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TREEWIDTH OF CARTESIAN PRODUCTS

OF HIGHLY CONNECTED GRAPHS

DAVID R. WOOD

Abstract. The following theorem is proved: For all k-connected graphs G and H each

with at least n vertices, the treewidth of the cartesian product of G and H is at least

k(n − 2k + 2) − 1. For n ≫ k this lower bound is asymptotically tight for particular

graphs G and H . This theorem generalises a well known result about the treewidth of

planar grid graphs.

Treewidth is a graph parameter of fundamental importance in graph minor theory,

with numerous applications in algorithmic theory and practical computing. The planar

grid graph is a key example for treewidth, in that the n × n planar grid has treewidth

n, and every graph with sufficiently large treewidth contains the n × n planar grid as a

minor.

Motivated by the fact that the planar grid can be defined to be the cartesian product

of two paths, in this note we consider the treewidth of cartesian products of general

graphs. Our main result is a lower bound on the treewidth of the cartesian product of

two highly connected graphs; see [1, 5–12, 14, 15] for related results. Before stating the

theorem, we introduce the necessary definitions.

The cartesian product of graphs G and H, denoted by G�H, is the graph with vertex

set V (G�H) := V (G) × V (H), where (v, x)(w, y) is an edge of G�H if and only if

vw ∈ E(G) and x = y, or v = w and xy ∈ E(H). For each vertex v ∈ V (G) the subgraph

of G�H induced by {(v,w) : w ∈ V (H)} is isomorphic to H; we call it the v-copy of H,

denoted by Hv. Similarly, for each vertex w ∈ V (H) the subgraph of G�H induced by

{(v,w) : v ∈ V (G)} is isomorphic to G; we call it the w-copy of G, denoted by Gw.

A tree decomposition of a graph G consists of a tree T and a set {Tx ⊆ V (G) : x ∈

V (T )} of ‘bags’ of vertices of G indexed by T , such that

• for each edge vw ∈ E(G), some bag Tx contains both v and w, and

• for each vertex v ∈ V (G), the set {x ∈ V (T ) : v ∈ Tx} induces a non-empty

(connected) subtree of T .
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The width of the tree decomposition is max{|Tx| : x ∈ V (T )} − 1. The treewidth of G,

denoted by tw(G), is the minimum width of a tree decomposition of G. For example, G

has treewidth 1 if and only if G is a forest.

Let G be a graph. Two subgraphs X and Y of G touch if X ∩ Y 6= ∅ or there is an

edge of G between X and Y . A bramble in G is a set of pairwise touching connected

subgraphs. A set S of vertices in G is a hitting set of a bramble B if S intersects every

element of B. The order of B is the minimum size of a hitting set. The canonical

example of a bramble of order ℓ is the set of crosses (union of a row and column) in the

ℓ × ℓ grid. The following ‘Treewidth Duality Theorem’ shows the intimate relationship

between treewidth and brambles; see [2] for an alternative proof.

Theorem 1 ([13]). A graph G has treewidth at least ℓ if and only if G contains a bramble

of order at least ℓ+ 1.

This paper proves the following general lower bound on the treewidth of cartesian

products of highly connected graphs.

Theorem 2. For all k-connected graphs G and H each with at least n vertices,

tw(G�H) ≥ k(n− 2k + 2)− 1 .

Proof. To prove this theorem, we construct a bramble B in G�H and then apply The-

orem 1. If n ≤ 2k − 2 then the claim is vacuously true. Now assume that n ≥ 2k − 1.

Let B be the set of all subgraphs X of G�H formed in the following way. Let S be

a set of 2k − 1 vertices in G. Let T be a set of 2k − 1 vertices in H. Initialise X to be

the union of ∪{Hv : v ∈ S} and ∪{Gw : w ∈ T}. Now delete vertices from X such that

at most k− 1 vertices are deleted from Hv for each v ∈ S, and at most k− 1 vertices are

deleted from Gw for each w ∈ T . We claim that B is a bramble of G�H.

First we prove that each X ∈ B is connected. Say X is defined with respect to

S ⊆ V (G) and T ⊆ V (H). First note that for each v ∈ S and w ∈ T , since Hv and Gw

are k-connected, Hv ∩X and Gw ∩X are connected. Let Q be the bipartite graph with

V (Q) = S ∪ T , where for all v ∈ S and w ∈ T , the edge vw is in Q whenever the vertex

(v,w) is in X (i.e., it was not deleted). The degree in Q of each vertex v ∈ S is at least

(2k− 1)− (k− 1) = k since at most k− 1 vertices were deleted from Hv. Similarly, each

vertex in T has degree at least k in Q. So Q has 2k− 1 vertices in each colour class, and

minimum degree k. If Q is disconnected then some component H of Q contains at most

k− 1 vertices in S, implying that the vertices in H ∩ T have degree at most k− 1. Thus

Q is connected. Now consider two vertices (v1, w1) and (v2, w2) in X. Thus v1w1 and

v2w2 are edges of Q. Since Q is connected, there is a path P in Q between one endpoint

of v1w1 and one endpoint of v2w2. For each 2-edge path vwv′ of P , since Gw ∩ X is

connected, there is a path in X between the vertices (v,w) and (v′, w). Similarly, for
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each 2-edge path wvw′ of P , there is a path in X between the vertices (v,w) and (v,w′).

The union of these paths is a walk between (v1, w1) and (v2, w2) in X. Therefore X is

connected, as claimed.

Now we prove that X and X ′ touch for all X,X ′ ∈ B. Say X is defined with respect to

S and T , and X ′ is defined with respect to S′ and T ′. At most (2k− 1)(k− 1) vertices in

S×T ′ were deleted in the construction of X, and at most (2k−1)(k−1) vertices in S×T ′

were deleted in the construction of X ′. Since |S×T ′| = (2k−1)2 > 2(2k−1)(k−1), some

vertex (v,w) ∈ S × T ′ was deleted in neither the construction of X nor the construction

of X ′. Hence (v,w) is in both Hv ∩ X and Gw ∩ X. Thus X and X ′ have a common

vertex.

Therefore B is a bramble. Let J be a hitting set of B. We claim that |J | ≥ k(n−2k+2).

Let S0 := {v ∈ V (G) : |V (Hv)∩J | ≤ k−1} and T0 := {w ∈ V (H) : |V (Gw)∩J | ≤ k−1}.

If |S0| ≤ 2k − 2 then at least n− (2k − 2) pairwise-disjoint copies of H contain at least

k vertices in J , implying |J | ≥ k(n − 2k + 2), as claimed. Otherwise, |S0| ≥ 2k − 1.

Similarly, |T0| ≥ 2k − 1. Let S ⊆ S0 and T ⊆ T0 such that |S| = |T | = 2k − 1. Let

X be the union of ∪{Hv − J : v ∈ S} and ∪{Gw − J : w ∈ T}. Thus X ∈ B (since

|V (Hv ∩ J)| ≤ k − 1 and |V (Gw ∩ J)| ≤ k − 1 for each v ∈ S and w ∈ T ). However,

X∩J = ∅. Thus J is not a hitting set for B. Hence the order of B is at least k(n−2k+2).

The result follows from Theorem 1. �

We now show that the bound in Theorem 2 is tight (ignoring lower order terms and

assuming n ≫ k). The bandwidth of a graph G, denoted by bw(G), is the minimum,

taken over all bijections φ : V (G) → {1, 2, . . . , |V (G)|}, of the maximum, taken over all

edges vw ∈ E(G), of |φ(v)−|φ(w)|. It is well known that tw(G) ≤ bw(G); see [3]. Let P k
n

be the k-th power of a path, which has vertex set {1, 2, . . . , n}, where ij is an edge if and

only if |i − j| ≤ k. Clearly P k
n is k-connected. Let φ be the vertex ordering of P k

n �P k
n

defined by φ((x, y)) = (x−1)n+y. Each edge (x, y)(x, y′) has width |y′−y| ≤ k, and each

edge (x, y)(x′, y) has width |(x′ − x)n| ≤ kn. Hence tw(P k
n �P k

n ) ≤ bw(P k
n �P k

n ) ≤ kn.

(This upper bound can be slightly improved by ordering the vertices with respect to the

function x(n+ 1) + yn.)

In fact, there is a much broader class of graphs that provide an upper bound only

slightly weaker than kn. Let G and H be chordal graphs with n vertices and connectivity

k. It is well known that G and H have clique-number k + 1 and treewidth k. A tree

decomposition of G with width k can be easily turned into a tree decomposition of G�H

with width (k + 1)n − 1; see [7, 14]. Thus tw(G�H) ≤ (k + 1)n − 1.

We expect that the dependence on k in Theorem 2 can be slightly improved (although

it is not obvious how to do so). For example, Theorem 2 with k = 1 implies that the

n × n grid has treewidth at least n − 1, whereas it actually has treewidth n; see [4] for
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a proof. Another interesting example is the toroidal grid graph Cn�Cn. By Theorem 2

with k = 2 and since Cn is a subgraph of P 2
n ,

2n− 5 ≤ tw(Cn �Cn) ≤ tw(P 2
n �P 2

n) ≤ 2n .
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