
39

A Linear-Time Algorithm to Find a Separator in a Graph

Excluding a Minor

BRUCE REED

McGill University and Centre National de la Recherche Scientifique

AND

DAVID R. WOOD

The University of Melbourne

Abstract. Let G be an n-vertex m-edge graph with weighted vertices. A pair of vertex sets A, B ⊆
V (G) is a 2

3 -separation of order |A ∩ B| if A ∪ B = V (G), there is no edge between A − B and
B − A, and both A − B and B − A have weight at most 2

3 the total weight of G. Let � ∈ Z
+ be fixed.

Alon et al. [1990] presented an algorithm that in O(n1/2m) time, outputs either a K�-minor of G, or
a separation of G of order O(n1/2). Whether there is a O(n + m)-time algorithm for this theorem
was left as an open problem. In this article, we obtain a O(n + m)-time algorithm at the expense of
a O(n2/3) separator. Moreover, our algorithm exhibits a trade-off between time complexity and the
order of the separator. In particular, for any given ε ∈ [0, 1

2 ], our algorithm outputs either a K�-minor
of G, or a separation of G with order O(n(2−ε)/3) in O(n1+ε + m) time. As an application we give a
fast approximation algorithm for finding an independent set in a graph with no K�-minor.
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1. Introduction

This article presents a linear-time algorithm for finding a separator in graphs ex-
cluding a fixed minor.

A separation of a graph1 G is a pair {A, B} of vertex sets A, B ⊆ V (G) such
that A ∪ B = V (G), and there is no edge between A − B and B − A, as illustrated
in Figure 1. The order of {A, B} is |A ∩ B|. The set A ∩ B is called a separator
of G. A weighting of G is a function w : V (G) → R

+. Let w(S) := ∑
v∈S w(v)

for all S ⊆ V (G), and let w(G) := w(V (G)). We say (G, w) is a weighted graph.
A separation {A, B} of a weighted graph (G, w) is a β-separation if w(A − B) ≤
β · w(G) and w(B − A) ≤ β · w(G).

A “separator theorem” is of the format: For some 0 < β < 1 and 0 < ε ≤ 1, every
graph G from a certain family has a β-separation of order O(|G|1−ε). Applications
of separator theorems are numerous, and include VLSI circuit layout [Leiserson
1980], approximation algorithms using the divide-and-conquer paradigm [Chiba
et al. 1981; Lipton and Tarjan 1980], solving sparse systems of linear equations
[Lipton et al. 1979], pebbling games [Lipton and Tarjan 1980], and graph drawing
[Dujmović and Wood 2004]. See the monograph by Rosenberg and Heath [2001]
for more details.

A seminal theorem due to Lipton and Tarjan [1979] states that every weighted
planar graph G has a 2

3 -separation of order O(|G|1/2) that can be computed in
O(|G|+‖G‖) time. The importance of this result cannot be overstated, as suggested
by the amount of effort that has gone into improving the constant in the O(|G|1/2)
bound [Chung 1991; Djidjev 1982; Alon et al. 1994; Venkatesan 1987; Djidjev
1987]. Many other aspects of separators in planar graphs have been studied. For
example, Miller [1986] proved that every 2-connected planar graph has a cycle
separator, and Djidjev and Venkatesan [1997] improved the constants. Aleksandrov
et al. [2006] and Djidjev [2000] considered separators in planar graphs whose order
is measured in terms of associated vertex costs.

Djidjev and Gilbert [1999] considered separators in graphs with negative and
multiple weights. Separators in certain geometric graphs have been studied by
Miller et al. [1997] and Smith and Wormald [1998]. Plaisted [1990] developed
a heuristic for finding separators in arbitrary graphs. Edge separators have been
studied by Sýkora and Vřt́o [1993] and Diks et al. [1993]. Alber et al. [2003]
studied separators from the perspective of the theory of fixed parameter tractability.
Approximation algorithms for separators are also well studied [Garg et al. 1999;
Feige and Mahdian 2006; Arora et al. 2004; Amir et al. 2003; Even et al. 2000;
Even et al. 1999; Bodlaender et al. 1995].

1 We consider graphs G that are simple, finite, and undirected. Let V (G) and E(G) denote the vertex
and edge sets of G. Let |G| := |V (G)| and ‖G‖ := |E(G)|. For a set S ⊆ V (G), let G[S] denote the
subgraph of G induced by S. For each vertex v ∈ V (G), let N (v) := {w ∈ V (G) : vw ∈ E(G)} be
the set of neighbors of v. For each subgraph X of G, let N (X ) := ⋃{N (v) − V (X ) : v ∈ V (X )}. For
n ∈ Z

+, let [n] := {1, 2, . . . , n}.

ACM Transactions on Algorithms, Vol. 5, No. 4, Article 39, Publication date: October 2009.



A Linear-Time Algorithm to Find a Separator in a Graph 39:3

FIG. 1. A separation {A, B}.
The theorem of Lipton and Tarjan was generalized to graphs with genus γ by

Gilbert et al. [1984] and Djidjev [1987, 1985b, 1981]. They proved that such graphs
G have a separation of order O(γ 1/2 · |G|1/2), which can be computed in linear time
[Djidjev 1985a; Aleksandrov and Djidjev 1996]. The special case of toroidal graphs
was considered by Aleksandrov and Djidjev [1989].

Perhaps the most general setting for separator theorems is for graphs excluding a
fixed minor, as studied by Alon et al. [1990b], Plotkin et al. [1994], Grohe [2003],
and Demaine and Hajiaghayi [2008a, 2008b, 2005]. A graph H is a minor of a
graph G if a graph isomorphic to H can be obtained from a subgraph of G by
contracting edges, in which case we say that G contains an H-minor. An H-model
in G is a set of disjoint connected subgraphs {Xv : v ∈ V (H )} indexed by the
vertices of H , such that for every edge vw ∈ E(H ), there is an edge xy ∈ E(G)
with x ∈ Xv and y ∈ Xw. Clearly G contains an H -minor if and only if G contains
an H -model. For algorithmic purposes, we choose to work with H -models rather
than H -minors. Graph classes defined by an exluded minor are often of interest.
For example, the Kuratowski-Wagner theorem states that a graph is planar if and
only if it contains no K5-minor and no K3,3-minor. Alon et al. [1990b] proved
the following generalization of the Lipton-Tarjan separator theorem for graphs
excluding an arbitrary minor.

THEOREM 1.1. [ALON ET AL. 1990B]. There is an algorithm that, given � ∈ Z
+

and a weighted graph (G, w), outputs either:

(a) a K�-model of G, or
(b) a 2

3 -separation of (G, w) of order at most �3/2 · |G|1/2

in time O((� · |G|)1/2 · (|G| + ‖G‖)).

Suppose that � is fixed. It follows from a result of Mader [1967] that Theorem 1.1
can be implemented in O(|G|3/2 +‖G‖) time; see Theorem 2.3. Alon et al. [1990b]
left as an open problem whether linear O(|G| + ‖G‖) time is possible. The main
result of this article is the following partial answer to this question. We obtain linear
time complexity at the expense of a slightly larger separator (and larger dependence
on �). Moreover, our algorithm exhibits a trade-off between time complexity (rang-
ing from O(n) to O(n3/2)) and the order of the separator (ranging from O(n2/3) to
O(n1/2)).

THEOREM 1.2. There is an algorithm that, given ε ∈ [0, 1
2 ], � ∈ Z

+, and a
weighted graph (G, w), outputs either:
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(a) a K�-model of G, or

(b) a 2
3 -separation of (G, w) of order at most �3/2 · 2(�2+4)/2 · |G|(2−ε)/3

in time O(� · 2(3�2+2�+6)/2 · |G|1+ε + � · ‖G‖).

Note that for applications to divide-and-conquer algorithms a separation of order
O(|G|1−ε), for some constant ε > 0, is all that is needed. For example, in Section 5
we apply Theorem 1.2 to obtain an approximation algorithm for the maximum
independent set problem on graphs excluding a fixed minor that runs in near-linear
time and has diminishing relative error. (A set of vertices I in a graph is inde-
pendent if no two vertices in I are adjacent.) Theorem 1.2 has also recently been
applied by Tazari and Müller-Hannemann [2009] and Yuster [2008] to obtain im-
proved shortest-paths algorithms for graphs excluding a fixed minor, and by Yuster
and Zwick [2007] to obtain the fastest known algorithm for finding a maximum
matching in a graph excluding a fixed minor.

We now outline the idea behind the proof of Theorem 1.2 for fixed � and with ε =
0. Suppose that inO(|G|+‖G‖) time, we can find a partition {S1, S2, . . . , S|G|2/3} of
V (G), such that each Si induces a connected subgraph of G withO(|G|1/3) vertices.
Let H be the weighted graph obtained from G by contracting each subgraph G[Si ]
to a vertex vi with weight w(vi ) = w(Si ). Then apply Theorem 1.1 to H to obtain
either a K�-model in H which defines a K�-model in G, or a 2

3 -separation {A, B}
of H with order O(|H |1/2) = O(|G|1/3), in which case {⋃{Si : vi ∈ A}, ⋃{Si :
vi ∈ B}} is a 2

3 -separation of G with order O(|G|2/3). The time complexity is
O(|H |3/2 + ‖H‖) ⊆ O(|G| + ‖G‖).

The proof of Theorem 1.2 is actually a little different from this outline. In partic-
ular, the subgraphs G[Si ] will not necessarily be connected. However, the partition
of V (G) will be “knitted” (see Section 4 for the definition), which will enable the
output from Theorem 1.1 applied to H to be converted to the desired output for
G. By relaxing the connectivity condition, we are able to prove that an appropriate
partition exists.

In Section 2 we give an algorithmic version of a theorem of Mader [1967],
which is used in Section 3 to prove an upper bound on the number of cliques in a
graph excluding a minor. The main steps in the proof of Theorem 1.2 are presented
in Section 4.

2. Mader’s Theorem

Mader [1967] proved that every sufficiently dense graph contains a large complete
graph as a minor. In this section we prove the following algorithmic version of this
result. Note that Robertson and Seymour [1995, page 85] proved a similar result
with quadratic time complexity.

THEOREM 2.1. Given a graph G with ‖G‖ ≥ 2�−3 · |G| for some � ∈ Z
+, a

K�-model in G can be computed in O(�(|G| + ‖G‖)) time.

Note that if we ignore the time complexity, Theorem 2.1 is far from best possible.
Kostochka [1982, 1984] and Thomason [1984] independently proved that if ‖G‖ ∈
�(�

√
log � · |G|) then G contains a K�-model. In particular, Thomason [2001]

proved that if ‖G‖ ≥ (δ + o(1))�
√

log � · |G|, where δ = 0.319 . . . is a constant,
then G contains a K�-model.
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FIG. 2. Illustration of the proof of Lemma 2.2.

The proof of Theorem 2.1 is based on the following lemma.

LEMMA 2.2. The following algorithm, given a graph G with ‖G‖ ≥ t · |G|
for some t ∈ Z

+, outputs a connected nonempty induced subgraph X of G in time
O(|G| + ‖G‖), such that G[N (X )] has minimum degree at least t .

1: let U be a component of G with ‖U‖ ≥ t · |U |
2: initialize X := G[{v}] for some vertex v ∈ V (U )
3: while some vertex y ∈ N (X ) has degree at most t − 1 in G[N (X )] do
4: X := G[V (X ) ∪ {y}]
5: end while
6: output X

PROOF. To prove the correctness of the algorithm it suffices to show that, upon
termination, X �= U and N (X ) �= ∅, implying that G[N (X )] has minimum degree
at least t . We do so, by showing that the invariant

e(X ) ≤ t(|X | − 1) + |N (X )| (1)

is maintained, where e(X ) is the number of edges of U with at least one endpoint
in X . Certainly (1) holds when X = {v}, in which case e(X ) = |N (X )| = deg(v).
Now suppose that (1) holds for some subgraph X of U , and y ∈ N (X ) has degree
at most t − 1 in G[N (X )]. Let X ′ := G[V (X ) ∪ {y}]. Partition N (y) − V (X ) into
two sets, B := N (y) ∩ N (X ) and C := N (y) − (V (X ) ∪ N (X )), as illustrated in
Figure 2. Since |B| ≤ t − 1 and N (X ′) = (N (X ) − {y}) ∪ C ,

e(X ′) = e(X ) + |B| + |C | ≤ t(|X | − 1) + |N (X )| + t − 1 + |C |
= t · |X | + |N (X ′)|.

That is, (1) is satisfied for X ′. Hence (1) is maintained throughout the algorithm.
Now observe that e(U ) = ‖U‖ ≥ t · |U | and N (U ) = ∅. Thus (1) is not satisfied
for X = U . Hence, upon termination, X �= U and N (X ) �= ∅, and the algorithm
computes X and N (X ) as claimed.

The algorithm can be implemented in O(|G| + ‖G‖) time by maintaining the
set V (X ), the set N (X ), the degree of each vertex in G[N (X )], and a list L of
the vertices in N (X ) with degree at most t − 1 in G[N (X )]. Whenever a vertex is
moved from N (X ) into X or from V (U ) − (X ∪ N (X )) into N (X ), we traverse its
list of neighbors, updating the degree within N (X ), and if necessary updating the
list L . Thus, each list of neighbors is traversed O(1) times. Thus the algorithm can
be implemented in O(|G|+ ‖G‖) time. We omit the routine description of the data
structure manipulation necessary.
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PROOF OF THEOREM 2.1. Theorem 2.1 is trivial for � ≤ 2. Now assume that
� ≥ 3. Applying Lemma 2.2 with t = 2�−3 (≥ 1), we obtain a nonempty connected
subgraph X of G such that G[N (X )] has minimum degree at least 2�−3. Thus
‖G[N (X )]‖ ≥ 2�−4|N (X )|. By induction, there is a K�−1-model in G[N (X )]. Since
every vertex in N (X ) is adjacent to some vertex in X , this K�−1-model along with
X forms a K�-model in G. There are � applications of Lemma 2.2, each requiring
O(|G| + ‖G‖) time.

Theorem 2.1 implies the following slightly faster version of Theorem 1.1 (for
fixed �).

THEOREM 2.3. There is an algorithm that, given � ∈ Z
+ and a weighted graph

(G, w), outputs either:

(a) a K�-model of G, or
(b) a 2

3 -separation of (G, w) of order at most �3/2 · |G|1/2

in time O(� · 2� · |G|3/2 + � · ‖G‖).

PROOF. If ‖G‖ ≥ 2�−3|G|, then a K�-model in G can be found in O(�(|G| +
‖G‖)) time by Theorem 2.1. Otherwise ‖G‖ < 2�−3|G|, and the result follows
from Theorem 1.1.

3. Cliques in Graphs Excluding a Minor

A critical aspect of the proof of our main result (Theorem 1.2) is an upper bound
on the number of cliques in a graph excluding a given minor. We prove this bound
in this section.

Let G be a graph. A k-clique of G is a (not necessarily maximal) set of k pairwise
adjacent vertices of G. If every subgraph of G has a vertex of degree at most d,
then G is d-degenerate. For example, Theorem 2.1 implies that a graph with no
K�-minor is 2�−2-degenerate.

We have the following crude bound on the number of cliques in a degenerate
graph; see Wood [2007] and Norine et al. [2006] for similar results.

LEMMA 3.1. A d-degenerate graph G with no k-clique has fewer than dk−1·|G|
cliques.

PROOF. Since G is d-degenerate, we can order the vertices so that each vertex
v has at most d neighbors to the left of v. Thus for all i ∈ [k −1], every vertex is the
rightmost vertex of at most

( d
i−1

) ≤ di−1 cliques on i vertices. Thus every vertex is

the rightmost vertex of at most
∑k−1

i=1 di−1 < dk−1 cliques. The result follows.

For example, a graph G with no K�-minor has fewer than 2(�−2)(�−1) · |G| cliques.

LEMMA 3.2. Given a graph G with no k-clique and at least 2(�−2)(k−1) · |G|
cliques for some �, k ∈ Z

+, a K�-minor of G can be computed in O(�(|G|+ ‖G‖))
time.

PROOF. By Lemma 3.1 with d = 2�−2, G is not 2�−2-degenerate. By
Lemma A.1 in Appendix A, a subgraph H of G with minimum degree greater
than 2�−2 can be computed in O(|G| + ‖G‖) time. Now ‖H‖ > 2�−3 · |H |.
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FIG. 3. A knitted C4-partition; each disc represents a connected component of a part of the partition.

Thus, by Theorem 2.1, a K�-model in H , and hence in G, can be computed in
O(�(|H | + ‖H‖)) time.

4. Proof of Theorem 1.2

Let G and H be graphs. An H-partition of G is a proper partition {Sv ⊆ V (G) : v ∈
V (H )} of V (G) indexed by the vertices of H , such that for all distinct v, w ∈ V (H ),
we have vw ∈ E(H ) if and only if there is an edge of G between Sv and Sw. Let
Gv denote the induced subgraph G[Sv] for each v ∈ V (H ). An H -partition of G
is knitted if for all distinct v, w ∈ V (H ), we have vw ∈ E(H ) if and only if there
is an edge of G between each component of Gv and each component of Gw, as
illustrated in Figure 3.

The following lemma, proved shortly, is the heart of the proof of our main result
(Theorem 1.2).

LEMMA 4.1. There is an algorithm that, given �, k ∈ Z
+ and a graph G,

outputs a knitted H-partition of G in time O(22� · |G| + ‖G‖), such that either:

(a) H contains a K�-model (which is also output), or
(b) |H | ≤ 2�2+2 · |G| · k−1, and |Gx | < 2k for all x ∈ V (H ).

Recall the main result of the article.

THEOREM 1.2. There is an algorithm that, given ε ∈ [0, 1
2 ], � ∈ Z

+, and a
weighted graph (G, w), outputs either:

(a) a K�-model of G, or
(b) a 2

3 -separation of (G, w) of order at most �3/2 · 2(�2+4)/2 · |G|(2−ε)/3 in time
O(� · 2(3�2+2�+6)/2 · |G|1+ε + � · ‖G‖).

PROOF OF THEOREM 1.2 ASSUMING LEMMA 4.1. Apply Lemma 4.1 with k =
�|G|(1−2ε)/3�. We obtain a knitted H -partition of G.
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First suppose that case (a) in Lemma 4.1 holds. Thus H contains a K�-model
{S1, S2, . . . , S�}, where each Si is a connected subgraph of H . Choose a connected
component Zv of Gv for each v ∈ V (H ). For i ∈ [�], let Ti be the induced
subgraph G[

⋃{V (Zv) : v ∈ V (Si )}]. Since the Si subgraphs are pairwise disjoint,
the Ti subgraphs are pairwise disjoint. Since each Si is connected in H and each Zv

is connected in G, each Ti subgraph is connected in G. Since the Si subgraphs are
pairwise adjacent, {T1, T2, . . . , T�} is a K�-model of G, and case (a) in Theorem 1.2
is satisfied.

Now assume that case (b) in Lemma 4.1 holds. Then

|H | ≤ 2�2+2 · |G| · k−1 ≤ 2�2+2 · |G|2(1+ε)/3,

and for all x ∈ V (H ),

|Gx | < 2k ≤ 2|G|(1−2ε)/3.

Let w(v) := w(Gv) for all v ∈ V (H ). Apply Theorem 2.3 to (H, w). The time
complexity is

O(� · 2� · |H |3/2 + � · ‖H‖) ⊆ O(� · 2� · (2�2+2 · |G|2(1+ε)/3)3/2 + � · ‖G‖)

⊆ O(� · 2(3�2+2�+6)/2 · |G|1+ε + � · ‖G‖).

We obtain either a K�-model of H , or a 2
3 -separation of H with order at most

�3/2 · |H |1/2. In the first case, G contains a K�-model as proved before, and we are
done.

Now assume that Theorem 2.3 gives a 2
3 -separation {A, B} of (H, w) with order

|A ∩ B| ≤ �3/2 · |H |1/2 ≤ �3/2 · (2�2+2 · |G|2(1+ε)/3)1/2

≤ �3/2 · 2(�2+2)/2 · |G|(1+ε)/3.

Let X := ⋃{V (Gv) : v ∈ A} and Y := ⋃{V (Gv) : v ∈ B}. Then {X, Y } is a
separation of G. Since |Gv| < 2|G|(1−2ε)/3 the order of this separation is

|X ∩ Y | =
∑

v∈A∩B

|Gv| ≤ �3/2 · 2(�2+2)/2 · |G|(1+ε)/3 · 2|G|(1−2ε)/3

≤ �3/2 · 2(�2+4)/2 · |G|(2−ε)/3.

We have w(X − Y ) = w(A − B) ≤ 2
3w(H ) = 2

3w(G). Similarly w(B − A) ≤
2
3w(G). Therefore {X, Y } is a 2

3 -separation of G.

It remains to prove Lemma 4.1.

PROOF OF LEMMA 4.1. Step 1. Initial Partition: Using a linear-time breadth-first
search algorithm, compute a maximal set A of pairwise disjoint subsets of V (G),
such that G[S] is connected and |S| = k for each S ∈ A. Let B be the set of vertex
sets of the connected components of G − ⋃{S : S ∈ A}. Then A∪B is a partition
of V (G).

Step 2. Constuction of H : Let H be the graph such that A ∪ B is an H -partition
of G. Since Gv is connected for each v ∈ V (H ), this H -partition is knitted. Let
A := {v ∈ V (H ) : V (Gv) ∈ A} and B := {v ∈ V (H ) : V (Gv) ∈ B}. A vertex v of
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H is big if |Gv| ≥ k. A vertex v of H is small if |Gv| < k. By construction, every
vertex in A is big, B is an independent set of H , and every vertex in B is small.

Step 3. Partition of B: Partition B = C ∪ D ∪ E as follows.

C := {v ∈ B : degH (v) ≥ 2�−2}
D := {v ∈ B : � − 1 ≤ degH (v) < 2�−2}
E := {v ∈ B : degH (v) ≤ � − 2}

Suppose that |C | ≥ |A|. Then H [C ∪ A] has at least 2�−2 · |C | edges and at
most 2|C | vertices. By Theorem 2.1, a K�-model of H [C ∪ A] can be computed in
O(� · |G|) time, and we are done. Now assume that |C | < |A|.

Step 4. Assignment: “Assign” vertices in D ∪ E to pairs of distinct vertices in A
as follows. Let

(A
2

)
:= {{x, y} : x, y ∈ A and x �= y} be the set of pairs of distinct

vertices in A. Let Q be the bipartite graph with vertex set V (Q) := (A
2

) ∪ (D ∪ E),
where {x, y} ∈ (A

2

)
is adjacent to v ∈ D ∪ E in Q if and only if x, y ∈ NH (v).

Since each vertex in D ∪ E has degree at most 2�−2 in H , each vertex in D ∪ E
has degree at most 22�−4 in Q, and Q can be constructed in O(22� · |G|) time.

Now apply the following greedy algorithm to construct a maximal matching M in
Q. (M need not be maximum.) Formally, M is a partial function from V (Q) to E(Q),
with M initially undefined everywhere. For each vertex v ∈ D∪E in arbitrary order,
if v is incident to an edge {{x, y}, v} ∈ E(Q), such that no edge in M is incident to
{x, y}, then add (one such edge) {{x, y}, v} to M . Formally, if M({x, y}) is undefined
for some edge e = {{x, y}, v} ∈ E(Q), then set M({x, y}) := M(v) := e. We say
that v is assigned to the pair {x, y}. Since each vertex in D ∪ E has degree at most
22�−4 in Q, this step can be implemented in O(22� · |G|) time.

Suppose that there is a vertex v ∈ D that is not assigned; that is, M(v) is
undefined. Let {x1, x2, . . . , xd} be the neighborhood of v. Then d ≥ � − 1. Thus
for all distinct i, j ∈ [d], there is a distinct vertex vi, j ∈ D ∪ E that is assigned to
the pair {xi , x j }, and vi, j is adjacent to both xi and x j . In the graph obtained from
H by contracting each edge xivi, j , the subgraph {x1, x2, . . . , xd, v} is a clique on
d + 1 ≥ � vertices. Thus H contains a K�-model, and we are done. This K�-model
can be computed in O(22�) time (since d < 2�, and the vertex assigned to a given
pair {xi , x j } can be determined from M in O(1) time). Hence this step has time
complexity O(|G| + 22�). Now assume that every vertex in D is assigned.

Let E∗ be the set of assigned vertices in E . Consider the graph obtained from
H [A ∪ D ∪ E∗] by contracting the edge vx for each v ∈ D ∪ E∗ assigned to
the pair {x, y}. This graph has |A| vertices and at least |D| + |E∗| edges. Thus if
|D| + |E∗| ≥ 2�−3 · |A|, then by Theorem 2.1, H contains a K�-model that can
be computed in O(� · |G|) time, and we are done. Now assume that |D| + |E∗| <
2�−3 · |A|.

In total, Step 4 has O(22� · |G|) time complexity.

Step 5. Handling Unassigned Vertices in E : Partition

E − E∗ =
⋃

{P1, P2, . . . , Ps}
such that for all u, v ∈ E − E∗, we have N (u) = N (v) if and only if both u, v ∈ Pi
for some i ∈ [s]. By Lemma A.2 in Appendix A, since every vertex in E − E∗ has
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degree at most � − 2 in H , this partition can be computed in O(� · |H |) time. For
all i ∈ [s], partition Pi = ⋃{Pi,1, Pi,2, . . . , Pi,ti } such that

k ≤ ∣∣ ⋃{Gv : v ∈ Pi, j }
∣∣ < 2k for all j ∈ [ti − 1], and∣∣ ⋃{Gv : v ∈ Pi,ti }
∣∣ < k.

This is possible since |Gv| < k for all v ∈ Pi , and can trivially be implemented in
O(|H |) time.

We now determine a new partition of G indexed by a graph H ′ constructed from
H . Collapse each set Pi, j of vertices in H into a single vertex pi, j in H ′, whose
associated subgraph in G is G pi, j := ⋃{Gv : v ∈ Pi, j }. The parts A, C , D, and E∗

remain unchanged in H ′. Since the vertices in Pi, j have the same neighborhood,
{Gv : v ∈ V (H ′)} is a knitted partition of G. Let Ebig = {pi, j : i ∈ [s], j ∈ [ti −1]}
and Esmall = {pi,ti : i ∈ [s]}. Then every vertex in Ebig is big and every vertex in
Esmall is small.

Suppose that |Esmall| ≥ 2�2 · |A|. Let X be the graph with vertex set A obtained
by adding a clique with vertex set NH ′(v) for each vertex v ∈ Esmall. Since each
such vertex v has degree at most �, the graph X can be constructed in O(�2|H ′|)
time.

We now use this auxillary graph X to show that, in this case, H ′ contains a
K�-minor. By construction, X has |A| vertices and at most �2 · |H | edges, and since
distinct vertices in Esmall have distinct neighborhoods, X has at least |Esmall| ≥
2�2 · |A| cliques. Thus by Lemma 3.2, a K�-model of X can be computed in time
O(� · (|X | + ‖X‖)), which is O(�3 · |H |).

For every edge xi x j in this K�-model in X , we have xi , x j ∈ N (v) for some
v ∈ Esmall. Since v is not assigned, there is a vertex u ∈ D∪ E∗ assigned to {xi , x j },
and u is adjacent to both xi and x j . In particular, M({xi , x j }) = {{xi , x j }, u} and u
can be computed in O(1) time. Since u is not in the K�-model, we can include u in
the connected subgraph of the K�-model that contains xi or x j , to obtain a K�-model
in H ′[A ∪ D ∪ E∗] (without the edge xi x j ), and we are done. Now assume that
|Esmall| < 2�2 · |A|.

In total, Step 5 has time complexity O(�2 · |H | + � · (|X | + ‖X‖)) ≤
O(�3 · |G|),

Step 6. Wrapping Up: As illustrated in Figure 4, we have now partitioned V (H ′)
into sets A ∪ Ebig of big vertices, and sets C ∪ D ∪ E∗ ∪ Esmall of small vertices.
We have proved that |C | < |A|, |D| + |E∗| < 2�−3 · |A|, and |Esmall| < 2�2 · |A|.
Thus the number of small vertices is less than (1 + 2�−3 + 2�2

) · |A|. By definition,
the number of big vertices in H ′ is at most |G| · k−1. In particular, |A| ≤ |G| · k−1.
Thus

|H ′| ≤ (1+2�−3+2�2
)·|A|+|G|·k−1 ≤ (2+2�−3+2�2

)·|G|·k−1 ≤ 2�2+2 ·|G|·k−1.

Moreover, |H ′
v| < 2k for every vertex v ∈ V (H ′).

The time complexity isO(�·|G|+‖G‖) for Steps 1–3, plusO(22� ·|G|) for Step 4,
plusO(�3 · |G|) for Step 5. Thus the total time complexity isO(22� · |G|+‖G‖).
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FIG. 4. The partition of V (G) in the proof of Lemma 4.1.

5. Application: Independent Sets

The cardinality of a maximum independent set in a graph G is denoted by α(G).
Determining whether α(G) ≥ k is a classical NP-complete problem, and is even
hard to approximate in general [Engebretsen and Holmerin 2000; Håstad 1999].
On the other hand, Lipton and Tarjan [1980] showed that separators can be used
as the basis for an approximation algorithm for finding independent sets in planar
graphs. Using similar ideas, Alon et al. [1990a] outlined an O(|G|1/2 · ‖G‖)-time
approximation algorithm for finding an independent set in a graph excluding a
fixed minor. We improve the time complexity of their algorithm to nearly linear as
follows.

THEOREM 5.1. For fixed �, there is an algorithm that, given a graph G with no
K�-minor, computes an approximation to the maximum independent set of G with
relative error O((log log |G|)−1/3) in time O(|G| log |G| + ‖G‖).

The proof of Theorem 5.1 depends on the following lemma.

LEMMA 5.2. For fixed �, the following algorithm, given ε ∈ [0, 1] and a
weighted graph (G, w) with no K�-minor and total weight w(G) ≤ 1, outputs
a set S of O(|G|2/3ε−1/3) vertices of G in time O(|G| log |G| + ‖G‖), such that
every connected component of G − S has weight at most ε.
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FIG. 5. Illustration of the computation of S in Lemma 5.2.

1: if ε ≤ |G|−1 then

2: S := V (G)
3: else

4: S := ∅
5: while there is a component P of G − S with weight exceeding ε do

6: let {A, B} be a separation of P determined by Theorem 1.2 (with ε = 0)
7: S := S ∪ (A ∩ B)
8: end while

9: end if

10: output S

PROOF. If ε ≤ |G|−1 then S := V (G) satisfies the requirements. Now assume
that ε > |G|−1. Consider a component P of G − S at some stage of the algorithm.
If P is a component of G − S at the termination of the algorithm, then we say P
has level 0. Otherwise Theorem 1.2 was applied to P at same stage, to obtain a
separation {A, B} of P . Thus w(A − B) ≤ 2

3w(P) and w(B − A) ≤ 2
3w(P). Each

component of P − (A ∩ B) is also a component of G − S at some stage of the
algorithm. Define the level of P to be 1 plus the maximum level of a component of
P − (A ∩ B). Observe that two components with the same level are disjoint.

Each level 1 component has weight greater than ε, and in general, each level-i
component has weight at least ( 3

2 )i−1ε. Since the total weight of G is at most 1,
there are at most ( 2

3 )i−1ε−1 level-i components. Let k be the maximum level. Then
1 ≤ ( 2

3 )k−1ε−1 ≤ ( 2
3 )k−1|G|, which implies that k ≤ 1 + log3/2 |G|. Since the time

complexity of Theorem 1.2 is linear for fixed �, and since two components at the
same level are disjoint, the total time complexity is O(|G| log |G| + ‖G‖).

It remains to prove the upper bound on |S|. Let P1, P2, . . . , Pt be the com-
ponents at level i . By Theorem 1.2, the number of vertices added to S by split-
ting P1, P2, . . . , Pt is at most O(

∑t
j=1 |Pj |2/3). We have t ≤ ( 2

3 )i−1ε−1 and∑t
j=1 |Pj | ≤ |G|. For fixed t , the sum

∑t
j=1 |Pj |2/3, subject to

∑t
j=1 |Pj | ≤ |G|,
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is maximized when |Pj | = |G| · t−1 for all j . Thus

t∑
j=1

|Pj |2/3 ≤
t∑

j=1

(|G| · t−1)2/3 = t1/3 · |G|2/3 ≤
((

2
3

)i−1
ε−1

)1/3
· |G|2/3.

Hence

|S| ∈ O
(

k∑
i=1

(
2
3

)(i−1)/3 · ε−1/3 · |G|2/3

)
⊆ O(|G|2/3ε−1/3).

PROOF OF THEOREM 5.1. Apply Lemma 5.2 with ε := (log2 log2 |G|) · |G|−1,
and with each vertex having weight |G|−1. We obtain a set S of O(|G| ·
(log log |G|)−1/3) vertices of G such that every component of G − S has weight
at most ε; that is, every component of G − S has at most log2 log2 |G| vertices.
In each component of G − S, find a maximum independent set by checking every
subset of the vertices. Let I be the union of the independent sets obtained. Then I
is an independent set of G.

The restriction of a maximum independent set of G to a component of G − S is
at most as large as the restriction of I to the same component. Thus

α(G) − |I | ≤ |S| ∈ O(|G| · (log log |G|)−1/3).

Duchet and Meyniel [1982] proved that α(G) ≥ |G|/2�. Thus the relative error
(α(G) − |I |)/α(G) ∈ O((log log |G|)−1/3).

The computation of S takes O(|G| log |G| + ‖G‖) time by Lemma 5.2.
For each component P of G−S the second step of the algorithm takesO(|P|·2|P|)

time. Thus in total, the second step takesO(
∑

P |P|·2|P|) time, which is maximized
when all components P have the same maximal number of vertices; that is, when
|P| = log2 log2 |G|. Hence the second step takes O(|G| · 2|P|) = O(|G| log |G|)
time.

Appendix

A. More Algorithmic Details

This apendix provides details for some elementary algorithms used in the article.

LEMMA A.1. The following algorithm, given a graph G that is not d-
degenerate (for some d ∈ R

+), outputs a subgraph H of G in time O(|G| + ‖G‖),
such that H has minimum degree greater than d.

1: while there is a vertex v of degree at most d in G do

2: delete v from G
3: end while

4: output G

PROOF. The assumption that G is not d-degenerate means that some subgraph
of G has minimum degree greater than d. The algorithm finds such a subgraph
since a vertex of degree at most d is in no subgraph of G with minimum degree
greater than d. Thus upon termination of the algorithm, the remaining subgraph
has minimum degree greater than d.
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The algorithm can be implemented in O(|G| + ‖G‖) time by maintaining the
degree of each vertex in the current graph, and by maintaining a set L of vertices
with degree at most d (represented as a boolean function that indicates whether a
given vertex is in L in O(1) time). Clearly L can be initialized in O(|G| + ‖G‖)
time. When deleting a vertex v from G, only a neighbor of v needs its degree to be
updated, and only a neighbor of v might need to be added to L . Thus when deleting
v, these data structures can be maintained in O(deg(v)) time. Thus the total time
complexity is O(|G| + ‖G‖).

LEMMA A.2. There is an algorithm that takes as input a graph G and a set
X ⊆ V (G) with deg(v) ≤ k for every vertex v ∈ X, and outputs a partition
S1, . . . , Sk of X such that v, w ∈ Si if and only if N (v) = N (w) for all i ∈ [k]. The
time complexity is O(k · |X |).

PROOF. The following algorithm determines a partial function f : 2V (G) → 2X ,
such that f (S) is defined if and only there is a vertex v ∈ X with NG(v) = S, and in
this case, f (S) = {v ∈ X : NG(v) = S}. The set T is the set of all sets S ⊂ V (G)
for which f (S) is defined.

1: T := ∅
2: for each vertev v ∈ X do

3: S := NG(v)
4: if f (S) is defined then

5: f (S) := f (S) ∪ {v}
6: else

7: T := T ∪ {S}
8: f (S) := {v}
9: end if

10: end for

11: for S ∈ T do

12: output f (S)
13: end for

Since deg(v) ≤ k for every vertex v ∈ X , we have |S| ≤ k, and thus it takes
O(k) time to execute each command inside the loops. The inner steps of each loop
are executed O(|X |) times. Thus the total time complexity is O(k · |X |).
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DIKS, K., DJIDJEV, H. N., SÝKORA, O., AND VŘT̀O, I. 1993. Edge separators of planar and outerplanar
graphs with applications. J. Algor. 14, 2, 258–279.

DJIDJEV, H. N. 1981. A separator theorem. C. R. Acad. Bulgare Sci. 34, 5, 643–645.
DJIDJEV, H. N. 1982. On the problem of partitioning planar graphs. SIAM J. Algebraic Discrete Meth-

ods 3, 2, 229–240.
DJIDJEV, H. N. 1985a. A linear algorithm for partitioning graphs of fixed genus. Serdica 11, 4, 369–387.
DJIDJEV, H. N. 1985b. A separator theorem for graphs of fixed genus. Serdica 11, 4, 319–329.
DJIDJEV, H. N. 1987. On the constants of separator theorems. C. R. Acad. Bulgare Sci. 40, 10, 31–34.
DJIDJEV, H. N. 2000. Partitioning planar graphs with vertex costs: Algorithms and applications. Algo-

rithmica 28, 1, 51–75.
DJIDJEV, H. N., AND GILBERT, J. R. 1999. Separators in graphs with negative and multiple vertex weights.

Algorithmica 23, 1, 57–71.
DJIDJEV, H. N., AND VENKATESAN, S. M. 1997. Reduced constants for simple cycle graph separation.

Acta Inf. 34, 3, 231–243.
DUCHET, P., AND MEYNIEL, H. 1982. On Hadwiger’s number and the stability number. Ann. Discrete

Math. 13, 71–73.
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HÅSTAD, J. 1999. Clique is hard to approximate within n1−ε . Acta Math. 182, 1, 105–142.
KOSTOCHKA, A. V. 1982. The minimum Hadwiger number for graphs with a given mean degree of

vertices. Metody Diskret. Analiz. 38, 37–58.

ACM Transactions on Algorithms, Vol. 5, No. 4, Article 39, Publication date: October 2009.



39:16 B. REED AND D. R. WOOD

KOSTOCHKA, A. V. 1984. Lower bound of the Hadwiger number of graphs by their average degree.
Combinatorica 4, 4, 307–316.

LEISERSON, C. E. 1980. Area-Efficient graph layouts (for VLSI). In Proceedings of the 21st Annual
Symposium on Foundations of Computer Science (FOCS’80). IEEE, 270–281.

LIPTON, R. J., ROSE, D. J., AND TARJAN, R. E. 1979. Generalized nested dissection. SIAM J. Numer.
Anal. 16, 2, 346–358.

LIPTON, R. J., AND TARJAN, R. E. 1979. A separator theorem for planar graphs. SIAM J. Appl. Math. 36, 2,
177–189.

LIPTON, R. J., AND TARJAN, R. E. 1980. Applications of a planar separator theorem. SIAM J. Comput. 9, 3,
615–627.

MADER, W. 1967. Homomorphieeigenschaften und mittlere kantendichte von graphen. Math. Ann. 174,
265–268.

MILLER, G. L. 1986. Finding small simple cycle separators for 2-connected planar graphs. J. Comput.
System Sci. 32, 3, 265–279.

MILLER, G. L., TENG, S.-H., THURSTON, W., AND VAVASIS, S. A. 1997. Separators for sphere-packings
and nearest neighbor graphs. J. ACM 44, 1, 1–29.

NORINE, S., SEYMOUR, P., THOMAS, R., AND WOLLAN, P. 2006. Proper minor-closed families are small.
J. Combin. Theory Ser. B 96, 5, 754–757.

PLAISTED, D. A. 1990. A heuristic algorithm for small separators in arbitrary graphs. SIAM J. Com-
put. 19, 2, 267–280.

PLOTKIN, S., RAO, S., AND SMITH, W. D. 1994. Shallow excluded minors and improved graph decom-
positions. In Proceedings of the 5th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’94).
ACM, 462–470.

ROBERTSON, N., AND SEYMOUR, P. D. 1995. Graph minors. XIII. The disjoint paths problem. J. Combin.
Theory Ser. B 63, 1, 65–110.

ROSENBERG, A. L., AND HEATH, L. S. 2001. Graph Separators, with Applications. Frontiers of Computer
Science. Kluwer.

SMITH, W. D., AND WORMALD, N. C. 1998. Geometric separator theorems and applications. In Proceed-
ings of the 39th Annual Symposium on Foundations of Computer Science (FOCS’98). IEEE, 232–243.
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