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Abstract. A clique is a set of pairwise adjacent vertices in a graph. We determine the maximum
number of cliques in a graph for the following graph classes: (1) graphs with n vertices and m
edges; (2) graphs with n vertices, m edges, and maximum degree ∆; (3) d-degenerate graphs
with n vertices and m edges; (4) planar graphs with n vertices and m edges; and (5) graphs
with n vertices and no K5-minor or no K3,3-minor. For example, the maximum number of
cliques in a planar graph with n vertices is 8(n − 2).
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1. Introduction

The typical question of extremal graph theory asks for the maximum number of
edges in a graph in a certain family; see the surveys [2, 38–40]. For example, a
celebrated theorem of Turán [47] states that the maximum number of edges in a
graph with n vertices and no (k +1)-clique is 1

2 (1− 1
k
)n2. Here a clique is a (possibly

empty) set of pairwise adjacent vertices in a graph. For k ≥ 0, a k-clique is a clique
of cardinality k. Since an edge is nothing but a 2-clique, it is natural to consider the
maximum number of �-cliques in a graph. The following generalisation of Turán’s
Theorem, first proved by Zykov [52], has been rediscovered and itself generalised
by several authors [8, 10, 15–17, 20, 27, 31, 33, 36].

Theorem 1 ([52]). For all integers k ≥ � ≥ 0, the maximum number of �-cliques in a
graph with n vertices and no (k + 1)-clique is

(
k
�

) (
n
k

)�.

A simple inductive proof of Theorem 1 is included in Appendix A. In this paper
we determine the maximum number of cliques in a graph in each of the following
classes:

� Research supported by a Marie Curie Fellowship of the European Community
under contract 023865, and by the projects MCYT-FEDER BFM2003-00368 and Gen. Cat
2001SGR00224.



2 David R. Wood

– graphs with n vertices and m edges (Section 3),
– graphs with n vertices, m edges, and maximum degree ∆ (Section 4),
– d-degenerate graphs with n vertices and m edges (Section 5),
– planar graphs with n vertices and m edges (Section 6), and
– graphs with n vertices and no K5-minor or no K3,3-minor (Section 7).

We now review some related work from the literature. Eckhoff [5, 6] determined
the maximum number of cliques in a graph with m edges and no (k+1)-clique. Lower
bounds on the number of cliques in a graph have also been obtained [4, 13, 14, 22–
25]. The number of cliques in a random graph has been studied [3, 29, 37]. Bounds
on the number of cliques in a graph have recently been applied in the analysis of an
algorithm for finding small separators [32] and in the enumeration of minor-closed
families [28].

2. Preliminaries

Every graph G that we consider is undirected, finite, and simple. Let V (G) and E(G)

be the vertex and edge sets of G. Let ∆(G) be the maximum degree of G. We say G

is a (|V (G)|, |E(G)|)-graph or a (|V (G)|, |E(G)|, ∆(G))-graph.
Let C(G) be the set of cliques in G. Let c(G) := |C(G)|. Let Ck(G) be the set

of k-cliques in G. Let ck(G) := |Ck(G)|. Our aim is to prove bounds on c(G) and
ck(G).

A clique is not necessarily maximal.1 In particular, ∅ is a clique of every graph,
{v} is a clique for each vertex v, and each edge is a clique. Thus every graph G

satisfies

c(G) ≥ c0(G) + c1(G) + c2(G) = 1 + |V (G)| + |E(G)|. (1)

A triangle is a 3-clique. Equation (1) implies that

c(G) = 1 + |V (G)| + |E(G)| if and only if G is triangle-free. (2)

Triangle-free graphs have the fewest cliques. Obviously the complete graph Kn

has the most cliques for a graph on n vertices. In particular, c(Kn) = 2n since every
set of vertices in Kn is a clique.

Say v is a vertex of a graph G. Let Gv be the subgraph of G induced by the
neighbours of v. Observe that X is a clique of G containing v if and only if X =
Y ∪ {v} for some clique Y of Gv. Thus the number of cliques of G that contain v

is exactly c(Gv). Every clique of G either contains v or is a clique of G\v. Thus
C(G) = C(G\v) ∪ {Y ∪ {v} : Y ∈ C(Gv)} and

c(G) = c(G\v) + c(Gv) ≤ c(G\v) + 2deg(v). (3)

Let G be a graph with induced subgraphs G1, G2 and S such that G = G1 ∪ G2
and G1 ∩ G2 = S. Then G is obtained by pasting G1 and G2 on S. Observe that
C(G) = C(G1) ∪ C(G2) and C(G1) ∩ C(G2) = C(S). Thus

c(G) = c(G1) + c(G2) − c(S). (4)

1 Moon and Moser [26] proved that the maximum number of maximal cliques in a graph
with n vertices is approximately 3n/3; see [9, 11, 12, 18, 19, 34, 35, 42, 50, 51] for related results.
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Lemma 1. Let G be an (n, m)-graph that is obtained by pasting G1 and G2 on S. Say
Gi has ni vertices and mi edges. Say S has nS vertices and mS edges. If c(Gi) ≤
xni + ymi + z and c(S) ≥ xns + ymS + z, then c(G) ≤ xn + ym + z.

Proof. By Equation (4),

c(G) = c(G1) + c(G2) − c(S)

≤ (xn1 + ym1 + z) + (xn2 + ym2 + z) − (xns + yms + z)

= x(n1 + n2 − nS) + y(m1 + m2 − mS) + z

= xn + ym + z. �

The following special case of Lemma 1 will be useful.

Corollary 1. Let G be an (n, m)-graph that is obtained by pasting G1 and G2 on a
k-clique. Say Gi has ni vertices and mi edges. Assume that c(Gi) ≤ xni + ymi + z

and that xk + y
(
k
2

)+ z ≤ 2k. Then c(G) ≤ xn + ym + z. �

3. General Graphs

We now determine the maximum number of cliques in an (n, m)-graph.

Theorem 2. Let n and m be non-negative integers such that m ≤ (
n
2

)
. Let d and � be

the unique integers such that m = (
d
2

)+ � where d ≥ 1 and 0 ≤ � ≤ d − 1. Then the
maximum number of cliques in an (n, m)-graph equals 2d + 2� + n − d − 1.

Proof. First we prove the lower bound. Let V (G) := {v1, v2, . . . , vn} and E(G) :=
{vivj : 1 ≤ i < j ≤ d} ∪ {vivd+1 : 1 ≤ i ≤ �}, as illustrated in Figure 1. Then G has(
d
2

)+� edges. Now {v1, v2, . . . , vd} is a clique, which contains 2d cliques (including ∅).
The neighbourhood of vd+1 is an �-clique with 2� cliques. Thus there are 2� cliques
that contain vd+1. Finally vd+2, vd+3, . . . , vn are isolated vertices, which contribute
n − d − 1 cliques to G. In total, G has 2d + 2� + n − d − 1 cliques.

Now we prove the upper bound. That is, every (n, m)-graph G has at most
2d + 2� + n − d − 1 cliques. We proceed by induction on n + m. For the base case,
suppose that m = 0. Then d = 1, � = 0, and c(G) = n+1 = 2d +2�+n−d−1. Now

Fig. 1. A (14, 31)-graph with 269 cliques (d = 8 and � = 3)
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assume that m ≥ 1. Let v be a vertex of minimum degree in G. Then deg(v) ≤ d −1,
as otherwise every vertex has degree at least d, implying m ≥ dn

2 ≥ d(d+1)
2 = (

d+1
2

)
,

which contradicts the definition of d. By Equation (3), c(G) ≤ c(G\v) + 2deg(v).
To apply induction to G\v (which has n − 1 vertices and m − deg(v) edges) we
distinguish two cases.

First suppose that deg(v) ≤ �. Thus m−deg(v) = (
d
2

)+�−deg(v). By induction,
c(G) ≤ 2d+2�−deg(v)+n−1−d−1+2deg(v). Hence the result follows if 2d+2�−deg(v)+
n−1−d−1+2deg(v) ≤ 2d+2�+n−d−1. That is, 2�−deg(v)−1 ≤ (2�−deg(v)−1)2deg(v),
which is true since 0 ≤ deg(v) ≤ �.

Otherwise �+1 ≤ deg(v) ≤ d −1. Thus m−deg(v) = (
d−1

2

)+d −1+�−deg(v).
By induction, c(G) ≤ 2d−1 + 2d−1+�−deg(v) + n − 1 − d + 2deg(v). Hence the result
follows if 2d−1 + 2d−1+�−deg(v) + n − 1 − d + 2deg(v) ≤ 2d + 2� + n − d − 1. That
is, 2�(2deg(v)−� − 1) ≤ 2d−1−deg(v)+�(2deg(v)−� − 1). Since deg(v) ≥ � + 1, we need
2� ≤ 2d−1−deg(v)+�, which is true since deg(v) ≤ d − 1. �

4. Bounded Degree Graphs

We now determine the maximum number of cliques in an (n, m, ∆)-graph. West [49]
proved a related result.

Theorem 3. The number of cliques in an (n, m, ∆)-graph G is at most

1 + n +
(

2∆+1 − ∆ − 2(
∆+1

2

)
)

m ≤ 1 +
(

2∆+1 − 1
∆ + 1

)
n.

Proof. G has one 0-clique and n 1-cliques. For k ≥ 2, each edge is in at most
(
∆−1
k−2

)
k-cliques, and each k-clique contains

(
k
2

)
edges. Thus G has at most m

(
∆−1
k−2

)
/
(
k
2

)
k-cliques. Thus the number of cliques (not counting 0- and 1-cliques) is at most

∆+1∑
k=2

m
(
∆−1
k−2

)
(
k
2

) = m

∆+1∑
k=2

2
k(k − 1)

· (∆ − 1)!
(k − 2)!(∆ − 1 − k + 2)!

= m(
∆+1

2

) ∆+1∑
k≥2

2(∆ − 1)!
(
∆+1

2

)
k!(∆ + 1 − k)!

= m(
∆+1

2

) ∆+1∑
k=2

(∆ + 1)!
k!(∆ + 1 − k)!

= m(
∆+1

2

)
((

∆+1∑
k=0

(
∆ + 1

k

))
− (∆ + 1)!

1!(∆ + 1 − 1)!
− (∆ + 1)!

0!(∆ + 1 − 0)!

)

= m(
∆+1

2

) (2∆+1 − ∆ − 2
)

.
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The result follows since m ≤ ∆n
2 . �

The bound in Theorem 3 is tight for many values of m.

Proposition 1. For all n and m such that m ≤ ∆n
2 and m ≡ 0 (mod

(
∆+1

2

)
), there is

an (n, m, ∆)-graph G with

c(G) = 1 + n +
(

2∆+1 − ∆ − 2(
∆+1

2

)
)

m.

Proof. Let p := m/
(
∆+1

2

)
. Let G consist of p copies of K∆+1, plus n − p(∆ + 1)

isolated vertices. Then G is an (n, m, ∆)-graph. Each copy of K∆+1 contributes
2∆+1 −∆−2 cliques with at least two vertices. Thus G has 1+n+ (2∆+1 −∆−2)p

cliques. �

5. Degenerate Graphs

A graph G is d-degenerate if every subgraph of G has a vertex with degree at most d.
The following simple result is well known; see [7, 32] for example.

Proposition 2. Every d-degenerate graph G with n ≥ d vertices has at most 2d(n −
d + 1) cliques.

Proof. We proceed by induction on n. If n = d then c(G) ≤ 2d = 2d(n − d + 1).
Now assume that n ≥ d+1. Let v be a vertex of G with deg(v) ≤ d. By Equation (3),
c(G) ≤ c(G \ v) + 2deg(v). Now G \ v is d-degenerate since it is a subgraph of G.
Moreover, G \ v has at least d vertices. By induction, c(G \ v) ≤ 2d(n − 1 − d + 1).
Thus c(G) ≤ 2d(n − 1 − d + 1) + 2d = 2d(n − d + 1). �

The bound in Proposition 2 is tight.

Proposition 3. For all n ≥ d, there is a d-degenerate graph Gn with n vertices and
exactly 2d(n − d + 1) cliques (and with a d-clique).

Proof. Let Gd be the complete graph Kd . Then Gd has the desired properties. For
n ≥ d + 1, let Gn be the graph obtained by adding one new vertex v adjacent to
every vertex in some d-clique in Gn−1. Then Gn is d-degenerate and contains a
d-clique. (Gn is a chordal graph called a d-tree; see [1].) By Equation (3), c(Gn) =
c(Gn−1) + 2deg(v) = 2d(n − 1 − d + 1) + 2d = 2d(n − d + 1). �

Proposition 2 can be made sensitive to the number of edges as follows.

Theorem 4. For all d ≥ 1, every d-degenerate graph G with n vertices and m ≥ (
d
2

)
edges has at most

n + (2d − 1)m

d
− (d − 3)2d + d + 1

2
cliques.
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Proof. We proceed by induction on n+m. For the base case, suppose that m = (
d
2

)+�

where d ≥ 1 and 0 ≤ � ≤ d − 1. Thus c(G) ≤ 2d + 2� + n − d − 1 by Theorem 2,
and the result follows if

2d + 2� + n − d − 1 ≤ n + (2d − 1)m

d
− (d − 3)2d + d + 1

2
.

That is, d(2� − 1) ≤ �(2d − 1), which we prove in Lemma 2 below.
Now assume that m ≥ (

d+1
2

)
. Now G has a vertex v with deg(v) ≤ d. By

Equation (3), c(G) ≤ c(G\v)+ 2deg(v). The graph G\v has m− deg(v) ≥ (
d
2

)
edges,

and is d-degenerate since it is a subgraph of G. By induction,

c(G \ v) ≤ n − 1 + (2d − 1)(m − deg(v))

d
− (d − 3)2d + d + 1

2
.

Thus the result follows if

−1 + (2d − 1)(m − deg(v))

d
+ 2deg(v) ≤ (2d − 1)m

d
.

That is, d(2deg(v) − 1) ≤ (2d − 1) deg(v), which holds by Lemma 2 below. �

Lemma 2. d(2� − 1) ≤ �(2d − 1) for all integers d ≥ � ≥ 0.

Proof. The case � = 0 is trivial. Now assume that � ≥ 1. We proceed by induction
on d. The base case d = � is trivial. Assume that d ≥ � + 1 ≥ 2 and by induction,

(d − 1)(2� − 1) ≤ �(2d−1 − 1). (5)

Since d ≥ 2,

d

d − 1
≤ 2 < 2 + 1

2d−1 − 1
= 2d − 1

2d−1 − 1
. (6)

Equations (5) and (6) imply that

(d − 1)(2� − 1) · d

d − 1
< �(2d−1 − 1) · 2d − 1

2d−1 − 1
.

That is, d(2� − 1) < �(2d − 1), as desired. �

Note that a d-degenerate n-vertex graph has at most dn − (
d+1

2

)
edges, and

Theorem 4 with m = dn − (
d+1

2

)
is equivalent to Proposition 2.

The bound in Theorem 4 is tight for many values of m.

Proposition 4. Let d ≥ 1. For all n and m such that
(
d
2

) ≤ m ≤ dn − (
d+1

2

)
and

m mod d =
{

0 if d is odd
d
2 if d is even,
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there is a d-degenerate (n, m)-graph G with

c(G) = n + (2d − 1)m

d
− (d − 3)2d + d + 1

2
.

Proof. Let n′ := m
d

+ 1
2 (d+1). Then n′ is an integer and d ≤ n′ ≤ n. Let G consist of

a d-degenerate n′-vertex graph with 2d(n′ −d +1) cliques (from Proposition 3), plus
n − n′ isolated vertices. Then G has m edges and c(G) = 2d(n′ − d + 1) + n − n′ =
n + (2d − 1)m

d
− 1

2 ((d − 3)2d + d + 1). �

A graph is 1-degenerate if and only if it is a forest. Thus Theorem 4 with d = 1
implies that every forest has at most n + m − 1 cliques, which also follows from
Equation (2). In particular, c(T ) = 2n for every n-vertex tree T .

Theorem 4 with d = 2 implies that every 2-degenerate graph has at most
n + 1

2 (3m + 1) cliques. Outerplanar graphs are 2-degenerate. The construction
in Propositions 3 and 4 can produce outerplanar graphs. (Add each new vertex
adjacent to two consecutive vertices on the outerface.) Thus this bound is tight for
outerplanar graphs.

6. Planar Graphs

Papadimitriou and Yannakakis [30] and Storch [44] proved that every n-vertex
planar graph has O(n) cliques; see [7] for a more general result. The proof is based on
the corollary of Euler’s Formula that planar graphs are 5-degenerate. By Theorem 4,
if G is a planar (n, m)-graph with m ≥ 10, then c(G) < n + 31

5 m < 98
5 n. We now

prove that the bound for 3-degenerate graphs in Theorem 4 also holds for planar
graphs.

Theorem 5. Every planar (n, m)-graph G with m ≥ 3 has at most n + 7
3m − 2 cliques.

Proof. We proceed by induction on n + m. The result is easily verified if m = 3.
Suppose that G has a separating triangle T . Thus G is obtained by pasting

two induced subgraphs G1 and G2 on T . Say Gi has ni vertices and mi edges. Then
mi ≥ 3 since T ⊂ Gi . By induction, c(Gi) ≤ ni + 7

3mi −2. By Corollary 1 with k = 3,

x = 1, y = 7
3 and z = −2, we have c(G) ≤ n + 7

3m − 2 (since 1 · 3 + 7
3

(3
2

)− 2 = 23).
Now assume that G has no separating triangle.

Let v be a vertex of G. We have c(G) = c(G\v) + c(Gv) by Equation (3). The
graph G\v has m − deg(v) edges. Suppose that m − deg(v) ≤ 2. (Then we cannot
apply induction to G\v.) Then G has no 4-clique and at most two triangles. If G

has at most one triangle, then c(G) ≤ 1 + n + m + 1 ≤ n + 7
3m − 2 since m ≥ 3.

Otherwise G has two triangles, and c(G) ≤ 1+n+m+2 < n+ 7
3m−2 since m ≥ 5.

Now assume that m − deg(v) ≥ 3. By (3), applying induction to G\v,

c(G) = c(G\v) + c(Gv) ≤ (n − 1) + 7
3 (m − deg(v)) − 2 + c(Gv).
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Fix a plane embedding of G. If uw is an edge of Gv, then the edges vu and vw are
consecutive in the circular ordering of edges incident to v defined by the embedding
(as otherwise G would contain a separating triangle). Thus ∆(Gv) ≤ 2 and c(Gv) ≤
1 + 7

3 deg(v) by Theorem 3. Hence

c(G) ≤ (n − 1) + ( 7
3 (m − deg(v)) − 2) + (1 + 7

3 deg(v)) = n + 7
3m − 2.

�

If n ≥ 3 in Theorem 5 then m ≤ 3(n − 2) by Euler’s Formula. Thus we have the
following corollary.

Corollary 2. Every planar graph with n ≥ 3 vertices has at most 8(n − 2) cliques. �

We now prove bounds on the number of 3- and 4-cliques in a planar graph.

Proposition 5. For every planar graph G with n ≥ 3 vertices, c3(G) ≤ 3n − 8 and
c4(G) ≤ n − 3.

Proof. We proceed by induction on n. The result is trivial if n ≤ 4. Now assume
that n ≥ 5. First suppose that G has no separating triangle. Then c4(G) = 0, and
every triangle of G is a face. By Euler’s Formula, c3(G) ≤ 2n − 4 < 3n − 8 faces.
Now suppose that G has a separating triangle T . Thus G is obtained by pasting
two induced subgraphs G1 and G2 on T . Say Gi has ni vertices. Then ni ≥ 3 since
T ⊂ Gi . By induction, c3(Gi) ≤ 3ni − 8 and c4(Gi) ≤ ni − 3. Every clique of G is
a clique of G1 or G2. Thus c4(G) = c4(G1) + c4(G2) ≤ n1 − 3 + n2 − 3 = n − 3.
Moreover, T is a triangle in both G1 and G2. Thus c3(G) ≤ (3n1−8)+(3n2−8)−1 =
3(n1 + n2) − 17 = 3(n + 3) − 17 = 3n − 8. �

Note that Proposition 5 and Euler’s Formula (which implies c2(G) ≤ 3n − 6)
reprove Corollary 2, since 1 + n + 3(n − 2) + (3n − 8) + (n − 3) = 8(n − 2).

We now show that all our bounds for planar graphs are tight.

Proposition 6. For all n ≥ 3 there is a maximal planar n-vertex graph Gn with
c2(Gn) = 3(n − 2), c3(Gn) = 3n − 8, c4(Gn) = n − 3, and c(Gn) = 8(n − 2).

Proof. Let G3 := K3. Then c2(G3) = 3, c3(G3) = 1, c4(G3) = 0, and c(G3) = 8.
Say Gn−1 is a maximal planar (n − 1)-vertex graph with c2(Gn−1) = 3(n − 3),
c3(Gn−1) = 3n−11, c4(Gn−1) = n−4, and c(Gn) = 8(n−3). Let Gn be the maximal
planar n-vertex graph obtained by adding one new vertex v adjacent to each vertex
of some face of Gn−1, as illustrated in Figure 2. Then c2(Gn) = c2(Gn−1) + 3 =
3(n − 2), c3(Gn) = c3(Gn−1) + 3 = 3n − 8, c4(Gn) = c4(Gn−1) + 1 = n − 3,
and c(Gn) = c(Gn−1) + c(Gn(v)) = 8(n − 3) + 8 = 8(n − 2). (Note that Gn is
also an example of a 3-degenerate graph with the maximum number of cliques; see
Proposition 3.) �
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Fig. 2. A planar graph with 124 vertices, 366 edges, 364 triangles, 121 4-cliques, and 976
cliques. It is obtained by repeatedly adding one degree-3 vertex inside each internal face
(starting from K3)

Proposition 7. For all n ≥ 3 and m ∈ {3, 6, . . . , 3n−6}, there is a planar (n, m)-graph
G with c(G) = n + 7

3m − 2.

Proof. Let n′ := m
3 + 2. Let G consist of a maximal planar graph on n′ vertices

with 8(n′ − 2) cliques (from Proposition 6), plus n − n′ isolated vertices. Then G

has n vertices and m edges, and c(G) = 8(n′ − 2) + n − n′ = n + 7n′ − 16 =
n + 7(m

3 + 2) − 16 = n + 7
3m − 2. �

7. Graphs with no K5-Minor

A graph H is a minor of a graph G if H can be obtained from a subgraph of G by
contracting edges. The graphs with no K3-minor are the forests, which have at most
2n cliques, and this bound is tight. The graphs with no K4-minor (called series-
parallel) are 2-degenerate, and thus have at most 4(n − 1) cliques, and this bound is
tight. The Kuratowski-Wagner Theorem characterises planar graphs as those with
no K5-minor and no K3,3-minor. We now extend Corollary 2 for graphs with no
K5-minor (but possibly a K3,3-minor).

Theorem 6. Every graph G with n ≥ 3 vertices and no K5-minor has at most 8(n − 2)

cliques.
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Fig. 3. The graph V8

Proof. Let V8 be the graph obtained from the 8-cycle by adding an edge between
each pair of antipodal vertices; see Figure 3. Let G be a minimum counterexample
to the theorem. We can assume that G is edge-maximal with no K5-minor. Wagner
[48] proved that (a) G is a maximal planar graph, (b) G = V8, or (c) G is obtained
by pasting two smaller graphs (that are thus not counterexamples), each with no
K5-minor, on an edge or a triangle T . In case (a) the result is Corollary 2. In case
(b), since V8 is triangle-free, c(V8) = 1 + |V (V8)| + |E(V8)| = 21 < 8(|V (V8)| − 2)

by Equation (2). In case (c), if T is an edge, we have c(G) ≤ 8(n − 2) by Corollary 1
with k = 2, x = 8, y = 0 and z = −16 (since 8 · 2 + 0 − 16 < 22). In case (c), if T

is a triangle, we have c(G) ≤ 8(n − 2) by Corollary 1 with k = 3, x = 8, y = 0 and
z = −16 (since 8 · 3 + 0 − 16 = 23). �

A similar result is obtained for graphs with no K3,3-minor.

Theorem 7. Every graph G with n ≥ 3 vertices and no K3,3-minor has at most 4
3 (7n−

11) cliques. Conversely, for all n ≡ 2 (mod 3) with n ≥ 5 there is an n-vertex graph
with no K3,3-minor and c(G) = 4

3 (7n − 11).

Proof. Let G be a minimum counterexample. We can assume that G is edge-maximal
with no K3,3-minor. Wagner [48] proved that (a) G is a maximal planar graph, (b)
G = K5, or (c) G is obtained by pasting two smaller graphs (that are thus not
counterexamples), each with no K3,3-minor, on an edge. In case (a) the result follows
from Corollary 2 since 8n−16 < 4

3 (7n−11). In case (b), c(K5) = 32 = 4
3 (7 ·5−11).

In case (c), we have c(G) ≤ 4
3 (7n−11) by Corollary 1 with k = 2, x = 28

3 , y = 0 and
z = − 44

3 (since 28
3 · 2 + 0 − 44

3 = 22). By the same analysis, the graph obtained from
K5 by repeatedly pasting copies of K5 on an edge has no K3,3-minor and 4

3 (7n−11)

cliques. �
We finish with an open problem: What is the maximum number of cliques

in an n-vertex graph G with no Kt -minor? Kostochka [21] and Thomason [45]
independently proved that G is O(t

√
log t)-degenerate.2 Thus Proposition 2 implies

that G has at most 2O(t
√

log t)n cliques; similar bounds can be found in [28, 32]. It is
unknown whether this bound can be improved to ctn for some constant c (possibly
for sufficiently large n).

2 Moreover, this bound is best possible; Thomason [46] even determined the asymptotic
constant.
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We have proved that c(G) ≤ 2t−2(n−t +3) whenever t ≤ 5. Moreover, the graph
G in Proposition 3 (with t = d + 2) has no Kt -minor and c(G) = 2t−2(n − t + 3).
However, for large values of t this upper bound does not hold for the complete
k-partite graph K2,2,...,2. By Theorem 8 in Appendix B, the maximum order of
a clique minor in K2,2,...,2 is � 3

2k�. But by Proposition 10, c(K2,2,...,2) = 3k >

2�3k/2�−1(2k − � 3
2k� + 2) for all k ≥ 42.

Acknowledgement. Thanks to a referee for pointing out reference [43].

A. Graphs with Bounded Cliques

In this appendix we give a simple inductive proof of Theorem 1.

Proposition 8. For all integers k ≥ � ≥ 0, every graph G with n ≥ � vertices and no
(k + 1)-clique has at most

(
k
�

) (
n
k

)�
�-cliques.

Proof. We proceed by induction on n. For the base case, suppose that n ≤ k. Trivially
c�(G) ≤ (

n
�

)
, which is at most

(
k
�

) (
n
k

)� by Lemma 3 below. Now assume that the result
holds for graphs with less than n vertices, and n > k. Let G be a graph with n vertices,
no (k+1)-clique, and with c�(G) maximum. We can add edges to G until it contains
a k-clique X. Every �-clique of G is the union of some i-clique of G\X and some
(�− i)-clique of G[X], for some 0 ≤ i ≤ �. Moreover, the vertices in each i-clique of
G\X have at most k − i common neighbours in X (since X is a clique and G has no
(k + 1)-clique). Thus from each i-clique of G\X, we obtain at most

(
k−i
�−i

)
�-cliques

of G. By induction, ci(G\X) ≤ (
k
i

) (
n−k
k

)i
. Thus

c�(G) ≤
�∑

i=0

(
k

i

)(
n − k

k

)i (
k − i

� − i

)
=
(

k

�

) �∑
i=0

(
�

i

)(n

k
− 1

)i =
(

k

�

)(n

k

)�

,

by the binomial theorem.3 �

Lemma 3.
(
n
�

)
k� ≤ (

k
�

)
n� for all integers k ≥ n ≥ � ≥ 0.

Proof. We proceed by induction on �. The claim is trivial with � = 0. Now assume
that � ≥ 1. Thus k − n ≤ �(k − n), implying kn + k − n ≤ kn + �(k − n). That is,
k(n − � + 1) ≤ n(k − � + 1). By induction,(

n

� − 1

)
k�−1 · k(n − � + 1) ≤

(
k

� − 1

)
n�−1 · n(k − � + 1).

3 Twice we use that xt = ∑t

j=0

(
t

j

)
(x − 1)j for all real x.
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That is,

n! k�(n − � + 1)

(n − � + 1)! (� − 1)!
≤ k! n�(k − � + 1)

(k − � + 1)! (� − 1)!
.

Hence

n! k�

(n − �)! �!
≤ k! n�

(k − �)! �!
,

as desired. �

Proposition 9. Every graph G with n vertices and no (k+1)-clique has at most
(

n
k

+ 1
)k

cliques.

Proof. By Proposition 8 and the binomial theorem,

c(G) ≤
k∑

�=0

(
k

�

)(n

k

)� =
(n

k
+ 1

)k

.

�

We now prove that Propositions 8 and 9 are tight.

Proposition 10. For every complete k-partite graph G = Kn1,n2,...,nk
,

c(G) =
k∏

i=1

(ni + 1).

In particular, if every ni = n
k

then c(G) = ( n
k

+ 1)k and c�(G) = (
k
�

)
( n

k
)� whenever

0 ≤ � ≤ k.

Proof. Every clique consists of at most one vertex from each of the k colour classes.
There are ni + 1 ways to choose at most one vertex from the i-th colour class. Thus
c(G) = ∏

i (ni +1). (This result can also be proved using Equation (3).) Now assume
that every ni = n

k
. Every �-clique consists of exactly one vertex from each of � colour

classes. There are
(
k
�

)
ways to choose � colour classes and n

k
ways to choose exactly

one vertex from each colour class. Each combination gives a distinct �-clique. The
result follows. �

It is interesting to note that the extremal examples in Proposition 1 for graphs
of bounded degree (disjoint copies of cliques) are the complements of the extremal
examples in Proposition 10 for graphs with bounded cliques (complete multipartite
graphs).
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B. Clique Minors in a Complete Multipartite Graph

The Hadwiger number of a graph G, denoted by η(G), is the maximum order of a
clique minor in G. Stiebitz [43] proved that η(G) ≤ 1

2 (n+k) for every n-vertex graph
G with no (k + 1)-clique. We now prove that this bound is tight for every complete
k-partite graph if the largest colour class is not too large.

Theorem 8. Let G be a complete k-partite graph on n vertices with n′ vertices in the

largest colour class. Then η(G) = min
{

1
2 (n + k), n − n′ + 1

}
.

The proof of Theorem 8 is based on the following lemma.

Lemma 4. Let G be the complete k-partite graph Kn1,n2,...,nk
with each ni ≥ 1. Then

η(G) equals k plus the size of the largest matching in G′ := Kn1−1,n2−1,...,nk−1.

Proof. Consider G′ to be a subgraph of G, so that S := V (G)\V (G′) is a k-clique
of G. Let M be a matching of G′. If v is a vertex and e is an edge of G′, then v

is adjacent to at least one endpoint of e. Thus every vertex in S is adjacent to at
least one endpoint of every edge in M, and for all edges e and f in M, at least one
endpoint of e is adjacent to at least one endpoint of f . Thus by contracting each
edge of M within G, we obtain a Kk+|M|-minor in G.

Now suppose that Kt is a minor of G with t maximum. Then G has disjoint
vertex sets X1, X2, . . . , Xt , such that each Xi induces a connected subgraph of G,
and for all i 
= j , some vertex in Xi is adjacent to some vertex in Xj .

Suppose that some Xi contains two vertices v and w in the same colour class
of G. Since v and w have the same neighbourhood, we can delete w from Xi and
still have a Kt -minor. Now assume that the vertices in each set Xi are from distinct
colour classes.

Suppose that some Xi contains at least three vertices u, v, w. Since the
neighbourhood of u is contained in the union of the neighbourhoods of v and
w, we can delete u from Xi and still have a Kt -minor. Now assume that each set Xi

has cardinality 1 or 2.
Suppose that for some colour class �, no set Xi contains a vertex coloured �.

Then X1, . . . , Xt along with a set consisting of one vertex coloured � forms a Kt+1-
minor, which is a contradiction. Now assume that for every colour class �, there is
some set Xi that contains a vertex coloured �.

Suppose that for some colour class �, every set Xi that contains some vertex
coloured � has cardinality 2. Let Xi = {v, w} be such a set, where v is coloured �.
Thus v is adjacent to some vertex in every set Xj . Thus we can delete w from Xi

and still have a Kt -minor. Now assume that for each colour class �, some set Xi

consists of one vertex coloured �. No two singleton sets Xi and Xj contain vertices
of the same colour. Thus there are k singleton sets Xi , one for each colour class. The
remaining sets Xi thus form a matching in G′. �
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Proof of Theorem 8. Sitton [41] proved that the size of the largest matching in a
complete multipartite graph on n vertices with n′ vertices in the largest colour class
is min

{⌊
n
2

⌋
, n − n′}. Applying this result to the graph G′ in Lemma 4,

η(G) = k + min
{

1
2 (n − k), (n − k) − (n′ − 1)

}
= min

{
1
2 (n + k), n − n′ + 1

}
.

�
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