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Abstract. In this paper we investigate the general position model for
the drawing of arbitrary degree graphs in the D-dimensional (D ≥ 2)
orthogonal grid. In this model no two vertices lie in the same grid hy-
perplane. We show that for D ≥ 3, given an arbitrary layout and initial
edge routing a crossing-free orthogonal drawing can be determined.
We distinguish two types of algorithms. Our layout-based algorithm, gi-
ven an arbitrary fixed layout, determines a degree-restricted orthogonal
drawing with each vertex having aspect ratio two. Using a balanced lay-
out this algorithm establishes improved bounds on the size of vertices for
2-D and 3-D drawings. Our routing-based algorithm produces 2-degree-
restricted 3-D orthogonal drawings.
One advantage of our approach in 3-D is that edges are typically routed
on each face of a vertex; hence the produced drawings are more truly
three-dimensional than those produced by some existing algorithms.

1 Introduction

In this paper we consider orthogonal drawings of an n-vertex m-edge simple
graph G = (V, E) with maximum degree ∆. The D-dimensional orthogonal grid
(D ≥ 2) is the D-dimensional cubic lattice, consisting of grid points with integer
coordinates, together with the coordinate-axis-parallel grid lines determined by
these points. An integer i, 1 ≤ i ≤ D, is called a dimension, and an integer d,
1 ≤ |d| ≤ D, is called a direction (with the obvious interpretation).

An orthogonal drawing of G represents vertices v ∈ V by pairwise non-
intersecting boxes; i.e. sets {(a1, a2, . . . , aD) : li(v) ≤ ai ≤ ri(v), 1 ≤ i ≤ D} for
some closed integer intervals [li(v), ri(v)], 1 ≤ i ≤ D. The graph-theoretic term
‘vertex’ will also refer to the corresponding box1. The size of a vertex v in a
D-dimensional orthogonal drawing is denoted by α1(v) × · · · × αD(v) where
αi(v) = ri(v) − li(v) + 1.
1 Vertices are possibly degenerate; this is the approach taken in [3, 4, 23], but not in

[18]; enlarging vertices to remove this degeneracy increases the volume by a multi-
plicative constant.
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For each direction d we call the face of a box extremal in direction d the
d-face. At each grid point on the d-face of a box there is a port in direction d.
The number of ports on a box will be called its surface, and we shall refer to the
number of grid points in a box as its volume (and area in two dimensions).

Each edge is represented by a sequence of contiguous segments of grid lines
called an edge route possibly bent at grid points, and only intersecting its in-
cident vertices. Edge routes are pairwise non-overlapping, and only in the 2-D
orthogonal grid are edge routes allowed to cross. An orthogonal drawing with
no more than b bends per edge route is called a b-bend orthogonal drawing. The
directed graph with vertex set V consisting of the reversal arcs vw, wv for each
edge vw ∈ E is denoted by G′ = (V, A(G)). An orthogonal drawing of G assigns
each arc vw ∈ A(G) a unique port at v.

An orthogonal drawing with a particular shape of box representing every
vertex, e.g. point, line, square, box or cube, will be called an orthogonal shape-
drawing for each particular shape, as illustrated in Fig. 1.

(a) (b) (c)

Fig. 1. Orthogonal drawings of K5: (a) 1-bend 2-D square-drawing, (a) 2-bend 3-D
point-drawing, (b) 0-bend 3-D line-drawing.

Orthogonal point-drawings have been studied extensively in two dimensions
(see [7]) and to a lesser extent in three dimensions [10, 11, 18, 21]. However, D-
dimensional point-drawings can only exist for graphs with maximum degree at
most 2D. Overcoming this restriction has motivated recent interest in 2-D box-
drawings [1, 2, 6, 9, 12, 14, 15, 13, 17] and in 3-D box-drawings [3, 4, 18, 23]. In
this paper we shall present unified results for orthogonal graph drawing in two
and more dimensions.

The smallest D-dimensional box surrounding a D-dimensional orthogonal
drawing is called the bounding box. The bounding box volume and the maximum
number of bends per edge route are the most commonly proposed measures for
determining the aesthetic quality of an orthogonal drawing. For box-drawings
the shape and size of a vertex with respect to its degree are also considered
an important measure of aesthetic quality. A vertex v is said to be a-degree-
restricted if the surface(v) ≤ a × deg(v) + O(1). If for some constants a and
d independent of the input graph, every vertex v with deg(v) ≥ d is a-degree-
restricted, then we say the drawing is a-degree-restricted. The aspect ratio of v
is maxi αi(v)/ mini αi(v). Degree-restricted orthogonal drawings with bounded
aspect ratio are considered aesthetically pleasing.
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Algorithms for 2-D orthogonal graph drawing which follow the so-called
Topology-Shape-Metrics approach include the algorithms of Fößmeier, Kant and
Kaufmann [13, 14, 15] in the Kadinsky model, the GIOTTO algorithm [8], and
the recent algorithm of Di Battista et al. [6] which allows the user to specify
vertex sizes. This approach based on network flow techniques can be traced to
the classical algorithm of Tamassia [19] for finding a bend-minimum orthogonal
point-drawing which preserves a fixed planar embedding.

Algorithms which do not guarantee crossing-free drawings, even for planar
graphs, include that of Even and Granot [12], Papakostas and Tollis [17] and
Biedl and Kaufmann [1]. The latter two algorithms both produce 2-degree-
restricted 2-D orthogonal drawings with each vertex v having aspect ratio at
most deg(v)/2. At the expense of an increase in area, bounded aspect ratio
drawings are produced by a second algorithm in [1] and by the layout-based al-
gorithm presented in this paper, which also improves the degree restriction bo-
und to 3/2. Using a diagonal layout our algorithm produces 2-degree-restricted
square-drawings. Table 1 summarizes bounds for 2-D orthogonal graph drawing.

Table 1. Upper Bounds for 2-D Orthogonal Graph Drawing

area max
bends

degree
restriction

aspect
ratio

reference

(m − 1) × (m+1
2 ) 1 2 deg(v)/2 [17]

(m+n
2 ) × (m+n

2 ) 1 2 deg(v)/2 [1]

( 3m+2n
4 ) × ( 3m+2n

4 ) 1 2 2 [1]

( 3m+4n+2
4 ) × ( 3m+4n+2

4 ) 1 3/2 2 Theorem 6
( 3(m+n)

4 ) × ( 3(m+n)
4

)
1 2 1 Theorem 8

The trade-off between the maximum number of bends per edge route and
the bounding box volume apparent in 3-D point-drawing algorithms [10, 11], is
seen to a lesser extent in 3-D orthogonal box-drawings. Biedl et al. [3] constructs
1-, 2- and 3-bend 3-D orthogonal drawings of Kn with respective bounding box
volumes O(n3), O(n3) and O

(
n5/2

)
. However for arbitrary graphs the drawings

are not necessarily degree-restricted.
Papakostas and Tollis [18] first established that every graph has a degree-

restricted 3-D orthogonal drawing. Their bounding box volume upper bound
has subsequently been improved to O(n3) by the lifting half-edges line-drawing
algorithm of Biedl [4]. At the cost of an increase in volume, a modified technique
is used to produce cube-drawings. Biedl also presents algorithms for 3-D line- and
cube-drawings in general position, which is the model employed in this paper.

In [23] an algorithm which generalizes the COMPACT point-drawing algo-
rithm of Eades et al. [10, 11] produces 6-bend 3-D orthogonal line-drawings of
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multigraphs with bounding box volume O(m2/
√

n), which is the best known
bounding box volume upper bound for graphs with O(n7/4) edges.

Our layout-based algorithm improves the best known bound for the degree-
restriction of vertices in bounded aspect ratio 3-D orthogonal drawings. Using a
diagonal vertex layout the algorithm produces cube-drawings. Our routing-based
algorithm produces 2-degree-restricted orthogonal drawings. Table 2 summarizes
the bounds for 3-D orthogonal graph drawings.

Table 2. Upper Bounds for 3-D Degree-Restricted Orthogonal Drawings

max
bends

volume degree
restriction

aspect
ratio

method

2 O(m3) 6 ? incremental [18]

2 O(n3) 2 deg(v)/2 lifting 1
2 -edges [4]

2 O(n2m) 6 1 lifting 1
2 -edges [4]

2 O(n2m) 2 deg(v)/2 routing-based [4]

2 O
(
(nm)3/2) 6 1 routing-based [4]

5 O(m2) 2 deg(v)/2 compact [23]

6 O(m2/
√

n) 2 deg(v)/2 compact [23]

2 O
(
(nm)3/2) 10/3 2 layout-based (Theorem 7)

2 O
(
(nm)3/2) 4 1 layout-based (Theorem 8)

2 O(n2m) 2 deg(v)/2 layout-based (Theorem 9)
2 O(∆(nm)3/2) 2 deg(v)/4 routing-based (Theorem 10)

We shall present our algorithms in the following three stages (closely related
to the so-called three-phase method [1, 2, 4]):

Vertex Layout: Determine the relative positions of the vertices.
Edge Routing: Determine the shape of each edge route.
Port Assignment: Construct vertex boxes and assign ports to arcs.

In Sec. 2 of this paper we introduce the general position model for orthogonal
drawing and describe in detail the ‘Port Assignment’ stage of our algorithm.
Our vertex layout methods are presented in Sec. 3. We distinguish two types of
algorithms for the drawing of graphs in the general position model. Our layout-
based method, described in Sec. 4, determines the edge routing with respect
to a given vertex layout. This is the first algorithm for constructing orthogonal
drawings in 2, 3 or more dimensions. We establish results for fixed, balanced and
diagonal layouts. In Sec. 5 we discuss routing-based algorithms, where a layout is
determined with respect to a given routing. See [22] for details of omitted proofs.
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In a vertex ordering (v1, v2, . . . , vn) of G, if vivj ∈ E (i < j) we say vj is a
successor of vi and vi is a predecessor of vj . The number of predecessors and
successors of vi are denoted p(vi) and s(vi) respectively. For directed graphs we
only count the outgoing edges at vi in p(vi) and s(vi).

2 The General Position Model

A D-dimensional orthogonal drawing is in general position if no grid hyperplane
intersects any two vertices. This model has been used for 2-D orthogonal box-
drawing in [1, 17], for 3-D point-drawing in [10, 11, 21] and for 3-D box-drawing
in [4, 18, 22]. It is particularly useful in D ≥ 3 dimensions since, as we shall
prove, edge route intersections can always be eliminated.

The relative coordinates of the vertices in a general position D-dimensional
orthogonal drawing of G are represented by D vertex orderings, called a layout of
G. We write v <i w, 1 ≤ i ≤ D, if v is before w in the i-ordering. Suppose Vi(v) =
{w : w <i v}. Then v has a minimum i-coordinate of 0 if Vi(v) = ∅, and of∑

w∈Vi(v) αi(w) otherwise. We denote the number of successor and predecessors
of v in the i-ordering by si(v) and pi(v) respectively.

The assignment of ports to arcs is represented by a colouring of A(G) with
colours {1, 2, . . . , D} (or {X, Y } and {X, Y, Z} in 2 and 3 dimensions). An arc
vw coloured i is assigned a port on the (+i)-face of v if v <i w and on the
(−i)-face of v if w <i v. The maximum of the number of arcs routed on the
(+i)-face and on the (−i)-face of a vertex v is denoted Ni(v).

All edge routes used by our algorithm have precisely D−1 bends, and thus for
each edge vw, the ports assigned to the arcs vw and wv must be perpendicular;
i.e. vw and wv are coloured differently. A colouring of A(G) with this property
is called a routing of G. Suppose the arcs vw and wv are respectively coloured
i and j (i < j). A (D − 1)-bend edge route vw consists of consecutive grid-line
segments between hyperplanes unique to v and w, respectively parallel to the
following sequence of dimensions: i → (i − 1) → . . . → 1 → (i + 1) → (i + 2) →
. . . → (j − 1) → D → (D − 1) → . . . → j. We have the following upper bound
for the volume of the bounding box.

Theorem 1. A d-degree-restricted D-dimensional general position orthogonal
drawing with each vertex having aspect ratio a has bounding box volume at most

a

(
nD−2

(
d

D
m +

O (1)
2D

n

))D/(D−1)

2.1 Determining Vertex Size

For each vertex v, we wish to determine positive integers αi(v), 1 ≤ i ≤ D, to
minimize the surface(v); i.e.

minimize
D∑

i=1

( ∏
1≤j≤D

j 6=i

αj(v)
)

such that ∀i
∏

1≤j≤D
j 6=i

αj(v) ≥ Ni(v). (1)
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A solution to (1) has surface (v) ≥ 2
∑

i Ni(v). We define κD to be the mi-
nimum k such that for every D-dimensional vertex v there is a solution to (1)
with surface (v) ≤ k(2

∑
i Ni(v)) + O(1). A real-valued solution to (1) is given

by

ri(v) =
(( ∏

1≤j≤D
j 6=i

Nj(v)
)/

Ni(v)D−2
)1/(D−1)

.

Lemma 1. (a) κ2 = 1, (b) κ3 ≤ 2 and (c) if ri(v) ≥ 1 for all i, 1 ≤ i ≤ D,
then κD < 2D.

Proof. (Outline) For D = 2 (1) is trivial: simply set αX(v) = NY (v) and αY (v) =
NX(v). An integer-valued solution can obviously be obtained by setting αi(v) =
dri(v)e. In the case of D = 3, if ri(v) ≥ 2 for all i, 1 ≤ i ≤ 3, then this method
determines a solution with κ3 ≤ 2. If for some i, ri(v) < 2 then a case-by-case
analysis establishes there is a solution with κ3 ≤ 2. For D ≥ 3, if ri(v) ≥ 1 then
αi(v) < 2ri(v) and κD < 2D.

2.2 Port Assignment

For each face of a vertex we group the edges to be routed on this face according
to the direction of their second segment. By the edge routing described in Sect. 2
there are four possible directions for the second segment. For each of the four
groupings, we assign sufficiently many ports so that corresponding edges within
different groups cannot intersect (see [22] for details). Within a grouping, ports
are assigned to arcs vw in increasing order of the length of the first segment of
the edge route from v to w, as illustrated in Fig. 2 (see [22] for details). on

Fig. 2. Determining port assignments on a face.

Since a grid point on an edge route vw has at most one coordinate not unique
to v or w, edge routes can only intersect if they are incident to a common vertex.
For directions i and j, an (i,j)-section at a vertex v consists of the arcs vw where
the first and second segments of the edge vw are in directions i and j and in the
same ij-hyperplane. An edge vw is in exactly one section at v and one section at
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w. Edge route intersections can only occur between edges in the same section. To
eliminate edge crossings within an (i,j)-section (assume i, j > 0 – the other cases
are easily inferred), choose the unrerouted arc vw such that w has maximum
i coordinate (alternately with maximum j coordinate), and assign to vw the
unassigned i-port in the section with minimum j-coordinate (i-coordinate), as
illustrated in Fig. 3.

�
�

�

?

=)
�
�

�

?

7

4

6 5

2

3

1

Fig. 3. Rerouting intersecting edge routes within a section in the order shown.

3 Balanced Graph Layout

For a given vertex ordering (v1, v2, . . . , vn) of G, we say a vertex v is positive
if s(v) > p(v), negative if p(v) > s(v) and balanced if s(v) = p(v). For positive
vertices v and for k > 0 (respectively, k < 0) vk denotes the kth successor
(predecessor) of v to the right (left) of v in the ordering. For negative v and
for k > 0 (respectively k < 0) vk denotes the kth predecessor (successor) of v
to the left (right) of v in the ordering. Two adjacent vertices vi and vj (i < j)
are opposite if vi is positive and vj is negative. A vertex v has cost c(v) =
|s(v) − p(v)|. We conjecture that determining a vertex ordering of a given graph
with minimum total cost, the balanced ordering problem, is NP-hard.

We say a vertex ordering is locally balanced if moving any one vertex within
the ordering does not reduce the total cost.

Lemma 2. For every vertex v in a locally balanced vertex ordering, each vertex
vi, 1 ≤ i ≤ bc(v)/2c, is not opposite to v, as otherwise v could move past vi and
reduce the total cost.

The following median placement heuristic for the balanced ordering pro-
blem will form the basis of our graph layout methods: Given a vertex ordering
(v1, v2, . . . , vn) of G, called the insertion ordering, for i = 1, 2, . . . , n, insert vi

into the current ordering mid-way between its already inserted neighbours, i.e.
between the predecessors of vi in the insertion ordering.

Theorem 2. The median placement algorithm determines in O(m + n) time a
vertex ordering of an undirected graph G with total cost at most m + n.



318 D.R. Wood

Theorem 3. For an acyclic (di)graph G, using a reverse topological ordering
of G as the insertion ordering in the median placement heuristic, determines a
vertex ordering of G with minimum total cost in O(m + n) time.

In a D-dimensional general position layout we define the cost of v to be
the average cost of v over the D orderings. The following algorithm, based
on a technique of [1], determines a 2-D balanced layout of a given graph: Ar-
bitrarily order the vertices (v1, v2, . . . , vn). Determine the X- and Y -orderings
using the median placement heuristic with insertion orderings (v1, v2, . . . , vn)
and (vn, vn−1, . . . , v1) respectively. To determine a D-dimensional balanced lay-
out calculate a 2-D balanced layout and set the i-ordering, 1 ≤ i ≤ D, equal to
the X/Y -ordering for odd/even i.

Theorem 4. The above algorithm determines a D-dimensional general position
layout in O(D(m + n)) time such that for each vertex v,

c(v) ≤ 1 +
dD/2e

D
deg(v) .

This bound is tight within a small additive constant in the case of a D-
dimensional layout of Kn if D is even. For odd D, it is an open problem to
determine tight bounds for maxv c(v) in a D-dimensional layout.

4 Layout-Based Algorithms

We now we describe an algorithm which, given a D-dimensional layout of a
graph G, determines a routing of G with bounds on the number of edges rou-
ted on each face. To represent the colouring of A(G) we vertex-colour a graph
H = (A(G), EH). So that reversal arcs receive different colours, for each edge
vw of G, we add the edge {vw, wv} to EH , called an r-edge. For each ver-
tex v and each orthant o relative to v, we partition the arcs {vw : w ∈ o} into
d|{vw : w ∈ o}| /De sets each of size at most D, and add a clique (consisting of
c-edges) to H between vertices corresponding to arcs in the same partition, as
in Fig. 4. The vertices of H corresponding to arcs in a partition with size less
than D are said to be leftover. For D = 2, we add edges to H, called l-edges,
between certain leftover vertices (see [22]).

Theorem 5. Every fixed D-dimensional layout (D ≥ 2) of G admits a degree-
restricted orthogonal drawing of G that can be determined in O(D(m + n)) time
such that:

– Each edge route has D − 1 bends.
– The aspect ratio of each vertex tends to 2 (for large degree vertices).
– The bounding box volume is O

(
nD(D−2)/(D−1) mD/(D−1)

)
.

In the case of D = 2 the vertices are 2-degree-restricted and the bounding box is
at most (m + 3n/4) × (m + 3n/4). For D = 3 the vertices are 4-degree-restricted
and the bounding box volume is at most 4

√
2(nm)3/2.
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v

)
(X+; Y +; Z�)-orthant

)(X+; Y +; Z+)-orthant)
(X�; Y +; Z+)-orthant

)
(X�; Y +; Z+)-orthant

)
(X+; Y �; Z+)-orthant)

(X+; Y �; Z�)-orthant

)
(X�; Y �; Z�)-orthant

)(X�; Y �; Z+)-orthant

Fig. 4. Partitioning of {vw ∈ A(G)} and construction of H for D = 3.

Proof. (Outline) For D = 2, a cycle in H consists of alternating r- and (c or
l)-edges and is therefore of even length. Since ∆(H) ≤ D and the complete graph
KD+1 6⊆ H, by Brooks’ Theorem, H is D-colourable in O(|EH |) = O(mD) time.
The vertex-colouring of H determines a routing of G such that for each orthant
o relative to a vertex v and in each partition of {vw : w ∈ o}, there is at most
one arc vw coloured i, 1 ≤ i ≤ D. It follows that,

Ni(v) ≤ 1
D

max {si(v), pi(v)} + O(1). (2)

Since deg(v)/2 ≤ max {si(v), pi(v)} ≤ deg(v) our aspect bound follows. Also,

2
D∑

i=1

Ni(v) ≤ deg(v) + c(v) + O(1),

and hence

surface(v) ≤ κD (deg(v) + c(v)) + O(1).

Since c(v) ≤ deg(v) and for sufficiently large deg(v), we have ri(v) ≥ 1,
1 ≤ i ≤ D, it follows from Lemma 1(c) that κD ≤ 2D, and the drawing is
degree-restricted. Since κ2 = 1, a 2-D drawing is 2-degree-restricted. The area
bound follows since

∑
v

αX(v) =
∑

v

NY (v) ≤ 1
4

(
3n +

∑
v

(deg(v) + cY (v))
)

≤ 3n

4
+ m.

By Lemma 1(b), κ3 = 2, so a 3-D drawing is 4-degree-restricted. Our volume
bounds follow from Theorem 1. ut

Using the balanced layout algorithm described in Sec. 3 and the above routing
algorithm we obtain the following results for 2-D and 3-D orthogonal drawings.
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Theorem 6. Every graph has a 2-D orthogonal drawing that can be determined
in O(m + n) time such that:

– Each edge route has 1 bend.
– Each vertex is 3

2 -degree-restricted.
– The aspect ratio of each vertex tends to 2 (for large degree vertices).
– The bounding box area is

( 3m+4n+2
4

) × ( 3m+4n+2
4

)
.

Theorem 7. Every graph has a 3-D orthogonal drawing that can be determined
in O(m + n) time such that:

– Each edge route has 2 bends.
– Each vertex is 10

3 -degree-restricted.
– The aspect ratio of each vertex tends to 2 (for large degree vertices).
– The bounding box volume is at most 2.34(nm)3/2 + O(n3).

Using a diagonal vertex layout with corresponding vertex ordering determi-
ned by the medium placement heuristic we obtain the following results.

Theorem 8. Every graph has a D-dimensional degree-restricted hypercube-draw-
ing (D ≥ 2) which can be determined in O(D(m + n)) time such that:

– Each edge route has D − 1 bends.

– The bounding box volume is at most
(
(2n)D−2

(
(2D−1)n+3m

2D

))D/(D−1)

Theorem 9. Every graph has a D-dimensional line-drawing (D ≥ 3) that can
be determined in O(D(m + n)) time such that:

– Each edge route has D − 1 bends.
– Each vertex is a 2-degree-restricted D-axis parallel line.
– The bounding box volume is at most nD−1

(
(2D−3)n+3m

2(D−1)

)

5 Routing-Based Algorithms

Given a routing of G, we determine the i-ordering, 1 ≤ i ≤ D, of a layout of G by
applying the median placement heuristic to the subgraph of G′, denoted G′[i],
induced by the arcs coloured i. If each G′[i] is acyclic then we say the routing is
acyclic, and by Theorem 3 minimum cost orderings can be determined.

To determine a 2-colour acyclic routing of G, start with a vertex ordering
(v1, v2, . . . , vn) of G, and for each edge vivj ∈ E (i < j) colour the arcs vivj X
and vjvi Y . Clearly, G′[X] and G′[Y ] are both acyclic; the topological orderings
of G′[X] and G′[Y ] are respectively (v1, v2, . . . , vn) and (vn, vn−1, . . . , v1). This
approach is used in [1] and in [4] for determining the routing and the X- and
Y -orderings of a 3-D layout; each vertex is then represented by a line parallel to
the Z-axis. The main criticism of this method is that the drawings are inherently
two-dimensional.

We now describe a new method for determining a 3-colour acyclic routing.
Firstly, determine a locally balanced vertex ordering (v1, v2, . . . , vn) (see Sec. 3).
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Z

X

Y

v v1 vk vk+1 vs(v)v�1v�p(v)

Fig. 5. Routing arcs at a positive vertex v; k = bc(v)/2c.

For each vertex vi, colour the arcs vi(vi)k, 1 ≤ k ≤ bc(vi)/2c, with colour Z.
Remaining arcs vivj are coloured X if i < j and Y if j < i, as in Fig. 5. Clearly
G′[X] and G′[Y ] are acyclic. By Lemma 2 a positive vertex vi cannot have an
incoming arc vjvi ∈ G′[Z] with i < j. Similarly for negative vertices. Hence
G′[Z] is also acyclic.

Theorem 10. Every graph has 3-D orthogonal drawing that can be determined
in O(m + n) time such that,

– Each edge route has 2 bends.
– Each vertex is 2-degree-restricted and has aspect ratio at most deg(v)/4.
– The bounding box volume is O(∆(nm)3/2).

Proof. (Outline) For each vertex v, 2
∑

i Ni(v) = deg(v)+O(1). Since κ3 = 2, it
follows that surface (v) ≤ 2 deg(v)+O(1), and v is 2-degree-restricted. A vertex
v has maximum aspect ratio if, in the locally balanced vertex ordering, c(v) = 0,
s(v) = 0 or p(v) = 0, in which case v is a line of length deg(v)/4. Applying
Theorem 1 we obtain a bounding box volume bound of O(∆(nm)3/2). ut
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