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K4-MINOR-FREE INDUCED SUBGRAPHS
OF SPARSE CONNECTED GRAPHS∗

GWENAËL JORET† AND DAVID R. WOOD‡

Abstract. We prove that every connected graph G with m edges contains a set X of at most
3
16 (m+ 1) vertices such that G−X has no K4 minor, or, equivalently, has treewidth at most 2. This
bound is best possible. Connectivity is essential: If G is not connected, then only a bound of 1

5m
can be guaranteed.
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1. Introduction. We consider the minimum size of a subset X of vertices to
remove from a graph G to obtain a graph with no K4 minor, or, equivalently, a graph
of treewidth at most 2. Denote this quantity by s(G). We are interested in bounding
s(G) from above by a function of the number m of edges of G. Several authors
independently proved the following upper bound.

Theorem 1.1 (see Scott and Sorkin [12]; Kneis et al. [10]; Edwards and Farr [4];
Borradaile, Eppstein, and Zhu [1]). For every graph G with m edges,

s(G) 6
1
5
m.

The ratio 1
5 is best possible: If G is the disjoint union of k copies of K5, then G

has m = 10k edges and s(G) = 2k = 1
5m. While s(G) 6 1

5m is tight for arbitrary
graphs, this bound can be improved if we restrict our attention to connected graphs.
The following is our main result.

Theorem 1.2. For every connected graph G with m edges,

s(G) 6
3
16

(m+ 1).

This bound is best possible: Take G to be the disjoint union of k copies of K6,
and then add k − 1 edges so that the resulting graph is connected. Then s(G) = 3k
and m = 16k − 1, and thus s(G) = 3

16 (m+ 1).
Edwards and Farr [5] previously studied s(G) for connected graphs with maximum

degree 6.

∗Received by the editors May 25, 2016; accepted for publication (in revised form) June 20, 2017;
published electronically January 11, 2018.

http://www.siam.org/journals/sidma/32-1/M107712.html
Funding: The first author’s work was supported by an ARC grant from the Wallonia-Brussels

Federation of Belgium and a DECRA Fellowship from the Australian Research Council during part
of the project. The second author’s work was supported by the Australian Research Council.
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124 GWENAËL JORET AND DAVID R. WOOD

Theorem 1.3 (see Edwards and Farr [5]). For every connected graph G with
maximum degree at most 6 and nd vertices of degree d,

s(G) 6
1
4
n3 +

3
8
n4 +

19
40
n5 +

11
20
n6 +

3
20
.

The best upper bound in terms of m one could hope to prove from Theorem 1.3
is

s(G) 6
19
100

m+
3
20

(because of the 5-regular case). And with some work this is possible, even for graphs
with unbounded degree. Nevertheless, Theorem 1.2 improves upon this bound. Also
note that for connected graphs with maximum degree 4, Theorem 1.3 implies

s(G) 6
3
16
m+

3
20
,

matching the coefficient in Theorem 1.2. As is evident in our proof, the main difficulty
in establishing the bound 3

16 (m+ 1) in general is the delicate handling of vertices of
degree 5.

We continue this introduction with an overview of related works, emphasizing the
different motivations for studying the invariant s(G) that appeared in the literature.

Max-2-CSP. In one line of research, bounding the invariant s(G) for sparse
graphs G was originally motivated by the design of exponential-time algorithms for
a class of combinatorial optimization problems called Max-2-CSP. Informally, Max-
2-CSP is the class of constraint satisfaction problems with at most two variables per
clause (see, e.g., [13] for a precise definition). This includes such problems as Max
Cut, Max-2-Sat, Max Independent Set, and many others. Problems in this class
are naturally parameterized by the number r of different values a variable can take;
for instance, r = 2 in the case of binary variables, which is the most common case.
Several exact exponential-time algorithms have been developed for Max-2-CSP. When
parameterized by the number m of edges of the constraint graph, the best one to date
is a O∗(r

13
75 m+o(m))-time algorithm of Scott and Sorkin [13]. (The notation O∗(·)

omits polynomial factors in m and r.) This algorithm is based on treewidth, its key
component being a proof that the treewidth of G is at most 13

75m+ o(m).
Unfortunately, this exponential-time treewidth-based algorithm also takes expo-

nential space. This motivated a long line of research focusing on exponential-time
but polynomial-space algorithms for Max-2-CSP [3, 6, 8, 7, 9, 10, 11, 13]. It is in
this context that the invariant s(G) attracted some attention: It is well known that a
graph with no K4 minor can be reduced to the empty graph by iteratively “eliminat-
ing” vertices of degree at most 2 (see Lemma 2.1 in section 2). As it turns out, these
operations can also be realized on the constraint graph of a Max-2-CSP instance, in
the sense that a vertex of degree at most 2 can be eliminated in polynomial time,
giving a smaller equivalent instance (see, e.g., [13]). The interest of this observation
is that if X ⊆ V (G) is such that G−X has no K4 minor, then one can simply branch
on the vertices in X and obtain a O∗(r|X|)-time algorithm that uses only polynomial
space. This observation motivated Scott and Sorkin [12] and independently Kneis et
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K4-MINOR-FREE INDUCED SUBGRAPHS 125

al. [10]1 to show that such a set X with |X| 6 m
5 always exists (c.f. Theorem 1.1),

and that it can be found efficiently.
This approach was subsequently improved by Scott and Sorkin [13]. Informally,

they showed that it is enough to bound the “reduction depth” of the recursion tree.
This leads to the definition of the following graph invariant which is at most s(G)
(here we follow the terminology of Edwards [3]). First, let r(G) denote the graph
obtained from G by eliminating vertices of degree at most 2 (as in Lemma 2.1). It
is known that r(G) is uniquely defined [11, Theorem 3.8]. Then the delete-reduction
depth drd(G) of G is the least nonnegative integer k for which there is a sequence
G1 = r(G), G2, . . . , Gk+1 of graphs and a sequence V1, . . . , Vk of vertex sets such that

• Vi ⊆ V (Gi) and Vi contains at most one vertex from each component of Gi,
for each i ∈ {1, . . . , k};

• Gi = r(Gi−1 − Vi−1) for each i ∈ {2, . . . , k + 1};

• Gk+1 is empty.
Note that if one also required |Vi| = 1 in the above definition, then the resulting
invariant would be equal to s(G) (we leave the proof to the reader). It follows that
drd(G) 6 s(G) for every graph G.

As noted by Edwards [3], it follows from the work of Scott and Sorkin [13] that
Max-2-CSP can be solved in time O∗(rk) and polynomial space given a sequence
V1, . . . , Vk of vertex sets witnessing drd(G) 6 k as in the above definition. Scott and
Sorkin [13] obtained a O∗(r

19
100 m)-time algorithm by showing that drd(G) 6 19

100m+ 2
when G has m edges (with an algorithmic proof).

Note that if G is not connected, then, by definition, drd(G) is the maximum of
drd(H) over all components H of G. Thus when bounding drd(G), we may assume
that G is connected, and hence the upper bound of Scott and Sorkin on drd(G) can
be viewed as a precursor of the bound s(G) 6 19

100m+ 3
20 of Edwards and Farr [5] for

connected graphs G. As noted earlier, our upper bound of 3
16 (m + 1) on s(G) when

G is connected is tight. However, better upper bounds can be achieved for drd(G):
Edwards [3] proved that drd(G) 6 9

50m + o(m). Again, that proof is algorithmic,
and yields a O∗(r

9
50 m+o(m))-time, polynomial space, algorithm for Max-2-CSP, which

is the best known to date. Another algorithm matching this time complexity was
described recently by Gaspers and Sorkin [8].

Graph drawing. The invariant s(G) is also among a set of closely related graph
invariants studied by the graph drawing community. One general approach to drawing
a graph G in the plane is to first identify an induced subgraph H of G that can be
drawn nicely—e.g., a forest or a planar graph—and then add somehow the remaining
vertices and edges to the drawing in a second phase. If the graph G is sparse enough,
one might hope to be able to embed a large fraction of the graph in the first phase,
which motivates extremal questions of the following type: Given a class of graphs C
that is considered to have nice drawings (say, planar graphs), what is the least integer

1It should be noted that a better bound than s(G) 6 1
5m was claimed by Kneis et al. in their

conference paper from 2005 [10]: They claimed s(G) 6 23
120m+1 for every graph G and s(G) 6 3

16m+1
for every graph G with maximum degree at most 4. However, both proofs fail to address connectivity
issues, and indeed the two statements are false, as seen by taking disjoint copies of K5. We note
that other proofs in [10] are problematic and were later corrected by the authors in their journal
version [11] and the above two results were dropped (also see the Acknowledgments section of [11]
as well as the discussion of [10] by Scott and Sorkin [13, section 1.3]). However, the authors did not
highlight the fact that the two results in [10] were wrong, resulting in an unfortunate confusion in
the literature.
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126 GWENAËL JORET AND DAVID R. WOOD

f(m) such that every n-vertex m-edge graph G has an induced subgraph on at least
n− f(m) vertices in C, or equivalently, has a set X of vertices with |X| 6 f(m) such
that G−X is in C?

Borradaile, Eppstein, and Zhu [1] recently considered these questions with C being
the class of (1) pseudo-forests (at most one cycle in each component); (2) K4-minor-
free graphs, and (3) planar graphs. They proved the following upper bounds on the
corresponding function f(m): (1) f(m) 6 2

9m, (2) f(m) 6 1
5m (cf. Theorem 1.1),

and (3) f(m) 6 23
120m. We note that their second result—i.e., s(G) 6 1

5m—was also
observed implicitly in an earlier work by Edwards and Farr [4].2

The result of Borradaile, Eppstein, and Zhu [1] for planar graphs improves on an
earlier bound of Edwards and Farr [4] and is in fact slightly stronger than as stated
above: It holds for the class C of planar graphs with treewidth at most 3. Nevertheless,
this remains the best known bound for arbitrary planar graphs. It was suggested by
Rossmanith that an upper bound of the form f(m) 6 1

6m + o(m) might hold for
planar graphs (see [1]). Borradaile, Eppstein, and Zhu [1] showed that, if true, this
would be best possible: They proved that if C is any proper minor-closed class, then
f(m) > 1

6m− o(m).
Note that, as in the context of Max-2-CSP, here one is also naturally interested

in computing efficiently the small sets X such that G−X is in C guaranteed by these
theorems, and indeed the results mentioned above come with efficient algorithms
(see [1]).

This paper is organized as follows. We begin in section 2 with the necessary
definitions and basic facts about the invariant s(G). In section 3, we provide some
general lemmas which are useful in our proofs, and in section 4 we prove our main
result (Theorem 1.2).

2. Definitions and preliminaries. All graphs in this paper are finite, simple,
and undirected. Let NG(v) denote the set of neighbors of vertex v in the graph G,
and let degG(v) = |NG(v)| denote its degree. Let G/uv denote the graph obtained
from G by contracting the edge uv. (Since we restrict ourselves to simple graphs,
loops and parallel edges resulting from edge contractions are deleted.) A graph H is a
minor of a graph G if H can be obtained from a subgraph of G by contracting edges.

A k-cutset of a connected graph G is a subset X ⊆ V (G) with |X| = k such that
G−X is not connected. A separation of G is a pair (G1, G2) of induced subgraphs of
G such that V (G1)−V (G2) and V (G2)−V (G1) are not empty and there are no edges
between these two sets. The order of the separation (G1, G2) is |V (G1) ∩ V (G2)|.

A stable set in a graph is a set of pairwise nonadjacent vertices. The maximum
size of a stable set in a graph G is denoted by α(G). A graph H is a subdivision of a
graph G if H can be obtained from G by replacing edges of G with internally disjoint
paths having the same endpoints. (The internal vertices of the paths are new vertices
of the graph.)

Recall the basic observation that a graph G contains K4 as a minor if and only
if G contains a K4 subdivision as a subgraph. Graphs with no K4 minors can be
characterized in different ways. For instance, these graphs are exactly the graphs
of treewidth at most 2. The following characterization is useful for our purpose: G
has no K4 minor if and only if G can be reduced to the empty graph by iteratively
applying the following three reductions (in any order):

• removing a vertex of degree at most 1,

2Although that bound is not stated explicitly in [4], it is a corollary of Lemma 3 in that paper.
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K4-MINOR-FREE INDUCED SUBGRAPHS 127

• removing a vertex of degree 2 lying in a triangle, and
• contracting an edge incident to a vertex of degree 2 not in a triangle.

Observe in particular that every graph with no K4 minor has a vertex of degree at
most 2.

A subset X of vertices of a graph G such that G−X has no K4 minor is called
a transversal. A minimum transversal of G is a transversal of minimum size; its
size is denoted by s(G). The following lemma summarizes some simple but essential
properties of the invariant s(G). A proof is included for completeness.

Lemma 2.1. Suppose that H is a graph obtained from a graph G using one of the
following three operations:

• removing a vertex of degree at most 1,
• removing a vertex of degree 2 lying in a triangle, or
• contracting an edge incident to a degree-2 vertex not in a triangle.

Then s(H) = s(G).

Proof. First suppose that H = G−v where v is a vertex of degree at most 1 in G.
Clearly, s(H) 6 s(G). Let S be a minimum transversal of H. If S is not a transversal
of G, then G− S contains a K4 subdivision, and that subgraph includes v. However,
this is not possible since v has degree at most 1. Hence S is a transversal of G, and
s(H) > s(G), implying s(H) = s(G).

Next suppose that H = G − v where v is a vertex of degree 2 in G lying in a
triangle. Clearly, s(H) 6 s(G) again. Let S be a minimum transversal of H. If S
is not a transversal of G, then G − S contains a K4 subdivision, and that subgraph
includes v. However, one can shorten the K4 subdivision by removing v and adding
the edge between its two neighbors (which exists in G), which is then a subgraph of
H − S, a contradiction. Hence S is a transversal of G, and s(H) > s(G), implying
s(H) = s(G).

Finally, suppose that H = G/uv where v is a vertex of degree 2 in G not in a
triangle, and let w denote the vertex resulting from the contraction of the edge uv.
To show s(H) 6 s(G), consider a minimum transversal S of G. If u ∈ S or v ∈ S,
then (S − {u, v}) ∪ {w} is a transversal of H of size at most |S| = s(G). If, on the
other hand, u /∈ S and v /∈ S, then H−S is a minor of G−S (obtained by contracting
the edge uv), and thus does not contain a K4 minor. Hence S is a transversal of H.

It remains to show s(H) > s(G). Let S be a minimum transversal of H. If w ∈ S,
then T := (S−w)∪{v} is a transversal of G, of size |S| = s(G). Indeed, v has degree
at most 1 in G− T and thus is not contained in a K4 subdivision in G− T , implying
that every K4 subdivision in G− T is also a subgraph of H − S.

If w /∈ S, then we claim that S itself is a transversal of G. For, suppose not, and
let J be subdivision of K4 in G−S. Then J includes v, since otherwise H would exist
in J−S (replacing vertex u by w). But then v has degree 2 in J , and its two neighbors
are not adjacent, implying that J/uv is a K4 subdivision in H − S, a contradiction.

Therefore, s(H) > s(G), implying s(H) = s(G).

Observe that Lemma 2.1 shows one direction of the aforementioned characteri-
zation of graphs without K4 minors: If G can be reduced to the empty graph using
the three operations, then s(G) = 0, i.e., G has no K4 minor. To prove the other
direction, namely “if G has no K4 minor then G can be reduced to the empty graph,”
by the lemma it is enough to show that G has a vertex of degree at most 2. This is a
standard exercise; see, e.g., [2, Corollary 7.3.2].

Note that in the statement of Lemma 2.1 we could have merged the second and
third operations simply by writing “contracting an edge incident to a degree-2 vertex”
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128 GWENAËL JORET AND DAVID R. WOOD

(since we only consider simple graphs). We chose, however, to present it as above to
emphasize the two possible situations for a vertex of degree 2, which will typically be
treated separately in the proofs.

As mentioned in the introduction, s(G) 6 1
5m for every graph G with m edges.

This can be proved easily using “potential functions.” As these play an important
role in this paper, we provide a quick sketch of the proof. (This is also a good warm-
up for the more technical proofs to come.) The main idea is to show that there
exists a function φ : N → R (called a potential function) satisfying the following two
properties:

• φ(d) 6 1
2d for all d > 0, and

• s(G) 6 1
5

∑
v∈V (G) φ(deg(v)) for every graph G.

Given such a function φ, the bound follows then by observing that

s(G) 6
1
5

∑
v∈V (G)

φ(deg(v)) 6
1
5

∑
v∈V (G)

deg(v)
2

=
1
5
m.

One possible choice for the potential function φ is the following:

φ(d) :=


0 if d ∈ {0, 1, 2},
5
4 if d = 3,
1
2d if d > 4.

It is clear that φ(d) 6 1
2d for all d > 0, and it thus remains to show that s(G) 6

1
5

∑
v∈V (G) φ(deg(v)) for every graph G, which we prove by induction on |V (G)|.
First, note that vertices of degree at most 2 can be eliminated from G without

changing s(G): If v has degree at most 2, then s(G) = s(G′), where G′ is obtained by
first removing v from G, and then adding an edge between the two neighbors of v if
they were not already adjacent in G (see Lemma 2.1). Since the potential associated
to each vertex of G′ is at most its potential in G, we are done by induction in this
case. Thus we may assume that G has no vertex of degree at most 2.

Now consider a vertex v of maximum degree. If deg(v) = 5, then the potential
φ(deg(v)) of v is at least 5

2 . Furthermore, if we remove v from G, then the potential
of each neighbor of v drops by at least 1

2 (since these neighbors have degree at least
3). Thus, ∑

v∈V (G)

φ(degG(v)) >
5
2

+ 5
1
2

+
∑

v∈V (G′)

φ(degG′(v)).

Since s(G) 6 s(G− v) + 1 the result follows by induction.
Now, if deg(v) = 4, then v has potential 2 and each of its neighbors has degree 3

or 4. Thus their potential drops by at least 3
4 when removing v. (Here we see why it

is useful to set φ(3) := 5
4 instead of simply 3

2 .) Hence, the sum of potentials decreases
by at least 2 + 43

4 = 5 when removing v from G, and we are done by induction as
before.

Finally, if v has degree 3, then so do its three neighbors, and the drop in potential
when removing v is 5

4 +3 5
4 = 5. Once again, we are done by induction. This concludes

the proof.
As can be seen in this proof, the main benefit of potential functions is that they

allow a stronger bound for low-degree vertices, which then helps the induction go
through.
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K4-MINOR-FREE INDUCED SUBGRAPHS 129

3. Tools. In this section we introduce a few lemmas that are used in our main
proof.

First we consider graphs G that are edge critical with respect to the invariant
s(G): An edge e of a graph G is said to be critical if s(G− e) < s(G). The graph G
is critical if all its edges are critical.

Lemma 3.1. Let G be a critical graph. Then, for every edge uv ∈ E(G), there
exists S ⊆ V (G)−{u, v} such that S∪{u} and S∪{v} are both minimum transversals
of G.

Proof. Let S be a minimum transversal of G − uv. Then |S| = s(G − uv) =
s(G) − 1, since uv is critical in G. Hence, u /∈ S and v /∈ S (otherwise, S would be
a transversal of G). The graph G − (S ∪ {u}) is a subgraph of (G − uv) − S. Thus,
S ∪{u} is a transversal of G, with size |S|+ 1 = s(G). By symmetry, the same is true
for S ∪ {v}.

Lemma 3.2. Let G be a connected critical graph with |V (G)| > 2. Then G is
2-connected.

Proof. Arguing by contradiction, suppose that G is not 2-connected. Since K2
is not critical, this implies |V (G)| > 3 and that G has a cutvertex u. Let G1, G2
be two subgraphs of G such that G = G1 ∪ G2 with |V (G1)|, |V (G2)| > 2, and
V (G1) ∩ V (G2) = {u}. Let Vi := V (Gi), and let vi be an arbitrary neighbor of u in
Gi for i = 1, 2.

Using Lemma 3.1, let Si (i = 1, 2) be a subset of V (G)−{u, vi} such that Si∪{u}
and Si ∪ {vi} are both minimum transversals of G. Clearly, the set

(S1 ∩ V1) ∪ (S2 ∩ V2) ∪ {u}

is a transversal of G. Since its size is at least s(G) = |S2∩V1|+ |S2∩V2|+1, it follows
that |S1 ∩ V1| > |S2 ∩ V1|. Similarly, since

(S2 ∩ V1) ∪ (S1 ∩ V2) ∪ {u}

is also a transversal of G, we deduce |S2 ∩ V1| > |S1 ∩ V1|, and thus

(1) |S1 ∩ V1| = |S2 ∩ V1|.

If S2 ∩ V1 is not a transversal of G1, then there exists a K4 subdivision J in G1 − S2.
But then J ⊆ G − (S2 ∪ {v2}), contradicting the fact that S2 ∪ {v2} is a transversal
of G. Thus S2 ∩ V1 is a transversal of G1. By a symmetric argument, S1 ∩ V2 is a
transversal of G2. It follows that the set T := (S2 ∩ V1)∪ (S1 ∩ V2) is a transversal of
G. (Note that a K4 subdivision in G cannot contain both a vertex from G1 − u and
another from G2 − u.) By (1),

|T | = |S2 ∩ V1|+ |S1 ∩ V2| = |S1 ∩ V1|+ |S1 ∩ V2| = s(G)− 1,

a contradiction. The lemma follows.

Now we turn our attention to cycles of even length that are (almost) induced. A
cycle is said to be even or odd according to the parity of its length. An even cycle C
of a graph G is said to be almost induced if either C has no chord, or C has exactly
one chord e and e “splits” the cycle into two odd cycles. Observe that, if C is such a
cycle, then there is a subset S ⊂ V (C) with |S| = |C|

2 such that S is a stable set of G.
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130 GWENAËL JORET AND DAVID R. WOOD

Lemma 3.3. Let G be a graph with minimum degree at least 3 and with no sub-
graph isomorphic to K4. Then G contains an even cycle. Moreover, every shortest
even cycle of G is almost induced.

Proof. It is well known that every graph with minimum degree at least 3 contains
a K4 minor, and thus a subdivision of K4. Let H be a subgraph of G isomorphic to a
subdivision of K4. Consider two distinct vertices u, v of H with degree 3 in H. Since
there are three internally disjoint uv-paths in H, two of them have the same parity.
Thus the union of these two paths is an even cycle in G.

Let C be any shortest even cycle of G. It remains to show that C is almost
induced. This is obviously true if C is induced. If C has exactly one chord e in G,
then the two cycles obtained from C using e are odd, since otherwise there would be
a shorter even cycle in G. Thus C is also almost induced in that case.

Enumerate the vertices of C in order as C = v1v2 . . . vp, and suppose C has two
distinct chords e = vivj (i < j) and f = vkv` (k < `). Then |C| > 6, since otherwise
the vertices of C would induce a subgraph isomorphic to K4 in G. By changing the
cyclic ordering of C if necessary, we may assume without loss of generality i 6 k < j.
Also, exchanging e and f if necessary, we suppose that ` < j if i = k. By the
observation above, each chord splits C into two odd cycles; that is, j − i + 1 and
`− k + 1 are both odd. We distinguish two cases, depending whether the chords are
crossing or not.

First assume ` 6 j; that is, the two chords are not crossing. Then the cycle
vivi+1 . . . vkv`v`+1 . . . vj has length (k − i + 1) + (j − ` + 1) = (j − i) − (` − k) + 2,
which is even. Since the latter cycle is shorter than C, this is a contradiction.

Now suppose ` > j. Then, by assumption, we also have k > i. Recall also
that j > k, and hence vi, vj , vk, and v` are pairwise distinct, and the two chords
cross. We can find two other cycles of G using C and these two edges, namely
C1 = vivi+1 . . . vkv`v`−1 . . . vj and C2 = vjvj−1 . . . vkv`v`+1 . . . vpv1 . . . vi. Note that
j − k and k − i have the same parity since j − i is even, and similarly that `− j and
j−k have the same parity since `−k is even. Thus C1 is an even cycle. A symmetric
argument shows that C2 is even as well. Since |C1|+ |C2| = |C|+ 4 and |C| > 6, one
of these cycles is shorter than C, again a contradiction.

It follows that C is almost induced, as claimed.

4. Proof of main result. In order to prove Theorem 1.2, we use the following
potential function: Let φ : N→ R+ be defined as

φ(d) :=


0 if d ∈ {0, 1, 2},
4
3 if d = 3,
1
2d otherwise.

For a graph G, define the potential of G as

φ(G) :=
∑

v∈V (G)

φ(deg(v)).

We often simply write φG(u) to denote the potential of vertex u in G, that is,
φ (degG(u)). Also, we use the convention that φG(v) = 0 whenever v /∈ V (G).

Observe that φ(G) 6 m for every graph G with m edges, since φ(d) 6 d/2 for
all d > 0. Thus the bound s(G) 6 3

16m + 3
16 when G is connected follows from the

following technical theorem. Here a graph G is said to be reduced if G is 2-connected,
critical, and deg(v) ∈ {3, 4, 5} for all v ∈ V (G).
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K4-MINOR-FREE INDUCED SUBGRAPHS 131

Theorem 4.1. For every connected graph G,
(a) φ(G) > 16

3 s(G)− 1, and

(b) φ(G) > 16
3 s(G) if G is reduced but not 3-connected.

The remainder of this section is devoted to the proof of Theorem 4.1. Arguing
by contradiction, we let G be a counterexample to Theorem 4.1 with |V (G)|+ |E(G)|
minimum. Our proof is in two steps: First, we prove in section 4.1 that G is not a
counterexample to part (b) of Theorem 4.1. Then, building on this result, we show
in section 4.2 that G is not a counterexample to part (a) either, giving the desired
contradiction.

We begin with a useful lemma about the potential function φ.

Lemma 4.2. Let a, b, c be integers with a > 3 and b, c > 1. Then
(A) φ(a) > φ(a− 1) + 1

2 ,

(B) φ(a) > φ(a− 2) + 1,

(C) φ(b+ c− 1) > φ(b) + φ(c)− 1
2 , and

(D) φ(b+ c) > φ(b) + φ(c) + 1 if moreover b, c > 2 and b+ c 6 5.

Proof. (A) and (B) are direct consequences of the definition of φ. (C) is easily
checked when b+ c 6 4, and for the case b+ c > 5 it follows from the observation that

φ(b) + φ(c)− 1
2

6
b

2
+
c

2
− 1

2
= φ(b+ c− 1).

(D) is also straightforward to check.

4.1. G satisfies Part (b) of Theorem 4.1. Recall that G is a counterexample
to Theorem 4.1 with |V (G)|+ |E(G)| minimum. In this section we show that G is not
a counterexample to part (b) of this theorem. To do so, we argue by contradiction and
assume that G is reduced but not 3-connected. Recall that G being reduced implies
in particular that G is 2-connected. Since G is also assumed not to be 3-connected,
this will naturally lead us to consider 2-cutsets of G. Note that given a 2-cutset X
of G, every separation (G1, G2) of G with V (G1) ∩ V (G2) = X is such that G1 and
G2 are both connected, since G is 2-connected. We first establish a technical lemma
about 2-cutsets in G, Lemma 4.3 below, which we then use to derive the desired
contradiction.

Lemma 4.3. If G is a counterexample to Theorem 4.1(b), then every 2-cutset of
G induces an edge.

Proof. Arguing by contradiction, assume that there exists a 2-cutset of G that
does not induce an edge. Let X = {u, v} be such a cutset and let (G1, G2) be a
separation of G with V (G1) ∩ V (G2) = X. Since G has minimum degree at least 3,
we have |V (G1)|, |V (G2)| > 4. We may assume that X and (G1, G2) have been chosen
so that

(2) at most one vertex in X has degree 1 in Gi for each i ∈ {1, 2}.

Indeed, suppose this is not the case. Then without loss of generality both u and v
have degree 1 in G1. Let u′ and v′ be the neighbors of respectively u and v in G1. If
u′ = v′, then u′ would be a cutvertex of G (recall that |V (G1)| > 4); thus, u′ 6= v′. It
follows that X ′ := {u′, v} is a cutset of G such that u′v /∈ E(G). Also, the two graphs
G′1 := G[V (G1)− {u}] and G′2 := G[V (G2) ∪ {u′}] define a corresponding separation
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132 GWENAËL JORET AND DAVID R. WOOD

(G′1, G
′
2) of G with V (G′1) ∩ V (G′2) = X ′. Moreover, u′ and v have degree at least 2

in G′1 and G′2, respectively. Hence, replacing X with X ′ and (G1, G2) with (G′1, G
′
2),

we see that (2) holds.
Let Si (i = 1, 2) be a minimum transversal of Gi. The set S1 ∪ S2 ∪ {u} is a

transversal of G, implying

(3) s(G) 6 s(G1) + s(G2) + 1.

The remainder of the proof is split into two cases, depending on whether s(G) 6
s(G1) + s(G2) or s(G) = s(G1) + s(G2) + 1.

Case 1. s(G) 6 s(G1) + s(G2): By (2), without loss of generality, if u has degree
1 in G1 or G2, then u has degree 1 in G1, and if v has degree 1 in G1 or G2, then v
has degree 1 in G2. Let u1 be a neighbor of u in G1. Let v2 be a neighbor of v in
G2. Let G′1 be obtained from G1 by removing u if u has degree 1 in G1. Define G′2
similarly with respect to G2 and v. By our assumption on u and v,

φ(G)− φ(G′1)− φ(G′2) =φG(u)− φG′
1
(u)− φG′

2
(u) + φG(u1)− φG′

1
(u1)

+ φG(v)− φG′
1
(v)− φG′

2
(v) + φG(v2)− φG′

2
(v2).

(Recall that φH(x) = 0 if x /∈ V (H); thus φG′
1
(u) = 0 if u /∈ V (G′1), for instance.)

First, we show that

(4) φG(u)− φG′
1
(u)− φG′

2
(u) + φG(u1)− φG′

1
(u1) > 1.

If u has degree 1 in G1, then Lemma 4.2(A) yields

φG(u)− φG′
1
(u)− φG′

2
(u) = φG(u)− φG′

2
(u) >

1
2

and
φG(u1)− φG′

1
(u1) >

1
2
,

implying (4). If, on the other hand, u has degree at least 2 in G1, then φG(u1) =
φG′

1
(u1), and

φG(u)− φG′
1
(u)− φG′

2
(u) > 1

by Lemma 4.2(D). Thus, (4) holds in this case too.
By a symmetric argument,

(5) φG(v)− φG′
1
(v)− φG′

2
(v) + φG(v2)− φG′

2
(v2) > 1.

Combining (4) and (5),

(6) φ(G)− φ(G′1)− φ(G′2) > 2.

Now, G′1 and G′2 are obviously connected. Moreover, s(G′i) = s(Gi) for i ∈ {1, 2}
by Lemma 2.1. Since both G′1 and G′2 are smaller than G, each of them satisfies
Theorem 4.1. Using part (a) of the latter theorem on these two graphs in combination
with (6),

φ(G) > φ(G′1) + φ(G′2) + 2 >

(
16
3
s(G1)− 1

)
+
(

16
3
s(G2)− 1

)
+ 2 >

16
3
s(G),
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K4-MINOR-FREE INDUCED SUBGRAPHS 133

which contradicts the fact that G is a counterexample.

Case 2. s(G) = s(G1) + s(G2) + 1: Let G′i := Gi + uv for i = 1, 2. We claim
that s(G′i) > s(Gi) for some i ∈ {1, 2}. Indeed, assume otherwise, let Si (i = 1, 2) be
a minimum transversal of G′i, and let S := S1 ∪ S2. Then G− S contains a subgraph
H isomorphic to a subdivision of K4 since |S| 6 s(G1) + s(G2) < s(G). Now, thanks
to the edge uv, one can easily find from H a subdivision of K4 in one of G′1 − S1 and
G′2 − S2, a contradiction. Hence, s(G′i) > s(Gi) for some i ∈ {1, 2}; without loss of
generality, s(G′2) > s(G2).

Let Si (i = 1, 2) be a minimum transversal of Gi. The sets S1 and S2 cannot
include any vertex of the cutset X. Indeed, otherwise S1 ∪ S2 would be a transversal
of G of size |S1 ∪ S2| 6 s(G1) + s(G2) < s(G), a contradiction. (Here we use that
every K4 subdivision in G that meets both V (G1)−X and V (G2)−X contains both
vertices in X.) Now, if s(G1 − u) < s(G1), then any minimum transversal of G1 − u
can be extended to one of G of size at most s(G) by adding u, which is not possible
as we have seen. Since the same holds for G1 − v1,

(7) s(G1 − u) = s(G1 − v) = s(G1).

(Note that this is also true for G2 but we will not need this fact.) Exchanging u and
v if necessary, we may assume

(8) degG1
(u) 6 degG1

(v).

Let H1 be the graph G1 − v where the vertex u is removed if u has degree 1 in
G1. Note that the graph G1 − v is connected (otherwise, v would be a cutvertex of
G). Thus, H1 is connected as well. Also,

s(H1) = s(G1 − v) = s(G1),

by Lemma 2.1 and (7). Since both H1 and G′2 are connected and smaller than G,
they satisfy Theorem 4.1. It follows that

φ(H1) + φ(G′2) >

(
16
3
s(G1)− 1

)
+
(

16
3

(s(G2) + 1)− 1
)

=
16
3
s(G)− 2.

(Recall that s(G′2) > s(G2) and s(G) = s(G1) + s(G2) + 1.) In order to conclude the
proof it is enough to show that φ(G) > φ(H1) + φ(G′2) + 2, since this implies that
φ(G) > 16

3 s(G) and thus that G is not a counterexample.

Case 2a. Vertex u has degree 1 in G1: Then H1 = G1−{u, v}. Also, by (2), the
vertex v has degree at least 2 in G1. Using Lemma 4.2(A) and (B), and considering
the neighbors of u and v in G1, we obtain

φ(G1) > φ(H1) + φG1(u) + φG1(v) +
3
2
.

(Note that there are two cases to consider: either u and v have one common neighbor
or they have none.) Also,

φG(v) > φG′
2
(v) +

1
2
,

since degG1
(v) > 1 and thus degG′

2
(v) 6 degG(v) − 1. Using these observations and

the fact that φG(u) = φG′
2
(u),

φ(G) =
(
φ(G1)− φG1(u)− φG1(v)

)
+ φ(G′2) +

(
φG(u)− φG′

2
(u)
)

+
(
φG(v)− φG′

2
(v)
)

>

(
φ(H1) +

3
2

)
+ φ(G′2) +

1
2

= φ(H1) + φ(G′2) + 2,

c© 2018 Gwenaël Joret and David R. Wood

D
ow

nl
oa

de
d 

01
/2

3/
18

 to
 1

30
.1

94
.2

0.
17

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



134 GWENAËL JORET AND DAVID R. WOOD

as desired.

Case 2b. Vertex u has degree at least 2 in G1: Then H1 = G1 − v, and v has
degree at least 2 in G1 by (8). Considering the neighbors of v in G1,

(9) φ(G1) > φ(H1) + φG1(v) +
1
2

degG1
(v),

from Lemma 4.2(A). Similarly,

(10) φG(v) >

{
φG′

2
(v) + 1

2 if degG1
(v) = 2,

φG′
2
(v) + 1 if degG1

(v) > 3.

Also,

(11) φG(u) >

{
φG1(u) + φG′

2
(u) + 1

2 if degG1
(u) = 2,

φG1(u) + φG′
2
(u)− 1

2 if degG1
(u) > 3.

(The bound for the degG1
(u) > 3 case is derived using Lemma 4.2(C).) By (9),

φ(G) =
(
φ(G1)− φG1(v)

)
+ φ(G′2) +

(
φG(v)− φG′

2
(v)
)

+
(
φG(u)− φG1(u)− φG′

2
(u)
)

> φ(H1) +
1
2

degG1
(v) + φ(G′2) + φG(v)− φG′

2
(v) + φG(u)− φG1(u)− φG′

2
(u).

Combining this with (10), (11), and the inequality degG1
(u) 6 degG1

(v) (cf. (8)), we
deduce that φ(G) > φ(H1) + φ(G′2) + 2, both in the case degG1

(u) = 2 and in the
case degG1

(u) > 3. This concludes the proof.

Lemma 4.4. G satisfies part (b) of Theorem 4.1.

Proof. Assume that the lemma is false. Then, by Lemma 4.3, G has a cutset X =
{u, v} with uv ∈ E(G). Let (G1, G2) be a separation of G with V (G1)∩ V (G2) = X.
Notice that |V (Gi)| > 4 for i = 1, 2 (as in Lemma 4.3).

Let Si (i = 1, 2) be a minimum transversal of Gi, and let S := S1 ∪ S2. If G− S
contains a subdivision of K4, then one can find a subdivision of K4 in one of G1−S1
and G2 − S2 thanks to the existence of the edge uv. Thus, S is a transversal of G.
This implies

s(G) 6 s(G1) + s(G2).

First, suppose s(G) < s(G1) + s(G2). Since the graph Gi (i = 1, 2) is connected
and smaller than G, Theorem 4.1 gives

φ(G1) + φ(G2) >
16
3
(
s(G1) + s(G2)

)
− 2 >

16
3
s(G) +

16
3
− 2.

Also,

φG(x) > φG1(x) + φG2(x)− 1
2

for each x ∈ X by Lemma 4.2(C). It follows that

φ(G) = φ(G1) + φ(G2) +
(
φG(u)− φG1(u)− φG2(u)

)
+
(
φG(v)− φG1(v)− φG2(v)

)
>

(
16
3
s(G) +

16
3
− 2
)
− 1

2
− 1

2
>

16
3
s(G),
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K4-MINOR-FREE INDUCED SUBGRAPHS 135

contradicting the fact that G is a counterexample to Theorem 4.1(b). Therefore,
s(G) = s(G1) + s(G2).

If the edge uv is critical in both G1 and G2, then Si∪{u} (i = 1, 2) is a transversal
of Gi, where Si (i = 1, 2) is a minimum transversal of Gi − uv of size s(Gi)− 1. But
then S1 ∪ S2 ∪ {u} is a transversal of G of size s(G)− 1, a contradiction. Hence, uv
is not critical in at least one of G1, G2, say G1.

Let G′1 be the graph G1 − uv where each vertex of X of degree 1 in G1 − uv is
removed. The graph G′1 is connected and s(G′1) = s(G1− uv) = s(G1). Also, G′1 and
G2 are both smaller than G, and thus satisfy Theorem 4.1. Hence,

φ(G′1) + φ(G2) >
16
3
(
s(G1) + s(G2)

)
− 2 =

16
3
s(G)− 2.

Our aim now is to reach a contradiction by showing φ(G) > φ(G′1) + φ(G2) + 2.
Consider the vertex u and let u1 be a neighbor of u in G1 − uv. Then, by

Lemma 4.2(A),

(12) φG(u1)− φG′
1
(u1) >

{
1
2 if degG1−uv(u) = 1,

0 otherwise.

Similarly,

(13) φG(u)− φG′
1
(u)− φG2(u) >

{
1
2 if degG1−uv(u) = 1,

1 otherwise.

(The lower bound for the case degG1−uv(u) > 1 is derived using Lemma 4.2(D).)
Let v1 be a neighbor of v in G1 − uv. Clearly, (12) and (13) are also true if we

replace u and u1 with v and v1, respectively. Noticing u1 6= v1 if degG1−uv(u) =
degG1−uv(v) = 1 (otherwise, u1 would be a cutvertex of G), we derive from the
previous inequalities that φ(G) > φ(G′1) + φ(G2) + 2 in every case; that is, when the
number of vertices of X having degree 1 in G1 − uv is 0, 1, and 2.

By Lemma 4.4, the graph G is not a counterexample to part (b) of Theorem 4.1.
Thus, G is a counterexample to part (a) of the theorem.

4.2. G satisfies part (a) of Theorem 4.1. Building on the fact that G is not
a counterexample to part (b) of Theorem 4.1, we show in this section that G is not a
counterexample to part (a) either, giving the desired contradiction.

Properties (A) and (B) from Lemma 4.2 have already been used several times in
the proofs and are used many more times in what follows. For the sake of brevity,
we will take them as granted from now on, no longer making explicit reference to the
lemma.

Lemma 4.5. The graph G is reduced.

Proof. First, suppose that G has a vertex v of degree at most 2, and let G′ be
obtained from G by applying the appropriate operation from Lemma 2.1 on v. The
graph G′ is connected with s(G′) = s(G) and φ(G′) 6 φ(G). This implies that G′ is
a smaller counterexample, a contradiction. Hence, G has minimum degree at least 3.

Next, assume that G has a bridge uv ∈ E(G), and denote by G1 and G2 the
two components of G − uv, with u ∈ V (G1) and v ∈ V (G2). Since u and v each
have degree at least 3 in G, we have φG(u) > φG1(u) + 1

2 and φG(v) > φG2(v) + 1
2 .

Also, s(G) = s(G1) + s(G2), which follows from the fact that no K4 subdivision in G
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136 GWENAËL JORET AND DAVID R. WOOD

contains the edge uv. Moreover, G1 and G2 are both connected and smaller than G.
Applying Theorem 4.1 on these two graphs gives

φ(G) = φ(G1) + φ(G2) +
(
φG(u)− φG1(u)

)
+
(
φG(v)− φG2(v)

)
> φ(G1) + φ(G2) +

1
2

+
1
2

>
16
3
(
s(G1) + s(G2)

)
− 2 + 1 =

16
3
s(G)− 1,

a contradiction. Hence, G−e is connected for every edge e ∈ E(G). This implies that
every edge e ∈ E(G) is critical, since otherwise G − e would be a smaller counter-
example. It follows then from Lemma 3.2 that G is 2-connected.

Now, suppose that G has a vertex v of degree at least 6. Then G− v is connected
and s(G − v) > s(G) − 1. Moreover, φ(G) − φ(G − v) > 3 + 6 · 1

2 = 6, since every
neighbor of v has degree at least 3 in G. It follows that

φ(G) > φ(G− v) + 6 >
16
3
s(G− v)− 1 + 6 >

16
3
s(G)− 1− 16/3 + 6 >

16
3
s(G)− 1,

which is again a contradiction. Hence, G has maximum degree at most 5, and therefore
G is reduced.

Vertices of degree 5 in G are the focus of our attention in the next lemmas. We
study the local structure of G around such vertices, eventually concluding that there
is no degree-5 vertex in G.

Lemma 4.6. If v ∈ V (G) has degree 5, then v has no neighbor of degree 3, and at
most one of degree 4.

Proof. Since G− v is connected and s(G− v) > s(G)− 1,

φ(G) = φ(G− v) + λ >
16
3
s(G− v)− 1 + λ >

16
3
s(G)− 1− 16

3
+ λ,

where
λ :=

5
2

+
∑

x∈NG(v)

(
φG(x)− φG−v(x)

)
.

For every integer d > 3,

φ(d)− φ(d− 1) =


4
3 if d = 3,
2
3 if d = 4,
1
2 otherwise.

Hence, if NG(v) contains a vertex of degree 3 or two vertices of degree 4, then λ > 16
3 ,

implying that G is not a counterexample to Theorem 4.1(a).

Thus there are only two possibilities for a vertex v of degree 5 in G: either all
neighbors of v also have degree 5, or four of them have degree 5 and one has degree
4. In the former case, we call v a pure degree-5 vertex, while in the latter case we call
v a mixed degree-5 vertex.

Lemma 4.7. The graph G is 3-connected. Moreover, if X ⊆ V (G) is a 3-cutset
of G, then degG(v) ∈ {3, 4} for every vertex v ∈ X.

Proof. We already know that G is reduced by Lemma 4.5, and thus in particular
that G is 2-connected. The graph G is also 3-connected, as otherwise G would also
be a counterexample to Theorem 4.1(b), contradicting Lemma 4.4.
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K4-MINOR-FREE INDUCED SUBGRAPHS 137

Thus it remains to show the second part of the statement. Arguing by contra-
diction, suppose that X ⊆ V (G) is a 3-cutset of G containing a vertex v of degree 5.
Then G− v is 2-connected but not 3-connected. Moreover, by Lemma 4.6, G− v has
minimum degree at least 3.

First, assume that some edge e ∈ E(G − v) is not critical in G − v. Let G′ :=
(G− v)− e. Observe that φ(G− v) > φ(G′) + 1. Since s(G′) = s(G− v) > s(G)− 1
and the graph G′ is connected and smaller than G, Theorem 4.1 gives

φ(G) = φ(G− v) +
5
2

+
∑

x∈NG(v)

(
φG(x)− φG−v(x)

)
> φ(G− v) + 5

> φ(G′) + 6 >
16
3
s(G′)− 1 + 6 >

16
3
s(G)− 16

3
− 1 + 6 >

16
3
s(G)− 1,

a contradiction. Hence, G − v is critical. In particular, G − v is reduced. Using
Theorem 4.1(b) on G− v,

φ(G) = φ(G− v) +
5
2

+
∑

x∈NG(v)

(
φG(x)− φG−v(x)

)
> φ(G− v) + 5 >

16
3
s(G− v) + 5 >

16
3
s(G)− 16

3
+ 5 >

16
3
s(G)− 1,

which is again a contradiction.

The above proof shows why it is useful to prove a stronger bound in the case that
the graph is reduced but not 3-connected. (Indeed, it is when we were trying to prove
Lemma 4.7 that we were led to add part (b) to Theorem 4.1.)

For v ∈ V (G), denote by Gv the subgraph of G induced by the neighborhood of
v. (Note that v is not included in Gv.)

Lemma 4.8. Suppose that v ∈ V (G) is a pure degree-5 vertex. Then α(Gv) = 2.

Proof. First, suppose that Gv has a stable set S of size 3. By Lemma 4.7, the
graph G − S is connected. Since S is a stable set, each vertex u ∈ S has exactly
four neighbors outside S ∪ {v}. Let T be the set of all such neighbors. Note that
each vertex in T has degree at least 4 by Lemma 4.6, and has between one and three
neighbors in S. Using s(G− S) > s(G)− 3 and Theorem 4.1 on G− S,

φ(G) = φ(G− S) + (φG(v)− φG−S(v)) +
∑
u∈S

φG(u) +
∑
u∈T

(φG(u)− φG−S(u))

> φ(G− S) +
5
2

+ 3
5
2

+ 6

= φ(G− S) + 16

>
16
3
s(G− S)− 1 + 16 >

16
3
s(G)− 3

16
3
− 1 + 16 =

16
3
s(G)− 1,

a contradiction. Hence, α(Gv) 6 2.
On the other hand, if α(Gv) = 1, then G is isomorphic to K6, because G has

maximum degree at most 5. Since K6 is not a counterexample to Theorem 4.1, we
deduce α(Gv) = 2, as claimed.

For a subset S of vertices of G, let eG(S) denote the number of edges between S
and V (G)−S. Observe that, if |S| 6 4 and all vertices in V (G)−S having a neighbor
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138 GWENAËL JORET AND DAVID R. WOOD

in S have degree at least 4, then

φ(G) > φ(G− S) +
∑
u∈S

φG(u) +
1
2
eG(S).

This observation is used in the subsequent proofs.
A sparse bipartition of a 5-vertex graph H is a partition (X,Y ) of V (H) such

that |X| = 3, |Y | = 2, and |E(H[X])| = |E(H[Y ])| = 1.

Lemma 4.9. Suppose that v ∈ V (G) is a pure degree-5 vertex. Then Gv does not
admit a sparse bipartition.

Proof. Arguing by contradiction, assume Gv has a sparse bipartition (X,Y ). Let
S := X ∪ {v}. In G −X, the two neighbors of v are adjacent, implying s(G − S) =
s(G −X) > s(G) − 3. By Lemma 4.7, G −X is connected, and hence G − S is also
connected. It follows that

φ(G) > φ(G− S) +
∑
u∈S

φG(u) +
1
2
eG(S) = φ(G− S) + 10 + 6

>
16
3
s(G− S)− 1 + 16 >

16
3
s(G)− 1,

a contradiction.

Lemma 4.10. Suppose that v ∈ V (G) is a pure degree-5 vertex. Then Gv is
isomorphic to C5, the cycle on five vertices.

Proof. As shown in the previous two lemmas, α(Gv) = 2 and Gv does not admit
a sparse bipartition. Observe furthermore that the subset X of vertices of Gv having
degree at most 3 in Gv is a cutset of G separating {v} ∪ (V (Gv) \X) from the rest
of the graph. It follows from Lemma 4.7 that |X| > 4, and thus that Gv contains at
most one vertex of degree 4 in Gv.

We leave it to the reader to check that, up to isomorphism, there are exactly three
graphs H on five vertices with α(H) = 2, having no sparse bipartition, and with at
most one vertex of degree 4: the wheel W5, the graph K4 with an edge subdivided
once (which we denote by W−5 ), and the cycle C5. Thus Gv is isomorphic to one of
these three graphs, illustrated in Figure 1.

W5 W−
5 C5

Fig. 1. Three possibilities for the graph Gv.

First, suppose Gv
∼= W5, and let X ⊆ V (Gv) be such that |X| = 3 and every

vertex in X has degree 3 in Gv. Let also S := X ∪{v}. Then s(G−S) = s(G−X) >
s(G)− 3. Also, G−X is connected by Lemma 4.7, and hence so is G− S. It follows
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K4-MINOR-FREE INDUCED SUBGRAPHS 139

x y

v

Fig. 2. The subgraph of G induced by Z. Dashed edges indicate edges that may or may not be
present in G[Z]; white vertices are the vertices in S.

that

φ(G) > φ(G− S) + 4φ(5) +
(
φ(5)− φ(1)

)
+
(
φ(5)− φ(2)

)
+ 3

1
2

= φ(G− S) + 16 +
1
2

>
16
3
s(G− S)− 1 + 16 +

1
2

>
16
3
s(G)− 1,

a contradiction. Hence, Gv is not isomorphic to W5.
Now, assume Gv

∼= W−5 , and let X ⊆ V (Gv) consist of the unique vertex of
Gv with degree 2 together with its two neighbors. Let S := X ∪ {v}. Similarly as
above, the graph G−S is connected, and we can check that s(G−S) > s(G)− 3 and
φ(G) > φ(G−S)+17, implying again φ(G) > 16

3 s(G)−1. Thus, Gv is not isomorphic
to W−5 either.

It follows that Gv is isomorphic to C5.

Next, we deal with the case where v ∈ V (G) is a pure degree-5 vertex and Gv is
isomorphic to C5.

Lemma 4.11. There is no pure degree-5 vertex in G.

Proof. Suppose that v ∈ V (G) is a pure degree-5 vertex. Thus, Gv
∼= C5 by

Lemma 4.10. First, assume that Gv contains at least three vertices which are mixed
degree-5 vertices in G. Among them, there are two vertices x and y which are not
adjacent (since Gv has no triangle). Moreover, x and y have at least two common
neighbors with degree 5 in G, namely v and some vertex in V (Gv)−{x, y}. Combining
these observations with the fact that x and y each have a degree-4 neighbor (possibly
the same vertex), one obtains

φ(G) > φ(G− {x, y}) + 2φ(5) + 2
(
φ(5)− φ(3)

)
+ 2

2
3

+ 4
1
2

= φ(G− {x, y}) + 10 +
2
3

>
16
3
s(G− {x, y})− 1 + 10 +

2
3

>
16
3
s(G)− 1,

a contradiction. Hence, there are at most two mixed degree-5 vertices in Gv.
Now, there are two pure degree-5 vertices x and y which are adjacent in Gv. Since

Gv, Gx, and Gy are all isomorphic to C5 by Lemma 4.10, the graph G[Z] induced by
the set Z := V (Gv) ∪ V (Gx) ∪ V (Gy) is as depicted in Figure 2.

Let S be the set consisting of the three vertices in Z −{v, x, y} that have exactly
two neighbors in {v, x, y}. The set S is a stable set of G and the graph G − S is
connected (as follows from Lemma 4.7). Let a and b be the number of vertices with
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140 GWENAËL JORET AND DAVID R. WOOD

respectively two and three neighbors in S. (Thus there are exactly a edges between
S and V (G)− Z.) It follows that

φ(G) > φ(G− S) + 3φ(5) + (3 + a)
(
φ(5)− φ(3)

)
+ b
(
φ(5)− φ(2)

)
+ a

1
2

> φ(G− S) + 3φ(5) + 6
(
φ(5)− φ(3)

)
+ 3

1
2

= φ(G− S) + 16 >
16
3
s(G− S)− 1 + 16 >

16
3
s(G)− 1,

which is again a contradiction.

Our next aim is to prove that G does not have mixed degree-5 vertices either. We
follow an approach similar to the one used for pure degree-5 vertices.

A diamond in G is an induced subgraph H of G isomorphic to K4− e (the graph
K4 minus an edge) with the property that the two vertices with degree 2 in H both
have degree 5 in G.

Lemma 4.12. There is no diamond in G.

Proof. Suppose the contrary—that G contains a diamond H. Let x, y be the two
vertices with degree 2 in H. If some vertex of V (H) \ {x, y} has degree 4 in G, then

φ(G) > φ(G−{x, y})+2φ(5)+
(
φ(4)−φ(2)

)
+
(
φ(5)−φ(3)

)
+6

1
2

> φ(G−{x, y})+10+
2
3
.

If, on the other hand, both vertices in V (H)− {x, y} have degree 5 in G, then

φ(G) > φ(G− {x, y}) + 2φ(5) + 2
(
φ(5)− φ(3)

)
+ 2

2
3

+ 4
1
2

= φ(G− {x, y}) + 10 +
2
3
.

(Here, we use that x and y each have a degree-4 neighbor in G.) Thus, in both cases,

φ(G) > φ(G− {x, y}) + 10 +
2
3

>
16
3
s(G− {x, y})− 1 + 10 +

2
3

>
16
3
s(G)− 1,

contradicting the fact that G is a counterexample.

Lemma 4.13. Suppose v ∈ V (G) is a mixed degree-5 vertex and let w be the unique
neighbor of v of degree 4. Then w ∈ S for every stable set S of Gv of size 3.

Proof. If there is a stable set of size 3 in Gv avoiding w, then we can reach a
contradiction exactly as in the first part of the proof of Lemma 4.8.

Suppose that v ∈ V (G) is a mixed degree-5 vertex. Here, we define a sparse
bipartition of Gv as a partition (X,Y ) of V (Gv) such that |X| = 3, |Y | = 2, and
|E(G[X])| = |E(G[Y ])| = 1, as for pure degree-5 vertices, but with the additional
requirement that Y includes the unique neighbor of v having degree 4 in G.

Lemma 4.14. Suppose that v ∈ V (G) is a mixed degree-5 vertex. Then Gv does
not admit a sparse bipartition.

Proof. Assume (X,Y ) is a sparse bipartition of Gv. Since the two vertices in Y
are adjacent, s(G − S) = s(G −X) > s(G) − 3, where S := X ∪ {v}. Let w be the
vertex in Y of degree 4. Observe that w sees at most three vertices in S, since w is
adjacent to the other vertex in Y . Thus every degree-4 vertex in G sees at most three
vertices from S. Since G− S is connected,

φ(G) > φ(G− S) + 4φ(5) + 4
2
3

+ 8
1
2

> φ(G− S) + 16 >
16
3
s(G)− 1,

a contradiction.
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K4-MINOR-FREE INDUCED SUBGRAPHS 141

Lemma 4.15. Suppose that v ∈ V (G) is a mixed degree-5 vertex and let w be the
unique neighbor of v of degree 4. Then w has degree at most 1 in Gv.

Proof. Arguing by contradiction, assume x, y are two distinct neighbors of w in
Gv. If xy /∈ E(G), then we obtain

φ(G) > φ(G− {x, y}) + 2φ(5) +
(
φ(5)− φ(3)

)
+
(
φ(4)− φ(2)

)
+ 6

1
2

> φ(G− {x, y}) + 10 +
2
3

>
16
3
s(G− {x, y})− 1 + 10 +

2
3

>
16
3
s(G)− 1,

a contradiction. Thus, we may assume xy ∈ E(G).
Let Q := NG(v) − {w}. We have α(G[Q]) 6 2 by Lemma 4.13. Also, if

|E(G[X])| = 2 for some X ⊆ Q with |X| = 3, then the subgraph of G induced
by X ∪ {v} is a diamond of G, which Lemma 4.12 forbids. On the other hand, if we
had |E(G[X])| = 1 for some X ∈ {Q− {x}, Q− {y}}, then (X,NG(v)−X) would be
a sparse bipartition of Gv, which would contradict Lemma 4.14.

Since xy ∈ E(G), it follows from the previous observations that G[Q] is a complete
graph. In particular, x and y have no neighbor outside NG(v)∪{v}. Notice also that
some vertex in Q is not adjacent to w, and thus has a neighbor outside NG(v) ∪ {v}.
It follows that Z := NG(v) − {x, y} separates {v, x, y} from the rest of the graph.
Since |Z| = 3 and Z includes a vertex of degree 5, this contradicts Lemma 4.7.

Lemma 4.16. Suppose that v ∈ V (G) is a mixed degree-5 vertex and let w be the
unique neighbor of v with degree 4. Then Gv is one of the two graphs depicted in
Figure 3.

w

w

Fig. 3. Two possibilities for the graph Gv when v is a mixed degree-5 vertex.

Proof. Let Q := NG(v) − {w}. Lemmas 4.12 and 4.13 imply that G[Q] has at
most two components and that each component is a complete graph. Hence, G[Q] is
isomorphic to K4, K3 ∪K1, or K2 ∪K2. (As expected, Kt ∪K` denotes the disjoint
union of Kt and K`.)

First, assume G[Q] ∼= K4, and let x, y be two distinct vertices of Q such that
wx /∈ E(G) and wy /∈ E(G) (such vertices exist by Lemma 4.15). Let S := {v, w, x, y}.
Then s(G − S) = s(G − {w, x, y}) > s(G) − 3. Using that each of x and y has a
neighbor outside NG(v)∪ {v}, that w has at least two neighbors outside NG(v)∪ {v}
(cf. Lemma 4.15), and, as usual, that G− S is connected,

φ(G) > φ(G− S) + 3φ(5) + φ(4) + 2
(
φ(5)− φ(2)

)
+ 4

1
2

> φ(G− S) + 16 >
16
3
s(G− S)− 1 + 16 >

16
3
s(G)− 1,

a contradiction. Thus G[Q] is not isomorphic to K4.
Recall that w has degree at most 1 in Gv, by Lemma 4.15. Suppose that w has

degree 1 in Gv, and let z be its unique neighbor. We cannot have |E(G[NG(v) −
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142 GWENAËL JORET AND DAVID R. WOOD

{w, z}])| = 1, since otherwise (NG(v) − {w, z}, {w, z}) would be a sparse bipartition
of Gv. It follows that G[Q] is isomorphic to K3 ∪K1 and that z is the isolated vertex
of that graph. Hence, Gv is isomorphic to the left graph in Figure 3.

Now, assume w has degree 0 in Gv. Suppose G[Q] ∼= K3 ∪ K1, and let X be a
stable set of Gv with |X| = 3 (thus w ∈ X). Let S := X ∪ {v}. Similarly as before,
we deduce

φ(G) > φ(G− S) + 3φ(5) + φ(4) + 2
(
φ(5)− φ(3)

)
+ 9

1
2

> φ(G− S) + 16 >
16
3
s(G− S)− 1 + 16 >

16
3
s(G)− 1,

a contradiction. Thus G[Q] ∼= K2 ∪ K2, and Gv is isomorphic to the graph on the
right in Figure 3.

Lemma 4.17. If G has maximum degree 5, then there exists an almost induced
even cycle C in G such that every vertex in C has degree 5.

Proof. Following Lemma 4.16, a vertex v of G is said to be of type 1 (type 2) if
v is a mixed degree-5 vertex and Gv is isomorphic to the left (resp., right) graph in
Figure 3.

Let Hi ⊆ G be the subgraph of G induced by the set of vertices of type i for
i = 1, 2. Notice that, if v ∈ V (G) is of type i, then so are the four neighbors of v that
have degree 5 in G. Thus Hi is either 4-regular or empty for i = 1, 2.

If there is a type 2 vertex in G, then H2 is 4-regular and has no subgraph isomor-
phic to K4. Using Lemma 3.3 on H2, we obtain a cycle C as desired. Thus, we may
assume that every degree-5 vertex in G is of type 1. In particular, there is at least
one such vertex.

Now, the graph H1 is 4-regular, and every vertex of H1 is contained in exactly
one copy of K4. More precisely, all copies of K4 in H1 are pairwise vertex-disjoint,
they cover all of V (H1), and each copy sends exactly four edges to other copies of K4
in H1. Observe also that the set of edges of H1 that link two distinct copies of K4
form a perfect matching of H1.

Let H̃1 be the multigraph obtained by contracting each copy of K4 into one vertex
(parallel edges between distinct vertices are kept, but loops are removed). It follows
from the previous observation that H̃1 is 4-regular. Let C̃ be any induced cycle of
H̃1 (note that a cycle of length 2 is allowed). The cycle C̃ naturally corresponds to
an induced cycle C of H1 having length 2|C̃|. This latter cycle is as desired: C has
even length, is induced (and thus almost induced) in G, and contains only vertices of
degree 5.

Lemma 4.18. G has maximum degree at most 4.

Proof. Arguing by contradiction, we assume that G has maximum degree 5. Let
C be a cycle of G as in Lemma 4.17. Enumerate the vertices of C in order as
v1, v2, . . . , v2k so that S := {v1, v3, . . . , v2k−1} is a stable set of G. For i ∈ {1, 2, . . . , k},
let Si := {v1, v3, . . . , v2i−1}, and define X4

i (X5
i ) as the set of vertices in V (G)−V (C)

of degree 4 (resp., degree 5) that have a neighbor in Si. Let j be the largest index
such that the following three properties hold:

• G− Sj is 3-connected;
• |X4

j | = j; and
• |X5

j | = 2j.
Note that |X4

1 | = 1, |X5
1 | = 2, and G − S1 is 3-connected by Lemma 4.7; thus, j is

well defined. We distinguish two cases, depending on whether j = k or j < k.
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K4-MINOR-FREE INDUCED SUBGRAPHS 143

Case 1. j = k: We have s(G−S) > s(G)− k. Since |X4
k | = k and |X5

j | = 2k, no
two vertices in S (= Sk) have a common neighbor in V (G)−V (C). Thus, every vertex
in V (G)− V (C) has at most one neighbor in S. Also, every vertex in V (C)− S has
exactly two neighbors in S, because C is almost induced. Since G− S is connected,

φ(G) = φ(G− S) + kφ(5) + k
(
φ(5)− φ(3)

)
+ k
(
φ(4)− φ(3)

)
+ 2k

(
φ(5)− φ(4)

)
= φ(G− S) + k

16
3

>
16
3
s(G− S)− 1 + k

16
3

>
16
3
s(G)− 1,

contradicting the fact that G is a counterexample.
Case 2. j < k: Here, we consider the set Sj+1. Exactly j vertices in V (C)−Sj+1

have two neighbors in Sj+1, and exactly two have one. Let G′ := G − Sj+1. For
` ∈ {4, 5}, let

∆`
j+1 :=

∑
v∈Xl

j+1

(
φG(v)− φG′(v)

)
.

We have

φ(G) = φ(G′) + (j + 1)φ(5) + j
(
φ(5)− φ(3)

)
+ 2
(
φ(5)− φ(4)

)
+ ∆4

j+1 + ∆5
j+1

= φ(G′) + (j + 1)
16
3
− 1

6
+
(

∆4
j+1 − (j + 1)

2
3

)
+
(

∆5
j+1 − 2(j + 1)

1
2

)
.

Observe that, by our choice of j, every vertex in X4
j+1 and X5

j+1 has at most two
neighbors in Sj+1. Since

φ(4)− φ(2) > 2
(
φ(4)− φ(3)

)
+

1
6

and
φ(5)− φ(3) = 2

(
φ(5)− φ(4)

)
+

1
6
,

we have

∆4
j+1 >

{
(j + 1) 2

3 + 1
6 if |X4

j+1| < j + 1,

(j + 1) 2
3 otherwise,

and

∆5
j+1 >

{
2(j + 1) 1

2 + 1
6 if |X5

j+1| < 2(j + 1),

2(j + 1) 1
2 otherwise.

Thus, if |X4
j+1| < j+ 1 or |X5

j+1| < 2(j+ 1), since s(G′) > s(G)− (j+ 1) and that G′

is connected,

φ(G) > φ(G′) + (j + 1)
16
3

>
16
3
s(G′)− 1 + (j + 1)

16
3

>
16
3
s(G)− 1,

a contradiction. Therefore, |X4
j+1| = j + 1 and |X5

j+1| = 2(j + 1). By definition of j,
this implies thatG′ is 2-connected but not 3-connected. Note also that ∆4

j+1 = (j+1) 2
3

and ∆5
j+1 = 2(j + 1) 1

2 , implying

φ(G) = φ(G′) + (j + 1)
16
3
− 1

6
.

Every vertex of C has degree 5 in G and every vertex in V (G)−V (C) has at most
one neighbor in Sj+1. Moreover, no degree-3 vertex in V (G)− V (C) has a neighbor
in C. It follows that G′ has minimum degree 3.
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Suppose s(G′) = s(G′ − e) for some edge e ∈ E(G′). Then φ(G′) > φ(G′ − e) + 1
(since G′ has minimum degree at least 3), and since G′ − e is connected,

φ(G) = φ(G′) + (j + 1)
16
3
− 1

6
> φ(G′ − e) + (j + 1)

16
3
− 1

6
+ 1 >

16
3
s(G)− 1,

a contradiction. Hence, the graph G′ is critical, which in turn implies that G′ is
reduced.

Now, since G′ is reduced but not 3-connected, we may apply Theorem 4.1(b) on
G′, yielding

φ(G) > φ(G′) + (j + 1)
16
3
− 1

6
>

16
3
s(G′) + (j + 1)

16
3
− 1

6
>

16
3
s(G)− 1,

which is again a contradiction.

Note that the last paragraph of the above proof relies crucially on the stronger
hypothesis in the reduced but not 3-connected case.

Lemma 4.18 concludes the heart of the proof, namely showing that there is no
vertex of degree 5 in G. Now, it only remains to deal with vertices of degree 3 and 4,
which is fairly easy in comparison.

Lemma 4.19. G is 4-regular and has no subgraph isomorphic to K4.

Proof. First, suppose that G contains some vertex v of degree 4 having a degree-3
neighbor. Since G− v is connected,

φ(G) > φ(G− v) + φ(4) + 3
(
φ(4)− φ(3)

)
+
(
φ(3)− φ(2)

)
= φ(G− v) +

16
3

>
16
3
s(G)− 1,

a contradiction. Thus, G is either cubic (3-regular) or 4-regular. If G is cubic, then,
letting v ∈ V (G) be an arbitrary vertex of G,

φ(G) > φ(G− v) + φ(3) + 3
(
φ(3)− φ(2)

)
= φ(G− v) +

16
3

>
16
3
s(G)− 1,

again a contradiction. Hence, G is 4-regular. Also, |V (G)| > 6, since K5 is not a
counterexample.

Now, assume X ⊂ V (G) induces a subgraph of G isomorphic to K4. Let u ∈ X
and let v be the unique neighbor of u in V (G) − X. Since G 6∼= K5, there is some
vertex w ∈ X that is not adjacent to v.

The two neighbors x and y of u in G− {v, w} are adjacent; hence

s(G− {u, v, w}) = s(G− {v, w}) > s(G)− 2.

Let z be the unique neighbor of w in V (G) − (X ∪ {v}). The vertices x and y have
degree at most 2 in G−{u, v, w}, and z has degree at most 3 in that graph. Combining
these observations with the fact that G−{u, v, w} is connected (since G−{v, w} is),
we deduce

φ(G) > φ(G− {u, v, w}) + 3φ(4) + 2
(
φ(4)− φ(2)

)
+
(
φ(4)− φ(3)

)
= φ(G− {u, v, w}) + 2

16
3

>
16
3
s(G)− 1,

a contradiction. Therefore, G contains no subgraph isomorphic to K4.
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We are now in a position to complete the proof of Theorem 4.1 by showing
that φ(G) > 16

3 s(G) − 1, and thus that G is not a counterexample to part (a) of
Theorem 4.1, a final contradiction.

Lemma 4.20. φ(G) > 16
3 s(G)− 1.

Proof. The proof is similar to that of Lemma 4.18. The main difference is that,
in the latter proof, a vertex v of the cycle C with two neighbors in the stable set Si

has degree 3 in G − Si, while here it will have degree 2 in G − Si. In some cases,
we will need to eliminate these degree-2 vertices using the relevant operations (cf.
Lemma 2.1). A second difference is that here we are able to choose C simply as a
shortest even cycle in G, which will ensure that no two vertices in S have a common
neighbor outside V (C) when |C| > 6, simplifying the case analysis somewhat. (We
could not have done that in the proof of Lemma 4.18 because the graph might have
contained K4 as a subgraph.)

Let C be a shortest even cycle in G. Since G is 4-regular and has no subgraph
isomorphic to K4, by Lemma 3.3 such a cycle exists, and it is almost induced. Enu-
merate the vertices of C in order as v1, v2, . . . , v2k so that S := {v1, v3, . . . , v2k−1} is
a stable set of G. We may further assume that if C is not induced, then the unique
chord of C is incident to v2k.

First suppose that |C| = 4. Then G−S is connected. We have s(G−S) > s(G)−2,
and

φ(G) > φ(G− S) + 4φ(4) + 4(φ(4)− φ(3)) = φ(G− S) + 10 +
2
3

>
16
3
s(G)− 1.

Next, assume |C| > 6. Here we cannot simply remove S from G, since G−S might
no longer be connected. For each i ∈ {1, 2, . . . , k}, let Si := {v1, v3, . . . , v2i−1}, let
xi be a neighbor of v2i outside V (C), and let Mi := {v2x1, v4x2, . . . , v2ixi}. Observe
that no two vertices of C which are at even distance on C share a common neighbor
outside C, for otherwise there would be an even cycle shorter than C. (Here we use
that |C| > 6.) Thus, no two vertices in S have a common neighbor outside V (C), and
no two vertices in V (C) − S have a common neighbor outside V (C). In particular,
Mi is a matching of G for each i ∈ {1, 2, . . . , k}.

Let j be the largest index in {1, 2, . . . , k} such that
• G− Sj is 2-connected, and
• none of v2, v4, . . . , v2j−2 lies in a triangle in G− Sj .

Since G − S1 is 2-connected and the second condition is vacuous for j = 1, the two
properties hold for j = 1, and thus the index j is well defined. We distinguish two
cases, depending on whether j = k or j < k.

Case 1. j = k: We have s(G− S) > s(G)− k and

φ(G) = φ(G− S) + kφ(4) + k
(
φ(4)− φ(2)

)
+ 2k

(
φ(4)− φ(3)

)
= φ(G− S) + k

16
3

>
16
3
s(G− S)− 1 + k

16
3

>
16
3
s(G)− 1,

as desired.
Case 2. j < k: Here we know that G − Sj+1 is connected (but perhaps not

2-connected).
First suppose that v2j is in a triangle of G−Sj+1, and let G′ := G−(Sj+1∪{v2j}).

Then s(G′) = s(G − Sj+1) > s(G) − (j + 1). Also, xj has degree at least 3 in
G − Sj+1, since each vertex of V (G) − V (C) sees at most one vertex from S in G.
(This is also true for the other neighbor of v2j in G − Sj+1 if it is outside V (C);
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146 GWENAËL JORET AND DAVID R. WOOD

note, however, that this second neighbor could be the vertex v2k in case C has a
chord.) Since φ(3) − φ(2) > φ(4) − φ(3), considering the vertex xj we deduce that
φ(G− Sj+1) > φ(G′) + (φ(4)− φ(3)) = φ(G′) + 2

3 .
Combining the previous observations,

φ(G) = φ(G− Sj+1) + (j + 1)φ(4) + j(φ(4) − φ(2)) + 2(j + 1)(φ(4) − φ(3)) + 2(φ(4) − φ(3))

= φ(G− Sj+1) + (j + 1)
16
3

− 2
3

> φ(G′) + (j + 1)
16
3

>
16
3

(s(G) − (j + 1)) − 1 + (j + 1)
16
3

=
16
3

(s(G) − 1).

Hence we may assume that v2j is not in a triangle in G − Sj+1, and it follows that
the latter graph is connected but not 2-connected.

Let z be a cutvertex of G−Sj+1. We may assume that z has been chosen so that
it is distinct from v2, v4, . . . , v2j (if not, simply replace z by one of its two neighbors).
Now we will focus on the graph G − Sj . Clearly, {v2j+1, z} is a 2-cutset of that
graph. More importantly, {v2j+1, z} is also a 2-cutset of G′ := (G − Sj)/Mj , the
graph obtained from G− Sj by contracting each edge of the matching Mj . Thus G′

is not 3-connected. On the other hand, G′ is 2-connected, since any cutvertex of G′

would also be a cutvertex of G− Sj (which is 2-connected).
We claim that v2, v4, . . . , v2j are the only vertices of degree 2 in G − Sj , and

that every other vertex has degree at least 3. This is clear if none of v2, v4, . . . , v2j is
incident to a chord of C, since no vertex from V (G)− V (C) sees two vertices from S
in G. If, on the other hand, there is a chord of C incident to one of these vertices,
then it is of the form v2`v2k for some ` ∈ {1, 2, . . . , j}, and we observe that v2k has
degree 3 in G − Sj since j < k. Again this shows that v2, v4, . . . , v2j are the only
vertices of degree 2 in G− Sj .

By the previous observation, it follows that G′ has minimum degree 3. If some
edge e of G′ is not critical, then, since G′ − e is connected and s(G′ − e) = s(G′) =
s(G− Sj),

φ(G) = φ(G− Sj) + jφ(4) + (j − 1)(φ(4)− φ(2)) + 2j(φ(4)− φ(3)) + 2(φ(4)− φ(3))

= φ(G− Sj) + j
16
3
− 2

3

= φ(G′) + j
16
3
− 2

3

> φ(G′ − e) + j
16
3

>
16
3

(s(G)− j)− 1 + j
16
3

=
16
3

(s(G)− 1).

Thus we may assume that G′ is critical, implying that G′ is reduced. Since G′ is not
3-connected, applying part (b) of Theorem 4.1 on G′ yields

φ(G) = φ(G− Sj) + jφ(4) + (j − 1)(φ(4)− φ(2)) + 2j(φ(4)− φ(3)) + 2(φ(4)− φ(3))

= φ(G− Sj) + j
16
3
− 2

3

= φ(G′) + j
16
3
− 2

3

>
16
3
s(G′) + j

16
3
− 2

3
>

16
3

(s(G)− j) + j
16
3
− 2

3
>

16
3

(s(G)− 1),

which concludes the proof.

c© 2018 Gwenaël Joret and David R. Wood

D
ow

nl
oa

de
d 

01
/2

3/
18

 to
 1

30
.1

94
.2

0.
17

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



K4-MINOR-FREE INDUCED SUBGRAPHS 147

REFERENCES

[1] G. Borradaile, D. Eppstein, and P. Zhu, Planar induced subgraphs of sparse graphs, J.
Graph Algorithms Appl., 19 (2015), pp. 281–297, https://doi.org/10.7155/jgaa.00358.

[2] R. Diestel, Graph Theory, 3rd ed., Grad. Texts in Math. 173, Springer-Verlag, Berlin, 2005.
[3] K. Edwards, A faster polynomial-space algorithm for Max-2-CSP, J. Comput. System Sci., 82

(2016), pp. 536–550.
[4] K. Edwards and G. Farr, Planarization and fragmentability of some classes of graphs, Dis-

crete Math., 308 (2008), pp. 2396–2406, https://doi.org/10.1016/j.disc.2007.05.007.
[5] K. Edwards and G. Farr, Improved upper bounds for planarization and series-parallelization

of degree-bounded graphs, Electron. J. Combin., 19 (2012), 25.
[6] K. Edwards and E. McDermid, A general reduction theorem with applications to pathwidth

and the complexity of MAX-2-CSP, Algorithmica, 72 (2015), pp. 940–968.
[7] S. Gaspers and G. B. Sorkin, A universally fastest algorithm for Max 2-Sat, Max 2-CSP,

and everything in between, J. Comput. System Sci., 78 (2012), pp. 305–335, https://doi.
org/10.1016/j.jcss.2011.05.010.

[8] S. Gaspers and G. B. Sorkin, Separate, measure and conquer: Faster algorithms for Max
2-CSP and counting dominating sets, in Proceedings of the 42nd International Colloquium
on Automata, Languages, and Programming (ICALP 2015), Lecture Notes in Comput.
Sci. 9134, Springer, Berlin, 2015, pp. 567–579.

[9] A. Golovnev and K. Kutzkov, New exact algorithms for the 2-constraint satisfaction prob-
lem, Theoret. Comput. Sci., 526 (2014), pp. 18–27, https://doi.org/10.1016/j.tcs.2014.01.
010.

[10] J. Kneis, D. Mölle, S. Richter, and P. Rossmanith, Algorithms based on the treewidth
of sparse graphs, in Proceedings of the 31st International Workshop on Graph-Theoretic
Concepts in Computer Science (WG 2005), Lecture Notes in Comput. Sci. 3787, Springer,
Berlin, 2005, pp. 385–396, https://doi.org/10.1007/11604686 34.

[11] J. Kneis, D. Mölle, S. Richter, and P. Rossmanith, A bound on the pathwidth of sparse
graphs with applications to exact algorithms, SIAM J. Discrete Math., 23 (2009), pp. 407–
427, https://doi.org/10.1137/080715482.

[12] A. D. Scott and G. B. Sorkin, Faster algorithms for MAX CUT and MAX CSP, with polyno-
mial expected time for sparse instances, in Proceedings of the 7th International Workshop
on Randomization and Approximation Techniques in Computer Science (RANDOM 2003),
S. Arora, K. Jansen, J. D. P. Rolim, and A. Sahai, eds., Lecture Notes in Comput. Sci.
2764, Springer, Berlin, 2003, pp. 382–395, https://doi.org/10.1007/978-3-540-45198-3 32.

[13] A. D. Scott and G. B. Sorkin, Linear-programming design and analysis of fast algorithms
for Max 2-CSP, Discrete Optim., 4 (2007), pp. 260–287.
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