a rectangle Rj associated to a 4-cycle cj ∈ F 1
4 whose bottom horizontal edge coincides

with the top horizontal edge of Ri, and thus x(mj) = x(mi). If the top horizontal edge of Rj is

red, we associate it to x′. Otherwise we continue moving up and visiting rectangles such that the

x coordinate of their center equals x′ until we find an horizontal red edge, which we associate

to x′. We repeat the same search starting from the bottom horizontal edge of Ri, and visiting

rectangles downwards. We find another horizontal red edge that is associated to x′. By repeating

this strategy for all values x′ ∈ xm, we conclude that the number of horizontal red edges of F 1
4

is greater than or equal to 2|xm|. (See Figure 5, right for an example.)

Now let y′ = y(mk), for some mk center of a rectangle Rk. If the vertical edges of Rk are

red, we associate them to y′. Otherwise, we visit rectangles sharing vertical edges with Rk until

we find two vertical red edges. This shows that the number of vertical red edges of F 1
4 is greater

than or equal to 2|ym|. In total, the number of red edges of F 1
4 is at least 2(|xm|+ |ym|).

Let us next bound |F 1
4 |. There are |xm| possible values for the x coordinate of the center of

some fixed Ri (associated to ci ∈ F 1
4 ), and |ym| possible values for its y coordinate. Two distinct

such rectangles have different centers, because they are empty by definition. Consequently,

|F 1
4 | ≤ |xm||ym|. Since the arithmetic mean of two positive values is greater than or equal to

their geometric mean, we have

number of red edges of F 1
4 ≥ 2(|xm|+ |ym|) ≥ 4

√
|xm||ym| ≥ 4

√
|F 1

4 |.

�

Theorem 2.6. Every modified Gabriel graph on n vertices has at most 4n− 2
√
n

3 edges.
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Proof. Let G = MGG(S). Suppose that pipj is an edge of G that crosses some other edge

plpm. Since O-DISC(pi, pj) ∩ S = ∅, we have that p̂iplpj ≤ π/2 and p̂ipmpj ≤ π/2. Analogously,

p̂lpipm ≤ π/2 and p̂lpjpm ≤ π/2. Since the sum of these four angles is π (pi, pl, pj , and pm form a

quadrilateral), all these inequalities are actually equalities, and O-DISC(pi, pj) = O-DISC(pl, pm).

In particular, if e1, e2, e3 ∈ E(MGG(S)) and e1 crosses e2 and e3, then e2 and e3 also cross. If

e1, e2, . . . , ek are pairwise crossing edges then there exists a circle c such that the endpoints of

each ei are at antipodal points on c, and each pair of edges ei and ej intersect at the center of

c. Furthermore, there are no points of S in the interior of c. Add edges between points from

the set of endpoints of e1, e2, . . . , ek that are consecutive in c. Notice that these edges do not

create crossings with the edges in G. We refer to the interior of the resulting 2k-gon as a crossing

region. If a crossing region is bounded by a cycle of 6 or more vertices, remove all the crossing

edges and add chords of the cycle so that the region inside the cycle is triangulated (after this

modification, the region is no longer called a crossing region). Finally, add edges to the region

inside CH(S) disjoint from the crossing regions so that each interior face is a triangle. Let G′

be the resulting graph. By construction,

|E(G′)| ≥ |E(G)|.

The graph G′ subdivides the interior of CH(S) into crossing regions and regions bounded by

triangles, and the boundaries of the crossing regions are given by rectangles. We denote by |F4|
the number of such rectangles, and by |F3| the number of triangles. Let G′

pl be a graph obtained

from G′ by deleting one edge in each rectangle. Clearly, G′
pl is a triangulation. Therefore,

|E(G′
pl)| = 3n− h− 3,

|E(G′)| = 3n− h− 3 + |F4|,

where h is the size of the convex hull of S. By Euler’s formula,

|F3|+ 2|F4|+ n = |E(G′
pl)|+ 1.

Combining these equations, we obtain that

|F3| = 2n− 2|F4| − h− 2.

Now suppose, for the sake of contradiction, that |E(G)| ≥ 4n− 2
√
n

3 . Then |F4| = |E(G′)| −
3n + h + 3 ≥ |E(G)| − 3n + h + 3 ≥ n − 2

√
n

3 + h + 3 > n − 2
√
n

3 . Consider the subgraph G′′

of G′ containing only the edges of the rectangles bounding the crossing regions. This graph

satisfies the hypothesis of Lemma 2.5. Consequently, the number of edges of G′′ that are edges

of exactly one rectangle of this graph (which are called red edges) is at least 4
√

|F4|. Every red

edge belongs either to the boundary of a triangle of G′ or to the boundary of the convex hull of S.

Thus the number of red edges is at most 3|F3|+h. Taking 4
√

|F4| ≤ 3|F3|+h, and substituting

|F3| = 2n− 2|F4| − h− 2, we obtain 4
√
|F4| ≤ 6n− 6|F4| − 2h− 6. Since |F4| > n− 2

√
n

3 , we get

0 < 4
√
n− 4

√
n− 2

√
n

3
− 2h− 6.

11



For all n ≥ 1, we have that 4
√
n− 4

√
n− 2

√
n

3 ≤ 2. Then

0 < 4
√
n− 4

√
n− 2

√
n

3
− 2h− 6 ≤ 2− 2h− 6 < 0,

which is a contradiction. �

We believe that this upper bound is not tight, and that it can be improved to |E(MGG(S))| ≤
4n− 6

√
n+2. This value is attained when S is a square grid of size

√
n×

√
n, and n is a square

number.

2.2 Minimum and maximum degree

It is obvious that every spanning tree T satisfies δ(T ) = 1. In the union of the minimum spanning

trees the situation might be significantly different. Since every planar graph has minimum degree

at most five, δ(U-MST(S)) ≤ 5. We now prove that this result is best possible.

Proposition 2.7. There exist arbitrarily large point sets S such that δ(U-MST(S)) = 5.

Proof. We first produce a point set S ′ for which U-MST(S ′) has three vertices of degree 3

and nine vertices of degree 5. The construction is illustrated in Figure 6.

We start with a circle C3 around the origin, and six half-lines l1, l2, . . . , l6 with initial point

at the origin, such that the angle between li and li+1 is π/3. We place three points q24, q
4
4, q

6
4

on the intersections of C3 with l2, l4, l6, respectively. We draw another circle C2 around the

origin. The circle should fit into the triangle 4q24q
4
4q

6
4 and be at distance ε from it, where ε

is a sufficiently small number. We place three points q13, q
3
3, q

5
3 on the intersections of C2 with

l1, l3, l5, respectively. Then we place three points q22, q
4
2, q

6
2 on l2, l4, l6, respectively, such that

|qi4qi2| = |qi4q
i−1
3 |, for i = 2, 4, 6. Finally, we place three points q11, q

3
1, q

5
1 on l1, l3, l5, respectively,

such that |qi3qi1| = |qi3q
i+1
2 |, for i = 1, 3, 5.

The union of the minimum spanning trees of S ′ is shown in Figure 6. We call q13, q
2
4, q

3
3, q

4
4

q53, q
6
4 the outer points of S ′; q24, q

4
4, q

6
4 are also called extremal points.

If ε is zero, q24, q
1
3, q

6
4 are collinear. By making ε sufficiently small, the radius r of the circle

through the three outer points q24, q
1
3, q

6
4 can be made arbitrarily large. We place four copies of

S ′ on the corners of a large square as follows. We place one extremal point of each S ′ on a corner

of the square, and the remaining points of each S ′ inside the square. The half-line l6 of each

copy of S ′ passes through the center of the square as shown in Figure 7. Consider two copies

of S ′, S ′
1 and S ′

2 say, along a side of the square. Take a set of three outer points from S ′
1 and

three outer points from S ′
2 that lie more or less along the same side of the square. We modify

the length of the sides of the square so that the two circles of radius r defined by each one of

these two triples of outer points have the same center. After this movement, there are four such

centers outside the square. We place points q15, q
2
5, q

3
5, q

4
5 on these centers. By making r large

enough, if ρ is the cone with apex at q15 and minimum angle that contains the edges between

q15 and its six closest outer points, then the amplitude of ρ can come arbitrarily close to π/6.

This implies that the distance between q15 and its 6 closest outer points is larger than the length

12



q2
4

q6
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3

q4
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q2
2

q6
2q1

1

q3
1 q5

1

l1

l2

C3

C2

Figure 6: A point set S ′ for which U-MST(S ′) has three vertices of degree 3 and nine vertices of

degree 5.

of a side of the square. Thus when constructing minimum spanning trees, we first add an edge

inside the square between two extremal points of different copies of S ′. Since there are four such

edges, all of the same length, all four are in the union of the minimum spanning trees. After

that we add edges connecting qi5 to outer points of copies of S ′, for i = 1, 2, 3, 4. The result is a

point set S consisting of 52 points such that U-MST(S) has minimum degree 5.

We point out that we can obtain arbitrarily large point sets such that the minimum degree

of the union of the minimum spanning trees is 5 by placing along a line copies of the previous

point set and making the distance between two consecutive copies large enough. �

Notice that the previous example also shows that the bounds δ(RNG(S)) ≤ 5, δ(GG(S)) ≤ 5,

and δ(DG(S)) ≤ 5 are tight. This was already known for the case of the Gabriel and Delaunay

graphs (see [27]). As for the relative neighborhood graph, the fact that there exist examples

where all vertices have degree five or greater disproves a conjecture by Cimikowski (see [13]) and

settles one of the open problems in [13].

In the same paper it is shown that the minimum degree of any relatively closest graph is
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q
1

5

q
2

5
q
3

5

q
4

5

S ′

S ′

S ′

S ′

Figure 7: A point set S for which all vertices of U-MST(S) have degree at least 5. For the sake

of clarity, points in the copies of S ′ that are not extremal or outer have been suppressed from

the figure.

not greater than 3. The example in Figure 4 illustrates that this result can not be strengthened

because all vertices have degree 3 or 4.

We finally consider the minimum degree of the modified Gabriel graph. Since the number

of edges of this graph is strictly smaller than 4n, by the handshaking lemma, δ(MGG(S)) ≤ 7.

Our best example is the following:

Proposition 2.8. There exist arbitrarily large point sets S such that δ(MGG(S)) = 6.

Proof. The general structure of the point set S is shown in Figure 8. In the figure, all points

have degree 6 or greater, except for the ones on the boundary of eight empty dodecagons that

look almost like regular hexagons. In order to increase the degree of these vertices, we add 42

points in the interior of each dodecagon as in Figure 9. �

14



Figure 8: A point set S for which all vertices of MGG(S) have degree at least 6. Points in the

interior of the empty dodecagons have been suppressed from the figure for the sake of clarity;

they can be seen in Figure 9.

Figure 9: The interior of each empty dodecagon in Figure 8 is filled with extra points in this

way.
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Some of the constructions we have seen in this section are complicated because all vertices

in the graphs needed to have some fixed degree. In contrast, when considering the maximum

degree the situation is simpler because only one vertex needs to have high degree.

It is well known (see, for example, [29]) that every minimum spanning tree T has maximum

degree ∆(T ) ≤ 6 and this bound is tight.

We next show that U-MST, RNG, GG, MGG, and DG might contain a vertex of maximum

degree, i.e., a vertex of degree n− 1. Indeed an easy example of this fact, already given in [27]

for the case of GG, consists of placing n − 1 points of S on a circle centered at p ∈ S. In these

graphs p is adjacent to all the other vertices of S. Let us point out that, in the case of GG, MGG,

and DG, we can slightly modify this configuration to obtain a vertex p of degree n− 1 in a more

general position of the points. More precisely, the n − 1 points that are adjacent to p can be

positioned at increasing distances from p as follows: after placing the first point q1, we place

a new point q2 very close to q1 so that |pq2| > |pq1|, q2 it to the right of −→pq1, q2 is outside the

circle with diameter pq1, and q2 is on the same side as p of the perpendicular line to pq1 passing

through q1. We repeat the same procedure to place q3, q4 . . .

It only remains to consider the maximum degree of the relatively closest graph. In [13] it is

proved that the only complete bipartite graphs that may be relatively closest graphs are K2,2

and K1,n for 1 ≤ n ≤ 5. Due to Lemma 2.4, a vertex of degree six in a relatively closest graph

would give rise to a K1,6. Thus ∆(RCG(P )) ≤ 5. This bound is attained by the relatively closest

graph of a regular pentagon and its center.

2.3 Chromatic and clique numbers

We start by giving bounds for the chromatic number. This is trivial for the minimum spanning

tree, because every spanning tree T satisfies χ(T ) = 2.

As U-MST(S), RNG(S), GG(S), and DG(S) are plane graphs, by the 4-color theorem [4, 5],

the chromatic number of these graphs is at most 4. Next we present an example of a 4-chromatic

U-MST. Let q1, q2, . . . , ql be the vertices of a regular l-gon where l > 9 is odd. For all the even

indices i, let q′i be the point that is symmetric to qi with respect to the segment qi−1qi+1. Let S
consist of all these points. The union of the minimum spanning trees of S is shown in Figure 10.

Let us try to color U-MST(S) with three colors: if, for example, we assign color 1 to q1, then q2

is colored 2 and q′2 is colored 3 or viceversa, q3 is colored 1. . . and we continue coloring this way

until we reach ql. Since this vertex has three neighbors each of which with a different color, we

need a fourth color to complete the coloring. Notice that this example also shows that there exist

4-chromatic relative neighborhood graphs, Gabriel graphs, and Delaunay graphs. Furthermore,

it can be modified in order to avoid more than three concyclic points.

Let us next look at the relatively closest graph. Since every triangle-free planar graph is

3-colorable [21], Lemma 2.4 implies that every relatively closest graph is 3-colorable (as already

observed in [13]). To obtain a 3-chromatic relatively closest graph, consider the set S of vertices

of a regular n-gon, where n is an odd number greater than 3. In RCG(S) each pair of consecutive

vertices are adjacent, so we need three colors to color this graph. As above, this configuration

can be perturbed so that no four points are concyclic.
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qi+1

q1ql

Figure 10: A 4-chromatic U-MST.

Finally, we consider the chromatic number of the modified Gabriel graph. We have seen

that these graphs always contain a vertex of degree at most 7. Observe that, if pipj is an edge

of MGG(S), this edge is also present in MGG(S \ {pl}) for any pl ∈ S (pl 6= pi, pj). Thus,

if MGG(S) \ S′ is an induced subgraph of MGG(S) on n′ vertices, then it is a subgraph of

MGG(S \ S′) and it contains a vertex of degree 7 or less. Therefore we can color MGG(S) with

8 colors using the minimum degree greedy algorithm [16].

Unfortunately, in this case our lower and upper bounds leave a not insignificant gap, as we

have not been able to find a modified Gabriel graph having chromatic number larger than the

clique of size 4’s (see below).

To end this section, let us study the cliques of maximum size in these graphs.

Clearly, ω(T ) = 2 for every spanning tree T. In [32] and [27] respectively it is proved that

relative neighborhood graphs and Gabriel graphs have no 4-cliques. This also implies that

ω(U-MST(S)) ≤ 3. These bounds are tight (see examples above). As for the relatively closest

graph, since it is triangle-free, the maximum number of vertices in a clique is 2, and this bound

is best possible. The modified Gabriel graph and the Delaunay graph might contain cliques of

larger size, as we will immediately see.

Proposition 2.9. For every point set S, ω(MGG(S)) ≤ 4. This bound is tight.

Proof. Firstly we show that in any modified Gabriel graph the 4-cliques are not plane.

Suppose, for the sake of contradiction, that the graph contains a 4-clique whose four vertices

form a triangle 4pipjpk with an interior point pl. Then pl sees one of the edges of the triangle,

for example pipj , with an angle greater than π/2. This contradicts the fact that pipj is an edge

of the graph. Consequently, the four vertices of the 4-clique are in convex position and form a

crossing. As seen in the proof of Theorem 2.6, in this situation the four vertices are concyclic

and form an empty rectangle.

Therefore, if a modified Gabriel graph had a clique of size greater than 4, all the vertices

of the clique would be concyclic and each group of four would form an empty rectangle. But,

given three vertices of a rectangle, the fourth vertex is forced. This contradiction yields the the

first statement of the proposition.
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To see that this bound is best possible, notice that the quadrangular grid has many 4-cliques.

�

Finally, it is well known that Delaunay graphs do not contain cliques of size 5 because they

are plane. On the other hand, the simplest example of a triangle with an interior point shows

that they might contain cliques of size 4.

3 Order-k graphs

In the second part of this paper we consider higher order proximity graphs. These graphs have

not received as much attention as their order-0 counterparts and, in particular, some graphs

from the previous section have not even been generalized to an order-k version. Here we only

study k-SNNG, k-NNG, k-RNG, k-GG, and k-DG, which are the higher order proximity graphs

from our family that have been contemplated before in the literature. Moreover, they satisfy

(k + 1)-SNNG(S) ⊆ (k + 1)-NNG(S) ⊆ k-RNG(S) ⊆ k-GG(S) ⊆ k-DG(S)3,

which makes it easier to compare them.

In order to make the analysis simpler, and also because otherwise some graphs are not well-

defined, throughout the section we make some non-degeneracy assumptions. We assume that

point sets S are in general position in an extended sense: no three points are collinear, no four

points are concyclic and, for each p ∈ S, the set of its k nearest points in S is well-defined,

i.e., the kth nearest neighbor of p is unique, for any k ≥ 1. We will denote by k-distance of p,

k − dist (p), the distance to the k-nearest neighbor of p.

3.1 Number of edges

Recall that k-NNG(S) is a directed graph. When counting its number of edges, though, bidirec-

tional edges are counted once. The in-degree of a vertex p is the number of edges pointing to p,

while its out-degree is the number of edges emanating from p. The degree of p in k-NNG(S) is

defined as the sum of its in-degree and its out-degree, minus the number of bidirectional edges

incident to p.

Proposition 3.1. For every point set S,

kn

2
≤ |E(k-NNG(S))| ≤ kn−

(
k + 1

2

)
,(

k + 1

2

)
≤ |E(k-SNNG(S))| ≤ kn

2
.

These bounds are tight.

Proof. It is clear that kn
2 ≤ |E(k-NNG(S))| ≤ kn and 0 ≤ |E(k-SNNG(S))| ≤ kn

2 because each

vertex in k-NNG(S) has out-degree k. Two of these bounds can be improved to |E(k-NNG(S))| ≤
3As indicated before, by (k + 1)-SNNG(S) ⊆ (k + 1)-NNG(S) ⊆ k-RNG(S) we mean that the undirected graph

resulting from suppressing the directions of the edges of (k + 1)-NNG(S) satisfies these relations.
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kn−
(
k+1
2

)
and |E(k-SNNG(S))| ≥

(
k+1
2

)
by showing that every k-nearest neighbor graph contains

at least
(
k+1
2

)
bidirectional edges.

Let p1, p2, . . . , pn be the points in S sorted by increasing k-distance (choose any order if there

are ties). Consider a vertex pi, with i ≤ k, and an edge of k-NNG(S) of the form −−→pipj . We claim

that, if −−→pjpi /∈ k-NNG(S), then j < i. Indeed, if −−→pjpi /∈ k-NNG(S), then |pjpi| > k − dist (pj).

Since |pipj | ≤ k − dist (pi), we have that k − dist (pj) < k − dist (pi) and j < i. Consequently,

from the set of k edges of k-NNG(S) having pi as the origin, at most i− 1 are not bidirectional.

This implies that every k-nearest neighbor graph has a set of
∑k

i=1(k − i + 1) different edges

that are bidirectional.

The bounds |E(k-NNG(S))| ≥ kn
2 and |E(k-SNNG(S))| ≤ kn

2 are attained when all edges in

the k-nearest neighbor graph are bidirectional, as is the case in Example 3.2 below. The bounds

|E(k-NNG(S))| ≤ kn −
(
k+1
2

)
and ≤ |E(k-SNNG(S))| ≥

(
k+1
2

)
are attained by the construction

described in Example 3.3. �

We next describe two examples that will be used throughout the paper.

Example 3.2. Let n be a multiple of k + 1. Let S be a set of n points grouped into sets of

size k + 1, and such that these groups are at a sufficiently large distance from each other. In

k-NNG(S) these groups form cliques of size k + 1, and there are no edges between two different

groups. Thus, in particular, all edges are bidirectional.

Example 3.3. Let S be a set q1, q2, . . . , qn of almost collinear and exponentially spaced points,

that is, where |qiqi+1| = C|qiqi−1|, for some fixed constant C ≥ 2. When looking at k-NNG(S),
there are two groups of vertices. If i ≤ k + 1, the k nearest neighbors of qi are the points qj ,

with j ≤ k + 1 and j 6= i. If i ≥ k + 1, the k nearest neighbors of qi are the points qj , with

j ∈ {i−k, i−k+1, . . . , i−1}. Hence k-NNG(S) contains exactly
(
k+1
2

)
bidirectional edges, namely,

those of the form qiqj , with i, j ≤ k + 1. On the other hand, (k + 1)-NNG(S) = k-RNG(S) =

k-GG(S), so in this case k-RNG(S) and k-GG(S) contain (k + 1)n−
(
k+2
2

)
edges.

Recall that (k + 1)-NNG(S) ⊆ k-RNG(S) ⊆ k-GG(S). Hence the lower bound on the number

of edges of k-NNG(S) immediately yields that, for every point set S, |E(k-RNG(S))| ≥ (k+1)n
2

and |E(k-GG(S))| ≥ (k+1)n
2 . An example of a k-RNG and a k-GG with a relatively small number

of edges is given in Example 3.3.

The number of edges of k-DG(S) has been studied in [1]. In this paper they show that, if

k < n
2 − 1, then |E(k-DG(S))| ≥ (k + 1)n. In the next proposition we give a point set whose

k-DG has a small number of edges.

Proposition 3.4. For any even values of k and n ≥ 4k+4, there exists a point set S such that

|E(k-DG(S))| ≤ 3kn
2 + 2k2 + 5n

2 − 4k − 6.

Proof. We place n/2 points in an horizontal line lp such that the distance between two

consecutive points is always the same; from left to right, we denote them by p1, p2, . . . , pn/2. We

place the remaining n/2 points in another horizontal line lq below lp such that each point in lp

has a counterpart in lq with the same abscissa; from left to right, we denote the new points by

q1, q2, . . . , qn/2.
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Let i be such that k + 2 ≤ i ≤ n − k − 1 and let G = k-DG(S). We next show that

dG(qi) ≤ 3k+5; notice that, by symmetry, we will also have that dG(pi) ≤ 3k+5. In k-DG(S) the
point qi is adjacent to 2k+2 points in lq, namely, qi−k−1, qi−k, . . . , qi−1 and qi+1, qi+2, . . . , qi+k+1.

To see which points in lp are adjacent to qi, we start by showing that qipi− k
2
−2 /∈ E(k-DG(S)).

Suppose, for the sake of contradiction, that there exists a circle C through qi and pi− k
2
−2 that

contains at most k points from S in its interior. Perturb C keeping it incident to qi and pi− k
2
−2

until it goes through a third point of S; let C ′ be the resulting circle. Notice that C ′ contains

at most k points from S in its interior. Additionally, by the symmetry of S, C ′ goes through

four points of S (otherwise it would contain too many points of S): pi− k
2
−2, another point in

lp which we denote by pj , qi, and another point in lq which we denote by qt. We have that

t = j − k
2 − 2, and thus C ′ contains pi− k

2
−1, pi− k

2
, . . . , pj−1 and qj− k

2
−1, qj− k

2
, . . . , qi−1, that is,

k+2 points (see Figure 11, left). This yields a contradiction. By analogous arguments, qi is not

adjacent to pr for r < i − k
2 − 2, and also for r ≥ i + k

2 + 2. Therefore qi can only be adjacent

to pi− k
2
−1, pi− k

2
, . . . , pi+ k

2
+1 and we conclude that dG(qi) ≤ 3k + 5.

Next let i be such that i < k + 2. In lq, qi is adjacent to q1, q2, . . . , qi−1 and qi+1, qi+2, . . . ,

qi+k+1. Regarding connections to points in lp, using similar arguments to those in the preceding

paragraph, we see that qi is not adjacent to pr for r ≥ i+ k+1. Consequently, dG(qi) ≤ 4k+2.

Analogously, dG(qi) ≤ 4k+2 for i > n−k−1, and dG(pi) ≤ 4k+2 for i < k+2 and i > n−k−1.

In summary,
∑

q∈S dG(q) ≤ (n−4k−4)(3k+5)+(4k+4)(4k+2) = 3kn+4k2+5n−8k−12.

Notice that S can be perturbed so that it becomes non-degenerate. �

C ′

pi− k

2
−2

pj

qi
qj− k

2
−2

Figure 11: Sets of points whose k-DG have 3kn
2 + o(kn) (left) and 3kn+ o(kn) (right) edges.

Let us next look at the maximum number of edges of k-RNG, k-GG, and k-DG. In [1] it is

proved that |E(k-DG(S))| ≤ 3(k+1)n−3(k+1)(k+2). Due to the fact that k-GG(S) ⊆ k-DG(S),

the graph k-GG(S) inherits the upper bound: |E(k-GG(S))| ≤ 3(k + 1)n − 3(k + 1)(k + 2). As

for k-RNG, in Proposition 3.12 we will see that the vertices of k-RNG have degree at most

5(k + 1). This yields that |E(k-RNG(S))| ≤ 5(k+1)n
2 . The number of edges of k-RNG was also

considered in [9], but under no non-degeneracy assumption. As a consequence, their upper

bound |E(k-RNG(S))| ≤ 9(k + 1)n is higher.

Examples of k-RNG and k-GG with a large number of edges are described in the next propo-

sition.

Proposition 3.5. If ω(1) ≤ k ≤ o(n), there exists a set S of n points such that |E(k-RNG(S))| =
3π

4π−3
√
3
nk + o(nk) and |E(k-GG(S))| = 2nk + o(nk).
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Proof. Let ω(1) ≤ d ≤ o(
√
n). Let S be a set of n points arranged in a slightly perturbed unit

square grid of size
√
n×

√
n, so that the points are in general position. First note that two points

qi, qj ∈ S not close to the boundary are neighbors in k-RNG(S) if the area of O-LENS(qi, qj) is

k +Θ(1), that is, if their distance is at most
√

k/(2π/3−
√
3/2) + Θ(1). Let d be the value of

this distance. For the points close to the boundary, that is, at distance at most d from it, their

neighbors in k-RNG(S) consist of those points in S inside a circle of radius at most
√
2d. Thus

all points in S except for those close to the boundary have degree πk/(2π/3−
√
3/2) + Θ(1) in

k-RNG(S). Since only a sublinear number of points in S are close to the boundary, we conclude

that |E(k-RNG(S))| = 3π
4π−3

√
3
nk + o(nk) ' 1.28nk + o(nk).

Except for a similar analysis for the points close to the boundary, two points in S are neigh-

bors in k-GG(S) if their distance is at most 2
√
k/π + Θ(1). Hence all but a sublinear number

of points in S have degree 4k in k-GG(S), and |E(k-GG(S))| = 2nk + o(nk) �

For k-DG we provide a different construction:

Proposition 3.6. For any k ≥ 0 and n ≥ 2k + 3, there exists a point set S such that

|E(k-DG(S))| ≥ 3nk − 9k2 + 2n− 11k − 4.

Proof. Refer to Figure 11 (right). The number of points in the upper group is k+1, and the

lower group contains the same number of points. The remaining points are placed in the middle

group.

In k-DG(S), the points in the upper group form a clique because they can be covered with

a disk that does not contain any other point of S. Analogously, the points in the lower group

form a clique as well. Let q1, q2, . . . , qn−2k−2 be the points in the middle group sorted from left

to right. Each point qi is connected to all upper and lower points, since the circles through

qi with center at the vertical line through qi do not contain any point qj such that j 6= i.

The point qi is also connected to its k predecessors and k successors in the middle group if it

has enough points to its left and right. Consequently, if G = k-DG(S), then
∑

q∈S dG(q) ≥
2(k + 1)(n− k − 2) + (n− 4k − 2)(4k + 2) = 6nk − 18k2 + 4n− 22k − 8.

This construction can be perturbed so that the non-degeneracy assumptions are satisfied. �

3.2 Minimum and maximum degree

We start analyzing the minimum degree.

Proposition 3.7. For every point set S, any vertex of k-NNG(S) has degree k or larger, and at

least one vertex has degree exactly k.

Proof. Since every vertex in k-NNG(S) has out-degree k, it has degree at least k. Let p be

a vertex of k-NNG(S) with maximum k-distance. Then p has no incoming edges that are not

bidirectional. Thus the degree of p in k-NNG(S) is k. �

In the case of k-SNNG, all vertices have degree k or smaller. We can obtain a k-SNNG where

all vertices have degree k by considering the set in Example 3.2.
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For the minimum degree of k-RNG we use the following lemma:

Lemma 3.8. In any angular sector with apex p ∈ S and amplitude α ≤ π/3, the only points

that can be connected to p in k-RNG(S) are the k + 1 closest points to p that are contained in

the sector.

Proof. Let p1, p2, . . . be the points of S that are contained in the sector sorted by increasing

distance to p. For each i ≥ 2, the points p1, p2, . . . , pi−1 are contained in the intersection of the

two disks centered at p and pi with radius |ppi|. (See Figure 12, left.) Consequently, p and pi

are not connected in k-RNG(S) for i− 1 > k. �

p

pi
α

pi

pj

z2

z1

Figure 12: Left: an angular sector with apex p and amplitude α ≤ π/3. Right: each of the five

angular sectors contains at most k + 1 points that are connected to pi in k-RNG(S).

As a corollary, we have that any left-most, right-most, upper-most, or lower-most point of S

has degree not greater than 3k + 3 in k-RNG(S). Thus δ(k-RNG(S)) ≤ 3k + 3. We now show a

construction where all vertices have degree 2k + 2 or more:

Proposition 3.9. For any k ≥ 0 and n ≥ 3k + 4, there exists a set S of n points such that

δ(k-RNG(S)) = 2k + 2.

Proof. Let S = {q1, q2, . . . , qn} denote the set of vertices of a slightly perturbed regular

n-gon (see Figure 13). In k-RNG(S) each point qi is adjacent to {qi−k−1, qi−k, . . . , qi−1, qi+1,

qi+2, . . . , qi+k+1} (arithmetic is taken modulo n). Hence all vertices have degree 2k + 2. �

The upper bounds for the maximum number of edges of k-GG(S) and k-DG(S) and the

handshaking lemma yield that δ(k-GG(S)) ≤ 6k + 5 and δ(k-DG(S)) ≤ 6k + 5. Point sets for

which k-GG and k-DG have large minimum degree are described in Examples 3.10 and 3.11,

respectively.

Example 3.10. Let n be a multiple of 3k + 3. We construct a set S of n points consisting of

copies of the following set of 3k+3 points originally described in [3]. Let P,Q,R be the vertices

of an equilateral triangle. Let P̂Q be the arc of the circle centered at R and having endpoints

22



Figure 13: Point set of Proposition 3.9 for k = 2.

P,Q. Let Q̂R and R̂P be defined analogously. We place k+1 points p1, p2, . . . , pk+1 on P̂Q and

close to P , k + 1 points q1, q2, . . . , qk+1 on Q̂R and close to Q, and k + 1 points r1, r2, . . . , rk+1

on R̂P and close to R (see Figure 14, left). If the positions of the points are carefully chosen,

this group of 3k + 3 points forms a clique in k-GG(S) (see [3] for details). Thus, in particular,

each vertex of k-GG(S) has degree at least 3k + 2 and the chromatic number of the graph is

3k + 3 or greater.

Example 3.11. We describe a set of n points S, where n is multiple of 4k + 4, that is formed

by copies of the following set of 4k + 4 points, described for the first time in [22]. The points

P,Q,R are the vertices of an equilateral triangle, T is the midpoint of R and Q, and S lies on the

vertical line through R and satisfies |RS| = |RP | (see Figure 14, right). There are k + 1 points

p1, p2, . . . , pk+1 on the segment RP and close to P , k+1 points q1, q2, . . . , qk+1 on PQ and close

to Q, k+1 points r1, r2, . . . , rk+1 on QR and close to R, and k+1 points s1, s2, . . . , sk+1 on ST

and close to S. It can be easily shown that this set of 4k + 4 points forms a clique in k-DG(S).
Therefore the minimum degree and the chromatic number of k-DG(S) are at least 4k + 3 and

4k + 4, respectively.

P
Q

R

p1

pk+1

q1

qk+1

r1

rk+1

pi
′
s

qi
′
s

ri
′
s

si
′
s

P

Q

R

S

T

Figure 14: Left: a set of 3k+3 points whose k-GG is the complete graph. Right: a set of 4k+4

points whose k-DG is the complete graph.

We next study the maximum degree. As in the previous section, we give the exact value of

the maximum degree of all graphs.

We start with the maximum degree of k-RNG. A straightforward application of Lemma 3.8

yields that the degree of any vertex in k-RNG(S) is at most 6(k+1). In the next proposition we
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improve this bound:

Proposition 3.12. For every point set S, the vertices of k-RNG(S) have degree at most 5(k+1).

Proof. Let pi be a point in S, and let pj be the neighbor of pi in k-RNG(S) at largest distance

from pi. We define z1 and z2 as the intersection points between the circle centered at pi with

radius |pipj |, and the circle centered at pj with the same radius (see Figure 12, right). Since

pipj ∈ k-RNG(S), O-LENS(pi, pj) contains at most k points from S. Furthermore, as pj is the

furthest neighbor to pi, indeed the angular sector with apex pi and amplitude ẑ2piz1 contains at

most k+1 points that are adjacent to pi. To complete the proof, we observe that the plane can

be divided into the previous angular sector and an angular sector with apex pi and amplitude

4π/3, which in turn can be divided into four angular sectors of amplitude π/3. By Lemma 3.8,

each one of these four sectors contains at most k+1 points that are connected to pi in k-RNG(S).

Thus we conclude that the degree of pi is no greater than 5(k + 1). �

Since k-NNG(S) ⊆ (k − 1)-RNG(S), we also have that ∆(k-NNG(S)) ≤ 5k. To see that

∆(k-NNG(S)) ≤ 5k and ∆(k-RNG(S)) ≤ 5(k + 1) are tight, let q1, q2, . . . , q5 be the vertices of

a regular pentagon and c be its center. Clearly, we can place a set of k − 1 points around each

vertex qi in such a way that c is the kth nearest neighbor of all the points in the construction

and, consequently, it has degree 5k in k-NNG(S) and (k − 1)-RNG(S). The point set as described

can be perturbed to attain general position.

Let us make a final remark on k-GG and k-DG. In the previous section we have described a

point set in general position whose GG and DG contain a vertex of degree n − 1. In k-GG and

k-DG the same vertex has maximum degree as well.

3.3 Chromatic and clique numbers

We apply the minimum degree greedy algorithm (see, for example, [16]) to obtain upper bounds

on the chromatic number of these graphs. In order to do so, we need information on the minimum

degree of the induced subgraphs.

Remark 3.13. Let S be a set of points and G ∈ {k-NNG, k-SNNG, k-RNG, k-GG, k-DG}. If pipj
is an edge of G(S), this edge is also present in G(S \ {pl}) for any pl ∈ S (pl 6= pi, pj). Thus, if

G(S) \S′ is an induced subgraph of G(S), then it is a subgraph of G(S \S′) and δ(G(S) \S′) ≤
δ(G(S \ S′)). Now G(S \ S′) is a proximity graph and δ(G(S \ S′)) ≤ f(k), where different

functions f(k) have been given in the previous subsection.

Applying the minimum degree greedy algorithm, hence, we obtain that χ(k-NNG(S)) ≤ k+1,

χ(k-SNNG(S)) ≤ k + 1, χ(k-RNG(S)) ≤ 3k + 4, χ(k-GG(S)) ≤ 6(k + 1), and χ(k-DG(S)) ≤
6(k + 1). The last two bounds have also been given in [7].

We can construct a k-NNG and a k-SNNG with chromatic number k+1 by placing the points

as in Example 3.2. On the other hand, we can easily obtain cliques of size k + 2 in a k-RNG

(and, consequently, a k-RNG with chromatic number k + 2 or greater) by placing k + 2 initial

points anywhere, drawing all lenses defined by pairs of these points, and placing the remaining

n − (k + 2) points outside the union of the lenses. Finally, the k-Gabriel graph of the set in
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Example 3.10 has chromatic number greater than or equal to 3k + 3, whereas the chromatic

number of the k-Delaunay graph of the construction in Example 3.11 is at least 4k + 4 (see

also [7]).

Let us look at the clique number.

Proposition 3.14. For every point set S, ω(k-NNG(S)) ≤ k + 1. This bound is tight.

Proof. Let p1, p2, . . . , pl be the vertices in a clique of maximum size in k-NNG(S) sorted in

increasing order of k-distance (choose any order if there are ties). If for some h < l we have that
−−→phpl ∈ k-NNG(S), then |phpl| ≤ k − dist (ph) ≤ k − dist (pl) and

−−→plph ∈ k-NNG(S). Thus in the

clique pl has no incoming edges that are not bidirectional. Consequently, l ≤ k + 1.

A clique number of k + 1 is attained by the construction in Example 3.3. �

As a corollary, we obtain that ω(k-SNNG(S)) ≤ k + 1. We have seen in previous examples

that this bound is tight.

Proposition 3.15. For every point set S, ω(k-RNG(S)) ≤ k + 2. There exist examples where

this value is achieved.

Proof. Let Sω = {p1, p2, . . . , pl} be the vertices in a clique of maximum size in k-RNG(S). Let

i, j be indices such that {pi, pj} is a diametral pair of this set. Then all the remaining points in

Sω lie in C-LENS(pi, pj). In fact, since we assume that the set of k nearest points in S of pi and

pj has cardinality k for any k ≥ 1, we have that all points in Sω \ {pi, pj} lie in O-LENS(pi, pj).

But there are at most k such points, because pipj ∈ k-RNG(S). Therefore l ≤ k + 2.

As for the second part of the statement, when discussing the chromatic number of k-RNG

we have described a simple way to obtain cliques of size k + 2 in this graph. �

The problem of delimiting the size of the maximum clique that might be a subgraph of

k-DG(S) is closely related to the following open problem (see [33]): what is the largest number

Π(n) such that for every set S of n points in the plane, there exist two points pi, pj ∈ S, where

every circle (the interior and the boundary) containing pi and pj contains Π(n) points of S? It

is known that Π(n) ≥ n+1
2 −

√
(n−2)2−1

12 ≥ n
4.74 [19]. On the other hand, Π(n) ≤

⌈
n
4

⌉
+1 because

there exists a set S of n points in the plane such that, for every pair qi, qj ∈ S, there exists a

circle containing them that contains at most
⌈
n
4

⌉
− 1 additional points of S [22] (in fact, this is

Example 3.11). As a corollary, we obtain

Corollary 3.16. For every point set S, we have ω(k-DG(S)) ≤ 4.74k + 14. For any n ≥ 4 and

k ≤
⌈
n
4

⌉
− 1, there exist sets of n points in the plane whose k-Delaunay graph contains a clique

of size 4k + 4.

Proof. Assume, for the sake of contradiction, that there exists a set S such that k-DG(S)

contains a clique of size greater than or equal to 4.74k + 15. Let S′ be a subset of cardinality

n′ = 4.74k + 15 of the vertices of this clique. By Remark 3.13, k-DG(S′) is the complete graph.

Since Π(n′) ≥ n′

4.74 , there exists pi, pj ∈ S′ such that every circle containing pi and pj contains
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at least n′

4.74 − 2 additional points of S′. Consequently, for all values of k′ such that k′ < n′

4.74 − 2

we have that pipj /∈ k′-DG(S′). Now k ≈ n′

4.74 − 3.16 < n′

4.74 − 2, which yields the contradiction.

The second part of the statement follows from the example proving Π(n) ≤
⌈
n
4

⌉
+1, described

in [22]. �

Analogously, the question of determining the size of the maximum clique that might be a

subgraph of k-GG(S) is related to a variant of the problem of delimiting Π(n) that consists of

restricting the set of circles though pi, pj ∈ S to the diametral circle. This variant is solved. In

particular, it is known [3] that for every set S of n points in the plane, there exist two points

pi, pj ∈ S such that |C-DISC(pi, pj) ∩ (S \ {pi, pj})| ≥
⌈
n
3

⌉
− 1. Additionally, there exists a set

S of n points in the plane such that, for every pair qi, qj ∈ S, |C-DISC(qi, qj) ∩ (S \ {qi, qj})| ≤⌈
n
3

⌉
− 1 [3] (this is Example 3.10). From this we can derive the exact size of a maximal clique

in k-GG :

Corollary 3.17. For every point set S, ω(k-GG(S)) ≤ 3k + 3. For any n ≥ 3 and k ≤
⌈
n
3

⌉
− 1,

there exist sets of n points in the plane whose k-Gabriel graph contains a clique of size 3k + 3.

4 Concluding remark

We have reviewed graph-theoretic properties of some proximity graphs of the family of the

Delaunay graph, and presented new bounds. The natural open problem is to close the gaps

between the lower and upper bounds that do not match.
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Pedro Ramos. On structural and graph theoretic properties of higher order Delaunay

graphs. Internat. J. Comput. Geom. Appl., 19(6):595–615, 2009.
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