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Tree Densities in Sparse Graph Classes∗
Tony Huynh and David R. Wood

Abstract. What is the maximum number of copies of a fixed forest) in an =-vertex graph in a graph
class G as = → ∞? We answer this question for a variety of sparse graph classes G. In particular, we
show that the answer isΘ(=U3 () ) ) where U3 () ) is the size of the largest stable set in the subforest
of) induced by the vertices of degree at most 3, for some integer 3 that depends on G. For example,
when G is the class of :-degenerate graphs then 3 = : ; when G is the class of graphs containing no
 B,C -minor (C > B) then 3 = B − 1; and when G is the class of :-planar graphs then 3 = 2. All these
results are in fact consequences of a single lemma in terms of a finite set of excluded subgraphs.

1 Introduction

Many classical theorems in extremal graph theory concern the maximum number of
copies of a fixed graph � in an =-vertex graph1 in some class G. Here, a copy means a
subgraph isomorphic to �. For example, Turán’s Theorem determines the maximum
number of copies of  2 (that is, edges) in an =-vertex  C -free graph [95]. More gener-
ally, Zykov’s Theorem determines the maximum number of copies of a given complete
graph  B in an =-vertex  C -free graph [99]. The excluded graph need not be com-
plete. The Erdős–Stone Theorem [35] determines, for every non-bipartite graph - , the
asymptoticmaximumnumber of copies of 2 in an =-vertex graphwith no --subgraph.
Analogues of the Erdős–Stone Theorem for the number of (induced) copies of a given
graphwithin a graph class defined by an excluded (induced) subgraph have recently been
widely studied [4–6, 36, 48–50, 55, 70, 72, 76].

For graphs � and � , let � (�,�) be the number of copies of � in � . For a graph
class G, let

� (�,G, =) := max
�∈G, |+ (�) |==

� (�,�).

This paper determines the asymptotic behaviour of� (),G, =) as =→∞ for various
sparse graph classes G and for an arbitrary fixed forest ) . In particular, we show that
� (),G, =) ∈ Θ(=: ) for some : depending on ) and G.

It turns out that : depends on the size of particular stable sets in) . A set ( of vertices
in a graph� is stable if no two vertices in ( are adjacent. Let U(�) be the size of a largest
stable set in� . For a graph� and B ∈ N0, let

UB (�) := U(� [{E ∈ + (�) : deg� (E) 6 B}]).

AMS subject classification: 90C35, 05C05, 05C83.
Keywords: extremal combinatorics, trees, graph minors, sparsity.
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1All graphs in this paper are undirected, finite, and simple, unless stated otherwise. Let N := {1, 2, . . . }

andN0 := N ∪ {0}. For 0, 1 ∈ N0 , let [0, 1] := {0, 0 + 1, . . . , 1} and [1] := [1, 1].
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2 T. Huynh and D.R. Wood

Note that for a forest) (indeed any bipartite graph), UB ()) can be computed in polyno-
mial time. See [10, 12, 13] for bounds on the size of bounded degree stable sets in forests,
planar graphs, and other classes.

The first sparse class we consider are the graphs of given degeneracy2.

Theorem 1.1. Fix : ∈ N and let D: be the class of :-degenerate graphs. Then for every
fixed forest ) ,

� (),D: , =) ∈ Θ(=U: () ) ).

Our second main theorem determines� (),G, =) for many minor-closed classes3,4.
Several examples of this result are given in Section 4.

Theorem 1.2. Fix B, C ∈ N and let G be a minor-closed class such that every graph with
treewidth at most B is in G and  B+1,C ∉ G. Then for every fixed forest ) ,

� (),G, =) ∈ Θ(=UB () ) ).

The lower bounds in Theorems 1.1 and 1.2 are proved via the same construction
given in Section 2. The upper bounds in Theorems 1.1 and 1.2 are proved in Section 3.
We in fact prove a stronger result (Lemma 3.3) that shows that for any fixed forest )
and B ∈ N there is a particular finite set F such that� (), �) ∈ $ (=UB () ) ) for every =-
vertex graph� with$ (=) edges and containing no subgraph in F . This result is applied
in Section 5 to determine� (),G, =) for various non-minor-closed classesG. For exam-
ple, we show a Θ(=U2 () ) ) bound for graphs that can be drawn in a fixed surface with a
bounded average number of crossings per edge, which matches the known bound with
no crossings.

1.1 Related Results

Before continuing we mention related results from the literature. For a fixed com-
plete graph  B , � ( B ,G, =) has been extensively studied for various graph classes G
including: graphs of given maximum degree [2, 15, 23, 24, 31, 46, 47, 63, 97]; graphs
with a given number of edges, or more generally, a given number of smaller complete
graphs [22, 29, 30, 38, 39, 45, 61, 64, 65, 83]; graphs without long cycles [71]; planar
graphs [57, 82, 97]; graphs with given Euler genus [27, 62]; and graphs excluding a fixed
minor or subdivision [41, 43, 44, 69, 79, 85].

When J is the class of planar graphs, � (�,J , =) has been determined for various
graphs � including: complete bipartite graphs [3], planar triangulations without non-
facial triangles [3], triangles [57–59, 97], 4-cycles [1, 57], 5-cycles [53], 4-vertex paths [54],

2A graph� is :-degenerate if every subgraph of� has minimum degree at most : .
3A graph � is a minor of a graph � if a graph isomorphic to � can be obtained from a subgraph of �

by contracting edges. A graph class G is minor-closed if some graph is not in G, and for every graph� ∈ G,
every minor of� is also in G.

4A tree decomposition of a graph� is given by a tree) whose nodes index a collection (�G ⊆ + (�) : G ∈
+ () )) of sets of vertices in� called bags, such that: (T1) for every edge EF of�, some bag �G contains both
E and F , and (T2) for every vertex E of�, the set {G ∈ + () ) : E ∈ �G } induces a non-empty (connected)
subtree of ) . The width of such a tree decomposition is max{ |�G | − 1 : G ∈ + () ) }. The treewidth of a
graph �, denoted by tw(�) , is the minimum width of a tree decompositions of�. See [60, 86] for surveys
on treewidth. For each B ∈ N the class of graphs with treewidth at most B is minor-closed.
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Tree Densities in Sparse Graph Classes 3

and 4-vertex complete graphs [3, 97].� (�,J , =) has also been studied formore general
planar graphs�. Perles (see [3]) conjectured that if� is a fixed 3-connected planar graph,
then� (�, S0, =) ∈ Θ(=). Perles noted the converse: If� is planar, not 3-connected and
|+ (�) | > 4, then� (�, S0, =) ∈ Ω(=2). Perles’ conjecture was proved byWormald [98]
and independently by Eppstein [32], Recently, Huynh et al. [62] extended these results
to all surfaces and all graphs � (see Section 4).

Finally, wemention a result of Nešetřil and Ossona deMendez [76], who proved that
for every infinite nowhere dense hereditary graph class G and for every fixed graph � ,
the maximum, taken over all =-vertex graphs � ∈ G, of the number of induced sub-
graphs of� isomorphic to � isΩ(=V) and$ (=V+> (1) ) for some integer V 6 U(�). Our
results (when � is a forest and G is one of the classes that we consider) imply this upper
bound (since the number of induced copies of ) in � is at most � (), �)). Moreover,
our bounds are often more precise since UB ()) can be significantly less than U()).

2 Lower Bound

Lemma 2.1. Fix B ∈ N and let ) be a fixed forest with UB ()) = : . Then there exists a
constant 22.1 (:) := (2:)−: such that for all sufficiently large = ∈ N, there exists a graph �
with |+ (�) | 6 = and tw(�) 6 B and � (), �) > 22.1 (:)=: .

Proof Let ( be a maximum stable set in ) [{E ∈ + ()) : deg) (E) 6 B}] with |( | = : .
Let < := b =−|+ () ) |

:
c. Let � be the graph obtained from ) as follows: for each vertex E

in ( add to� a set�E of< vertices, such that #� (G) := #) (E) for each vertex G ∈ �E .
Observe that� has atmost = vertices. Each choice of one vertex G ∈ �E (for each E ∈ (),
along with the vertices in+ ()) \ (, induces a copy of ) . Thus� (), �) > <: , which is
at least 22.1 (:)=: for = > 2|+ ()) | + 2: .

We now show tw(�) 6 B. Let )1 be a connected component of ) and �1 be the
corresponding connected component of � . Since the treewidth of a graph equals the
maximum treewidth of its components, it suffices to show tw(�1) 6 B. Wemay assume
|+ ()1) | > 2, as otherwise tw(�1) = 0. Let ) ′1 be the tree obtained from )1 as follows:
for each vertex E ∈ ( ∩ + ()1) and each vertex G ∈ �E , add one new vertex G and one
new edge GE to) ′1 . Choose A ∈ + ()1) \ ( and consider) ′1 to be rooted at A . We use) ′1 to
define a tree-decomposition of�1, where the bags are defined as follows. Let �A := {A}.
For each vertex F ∈ + ()1) \ (( ∪ {A}), if ? is the parent of F in ) ′1 , let �F := {F, ?}.
For each vertex E ∈ ( ∩ + ()1) and each vertex G in �E , let �E := #)1 (E) ∪ {E} and
�G := #)1 (E) ∪ {G}.

We now show that (�G : G ∈ + () ′1)) is a tree-decomposition of �1. The bags con-
taining A are indexed by #)1 (A) ∪ {A}, which induces a (connected) subtree of ) ′1 . For
each vertexF ∈ + ()1)\((∪{A})with parent ?, the bags containingF are those indexed
by∪{�E∪{E} : E ∈ #)1 (F)∩(}∪{F}∪(#)1 (F) \{?}), which induces a subtree of) ′1
(since EG ∈ � () ′1) for each G ∈ �E where E ∈ #)1 (F) ∩ (). For each vertex E ∈ ( with
parent ?, the bags containing E are those indexed by #)1 (E) ∪ {E} \ {?}, which induces
a subtree of ) ′1 . For each vertex E ∈ ( and G ∈ �E , �G is the only bag that contains G.
Hence propery (T1) in the definition of tree-decomposition holds. For each edge ?E of
)1 where ? is the parent of E, the bag �E contains both ? and E. Every other edge of�1
joins G and F for some E ∈ ( and G ∈ �E and F ∈ #)1 (E), in which case �G contains
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4 T. Huynh and D.R. Wood

both G and F. Hence (T2) holds. Therefore (�G : G ∈ + () ′1)) is a tree-decomposition of
�1. Since each bag has size at most B + 1, we have tw(�1) 6 B. �

3 Upper Bound

To prove upper bounds on� (),G, =), it is convenient to work in the following setting.
For graphs � and �, an image of � in � is an injection q : + (�) → + (�) such that
q(D)q(E) ∈ � (�) for all DE ∈ � (�). Let � (�,�) be the number of images of � in� .
For a graph class G, let � (�,G, =) be the maximum of � (�,�) taken over all =-vertex
graphs � ∈ G. If � is fixed then � (�,�) and � (�,�) differ by a constant factor. In
particular, if |+ (�) | = ℎ then

� (�,�) 6 � (�,�) 6 ℎ!� (�,�),
� (�,G, =) 6 � (�,G, =) 6 ℎ!� (�,G, =). (3.1)

So to bound� (),G, =) it suffices to work with images rather than copies.
Our proof needs two tools from the literature. The first is due to Eppstein [32]. A

collection H of images of a graph � in a graph � is coherent if for all distinct images
q1, q2 ∈ H and for all distinct vertices G, H ∈ + (�), we have q1 (G) ≠ q2 (H).

Lemma 3.1 ([32]). Let � be a graph with ℎ vertices and let� be a graph. Every collection of
at least 23.1 (ℎ, C) := ℎ!2Cℎ images of� in� contains a coherent subcollection of size at least C.

We also use the following result of Erdős and Rado [34]; see [7, 9] for recent quanti-
tative improvements. A C-sunflower is a collection S of C sets for which there exists a set
' such that - ∩ . = ' for all distinct -,. ∈ S. The set ' is called the kernel of S.

Lemma3.2 (Sunflower Lemma [34]). Every collection of at least 23.2 (ℎ, C) := ℎ!(C−1)ℎ+1
many ℎ-subsets of a set contains a C-sunflower.

Consider graphs � and� . An �-model in a graph� is a collection (-E : E ∈ + (�))
of pairwise disjoint connected subgraphs of � indexed by the vertices of �, such that
for each edge EF ∈ � (�) there is an edge of � joining -E and -F . Each subgraph -E
is called a branch set. A graph � contains an �-model if and only if � is a minor of � .
An �-model (-E : E ∈ + (�)) in � is 2-shallow if -E has radius at most 2 for each
E ∈ + (�). An �-model (-E : E ∈ + (�)) in � is 2-small if |+ (-E ) | 6 2 for each
E ∈ + (�). Shallow models are key components in the sparsity theory of Nešetřil and
Ossona de Mendez [77]. Small models have also been studied [14, 37, 75, 92].

The next lemma is the heart of the paper. To describe the result we need the following
construction, illustrated in Figure 1. For a graph �, and B, C ∈ N, and E ∈ + (�) let

deg�,B (E) := max{B + 1 − deg� (E), 0}.

Then define � 〈B,C 〉 to be the graph with vertex set

+ (� 〈B,C 〉) := {(E, 8) : E ∈ + (�), 8 ∈ [C]} ∪
{(E, 9)★ : E ∈ + (�), 9 ∈ [deg�,B (E)]}
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Tree Densities in Sparse Graph Classes 5

and edge set

� (� 〈B,C 〉) := {(E, 8) (F, 8) : EF ∈ � (�), 8 ∈ [C]} ∪
{(E, 8) (E, 9)★ : E ∈ + (�), 8 ∈ [C], 9 ∈ [deg�,B (E)]}.

(a, 1)

(b, 1)

(c, 1)

(d, 1)

(e, 1)

(a, 2)

(b, 2)

(c, 2)

(d, 2)

(e, 2)

(a, 3)

(b, 3)

(c, 3)

(d, 3)

(e, 3)

(a, 4)

(b, 4)

(c, 4)

(d, 4)

(e, 4)

(a, 1)⋆ (a, 2)⋆ (a, 3)⋆

(b, 1)⋆ (b, 2)⋆

(d, 1)⋆ (d, 2)⋆ (d, 3)⋆

(e, 1)⋆ (e, 2)⋆

X1 X2 X3 X4

Figure 1: � 〈3,4〉 where+ (�) = {0, 1, 2, 3, 4}. .

Several notes about � 〈B,C 〉 are in order:

(A) For each 8 ∈ [C] , let -8 be the subgraph of � 〈B,C 〉 induced by {(E, 8) : E ∈ + (�)}.
Then -8 � �. Contracting each -8 to a single vertex produces  B′,C where

B′ :=
∑

E∈+ (� )
deg�,B (E) >

∑
E∈+ (� )

(B + 1 − deg� (E)) = (B + 1) |+ (�) | − 2|� (�) |.

If � is a non-empty tree then B′ > |+ (�) | (B − 1) + 2 > B + 1, implying  B+1,C is a
minor of � 〈B,C 〉 .

(B) Each vertex (E, 9)★ has degree C and each vertex (E, 8) has degree deg� (E) +
deg�,B (E) > B + 1. In particular, if C > B + 1 then � 〈B,C 〉 has minimum degree
at least B + 1.

(C) If � is connected then diameter(� 〈B,C 〉) 6 diameter(�) + 2.

Define the density of a graph� to be d(�) := |� (�) ||+ (�) | . For a graph classG, let d(G) :=
sup{d(�) : � ∈ G}
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6 T. Huynh and D.R. Wood

Lemma 3.3. For all B, C, ℎ ∈ N and d ∈ R>0, there exists a constant 2 := 23.3 (B, C, ℎ, d) :=
23.1 (ℎ, 23.2 (ℎ, C)) (d + 1)ℎ such that for every forest ) with ℎ vertices, if � is a graph with
d(�) 6 d and � (), �) > 2 |+ (�) |UB () ) , then � contains* 〈B,C 〉 as a subgraph for some
(non-empty) subtree* of ) .

Proof Let ( := {E ∈ + ()) : deg) (E) 6 B}. Let - be a stable set in � := ) [(] of
size : := UB ()). Since � is bipartite, by Konig’s Edge Cover Theorem [67], there is a set
. ⊆ + (�) ∪ � (�) with |. | = |- | such that each vertex of � is either in. or is incident
to an edge in. . In fact,. ∩+ (�) is the set of isolated vertices of � , although we will not
need this property.

Let � be an =-vertex graph with d(�) 6 d and � (), �) > 2 =: . Let I be the set of
images of ) in � . So |I | > 2 =: . Let X :=

(+ (�)∪� (�)
:

)
. Note that |X| 6

( (d+1)=
:

)
6

(d + 1):=: . For each q ∈ I, let

.q := {q(G) : G ∈ . ∩+ (�)} ∪ {q(G)q(H) : GH ∈ . ∩ � (�)},

which is an element of X since |. | = : . For each / ∈ X, let I/ := {q ∈ I : .q = /}.
By the pigeonhole principle, there exists / ∈ X such that

|I/ | > |I |/|X| > 2/(d + 1): > 2/(d + 1)ℎ = 23.1 (ℎ, 23.2 (ℎ, C)).

By Lemma 3.1 applied to I/ , there is a coherent family I1 ⊆ I/ with |I1 | = 23.2 (ℎ, C).
We claim that the vertex sets in � corresponding to the images of ) in I1 are all

distinct. Suppose that + (q1 (+ ()))) = + (q2 (+ ()))) for q1, q2 ∈ I1. Let G be any
vertex in ) . If q1 (G) ≠ q2 (G), then q2 (H) = q1 (G) for some vertex H of ) with H ≠ G
(since + (q1 (+ ()))) = + (q2 (+ ())))), which contradicts the definition of coherence.
Thus q1 (G) = q2 (G) for each vertex G of ) . Thus q1 = q2. This proves our claim.

Therefore, by Lemma 3.2 applied to {q(+ ())) : q ∈ I1}, there is a set ' of vertices
in � and a subfamily I2 ⊆ I1 such that q1 (+ ())) ∩ q2 (+ ())) = ' for all distinct
q1, q2 ∈ I2, and |I2 | = C.

Fix q0 ∈ I2 and let  := q−10 ('). Note that  does not depend on the choice of q0.
Moreover, ( ⊆  because .q = / for every q ∈ I2, and each vertex in ( is either in
. or is incident to an edge in . . Let* be some connected component of ) −  . Note
that+ (*) ∩ ( = ∅, since ( ⊆  . Thus each vertex E ∈ + (*) has deg) (E) > B + 1 and
thus there is a set #E of at least deg*,B (E) neighbours of E in  . Again by coherence,
q1 (#E ) = q2 (#E ) for all q1, q2 ∈ I2 and E ∈ + (*). Observe that #E1 ∩ #E2 = ∅ for
distinct E1, E2 ∈ *, as otherwise ) would contain a cycle. Thus (q(*) : q ∈ I2) and
(q0 (#E ) : E ∈ + (*)) define a subgraph of� isomorphic to* 〈B,C 〉 . �

We now prove our first main result.

Proof Since every graphwith treewidth : is inD: , Lemma 2.1 implies� (),D: , =) ∈
Ω(=U: () ) ). For the upper bound, let � be a :-degenerate graph. So d(�) 6 : . By
Lemma 3.3 with B = : and C = : + 1, if � (), �) > 2 |+ (�) |: then� contains* 〈:,:+1〉
as a subgraph for some subtree* of ) . However,* 〈:,:+1〉 has minimum degree : + 1,
contradicting the :-degeneracy of � . Hence � (), �) 6 2 |+ (�) |: and � (),D: , =) ∈
$ (=U: () ) ) by (3.1). �
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Tree Densities in Sparse Graph Classes 7

The following special case of Lemma 3.3 will be useful. Say {-1, . . . , -B ;.1, . . . , .C }
is a (?, @)-model of  B,C in a graph� if:

• -1, . . . , -B , .1, . . . , .C are pairwise disjoint connected subgraphs of� ,
• for each 8 ∈ [B] and 9 ∈ [C] there is an edge in� between -8 and. 9 ,
• |+ (-8) | 6 ? for each 8 ∈ [B] and |+ (. 9 ) | 6 @ for each 9 ∈ [C].

Corollary 3.4. For all B, C, ℎ ∈ N and d ∈ R>0, for every forest ) with ℎ vertices, if � is a
graph with d(�) 6 d and � (), �) > 23.3 (B, C, ℎ, d) |+ (�) |UB () ) , then for some ℎ′ ∈ [ℎ] ,
� contains a subgraph of diameter at most ℎ′+1 that contains a (1, ℎ′)-model of ℎ′ (B−1)+2,C .
In particular, � contains a (1, ℎ)-model of  B+1,C .

Proof By Lemma 3.3, � contains* 〈B,C 〉 as a subgraph for some subtree* of ) . The
main claim follows from (A) and (C) where ℎ′ := |+ (*) |. The final claim follows since
ℎ′ ∈ [ℎ] , implying ℎ′(B − 1) + 2 > B + 1. �

4 Minor-Closed Classes

Theorem 1.2 is implied by Lemma 2.1 and Corollary 3.4 and since every minor-closed
class has bounded density [68, 94]. We now give several examples of Theorem 1.2.

Treewidth:

Let T: be the class of graphs with treewidth at most : . Then T: is a minor-closed
class, and every graph in T: has minimum degree at most : , implying d(T: ) 6 : and
 :+1,:+1 ∉ T: . Thus Theorem 1.2 with B = : implies that for every fixed forest ) ,

� (),T: , =) ∈ Θ(=U: () ) ).

Surfaces:

LetSΣ be the class of graphs that embed5 in a surfaceΣ. ThenSΣ is aminor-closed class.
Huynh et al. [62] proved that for every � ∈ SΣ,

� (�,SΣ, =) ∈ Θ(= 5 (� ) ),

where 5 (�) is a graph invariant called the flap-number of�, which is independent ofΣ.
Huynh et al. [62] noted that 5 ()) = U2 ()) for a forest ) . So, in particular,

� (),SΣ, =) ∈ Θ(=U2 () ) ).

This result is also implied by Theorem 1.2 since for every surface Σ of Euler genus 6,
Euler’s formula implies that  3,26+3 is not in SΣ (first observed by Ringel [87]), and

d(SΣ) 6 d6 := max{3, 14 (5 +
√
246 + 1};

5For ℎ > 0, let Sℎ be the sphere with ℎ handles. For 2 > 0, letN2 be the sphere with 2 cross-caps. Every
surface is homeomorphic to Sℎ or N2 . The Euler genus of Sℎ is 2ℎ. The Euler genus of N2 is 2. The Euler
genus of a graph� is the minimum Euler genus of a surface in which� embeds with no crossings. See [74]
for background about graphs embedded in surfaces.

2021/06/21 15:16
Downloaded from https://www.cambridge.org/core. 05 Jul 2021 at 06:30:48, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


8 T. Huynh and D.R. Wood

see [80] for a proof.

Excluding a Complete Bipartite Minor:

LetBB,C be the class of graphs containing no complete bipartite graph B,C minor, where
C > B. Since  B,C has treewidth B, every graph with treewidth at most B − 1 is inBB,C . By
Theorem 1.2, for every fixed forest ) ,

� (),BB,C , =) ∈ Θ(=UB−1 () ) ). (4.1)

This answers affirmatively a question raised by Huynh et al. [62].

Excluding a Complete Minor:

Let C: be the class of graphs containing no complete graph  : minor. Then  :−1,:−1 ∉
C: (since contracting a (: − 2)-edge matching in  :−1,:−1 gives  : ). Every graph with
treewidth at most : −2 is in C: . Thus Theorem 1.2 with B = : −2 implies that for every
fixed forest ) ,

� (), C: , =) ∈ Θ(=U:−2 () ) ).

Colin de Verdiére Number:

The Colin de Verdière parameter `(�) is an important graph invariant introduced by
Colin de Verdière [19, 20]; see [91, 96] for surveys. It is known that `(�) 6 1 if and only
if � is a disjoint union of paths, `(�) 6 2 if and only if � is outerplanar, `(�) 6 3
if and only if � is planar, and `(�) 6 4 if and only if � is linklessly embeddable.
LetV: := {� : `(�) 6 :}. ThenV: is a minor-closed class [19, 20]. Goldberg and
Berman [51] proved that `(�) 6 tw(�) + 1. So every graph with treewidth at most
: − 1 is inV: . van der Holst et al. [96] proved that `( B,C ) = B + 1 for C > max{B, 3},
so  :,max{:,3} ∉ V: . Thus Theorem 1.2 with B = : − 1 and C = max{:, 3} implies that
for every fixed forest ) ,

� (),V: , =) ∈ Θ(=U:−1 () ) ). (4.2)

Linkless Graphs:

Agraph is linklessly embeddable if it has an embedding inR3with no two linked cycles [88,
90]. Let L be the class of linklessly embeddable graphs. Then L is a minor-closed class
whose minimal excluded minors are the so-called Petersen family [89], which includes
 6,  4,4 minus an edge, and the Petersen graph. As mentioned above, L = V4. Thus
(4.2) with : = 4 implies for every fixed forest ) ,

� (),L, =) ∈ Θ(=U3 () ) ).

Knotless Graphs:

A graph is knotlessly embeddable if it has an embedding in R3 in which every cycle forms
a trivial knot; see [84] for a survey. LetK be the class of knotlessly embeddable graphs.
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ThenK is a minor-closed class whoseminimal excludedminors include 7 and 3,3,1,1
(see [21, 40]). More than 260 minimal excluded minors are known [52], but the full list
of minimal excluded minors is unknown. Since  7 ∉ K , we have d(K) 6 d(C7) < 5
by a theorem of Mader [73]. Shimabara [93] proved that  5,5 ∉ K . By Theorem 1.2,

� (),K, =) ∈ $ (=U4 () ) ).

This bound would be tight if every treewidth 4 graph is knotlessly embeddable, which
is an open problem of independent interest.

The above results all depend on excluded complete bipartite minors. We now show
that excluded complete bipartite minors determine � (),G, =) for a broad family of
minor-closed classes.

Theorem 4.1. Let G be a minor-closed class such that every minimal forbidden minor of G
is 2-connected. Let B be the maximum integer such that  B,C ∈ G for every C ∈ N. Then for
every forest ) ,

� (),G, =) = Θ(=UB () ) ).

Proof Note that the condition that every minimal forbidden minor of G is 2-
connected is equivalent to saying that G is closed under the 1-sum operation (that is,
if�1, �2 ∈ G and |+ (�1 ∩ �2) | 6 1, then�1 ∪ �2 ∈ G).

The proof of Lemma 2.1 shows that for all sufficiently large = ∈ N there exists an =-
vertex graph� with� (), �) > 2=UB () ) , where� is obtained from 1-sums of complete
bipartite graphs  B′,C with B′ 6 B. By the definition of B and since G is closed under
1-sums,� ∈ G. Thus� (),G, =) ∈ Ω(=UB () ) ).

Nowwe prove the upper bound. SinceG isminor-closed,G has bounded density [68,
94]. By the definition of B, there exists C ∈ N such that  B+1,C ∉ G. By (A), we have
* 〈B,C 〉 ∉ G for every non-empty subtree * of ) . Thus � (),G, =) ∈ $ (=UB () ) ) by
Lemma 3.3. �

Note that minor-closed classes with bounded pathwidth (that is, those excluding a
fixed forest as a minor [11]) are examples not covered by Theorem 4.1. Determining
� (),G: , =), whereG: is the class of pathwidth : graphs, is an interesting open problem.

5 Beyond Minor-Closed Classes

This section asymptotically determines� (),G, =) for several non-minor-closed graph
classes G.

5.1 Shortcut Systems

Dujmović et al. [28] introduced the following definition which generalises the notion
of shallow immersion [78] and provides a way to describe a graph class in terms of a
simpler graph class. Then properties of the original class are (in some sense) transferred
to the new class. Let P be a set of non-trivial paths in a graph � . Each path % ∈ P is
called a shortcut; if % has endpoints E andF then it is a EF-shortcut. Given a graph� and
a shortcut systemP for� , let�P be the simple supergraph of� obtained by adding the

2021/06/21 15:16
Downloaded from https://www.cambridge.org/core. 05 Jul 2021 at 06:30:48, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


10 T. Huynh and D.R. Wood

edge EF for each EF-shortcut inP . Dujmović et al. [28] definedP to be a (:, 3)-shortcut
system (for�) if:

• every path in P has length at most : , and
• for every E ∈ + (�), the number of paths in P that use E as an internal vertex is at
most 3.

We use the following variation. Say P is a (:, 3)★-shortcut system (for�) if:
• every path in P has length at most : , and
• for every E ∈ + (�), if "E is the set of vertices D ∈ + (�) such that there exists a
DF-shortcut in P in which E is an internal vertex, then |"E | 6 3.

Clearly, every (:, 3)★-shortcut system is a (:,
(3
2
)
)-shortcut system (since �P is

simple), and every (:, 3)-shortcut system is a (:, 23)★-shortcut system.
The next lemma shows that if �P contains a ‘small’ model of a ‘large’ complete

bipartite graph, then so does� .

Lemma 5.1. For all B, C, 3, :, ?, @ ∈ N, let B′ := (3 (: − 1) (? − 1) + 1) (B − 1) + 1 and
C ′ := (23 (: − 1) (B + @ − 1) + 1) (C − 1) + 1+ B3 (? + (: − 1) (? − 1)). Let P be a (:, 3)★-
shortcut system for a graph � . If �P contains a (?, @)-model of  B′,C′ , then � contains a
(? + (: − 1) (? − 1), @ + (: − 1) (B + @ − 1))-model of  B,C .

Proof Let (-1, . . . , -B′ ;.1, . . . , .C′) be a (?, @)-model of B′,C′ in�P .Wemay assume
that each edge of � is (a path of length 1) in P . Let � := [B′] and � := [C ′]. We may
assume that -8 and. 9 are subtrees of�P for 8 ∈ � and 9 ∈ � .

Consider each 8 ∈ � . Let �8 be the set of all vertices internal to some DF-shortcut
with DF ∈ � (-8). Since |� (-8) | 6 ?−1, we have |�8 | 6 (: −1) (?−1). For each 8 ∈ � ,
let -̂8 be the subgraph of � induced by + (-8) ∪ �8 . By construction, -̂8 is connected
and |+ ( -̂8) | 6 ? + (: − 1) (? − 1).

Consider the graph � with + (�) := � where two vertices 8, 8′ ∈ + (�) are adjacent
if+ ( -̂8) ∩+ ( -̂8′) ≠ ∅. For each 88′ ∈ � (�), fix a vertex E8,8′ in+ ( -̂8) ∩+ ( -̂8′), which
is in �8 ∪ �8′ since+ (-8) ∩ + (-8′) = ∅. For 8 ∈ � and E ∈ �8 , define �E,8 to be the set
of all edges 88′ ∈ � (�) with E8,8′ = E. If 88′ is in �E,8 and E ∉ -8′ , then |"E ∩ -8′ | > 2.
Also |"E ∩ -8 | > 2. Since E is in at most one -8′ , in total, |"E | > 2|�E,8 |, implying
|�E,8 | 6 3

2 . Since |� | = |+ (�) | and |�8 | 6 (: − 1) (? − 1),

|� (�) | 6
∑
8∈�

∑
E∈�8
|�E,8 | 6 3

2 (: − 1) (? − 1) |+ (�) |.

Thus � has average degree at most 3 (: − 1) (? − 1). By Turán’s Theorem, � contains a
stable set � ′ of size d|� |/(3 (: − 1) (?− 1) + 1)e = B. For distinct 8, 8′ ∈ � ′, the subgraphs
-̂8 and -̂8′ are disjoint. LetX :=

⋃
8∈� ′ + ( -̂8). Note that |X| 6 B(? + (: − 1) (? − 1)).

Let / :=
⋃
G∈X "G . Then |/ | 6 B3 (? + (: − 1) (? − 1)). Thus . 9 intersects / for

at most B3 (? + (: − 1) (? − 1)) elements 9 ∈ � . Hence � contains a subset  of size
(23 (: − 1) (B + @ − 1) + 1) (C − 1) + 1 such that+ (. 9 ) ∩ / = ∅ for each 9 ∈  .

Consider each 9 ∈  . Initialise � 9 := ∅. For each 8 ∈ � ′, choose G ∈ + (-8) and
F ∈ + (. 9 ) such that GF ∈ � (�P), and add all the internal vertices of the GF-shortcut
% ∈ P to � 9 . For each edge DF of . 9 , add all the internal vertices of the DF-shortcut
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% ∈ P to � 9 . Note that

|� 9 | 6 (: − 1) |� ′ | + (: − 1) |� (. 9 ) | 6 (: − 1) (B + @ − 1),

since. 9 has at most @ − 1 edges. Moreover, � 9 ∩ X = ∅ since+ (. 9 ) ∩ / = ∅.
For each 9 ∈  , let .̂ 9 be the subgraph of� induced by+ (. 9 ) ∪� 9 . By construction,

.̂ 9 is connected with at most @ + (: − 1) (B + @ − 1) vertices and is disjoint fromX.
Consider the graph � with+ (�) :=  where two vertices 9 , 9 ′ ∈ + (�) are adjacent

if+ (.̂ 9 ) ∩+ (.̂ 9′) ≠ ∅. For each 9 9 ′ ∈ � (�), fix a vertex E 9 , 9′ in+ (.̂ 9 ) ∩+ (.̂ 9′), which
is in � 9 ∪ � 9′ since+ (. 9 ) ∩ + (. 9′) = ∅. For 9 ∈  and E ∈ � 9 , define �E, 9 to be the
set of all edges 9 9 ′ ∈ � (�) with E 9 , 9′ = E.

We now bound |� (�) |. If 9 9 ′ is in �E, 9 and E ∉ . 9′ , then |"E ∩ . 9′ | > 1. Also
|"E∩. 9 | > 1. Since E is in atmost one. 9′ , in total, |"E | > |�E, 9 |, implying |�E, 9 | 6 3.
Since | | = |+ (�) | and |� 9 | 6 (: − 1) (B + @ − 1),

|� (�) | 6
∑
9∈ 

∑
E∈� 9

|�E, 9 | 6 3 (: − 1) (B + @ − 1) |+ (�) |,

implying � has average degree at most 23 (: − 1) (B + @ − 1). By Turán’s Theorem, �
contains a stable set ! of size d| |/(23 (: − 1) (B + @ − 1) + 1)e = C.

For distinct 9 , 9 ′ ∈ !, since ! is a stable set in �, .̂ 9 and .̂ 9′ are disjoint. For each
9 ∈ !,. 9 andX are disjoint by assumption, and � 9 andX are disjoint by construction.
Also, for each 8 ∈ � ′ and 9 ∈ !, there is an edge between -̂8 and .̂ 9 by construction.
Thus {-̂8 : 8 ∈ � ′} and {.̂ 9 : 9 ∈ !} form a (? + (: −1) (?−1), @+ : (B+@−1))-model
of  B,C in� . �

Lemma 5.1 with ? = 1 implies the following result. We emphasise that the value of B
does not change in the two models.

Corollary 5.2. Fix B, C, :, 3, @ ∈ N. Let C ′ := (23 (: − 1) (B + @ − 1) + 1) (C − 1) + 1+ B3.
Let P be a (:, 3)★-shortcut system for a graph � . If �P contains a (1, @)-model of  B,C′ ,
then � contains a (1, @ + (: − 1) (B + @ − 1))-model of  B,C .

5.2 Low-Degree Squares of Graphs

The above result on shortcut systems leads to the following extension of our results for
minor-closed classes. For a graph� and 3 ∈ N, let� (3) be the graphobtained from� by
adding a clique on #� (E) for each vertex E ∈ + (�) with deg� (E) 6 3. (This definition
incorporates and generalises the square of a graph with maximum degree 3.) Note that
� (3) = �P , where P is the (2, 3)★-shortcut system {DEF : E ∈ + (�); deg� (E) 6
3; D, F ∈ #� (E); D ≠ F}. For a graph class G, let G (3) := {� (3) : � ∈ G}. Note that
d(� (3) ) 6 d(�) +

(3
2
)
. Corollary 3.4 and Corollary 5.2 with : = 2 and @ = ℎ imply:

Corollary 5.3. Fix B, C, 3, ℎ ∈ N and d ∈ R>0. Let ) be fixed forest with ℎ vertices. Let
C ′ := (23 (B + ℎ − 1) + 1) (C − 1) + 1 + B3. Let� be a graph with d(�) 6 d and containing
no (1, 2ℎ + B − 1)-model of  B,C . Then � (3) contains no (1, ℎ)-model of  B,C′ , and

� (), � (3) ) 6 � (), � (3) ) 6 23.3 (B − 1, C ′, ℎ, d +
(3
2
)
) |+ (�) |UB−1 () ) .

With Lemma 2.1 we have:
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12 T. Huynh and D.R. Wood

Theorem 5.4. Fix B, C, 3, ℎ ∈ N and d ∈ R>0. Let ) be fixed forest with ℎ vertices. Let
C ′ := (23 (B + ℎ− 1) + 1) (C − 1) + 1+ B3. Let G be a graph class such that d(G) 6 d, every
graph with treewidth at most B−1 is inG, and no graph inG contains a (1, 2ℎ+ B−1)-model
of  B,C . Then no graph in G (3) contains a (1, ℎ)-model of  B,C′ , and

� (),G (3) , =) = Θ(=UB−1 () ) ).

Theorem 5.4 is applicable to all the minor-closed classes discussed in Section 4. For
example, we have the following extension of (4.1). Recall thatB (3)B,C is the class of graphs
� (3) where� contains no  B,C -minor. Then for every fixed forest ) ,

� (),B (3)B,C , =) = Θ(=UB−1 () ) ).

5.3 Map Graphs

Map graphs are defined as follows. Start with a graph�0 embedded in a surface Σ, with
each face labelled a “nation” or a “lake”, where each vertex of�0 is incident with at most
3 nations. Let � be the graph whose vertices are the nations of �0, where two vertices
are adjacent in � if the corresponding faces in �0 share a vertex. Then � is called a
(Σ, 3)-map graph. A (S0, 3)-map graph is called a (plane) 3-map graph; such graphs have
been extensively studied [16–18, 25, 42]. LetMΣ,3 be the set of all (Σ, 3)-map graphs.
SinceMΣ,3 = SΣ (see [18, 26]), map graphs provide a natural generalisation of graphs
embeddable in a surface.

Let � ∈ MΣ,3 where Σ has Euler genus 6. Let ) be a fixed forest with ℎ vertices.
Dujmović et al. [28] proved that � is a subgraph of �P0 for some graph �0 ∈ SΣ and
some (2, 123 (3−3))-shortcut systemP of�0. Inspecting the proof in [28] one observes
thatP is a (2, 3)★-shortcut system. In the plane case, Chen [16] proved that d(MS0 ,3) <
3. An analogous argument shows that d(MΣ,3) ∈ $ (3

√
6 + 1). The same bound can

also be concluded from (5.2). Since�0 contains no  3,26+3 minor, by Corollary 5.2, for
each @ ∈ N,�P0 and thus� contains no (1, @)-model of  3,C′ where C ′ := (23 (@ + 2) +
1) (26 + 2) + 1 + 33. With @ = ℎ, Corollary 3.4 then implies that� (), �) 6 � (), �) 6
23.3 (2, C ′, ℎ, d) |+ (�) |U2 () ) . Hence

� (),MΣ,3 , =) ∈ Θ(=U2 () ) ),

where the lower bound follows from Lemma 2.1 since every graph with treewidth 2 is
planar and is thus a (Σ, 3)-map graph. Also note the @ = 1 case above shows that

 3, (63+1) (26+2)+1+33 ∉MΣ,3 .

5.4 Bounded Number of Crossings

Here we consider drawings of graphs with a bounded number of crossings per edge.
Throughout the paper, we assume that no three edges cross at a single point in a draw-
ing of a graph. For a surface Σ and : ∈ N, let SΣ,: be the class of graphs � that have
a drawing in Σ such that each edge is in at most : crossings. Since SΣ,0 = SΣ, this
class provides a natural generalisation of graphs embeddable in surfaces and is widely
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studied [28, 80, 81]. Graphs in SS0 ,: are called :-planar. The case : = 1 is particu-
larly important in the graph drawing literature; see [66] for a bibliography with over
100 references.

Let ) be a fixed forest with ℎ vertices. Let � ∈ SΣ,: where Σ has Euler genus 6.
Dujmović et al. [28] noted that by replacing each crossing point by a dummy vertex we
obtain a graph �0 ∈ SΣ such that � is a subgraph of �P0 for some (: + 1, 2)-shortcut
systemP , which is a (:+1, 4)★-shortcut system. Results of Ossona deMendez et al. [80]
show that d(SΣ,: ) 6 2

√
: + 1d6 (see (5.2) below). Since�0 contains no  3,26+3 minor,

by Corollary 5.2, for all @ ∈ N,�P0 and thus� contains no (1, @)-model of  3,C′ where
C ′ := (8: (@ + 2) + 1) (26 + 2) + 13. Applying this result with @ = ℎ, Corollary 3.4 then
implies� (), �) 6 � (), �) 6 23.3 (2, C ′, ℎ, 2

√
: + 1d6) |+ (�) |U2 () ) . Hence

� (),SΣ,: , =) ∈ Θ(=U2 () ) ), (5.1)

where the lower bound follows from Lemma 2.1 since every treewidth 2 graph is planar
and is thus in SΣ,: . Also note the @ = 1 case above shows that

 3, (24:+1) (26+2)+13 ∉ SΣ,: .

5.5 Bounded Average Number of Crossings

Here we generalise the results from the previous section for graphs that can be drawn
with a bounded average number of crossings per edge. Ossona de Mendez et al. [80]
defined a graph� to be :-close to Euler genus 6 if every subgraph� ′ of� has a drawing
in a surface of Euler genus at most 6 with at most : |� (� ′) | crossings6. Let E6,: be the
class of graphs :-close to Euler genus 6. This is a broader class thanSΣ,: since it allows
an average of : crossings per edge, whereasSΣ,: requires amaximumof : crossings per
edge. In particular, if Σ has Euler genus 6, then SΣ,: ⊆ E6,:/2.

The next lemma is of independent interest.

Lemma 5.5. Fix 6, A ∈ N0 and 3 ∈ N and : ∈ R>0. Assume that graph � ∈ E6,:
contains an A-shallow �-model (-E : E ∈ + (�)) such that for every vertex E ∈ + (�) we
have deg� (E) 6 3 or |+ (-E ) | = 1. Then � is in E6,2:32 (2A+1) .

6The case 6 = 0 is similar to other definitions from the literature, as we now explain. Eppstein and
Gupta [33] defined the crossing graph of a drawing of a graph� to be the graph with vertex set � (�) , where
two vertices are adjacent if the corresponding edges in� cross. Eppstein and Gupta [33] defined a graph to
be a 3-degenerate crossing graph if it admits a drawing whose crossing graph is 3-degenerate. Independently,
Bae et al. [8] defined a graph� to be :-gap-planar if� has a drawing in the plane in which each crossing is
assigned to one of the two involved edges and each edge is assigned at most : of its crossings. This is equiva-
lent to saying that the crossing graph has an orientation with outdegree at most : at every vertex. Hakimi [56]
proved that any graph � has such an orientation if and only if every subgraph of � has average degree at
most 2: . So a graph� is :-gap-planar if and only if� has a drawing such that every subgraph of the cross-
ing graph has average degree at most 2: if and only if� has a drawing such that every subgraph�′ of� has
at most : |� (�′) | crossings in the induced drawing of�′. The only difference between “:-close to planar”
and “:-gap planar” is that a :-gap planar graph has a single drawing in which every subgraph has the desired
number of crossings. To complete the comparison, the definition of Eppstein and Gupta [33] is equivalent to
saying that� has a drawing in which the crossing graph has an acyclic orientation with outdegree at most :
at every vertex. Thus every :-degenerate crossing graph is :-gap-planar graph, and every :-gap-planar graph
is a 2:-degenerate crossing graph.
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14 T. Huynh and D.R. Wood

Proof For each E ∈ + (�), let 0E be the central vertex of -E . We may assume that -E
is a BFS spanning tree of� [+ (-E )] rooted at 0E and with radius at most A . Orient the
edges of -E away from 0E .

Let � ′ be an arbitrary subgraph of �. For each E ∈ + (� ′), let - ′E be a minimal
subtree of -E rooted at 0E , such that (- ′E : E ∈ + (� ′)) is an A-shallow � ′-model. By
minimality, - ′E has at most deg� ′ (E) leaves. Each edge of - ′E is on a path from a leaf to
0E , implying |� (- ′E ) | 6 A deg� ′ (E).

Let � ′ be the subgraph of � consisting of
⋃
E∈+ (� ′) -

′
E along with one undirected

edge HEF HFE for each edge EF ∈ � (� ′), where HEF ∈ + (- ′E ) and HFE ∈ + (- ′F ). Let
%EF be the directed 0E HEF -path in - ′E . Note that

|� (� ′) | = |� (� ′) |+
∑

E∈+ (� ′)
|� (- ′E ) | 6 |� (� ′) |+A

∑
E∈+ (� ′)

deg� ′ (E) = (2A+1) |� (� ′) |.

Since � is :-close to Euler genus 6, � ′ has a drawing in a surface of Euler genus at
most 6 with at most : |� (� ′) | crossings. For each 4 ∈ � (� ′), let ℓ(4) be the number
of crossings on 4 in this drawing of � ′. Since each crossing contributes towards ℓ for
exactly two edges, ∑

4∈� (�′)
ℓ(4) 6 2: |� (� ′) | 6 2: (2A + 1) |� (� ′) |.

Let� ′′ be themultigraphobtained from� ′ as follows: for each vertex E ∈ + (� ′) and
edge 4 in - ′E , let the multiplicity of 4 in� ′′ equal the number of edges EF ∈ � (� ′) for
which the path %EF uses 4. Edges of� ′′ inherit their orientation from� ′. Note that� ′′
hasmultiplicity atmost 3. By replicating edges in the drawing of� ′we obtain a drawing
of � ′′ such that every edge of � ′′ corresponding to 4 ∈ � (� ′) is in at most 3 ℓ(4)
crossings. Since each edge 4 ∈ � (� ′) has multiplicity at most 3 in � ′′, the number of
crossings in the drawing of� ′′ is at most

∑
4∈� (�′) 3

2ℓ(4) 6 2:32 (2A + 1) |� (� ′) |.
Note that at each vertex H in� ′′, in the circular ordering of edges in� ′′ incident to

H determined by the drawing of � ′′, all the incoming edges form an interval. We now
use the drawing of � ′ to produce a drawing of a graph � ′′′, which is a subdivision of
� ′, where each vertex E ∈ + (� ′) is drawn at the location of 0E . Here is the idea (see
Figure 2): First ‘assign’ each edge HEF HFE of� ′ to the edge EF of� ′. Next ‘assign’ each
edge of � ′ arising from some - ′E to exactly one edge incident to E, such that for each
edge EF of � ′ incident to E there is a path in � ′ from 0E to HEF consisting of edges
assigned to EF. Then each edge EF in � ′ is drawn by following this path.

We now provide the details of this idea. Initialise + (� ′′′) := + (� ′) and � (� ′′′) :=
{HEF HFE : EF ∈ � (�)}. Consider each vertex E ∈ + (� ′). Consider the vertices
H ∈ + (- ′E ) \ {0E } in non-increasing order of dist- ′E (0E , H) (that is, we consider the
vertices of - ′E furthest from 0E first, and then move towards the root). Let G be the
parent of H in - ′E . The incoming edges at H are copies of GH. Each outgoing/undirected
edge HI at H is already assigned to one edge EF incident to E. Say HI1, . . . , HI@ are the
outgoing/undirected edges of� ′′ incident to H in clockwise order in the drawing of� ′′,
where HI8 is assigned to edge EF8 . If 41, . . . , 4@ are the incoming edges at H in clockwise
order, then assign 4@−8+1 to EF8 for each 8 ∈ [@]. Now in� ′′′ replace vertex H by vertices
H1, . . . , H@ drawn in a sufficiently small disc around H, where H8 is incident to 4@−8+1 and
H8I8 in � ′′′. Thus the edges in � ′′′ assigned to EF form a path from 0E to HEF and a
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av v

Figure 2: Construction of the drawing of �..

path from 0F to HFE . Hence � ′′′ is a subdivision of � ′ (since HEF HFE is an edge of
� ′′′). Each edge of� ′′′ has the same number of crossings as the corresponding edge of
� ′′. Thus, the total number of crossings in the drawing of � ′′′ is at most 2:32 (2A +
1) |� (� ′) |. Since � ′′′ is a subdivision of � ′, the drawing of � ′′′ determines a drawing
of � ′ with the same number of crossings. Therefore � is 2:32 (2A + 1)-close to Euler
genus 6. �

We need the following results of Ossona de Mendez et al. [80]:

d(E:,6) 6 2
√
2: + 1 d6 (5.2)

 3,3: (26+3) (26+2)+2 ∉ E6,: . (5.3)

We now reach the main result of this section.

Theorem 5.6. For fixed :, 6 ∈ N0 and every fixed forest ) ,

� (), E6,: , =) ∈ Θ(=U2 () ) ).

Proof First we prove the lower bound. By Lemma 2.1 with B = 2, for all suffi-
ciently large = ∈ N, there exists a graph � with |+ (�) | 6 = and tw(�) 6 2 and
� (), �) > 22.1 (U2 ())) =U2 () ) . Since tw(�) 6 2, � is planar and is thus in E6,: .
Hence� (), E6,: , =) ∈ Ω(=U2 () ) ).

Nowwe prove the upper bound. Let B := 2 and A := |+ ()) | and C := 54: (2A+1) (26+
3) (26 + 2) + 2. Let � be an =-vertex graph in E6,: . By (5.2), d(�) 6 2

√
2: + 1 d6 .

Suppose on the contrary that � (), �) > 2=U2 () ) where 2 := 23.3 (B, C, A, 2
√
2: + 1 d6).

Let� :=  3,C . Corollary 3.4 implies that� contains a (1, A)-model (-E : E ∈ + (�))
of �. This model is A-shallow and for every vertex E ∈ + (�) we have deg� (E) 6
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3 or |+ (-E ) | = 1. Thus Lemma 5.5 is applicable with 3 = 3, implying that  3,C ∈
E6,18: (2A+1) , which contradicts (5.3). �

An almost identical proof to that of Lemma 5.5 shows the following analogous result
for SΣ,: . This can be used to prove (5.1) without using shortcut systems.

Lemma 5.7. Fix a surface Σ and :, A ∈ N0 and 3 ∈ N. Let � be a graph in SΣ,: that
contains an A-shallow �-model (-E : E ∈ + (�)) such that for every vertex E ∈ + (�) we
have deg� (E) 6 3 or |+ (-E ) | = 1. Then � is in SΣ,:32 (2A+1) .

6 Open Problems

In this paper we determined the asymptotic behaviour of � (),G, =) as = → ∞ for
various sparse graph classesG and for an arbitrary fixed forest) . One obvious question
is what happens when ) is not a forest?

For arbitrary graphs �, the answer is no longer given by UB (�). Huynh et al. [62]
define a more general graph parameter, which they conjecture governs the behaviour of
� (�,G, =). An B-separation of � is a pair (�, �) of edge-disjoint subgraphs of � such
that � ∪ � = �, + (�) \ + (�) ≠ ∅, + (�) \ + (�) ≠ ∅, and |+ (�) ∩ + (�) | = B. A
(6 B)-separation is an B′-separation for some B′ 6 B. Separations (�, �) and (�, �) of
� are independent if � (�) ∩ � (�) = ∅ and (+ (�) \ + (�)) ∩ (+ (�) \ + (�)) = ∅. If
� has no (6 B)-separation, then let 5B (�) := 1; otherwise, let 5B (�) be the maximum
number of pairwise independent (6 B)-separations in �.

Conjecture 6.1 ([62]). Let BB,C be the class of graphs containing no  B,C minor, where C >
B > 1. Then for every fixed graph � with no  B,C minor,

� (�,BB,C , =) ∈ Θ(= 5B−1 (� ) ).

As evidence forConjecture 6.1, Eppstein [32] proved itwhen 5B−1 (�) = 1 andHuynh
et al. [62] proved it when B 6 3 (and that the lower bound holds for all B > 1). It is easy to
show that 5B ()) = UB ()) for all B > 1 and every forest ) . Thus, if true, Conjecture 6.1
would simultaneously generalise Theorem 1.2 and results from [62].

In light of Theorem 1.1 we also conjecture the following generalisation.

Conjecture 6.2. Let D: be the class of :-degenerate graphs. Then for every fixed :-
degenerate graph �,

� (�,D: , =) ∈ Θ(= 5: (� ) ).
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