
Theoretical Computer Science 299 (2003) 151–178
www.elsevier.com/locate/tcs

Optimal three-dimensional orthogonal graph
drawing in the general position model�

David R. Wood1

School of Computer Science, Carleton University, Ottawa, Canada

Received 15 January 2001; received in revised form 29 October 2001; accepted 27 November 2001
Communicated by G. Ausiello

Abstract

Let G be a graph with maximum degree at most six. A three-dimensional orthogonal drawing
of G positions the vertices at grid-points in the three-dimensional orthogonal grid, and routes
edges along grid lines such that edge routes only intersect at common end-vertices. In this paper,
we consider three-dimensional orthogonal drawings in the general position model; here no two
vertices are in a common grid-plane. Minimising the number of bends in an orthogonal drawing
is an important aesthetic criterion, and is NP-hard for general position drawings. We present
an algorithm for producing general position drawings with an average of at most 2 2

7 bends per
edge. This result is the best known upper bound on the number of bends in three-dimensional
orthogonal drawings, and is optimal for general position drawings of K7. The same algorithm
produces drawings with two bends per edge for graphs with maximum degree at most 7ve; this
is the only known non-trivial class of graphs admitting two-bend drawings. c© 2002 Elsevier
Science B.V. All rights reserved.

Keywords: Graph algorithm; Graph drawing; Orthogonal; Three-dimensional

1. Introduction

The aim of graph drawing is to display a given graph so that the inherent rela-
tional information of the graph is clear to the user. There has been substantial re-
search into automatically drawing graphs in two dimensions (see [15]). Motivated by

� A preliminary version of this paper was presented at the 6th International Symposium on Graph Drawing
(GD ’98), Montr?eal, August 13–15, 1998.

1 Research completed at Monash University (Melbourne, Australia), The University of Sydney (Sydney,
Australia) where supported by the ARC, and while visiting McGill University (Montr?eal, Canada).
E-mail address: davidw@scs.carleton.ca (D.R. Wood).

0304-3975/03/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(02)00044 -0

152 D.R. Wood / Theoretical Computer Science 299 (2003) 151–178

experimental evidence suggesting that displaying a graph in three dimensions is bet-
ter than in two [35,36], there is a growing body of research in three-dimensional
graph drawing. Proposed models for three-dimensional graph drawing include straight-
line drawings [14,23,29], convex drawings [12,19], spline-curve drawings [24],
multilevel drawings of clustered graphs [18], visibility representations [2,10], and of in-
terest in this paper orthogonal drawings [4,6,13,16,20–22,26,28,31,33,38–40]; here the
edges of the graph are drawn as polygonal chains composed of axis-parallel segments.
This style of drawing has applications in three-dimensional VLSI circuit design (see
for example [1,34]).

The three-dimensional orthogonal grid consists of grid-points in three-dimensional
space with integer coordinates, together with the axis-parallel grid-lines determined by
these points. A three-dimensional orthogonal drawing of a graph positions each vertex
at a unique grid-point, and represents each edge by a polygonal chain (called an edge
route) composed of contiguous sequences of axis-parallel segments contained in grid-
lines, such that (a) the end-points of an edge route are the grid-points representing
the end-vertices of the edge, and (b) distinct edge routes only intersect at a common
end-vertex. The six directions, called ports, in which the edges incident with a vertex
v can be routed are denoted by X+

v , X−
v , Y+

v , Y−
v , Z+

v and Z−
v . We refer to a three-

dimensional orthogonal drawing simply as a drawing.
Throughout this paper, we consider n-vertex m-edge undirected graphs G with vertex

set V (G) and edge set E(G). A graph is assumed to be simple unless explicitly called
a multigraph. The set of vertices adjacent to each vertex v is denoted by V (v), and the
set of edges incident to v is denoted by E(v). A graph with maximum degree at most
� is called a �-graph. Since there are six grid-lines extending from each grid-point,
drawings can only exist for 6-graphs. To construct orthogonal drawings of graphs with
degree greater than six, vertices can be represented by grid-boxes (see for example
[5,9]), or by points in a multidimensional grid [37,38].

1.1. Aesthetic criteria

Every 6-graph has an in7nite number of drawings. Various criteria have been pro-
posed in the literature to evaluate the aesthetic quality of a particular drawing. Firstly,
the volume of the drawing should be small. The volume of a drawing is the volume
of the smallest axis-aligned box, called the bounding box, which encloses the drawing.
So that a two-dimensional drawing has positive volume, we consider the dimensions
of the bounding box to be the number of grid-points along each side (which is one
more than the actual side length).

Drawings with many bends in the edges appear cluttered and are diIcult to visualise,
and in VLSI circuits, MANY BENDS increases the cost of production and the chance
of circuit failure. Therefore minimising the number of bends is an important aesthetic
criterion for orthogonal drawings. Using straightforward extensions of the corresponding
two-dimensional NP-hardness results, minimising either the volume or the number of
bends in a drawing is NP-hard [20] (also see [32]). This paper focuses on upper bounds
for the number of bends in three-dimensional orthogonal drawings. A drawing with no
more than b bends per edge is called a b-bend drawing.

D.R. Wood / Theoretical Computer Science 299 (2003) 151–178 153

(a) (b)

Fig. 1. Drawings of the octahedron graph: (a) with few bends and small volume, (b) orientation-independent.

We say an orthogonal graph drawing is orientation-dependent if, loosely speak-
ing, the drawing is signi7cantly diKerent when viewed with respect to one particular
dimension; otherwise we say it is orientation-independent. For example, in orientation-
independent drawings the bounding box asymptotically is a cube, and the minimum-
sized axis-aligned box surrounding the vertices asymptotically is a cube. Whether
or not orientation-independence is a desirable quality in orthogonal drawings is an
application-speci7c question. For example, for applications in VLSI circuit design, due
to the limitations in present-day layering technology, drawings should have constant
height. However, we shall take the view that orientation-independent orthogonal draw-
ings are more aesthetically pleasing than orientation-dependent orthogonal drawings.
Orientation-independent drawings are described in a desirable sense as being ‘truly
three-dimensional’ in [5,13].

Other proposed aesthetic criteria include the total or maximum length of edge routes.
A number of tradeoKs between aesthetic criteria, most notably between the maximum
number of bends per edge route and the volume, have been observed in existing algo-
rithms [22]. Fig. 1 shows two drawings of the octahedron graph.

1.2. Algorithms and bounds

We now summarise the known algorithms and bounds on the aesthetic criteria for
three-dimensional orthogonal drawings, including those presented in this paper. We
proceed by initially considering drawings with small volume, which typically have
relatively many bends, through to drawings with few bends. Table 1 summarises these
bounds. We classify drawings as follows. A drawing is coplanar if all the vertices are
in a single grid-plane; it is a general position drawing if no two vertices are in a single
grid-plane; and a drawing is non-collinear if no two vertices are in a single grid-line.

An early result due to Kolmogorov and Barzdin [26] established a lower bound of

(n3=2) on the volume of a drawing (also see [4,34]). This lower bound is asymp-
totically matched by algorithms of Biedl [4], Eades et al. [20] and Eades et al.
[21,22] which produce drawings with O(n3=2) volume. The COMPACT algorithm of Eades
et al. [21,22], which routes each edge with at most seven bends, uses the least
number of bends out of these algorithms. The above algorithms all produce coplanar

154 D.R. Wood / Theoretical Computer Science 299 (2003) 151–178

T
ab

le
1

U
pp

er
bo

un
ds

fo
r

th
re

e-
di

m
en

si
on

al
or

th
og

on
al

gr
ap

h
dr

aw
in

g

A
lg

or
ith

m
G

ra
ph

s
M

ax
.

B
ou

nd
in

g
bo

x
V

ol
um

e
O

ri
en

ta
tio

n
R

ef
.

(a
vg

.)
be

nd
s

in
de

pe
nd

en
t

K
B

-A
L

G
O

R
IT

H
M

M
ul

tig
ra

ph
16

O
(√

n)
×

O
(√

n)
× O

(√
n)

P
(n

3=
2
)

N
o

E
ad

es
et

al
.

[2
0]

T
W

E
N

T
E
-A

L
G

O
R

IT
H

M
M

ul
tig

ra
ph

14
O

(√
n)

×
O

(√
n)
×O

(√
n)

P
(n

3=
2
)

N
o

B
ie

dl
[8

]
N

O
N

-C
O

L
L

IN
E

A
R

M
ul

tig
ra

ph
8

O
(√

n)
×

O
(√

n)
×O

(√
n)

P
(n

3=
2
)

Y
es

W
oo

d
[3

8]
C

O
M

PA
C

T
M

ul
tig

ra
ph

7
O

(√
n)

×
O

(√
n)
×O

(√
n)

P
(n

3=
2
)

N
o

E
ad

es
et

al
.

[2
1,

22
]

C
O

M
PA

C
T

1
M

ul
tig

ra
ph

6
O

(√
n)

×
O

(√
n)
× O

(n
)

O
(n

2
)

N
o

E
ad

es
et

al
.

[2
2]

D
Y

N
A

M
IC

SP
IR

A
L

M
ul

tig
ra

ph
7

O
(√

n)
O
×

O
(√

n)
× O

(n
)

O
(n

2
)

N
o

C
lo

ss
on

et
al

.
[1

3]
D

Y
N

A
M

IC
ST

A
IR

C
A

SE
M

ul
tig

ra
ph

6
O

(n
) ×

O
(n

)×
O

(1
)

O
(n

2
)

N
o

C
lo

ss
on

et
al

.
[1

3]
S T

A
IR

C
A

SE
M

ul
tig

ra
ph

5
O

(n
) ×

O
(n

)×
O

(1
)

O
(n

2
)

N
o

C
lo

ss
on

et
al

.
[1

3]
B

JS
W

-A
L

G
O

R
IT

H
M

M
ul

tig
ra

ph
4

O
(n

) ×
O

(n
)×

O
(1

)
O

(n
2
)

N
o

B
ie

dl
et

al
.

[6
]

C
O

M
PA

C
T

4
M

ul
tig

ra
ph

�
6

4
3

O
(n

)×
O

(n
)×

O
(1

)
O

(n
2
)

N
o

E
ad

es
et

al
.

[2
2]

C
O

M
PA

C
T

2
M

ul
tig

ra
ph

5
O

(√
n)

×
O

(n
)×

O
(n

)
O

(n
5=

2
)

N
o

E
ad

es
et

al
.

[2
2]

C
O

M
PA

C
T

3
M

ul
tig

ra
ph

4
O

(n
)×

O
(n

)×
O

(n
)

O
(n

3
)

N
o

E
ad

es
et

al
.

[2
2]

D
IA

G
.

L
A

Y
O

U
T

&
M

O
V

E
.

Si
m

pl
e

4
(2

2 7
)

O
(n

)×
O

(n
)
×

O
(n

)
2:

13
n3

Y
es

T
he

or
em

10
3-

B
E

N
D

S
M

ul
tig

ra
ph

3
O

(n
)×

O
(n

)×
O

(n
)

8n
3

Y
es

E
ad

es
et

al
.

[2
1,

22
]

IN
C

R
E

M
E

N
T

A
L

M
ul

tig
ra

ph
3

O
(n

)×
O

(n
)×

O
(n

)
4:

63
n3

N
o

Pa
pa

ko
st

as
an

d
T

ol
lis

[3
1]

M
O

D
IF

IE
D

3-
B

E
N

D
S

M
ul

tig
ra

ph
3

O
(n

)×
O

(n
)×

O
(n

)
n3

+
o(
n3

)
Y

es
W

oo
d

[3
8,

40
]

D
IA

G
.

L
A

Y
O

U
T

&
M

O
V

E
.

Si
m

pl
e
�
6

5
2

O
(n

)×
O

(n
)×

O
(n

)
n3

Y
es

T
he

or
em

10

D.R. Wood / Theoretical Computer Science 299 (2003) 151–178 155

drawings with the vertices positioned in a O(
√
n)×O(

√
n) plane grid. Such drawings

are inherently orientation-dependent. An O(n3=2) volume bound is also achieved by
the NON-COLLINEAR Algorithm of Wood [38, Chap. 10], which has the advantage of
producing orientation-independent drawings, at the expense of using eight bends for
some edge routes. This algorithm produces non-collinear drawings with at most �√n�
vertices in each grid-plane.

Eades et al. [22] present a series of re7nements of their COMPACT algorithm, referred
to as COMPACT 1, COMPACT 2 and COMPACT 3 in Table 1, which explore the tradeoK
between the volume and the maximum number of bends per edge route. COMPACT 1
produces drawings in a O(

√
n)×O(

√
n)×O(n) bounding box with at most six bends

per edge; COMPACT 2 produces drawings in a O(
√
n)×O(n)×O(n) bounding box with

at most 7ve bends per edge; and COMPACT 3 produces drawings in a O(n)×O(n)×O(n)
bounding box with at most four bends per edge. The COMPACT and the NON-COLLINEAR

algorithms depend on a vertex-colouring of a certain conRict graph to determine the
‘height’ of edge routes; this step takes O(n3=2) time. A method based on edge-colourings
by Biedl and Chan [6] reduces the time to O(n log n).

For drawings with O(n2) volume, the upper bound of six on the maximum number
of bends per edge established by the COMPACT 1 algorithm was improved to 7ve by the
STAIRCASE algorithm of Closson et al. [13], and subsequently improved to four by Bield
et al. [8]. These algorithms position the vertices along a two-dimensional diagonal, and
produces coplanar non-collinear drawings with an O(n)×O(n)×O(1) bounding box.

The DYNAMIC STAIRCASE algorithm in [13], also using a two-dimensional diagonal
vertex layout, routes each edge vw with at most six bends using arbitrary unused ports
at v and w. It follows that this algorithm is fully dynamic; that is, it supports the on-line
insertion and deletion of vertices and edges in O(1) time. The DYNAMIC SPIRAL algorithm
in [13], which is also fully dynamic, starts with the vertices in an O(

√
n)×O(

√
n)

plane grid, and then assigns each vertex a unique height in a spiral manner. Thus,
the drawings are non-collinear and have a O(

√
n)×O(

√
n)×O(n) bounding box. At

the expense of allowing seven-bend edges, this algorithm produces more orientation-
independent drawings than the DYNAMIC STAIRCASE algorithm.

That every 6-graph has a 3-Bend drawing was established by the 3-BENDS algorithm
of Eades et al. [21,22] and the INCREMENTAL algorithm of Papakostas and Tollis [31].
The INCREMENTAL algorithm,2 which supports the on-line insertion of vertices in con-
stant time, produces drawings with 4:63n3 volume. The 3-BENDS algorithm produces
general position drawings with 27n3 volume; by deleting grid-planes not containing a
vertex or a bend the volume is reduced to 8n3. This algorithm positions the vertices
along the main diagonal of a cube in an arbitrary order. By choosing an appropriate
ordering of the vertices and using a modi7ed edge routing strategy, the algorithm of
Wood [38,40] reduces the volume to n3 + o(n3).

Wood [37] shows that every drawing of K5 has an edge with at least two bends,
and it is well known that every drawing of the 2-vertex 6-edge multigraph has an edge

2The INCREMENTAL algorithm, as stated in [31], only works for simple graphs, however with a suitable
modi7cation it also works for multigraphs [A. Papakostas, private communication, 1998].

156 D.R. Wood / Theoretical Computer Science 299 (2003) 151–178

with at least three bends (see [38] for a formal proof). Hence the following problem
is of considerable interest:

2-Bends problem: Does every 6-graph have a 2-bend drawing? [21,22].

Eades et al. [21] conjecture that the answer to this question is false; that is, there
exists a 6-graph which does not have a 2-bend drawing. They originally conjectured
that K7 was such a graph, however 2-bend drawings of K7, along with the other
6-regular complete multi-partite graphs K6;6, K3;3;3 and K2;2;2;2, have since been found
by Wood [37,38].

This paper makes the following contributions to the study of three-dimensional
orthogonal graph drawings. In Section 2, we describe a framework for generating gen-
eral position drawings. In particular, we present an algorithm which, given a general
position ‘drawing’ with distinct port assignments but with edge-crossings, produces a
crossing-free drawing with no more bends than the original ‘drawing’. This frame-
work is used as the basis for the DIAGONAL LAYOUT & MOVEMENT algorithm, presented
in Section 3. This algorithm, which produces orientation-independent general position
drawings, solves the 2-bends problem in the aIrmative for simple 5-graphs; this is the
only known non-trivial class of graphs for which 2-bend drawings exist. For simple
6-graphs, the same algorithm uses an average of at most 2 2

7 bends per edge, which is
the best known upper bound for the number of bends in three-dimensional orthogonal
drawings. Since every general position drawing of K7 has at least 16

7 |E(K7)| bends
[39], this upper bound is tight for general position drawings.

Wood [39] also constructs in7nite families of 2- and 4-connected 6-graphs with 2m+

(n) bends in every general position drawing. Hence the general position model cannot
solve the 2-bends problem for graphs with connectivity at most four. Furthermore, it is
shown that the natural variation of this model where pairs of vertices share a common
grid-plane, cannot solve the 2-bends problem for graphs with connectivity at most two.

2. The general position model

In this section we present a data structure for representing general position drawings;
that is, drawings with no two vertices in a common grid-plane. This framework suggests
a number of approaches for producing such drawings which we explore in detail. We
then describe an algorithm which takes an instance of the data structure and constructs
a general position drawing. We are interested in the following problem: given a 6-graph
G, determine a general position drawing of G with the minimum number of bends.
This problem is NP-hard for bipartite multigraphs [40].

2.1. Representation

Associated with a graph G is the arc set A(G) = {(v; w); (w; v): {v; w}∈E(G)}. We
often denote the arc (v; w) by vw→, and vw→ is called the reversal of wv→. We say an
outgoing arc vw→ incident to a vertex v∈V (G) is at v. The port at v used by an edge

D.R. Wood / Theoretical Computer Science 299 (2003) 151–178 157

route vw is referred to as the port assigned to the arc vw→, and is denoted by port(vw→).
We call this mapping from A(G) to the ports of G a port assignment for G.

A total ordering ¡ on V (G) induces a numbering (v1; v2; : : : ; vn) of V (G) and vice
versa. We refer to both ¡ and (v1; v2; : : : ; vn) as a vertex-ordering of G. We represent
a general position drawing of a 6-graph G by the following three-part data structure:

• A (general position) vertex-layout of G, consisting of three vertex-orderings ¡X ,
¡Y and ¡Z of G with corresponding numberings (x1; x2; : : : ; xn), (y1; y2; : : : ; yn) and
(z1; z2; : : : ; zn), which are called the X-, Y-, and Z-orderings.

• An arc-colouring of G, consisting of a 3-colouring of A(G) with colours {X; Y; Z}
such that for each vertex v∈V (G), there are at most two outgoing arcs at v receiving
the same colour.
• An arc-orientation of G, de7ned to be a function � :A(G) → {+;−} such that for

each vertex v∈V (G) and for each d∈{+;−}, there are at most three arcs vw→ at v
having �(vw→) =d.

The vertex-layout represents the relative coordinates of the vertices. An arc-colouring
and an arc-orientation de7ne the ports used by the edge routes. In particular, if the
arc vw→ is coloured I ∈{X; Y; Z} and �(vw→) =d∈{+;−}, then the GENERAL POSITION

DRAWING algorithm below will assign port(vw→) = Idv . Since each port can be assigned
to at most one arc, we have the following condition which an arc-colouring and arc-
orientation must satisfy.

For all vertices v ∈ V (G); for all dimensions I ∈ {X; Y; Z}; for all
d ∈ {+;−}; there is at most one outgoing arc

→
vw ∈ A(G) at v coloured

I with �(
→
vw) = d: (1)

An arc-colouring and arc-orientation satisfying (1) de7nes a port assignment for G.
Of course, simply assigning ports does not de7ne the full edge routes. The algorithm
presented in this section, given a general position vertex-layout and port assignment,
determines in linear time a drawing which preserves this layout and port assignment
and with the minimum number of bends. By a sequence of port assignment swaps, the
algorithm then removes all edge-crossings from the drawing in quadratic time.

The above representation suggests a number of avenues for constructing general
position drawings, which diKer in the order in which the three components of the
representation are determined. For instance, an algorithm which initially determines a
vertex-layout, followed by an arc-orientation and arc-colouring, which we call layout-
based, is used in the 3-BENDS algorithm of Eades et al. [21,22], and in the algorithm
of Wood [40]. This latter algorithm, given a 7xed diagonal general position vertex-
layout (that is, the X-, Y- and Z-orderings are equal), determines a drawing with the
minimum number of bends in O(n) time. A routing-based approach 7rst determines
an arc-colouring, then a vertex-layout, and 7nally an arc-orientation. The routing-based
algorithm in [38, Algorithm 5.7] determines a general position drawing with at most
2m + 3

2n bends and at most 3:375n3 volume.
The DIAGONAL LAYOUT & MOVEMENT algorithm presented in this paper, in some

sense, combines the layout- and routing-based approaches. First, it computes an initial

158 D.R. Wood / Theoretical Computer Science 299 (2003) 151–178

Fig. 2. 2-bend edge route vw.

vertex-layout, then an arc-orientation, and 7nally an arc-colouring; the arc-colouring
also de7nes the movement of vertices into the 7nal vertex-layout. The following
algorithm can form the basis of any algorithm for producing a general position drawing
based on the above representation.

Algorithm GENERAL POSITION DRAWING

Input: vertex-layout, arc-colouring and arc-orientation � of a 6-graph G satisfying
(1).
Output: general position drawing of G.

(1) Initially position each vertex v= xi =yj = zk at (3i; 3j; 3k).

(2) For each arc vw→∈A(G) coloured I ∈{X; Y; Z}, set port(vw→)← I �(vw
→

)
v .

(3) Apply algorithm EDGE CONSTRUCTION in Section 2.2.
(4) Apply algorithm Crossing Removal in Section 2.3.
(5) Delete each grid-plane not containing a vertex or a bend.

2.2. Constructing edge routes

The following algorithm, for a given port assignment, determines each edge route
with the minimum number of bends. For each vertex v and dimension I ∈{X; Y; Z},
we say the I+

v (respectively, I−v) port points toward a vertex w if v¡I w (w¡I v);
otherwise the port points away from w.

Algorithm EDGE CONSTRUCTION

Input: vertex-layout and port assignment of a 6-graph G.
Output: general position ‘drawing’ of G (possibly with edge-crossings).

For each edge vw∈E(G),
(1) If port(vw→) is perpendicular to port(wv→), port(vw→) points toward w, and port(wv→)

points toward v then route vw with the 2-bend edge route shown in Fig. 2.
(2) If exactly one of port(vw→) or port(wv→) points away from w or v, respectively,

then, supposing vw→ does, use the 3-Bend edge route for vw shown in Fig. 3,
said to be anchored at v.

D.R. Wood / Theoretical Computer Science 299 (2003) 151–178 159

Fig. 3. 3-Bend edge routes anchored at v with (a) perpendicular or (b) parallel ports.

Fig. 4. 3-Bend edge routes anchored at (a) v or (b) w.

Fig. 5. 4-bend edge routes anchored at v and w with (a) perpendicular or (b) parallel ports.

(3) If port(vw→) points toward w, port(wv→) points toward v, and port(vw→) is parallel
to port(wv→), then choose v or w arbitrarily and, route vw with the 3-Bend edge
route shown in Fig. 4, said to be anchored at the chosen vertex.

(4) If port(vw→) points away from w and port(wv→) points away from v then use the
4-bend edge route for vw shown in Fig. 5, said to be anchored at v and at w.

If the edge route vw is anchored at v then we say the arc vw→ is anchored. Since a b-bend
edge route contributes b − 2 anchored arcs, the produced drawings have 2|E(G)| + k
bends, where k is the number of anchored arcs.

160 D.R. Wood / Theoretical Computer Science 299 (2003) 151–178

Fig. 6. Segments of the 2-bend component of an edge route.

2.3. Removing edge-crossings

We now describe how to remove the edge-crossings produced by the algorithm EDGE

CONSTRUCTION. As shown in Fig. 6, each edge route can be considered to consist of
a 2-bend edge route possibly with unit-length segments attached at either end. The
segments of the 2-bend component of an edge route vw in order from v to w are
called the v-segment, the middle segment, and the w-segment of vw.

For a vertex v= xi =yj = zk , we say the (X= 3i − 1)-plane, the (X=3i)-plane and
the (X=3i+ 1)-plane belong to v, and similarly for the Y- and Z-planes. Note that the
middle segment of an edge route vw contains grid-points belonging to v and w and no
other vertices. Grid-points contained in the v-segment of vw, except for the grid-point
at the intersection of the v-segment of vw and the middle segment of vw, only belong
to v.

Suppose in a drawing produced by the EDGE CONSTRUCTION algorithm the edge routes
vw and xy intersect at some grid-point besides a vertex, called an edge-crossing. Then
the grid-point of intersection must belong to each of v, w, x and y, which implies that
two of these vertices are coplanar. Since the vertices are in general position, two of
{v; w; x; y} are equal. Hence, intersecting edge routes must be incident to a common
vertex. Suppose the edge routes vu and vw intersect at some grid-point other than v. In
all edge routes, there are no consecutive unit-length segments, and an edge-crossing in-
volving a unit-length segment must also involve the adjacent non-unit-length segment,
thus we need only consider intersections between non-unit-length segments.

In what follows, we characterise the various ways in which vu and vw can intersect.
In each case, by swapping the ports assigned to the arcs vu→ and vw→, and rerouting the
edges vu and vw according to the EDGE CONSTRUCTION algorithm the edges no longer
cross. However, in some cases doing so may introduce new edge-crossings elsewhere
in the drawing. We, therefore, introduce the following potential function as a means
of establishing that the algorithm will remove all crossings. De7ne

" = 3n · k +
∑

vw∈E(G)
length of the middle segment of vw ;

where k is the number of anchored arcs. In each of the following cases, the crossing
between vu and vw is removed, and either no new edge-crossings are created or " is
reduced.

D.R. Wood / Theoretical Computer Science 299 (2003) 151–178 161

Fig. 7. Rerouting intersecting v-segments.

Fig. 8. Rerouting intersecting v-segment of vw and middle segment of vu if vw
→

is not anchored.

Fig. 9. Rerouting intersecting v-segment of vw and middle segment of vu if vw
→

is anchored.

Case 1—The v-segments of vu and vw intersect: Clearly both of vu→ and vw→ are an-
chored, and the intersection is as shown in Fig. 7. Swapping ports eliminates the edge-
crossing and introduces no new edge-crossings (and also removes both anchored arcs).
Case 2—The v-segment of vw intersects the middle segment of vu:
Case 2(a)—vw→ is not anchored: Clearly vu→ must be anchored, and the intersection

is as shown in Fig. 8. By swapping ports (thus anchoring vw→ and unanchoring vu→) the
edge-crossing is removed. The new edge routes contain no new grid-points belonging
to u or w; thus there are no new edge-crossings introduced.
Case 2(b)—vw→ is anchored: Clearly the intersection is as shown in Fig. 9 (vu→ may

or may not be anchored). By swapping ports the edge-crossing is removed. vu→ is now
not anchored; if vu→ was anchored then vw→ is now anchored, and if vu→ was not anchored
then vw→ is now not anchored. Hence at least one anchored arc is eliminated, and the
length of all middle segments except that of vu remains constant. The length of the
middle segment of vu increases by no more than 3n. Hence " is reduced.
Case 3—The middle segments of vu and vw intersect (see Fig. 10): By swapping

ports (and thus swapping any anchors) the edge-crossing is removed. The sum of the
lengths of the new middle segments of vu and vw is strictly less than the previous sum
(see the segments in bold in Fig. 10), the lengths of the middle segments of all other

162 D.R. Wood / Theoretical Computer Science 299 (2003) 151–178

Fig. 10. Rerouting intersecting middle-segments.

edges remains unchanged, and the number of anchored arcs is unchanged. Thus " is
reduced.

Lemma 1. There is an O(n2) time CROSSING REMOVAL algorithm which given a ‘draw-
ing’ (with edge-crossings) produced by the EDGE CONSTRUCTION algorithm, produces a
(crossing-free) drawing with no more bends than the original.

Proof. The CROSSING REMOVAL algorithm operates in two phases. Consider the follow-
ing algorithm for the 7rst phase in which only Case 2(b) and Case 3 edge-crossings are
eliminated. Initialise Vcheck←V (G). While Vcheck �=∅ choose a vertex v∈Vcheck; if there
is a Case 2(b) or Case (3) crossing between edges vu; vw∈E(v) then swap the ports as-
signed to vu→ and vw→, reroute the edges vu and vw according to the EDGE CONSTRUCTION

algorithm, and set Vcheck←Vcheck ∪ {u; w}; otherwise set Vcheck←Vcheck\{v}.
Applying Case 2(b) or Case 3 may only create new edge-crossings between uv and

some other edge route incident to u, or between wv and some other edge route inci-
dent to w. Thus at all times during the 7rst phase, Vcheck contains those vertices v in a
Case 2(b) or Case 3 edge-crossing between edges incident to v. Note that the length
of a middle segment is at most 3n, and k62m. Thus "63n · 2m + m · 3n, and since
m63n for 6-graphs, "∈O(n2). When Case 2(b) or Case 3 is applied " is reduced;
thus there are O(n2) Case 2(b) or Case 3 port swaps. With each port swap, three
vertices are inserted into Vcheck. Hence there are O(n2) insertions into Vcheck. Therefore
within O(n2) iterations, Vcheck = ∅. At this point, there are no vertices v for which there
may be a Case 2(b) or Case 3 edge-crossing between edges incident to v. Therefore
all Case 2(b) and Case 3 edge-crossings are removed in the 7rst phase. Checking
Case 2(b) and Case 3 for a particular vertex v involves comparing the coordinates of
O(1) pairs of edge routes incident to v. Since the rerouting of O(1) edges takes O(1)
time, the 7rst phase of the algorithm takes O(n2) time.

In the second phase, swap the ports assigned to vu→ and vw→ for each Case (1)
or Case 2(a) edge-crossing. Since doing so does not create any new edge-crossings, all
Case 1 and Cases 2(a) edge-crossings are removed. For a particular vertex, Case 1 and
Case 2(a) can be checked in constant time. Thus the second phase of the algorithm
takes O(n) time. Therefore, the overall algorithm removes all edge-crossings from the
drawing in O(n2) time. In each case, the number of bends is not increased.

Theorem 2. Let G be a 6-graph with n vertices and m edges. Given a general posi-
tion vertex-layout, arc-colouring and arc-orientation of G satisfying (1), the GENERAL

D.R. Wood / Theoretical Computer Science 299 (2003) 151–178 163

POSITION DRAWING algorithm will, in O(n2) time, construct a 4-bend drawing of G
which preserves the vertex-layout, with at most 2m + k bends, and with at most
(n + 1

3k)3 volume, where k is the number of anchored arcs.

Proof. The drawings produced before crossings are removed have 2m+k bends. Since
the CROSSING REMOVAL algorithm does not increase the number of bends, the 7nal
drawing has at most 2m + k bends. The (X =3i ± 1)-plane belonging to a vertex
v= xi contains a bend if and only if there is an anchored arc vw→ assigned an X-port
(that is, coloured X) with its v-segment lying in this plane. Similarly for Y-planes
and Z-planes. Clearly, a grid-plane not containing a vertex or a bend can be removed
without aKecting the drawing (Step 5). Therefore after this step, the bounding box
is (n + kX)×(n + kY)×(n + kZ), where kI is the number of anchored arcs coloured
I ∈{X; Y; Z}. It is well known that of the boxes with 7xed sum of side length the
cube has maximum volume (see, for example, [25]). Hence the volume is maximised
when kX = kY = kZ = 1

3k, and thus the volume is at most (n + 1
3k)3. By Lemma 1 the

CROSSING REMOVAL algorithm runs in O(n2) time; clearly all other steps of GENERAL

POSITION DRAWING run in O(n) time.

Corollary 3. Let G be a 6-graph with n vertices. There is an O(n2) time algorithm
which, given a general position ‘drawing’ of G with distinct port assignments but
with edge-crossings, produces a drawing (without edge-crossings) which preserves the
vertex-layout and with no more bends than the original.

Proof. Using the vertex-layout and port assignment de7ned by the original ‘drawing’,
construct an intermediate ‘drawing’ of G (possibly with edge-crossings) using the EDGE

CONSTRUCTION algorithm. Since these new edge routes have the minimum number of
bends for a 7xed port assignment, the intermediate ‘drawing’ has no more bends than
the original. Applying the CROSSING REMOVAL algorithm, we obtain a crossing-free draw-
ing of G with no more bends than the original.

3. DIAGONAL LAYOUT & MOVEMENT algorithm

In this section we describe the DIAGONAL LAYOUT & MOVEMENT algorithm for three-
dimensional orthogonal graph drawing. Initially, the vertices are placed along the main
diagonal of a cube, and an arc-orientation followed by an arc-colouring is determined.
This colouring also de7nes the movement of vertices away from the diagonal.

We 7rst introduce some notation. Let ¡ be a vertex-ordering of a graph G. For
each edge vw∈E(G) with v¡w, we say the arc vw→∈A(G) is a successor arc of v, and
w is a successor of v; similarly the arc wv→∈A(G) is a predecessor arc of w, and v is a
predecessor of w. For each vertex v∈V (G), the number of successor and predecessor
arcs of v are denoted succ(v) and pred(v), respectively.

As shown in Fig. 11, we say a vertex v is an (#; $)-vertex, where #= min{pred(v);
succ(v)} and $= max{pred(v); succ(v)}; we say (#; $) is the type of v. v is positive
if succ(v)¿pred(v) and negative if pred(v)¿succ(v). For positive vertices v and for

164 D.R. Wood / Theoretical Computer Science 299 (2003) 151–178

Fig. 11. v is a negative (2; 4)-vertex.

k¿0 (respectively, k¡0), vk denotes the |k|th successor (predecessor) of v to the
right (left) of v in the ordering. For negative v and for k¿0 (respectively, k¡0), vk

denotes the |k|th predecessor (successor) of v to the left (right) of v in the ordering.
For vertices v with succ(v) = pred(v), it is convenient for vk to denote the same vertex
as if v was positive.

Algorithm DIAGONAL LAYOUT & MOVEMENT

Input: 6-graph G.
Output: General position drawing of G.

(1) Initialise each of the X-, Y- and Z-orderings of a general position vertex-layout to
be the vertex-ordering ¡ of G determined by the BALANCED ORDERING algorithm
in Section 3.1.

(2) For each vertex v∈V (G), depending on the type of v, label some of the arcs at
v as movement or special arcs, according to Table 2.

(3) Determine a port assignment for G with the PORT ASSIGNMENT algorithm described
in Section 3.2.

(4) For each movement arc vw→ coloured I ∈{X; Y; Z}, move v to immediately past w
in the I -ordering.

(5) Apply GENERAL POSITION DRAWING algorithm.

The general strategy of the DIAGONAL LAYOUT & MOVEMENT algorithm is to anchor
at most one arc at each vertex. The port at a vertex assigned to an unanchored arc
must point toward its destination. Thus, in the initial diagonal layout, there are three
positive ports which can be assigned to unanchored successor arcs, and three nega-
tive ports which can be assigned to unanchored predecessor arcs. Thus, for a vertex
v with max{succ(v); pred(v)}63, all of the arcs at v need not be anchored (with-
out moving v). If succ(v)¿3 then the positive ports at v can be assigned to at most
three unanchored successor arcs of v. The remaining successor arcs must be assigned
a negative port at v. These are precisely the movement and special arcs de7ned in
Table 2. If vw→ is a movement arc coloured I , then v is moved to immediately past
w in the I -ordering (Step 4 of the algorithm). Thus the I−v port points toward w,
which allows for vw→ to be assigned the I−v port without anchoring vw→. We shall prove
later that it is precisely the special arcs which become anchored when the GENERAL

POSITION DRAWING algorithm is applied. Note that there is at most one special arc at

D.R. Wood / Theoretical Computer Science 299 (2003) 151–178 165

Table 2
De7nition of movement and special arcs at a vertex v

Type of v (0,4) (1,4) (0,5) (2,4) (1,5) (0,6)

(v; v1) Movement Movement Movement Special Movement Movement
(v; v2) — — Movement — Special Movement
(v; v3) — — — — — Special

Fig. 12. v is a positive (0,6)-vertex, (v; v1) is a movement arc coloured X , (v; v2) is a movement arc coloured
Y , (v; v3) is a special arc coloured Z which becomes anchored; move v to v′.

each degree six vertex, and no special arcs at each vertex with degree at most 7ve.
In Fig. 12, we illustrate the movement and anchoring process in the case of a positive
(0,6)-vertex.

3.1. Determining the initial vertex-layout

In this section we describe an algorithm for determining a vertex-ordering which
is used by the DIAGONAL LAYOUT & MOVEMENT algorithm to specify the initial vertex-
layout along the main diagonal of a cube. This method may be of general interest;
thus we describe it for graphs of arbitrary degree.

We shall see that the initial vertex-ordering used in the DIAGONAL LAYOUT &
MOVEMENT algorithm needs to satisfy the following two properties. First, the vertex-
ordering should be ‘balanced’, meaning at each vertex the number of predecessors
should be as equal as possible to the number of successors. The function

∑
v |succ(v)−

pred(v)| measures how well ‘balanced’ a vertex-ordering is. However, minimising∑
v |succ(v) − pred(v)| is NP-hard, and remains NP-hard for bipartite 6-graphs [7].

Note that a vertex v has even |succ(v)−pred(v)| if and only if v has even degree, and
hence |succ(v)−pred(v)| for an odd degree vertex v is at least one. We, therefore, say
a vertex v is balanced if |succ(v) − pred(v)|61. The second desirable property is to
have many balanced vertices. To reRect these two features, we de7ne the imbalance

166 D.R. Wood / Theoretical Computer Science 299 (2003) 151–178

Fig. 13. M1 for a positive (0; 5)-vertex v and a negative (2; 4)-vertex w = v2.

of a vertex v in a vertex-ordering of a graph with maximum degree � to be

&(v) = �|succ(v)− pred(v)| −
{

1 if v is balanced;

0 otherwise:

The total imbalance of a vertex-ordering is the sum of the imbalance of all the vertices.
The approach we take to determine a vertex-ordering uses the total imbalance as a po-
tential function. Starting with an arbitrary vertex-ordering, we apply a number of rules
for moving vertices within the ordering, each of which reduce the total imbalance. We
continue until a vertex-ordering is determined in which none of the rules are applicable.
The proof of the following introductory result is left as an exercise for the reader.

Lemma 4. If a positive (respectively, negative) vertex v gains i predecessors (suc-
cessors) and loses i successors (predecessors) for some i with 16 i6� 1

2 |succ(v) −
pred(v)|�, then |succ(v)− pred(v)| is reduced by 2i.

Consider the following rule, which takes as input an arc vw→, for moving a vertex v
in a vertex-ordering. Two adjacent vertices v; w with v¡w are opposite if v is positive
and w is negative.

M1(vw→): If w = v i is opposite to v for some i with 16 i6� 1
2 |succ(v)−pred(v)|�, then

move v to immediately past w, as shown in Fig. 13.

Suppose M1 is applied. Assume without loss of generality that v is positive. By
moving v, v loses i successors and gains i predecessors; thus by Lemma 4, &(v) is
reduced by at least 2i�. For each k, 16k6 i − 1, |succ(vk)− pred(vk)| is increased
by at most two and since vk may become unbalanced, &(vk) is increased by at most
2� + 1. Since w is opposite to v, &(w) does not increase. The number of successors
and predecessors, and hence the imbalance, of all other vertices remains unchanged.
Thus, the total imbalance decreases by at least 2i�−(i−1)(2�+1) = 2�− i+1, which
is positive since i6 1

2�. Hence the total imbalance decreases when M1 is applied.
We now present rules M2 and M3, which take as input an edge vw, for moving the

vertices v and w in a vertex-ordering.

M2(vw): If v is opposite to w and v¡wj¡vi¡w for some i with 16 i6� 1
2 |succ(v)−

pred(v)|� and j with 16j6� 1
2 |succ(w)− pred(w)|�; then move v up to v i and move

w up to wj, as shown in Fig. 14.

D.R. Wood / Theoretical Computer Science 299 (2003) 151–178 167

Fig. 14. M2 for a positive (1,5)-vertex v and a negative (2,4)-vertex w.

By moving v and w under rule M2, v loses i successors and gains i predecessors; thus
by Lemma 4, &(v) is reduced by at least 2i�. For each k, 16k6 i − 1, |succ(vk)−
pred(vk)| is increased by at most two; since vk may become unbalanced, &(vk) is
increased by at most 2� + 1. w loses j successors and gains j predecessors, hence
&(w) is reduced by at least 2j�. For each k, 16k6j − 1, |succ(wk)− pred(wk)| is
increased by at most two; since wk may become unbalanced, &(wk) is increased by at
most 2�+ 1. The number of successors and predecessors, and hence the imbalance, of
all other vertices remains unchanged. Thus, the total imbalance decreases by at least
2i�+ 2j�− (i− 1)(2�+ 1)− (j− 1)(2�+ 1) = 4�− i− j + 2, which is positive since
i; j6 1

2�. Hence the total imbalance decreases when M2 is applied.

M3(vw): If v is opposite to w and v¡vi =wj¡w for some i with 16 i6� 1
2 (|succ(v)

− pred(v)| − 1)� and j with 16j6� 1
2 (|succ(w) − pred(w)| − 1), then move v to

immediately past v i and move w to immediately past wj, as shown in Fig. 15.

By moving v and w under rule M3, v loses i + 1 successors and gains i + 1 pre-
decessors. If deg(v) is odd and i = � 1

2 (|succ(v) − pred(v)| − 1�; then v becomes a
(1

2 (deg(v) − 1); 1
2 (deg(v) + 1)) vertex; hence |succ(v) − pred(v)|= 1 and &(v) has

been reduced by 2i� + 1. Otherwise, it is easily seen that succ(v) − pred(v)¿0,
|succ(v) − pred(v)| is reduced by 2(i + 1), and hence &(v) is reduced by at least
2(i+1)�. In either case, &(v) is reduced by at least 2i�+1. For each k, 16k6 i−1,
|succ(vk) − pred(vk)| is increased by at most two, and since vk may become unbal-
anced, &(vk) is increased by at most 2� + 1. Analogous to the case of v, &(w) is
reduced by at least 2j� + 1. For each k, 16k6j − 1, |succ(wk) − pred(wk)| is in-
creased by at most two, and since wk may become unbalanced, &(wk) is increased by
at most 2�+ 1. The number of successors and predecessors, and hence the imbalance,
of all other vertices remains unchanged. Thus, the total imbalance decreases by at least
2i�+ 1 + 2j�+ 1− (i−1)(2�+ 1)− (j−1)(2�+ 1) = 4�− i− j+ 4, which is positive
since i; j6 1

2�. Hence the total imbalance decreases when M3 is applied.
Our 7nal rule decreases the number of unbalanced vertices with maximum degree.

Papakostas and Tollis [30] employ a similar idea to produce so-called bst-orderings of
4-graphs.

M4(v): If deg(v) =� and v i is unbalanced for all i with 16 i6� 1
2 |succ(v)−pred(v)|�,

then move v to immediately past v�
1
2 |succ(v)−pred(v)|�, as shown in Fig. 16.

168 D.R. Wood / Theoretical Computer Science 299 (2003) 151–178

Fig. 15. M3 for a positive (0; 5)-vertex v and a negative (1; 5)-vertex w.

Fig. 16. M4 for a (0; 6)-vertex v.

If M4 is applied, v becomes balanced, and thus by Lemma 4, &(v) is reduced by
2�� 1

2 |succ(v)− pred(v)|� + 1. For each i (16 i6� 1
2 |succ(v)− pred(v)|�); |succ(v i)−

pred(v i)| increases by at most two, and since v i was not balanced beforehand, &(v i)
increases by at most 2�. The imbalance of all other vertices remains unchanged. Hence,
the total imbalance is reduced by at least 2�� 1

2 |succ(v)−pred(v)|�+1−2�� 1
2 |succ(v)−

pred(v)|�= 1 whenever M4 is applied.

Lemma 5. A vertex-ordering of an n-vertex graph with maximum degree � in which
M4 cannot be applied has at most �=(� + 1)n unbalanced vertices with maximum
degree.

Proof. Let Vb be the set of balanced vertices, and let Vu be the set of unbalanced
vertices with degree � in a vertex-ordering in which M4 is not applicable. If v∈Vu

then v must have a neighbour w∈Vb; in this case we say the arc vw→ is a balanc-
ing arc. A vertex w∈Vb can have at most deg(w) incoming balancing arcs. Hence
|Vu|6

∑
w∈Vb deg(w). Let (be the average degree of the balanced vertices. Then

|Vu|6(|Vb|, implying (1 + ()|Vu|6((|Vu|+ |Vb|)6(n, and hence |Vu|6(=((+ 1)n6
�=(� + 1)n since (6�.

Note that the focus on vertices of maximum degree in M4 is not necessary. It is
easily seen that a vertex-ordering of a graph with maximum degree � can be determined
with at most �=(� + 1)n unbalanced vertices (regardless of their degree).

D.R. Wood / Theoretical Computer Science 299 (2003) 151–178 169

Since applying each of M1–M4 decreases the total imbalance, an algorithm which
repeatedly attempts to apply M1–M4 until they are not applicable will terminate.
By maintaining the set of edges for which the rules need to be checked, the fol-
lowing algorithm which we call BALANCED ORDERING eIciently determines a vertex-
ordering in which M1–M4 are not applicable. Start with an arbitrary vertex-ordering
of G and let Echeck←E(G). While Echeck �=∅ choose an edge vw∈Echeck, and if one of
M1(vw→), M1(wv→); M2(vw); M3(vw); M4(v) or M4(w); is applicable then do so, and
set Echeck←Echeck ∪ E(x) for all x∈V (v) ∪ V (w); otherwise set Echeck←Echeck\{vw}.

Lemma 6. Given an m-edge graph G with maximum degree �, the BALANCED

ORDERING algorithm determines, in O(�4m) time, a vertex-ordering of G in which
M1–M4 are not applicable.

Proof. We shall prove that at all times the set Echeck contains all edges in E(G) for
which one of the rules is possibly applicable. At the start of the algorithm this is
true, since Echeck =E(G). Consider an adjacency list representation of G where each
adjacency list is ordered according to the current vertex-ordering. Suppose the edge
vw is chosen from Echeck. If M1(vw→); M1(wv→), M2(vw), M3(vw), M4(v) and M4(w),
are not applied then Echeck\{vw} contains all edges in E(G) for which any of M1–
M4 are possibly applicable.

Suppose a rule is applied so that a vertex v moves in the current vertex-ordering.
The only vertices whose imbalance may change are v and its neighbours, and only the
adjacency lists of v and its neighbours are changed. For an edge pq∈E(G), where
p and q are both not adjacent to v or one of the neighbours of v, the adjacency
lists of p and q do not change, and the imbalance of every vertex adjacent to p
or q does not change. Hence, if M1(pq→), M1(qp→), M2(pq), M3(pq), M4(p) and
M4(q) are not applicable before moving v, then they will not be applicable after
moving v.

Therefore, by adding to Echeck the edges in E(x) for each neighbour x of v (whenever
a vertex v is moved), we maintain the condition that Echeck contains all edges in
E(G) for which any of M1–M4 are possibly applicable. The algorithm continues until
Echeck = ∅, at which point there are no edges for which any of M1–M4 are applicable.

The total imbalance of a vertex-ordering is at most �
∑

v deg(v) = 2�m. As proved
above, each of the rules M1–M4 reduce the total imbalance; thus a rule is applied at
most 2�m times. Whenever a rule is applied, O(�2) edges are added to Echeck. Hence
the algorithm inserts O(�2 · �m) edges into Echeck, and therefore a rule is checked
O(�3m) times.

Using the order maintenance algorithm of Dietz and Sleator [17], the vertex-ordering
and adjacency lists of each vertex can be maintained in constant time under the move
operation. Hence each rule can be checked in O(�) time; thus the algorithm runs in
O(�4m) time.

Since the initial vertex-ordering in the DIAGONAL LAYOUT & MOVEMENT algorithm is
determined by the BALANCED ORDERING algorithm, we have the following observations.

170 D.R. Wood / Theoretical Computer Science 299 (2003) 151–178

Lemma 7. If vw→ is a movement or special arc then wv→ is not a movement or special
arc.

Proof. Let vw→=(v; v k). Then k6� 1
2 succ(v) − pred(v)|� (see Table 2); thus M1 is

applicable to vw→ if v is opposite to w. Since M1 is not applicable, w is not op-
posite to v in the initial vertex-ordering. Since movement and special arcs are suc-
cessor (respectively, predecessor) arcs for positive (negative) vertices, the result
follows.

Lemma 8. If v and w are opposite vertices in the initial vertex-ordering, then the
movement arcs of v do not ‘cross over’ or have the same destination vertex as the
movement arcs of w.

Proof. Let (v; vp) be the movement arc (if any) at v with maximum p, and let (w; wq)
be the movement arc (if any) at w with maximum q. Then p6� 1

2 (|succ(v)−pred(v)|−
1)� and q6� 1

2 (|succ(w)−pred(w)|−1� (see Table 2). Thus, the rule M2 is applicable
to the edge vw if v¡wq¡vp¡w. Since M2 is not applicable in the initial vertex-
ordering, the movement arcs of v do not ‘cross over’ the movement arcs of w. Similarly,
M3 is applicable to the edge vw if v¡wq = vp¡w. Since M3 is not applicable in the
initial vertex-ordering, the movement arcs of v do not have the same destination vertex
as the movement arcs of w.

3.2. Determining a port assignment

This section describes how to compute a port assignment in Step 3 of the DIAGONAL

LAYOUT & MOVEMENT algorithm. To determine an arc-colouring we vertex-colour a
graph H with vertex set V (H) =A(G). Since the colour assigned to an arc determines
the dimension of its port assignment, vertices are adjacent in H if the corresponding
arcs must use perpendicular ports.

Algorithm PORT ASSIGNMENT

Input: • balanced vertex-ordering of 6-graph G
• classi7cation of movement and special arcs.

Output: arc-colouring and arc-orientation of G satisfying (1).

(1) For each vertex v∈V (G), Table 3 de7nes the nodes vA; vB; : : : ; vF depending
on the type of v. (Note that (v; vC) is a special arc for each unbalanced degree
six vertex v, and only (v; vA) and (v; vB) are possibly movement arcs.)

(2) De7ne an arc-orientation as follows. For each non-negative (respectively, neg-
ative) vertex v∈V (G) and for each Q∈{A; B; C} set �((v; vQ)) =−(+), and
for each Q∈{D; E; F} set �((v; vQ)) = + (−); that is, the arcs (v; vA), (v; vB)
and (v; vC) will use negative (positive) ports at v, and the arcs (v; vD), (v; vE)
and (v; vF) will use positive (negative) ports at v.

D.R. Wood / Theoretical Computer Science 299 (2003) 151–178 171

(3) Construct a graph H with vertex set V (H) =A(G). The vertices of H are
referred to by the corresponding arc in A(G). We distinguish four types of
edges of H as follows.
(a) For each vertex v∈V (G), add cliques {(v; vA); (v; vB); (v; vC)} and
{(v; vD); (v; vE); (v; vF)} to E(H); these edges are said to be unlabelled.
(These edges ensure that arcs which ‘compete’ for the same ports are
coloured diKerently. Note that if deg(v)¡6 then these cliques may be
empty or consist of a single edge.)

(b) For each edge vw∈E(G), if neither the arc vw→ nor its reversal arc wv→
are special then add the edge {vw→; wv→}, called an r-edge, to E(H). (This
edge enables vw to have a 2-bend edge, which must have perpendicular
ports.)

(c) If vw→ and wx→ are both movement arcs for some vertices v, w and x, then
add the edge {vw→; wx→}, called a ∗-edge, to E(H). (This ensures that v and
w do not move in the same ordering.)

(d) If v is a (0; 6)-vertex or a (0; 5)-vertex add the edge {(v; v2); (v1; v)},
called a ∗∗-edge, to E(H). (In this case, (v; v2) is a movement arc. If
(v; v2) is coloured I then v will move past v1 in the I -ordering; the edge
{(v; v2); (v1; v)} ensures that (v1; v) does not use an incorrect I -port at v1.
For example, in Fig. 12, (v1; v) cannot use the Y+

v1
port.)

(4) As described in Lemma 9 below, repeatedly remove vertices from H with
degree at most two (and their incident edges), and merge non-adjacent vertices
v; w∈V (H) in a K4\{vw} subgraph of H , and replace any resulting parallel
edges by a single edge.

(5) Determine a proper vertex 3-colouring of H with colours {X; Y; Z} (see
Lemma 9 below). If two vertices of H have been merged then we consider
both vertices to have received the same colour as the merged vertex.

(6) Colour the removed vertices v∈V (H) in reverse order of their removal with
a colour in {X; Y; Z} diKerent from the (62) neighbours of v in H ; insert v
and its removed incident edges back into H .

(7) Determine an arc-colouring of G by colouring each arc vw→∈A(G) with the
colour assigned to the corresponding vertex of H .

Lemma 9. The graph H is vertex 3-colourable in O(n) time.

Proof. If K4\{vw} is a subgraph of H for some non-adjacent vertices v and w, then
in any proper vertex 3-colouring of H , v and w must receive the same colour, thus
merging these vertices preserves the 3-colourability of H . We now show that after
repeatedly removing vertices with degree at most two, and merging pairs of vertices in
a K4\{vw} subgraph, H has maximum degree three, and is not K4, thus by Brooks’
Theorem [11], H is 3-colourable.

For all vertices v∈V (G), let Hv be the subgraph of H consisting of the vertices
(v; vA); (v; vB) and (v; vC) and their incident edges. We now show that Hv ‘reduces’ to
a maximum degree three subgraph.

172 D.R. Wood / Theoretical Computer Science 299 (2003) 151–178

Table 3
De7nition of vA, vB, vC , vD, vE and vF

v vA vB vC vD vE vF

(63; 63)-vertex v−3 v−2 v−1 v1 v2 v3

(0,4)-vertex v1 — — v2 v3 v4

(1,4)-vertex v−1 v1 — v2 v3 v4

(2,4)-vertex v−2 v−1 v1 v2 v3 v4

(0,5)-vertex v1 v2 — v3 v4 v5

(1,5)-vertex v−1 v1 v2 v3 v4 v5

(0,6)-vertex v1 v2 v3 v4 v5 v6

Fig. 17. The subgraph Hv for a (0,5)-vertex or a (0,6)-vertex v with v1 balanced.

For a degree six unbalanced vertex v, the vertex of H corresponding to the special arc
(v; vC) is incident with at most two (unlabelled) edges, and therefore can be removed
from H . Since a (0,6)-vertex and a (0,5)-vertex v both have (v; vA) and (v; vB) as
movement arcs, Hv is the same for a (0,6)-vertex v (after removing (v; vC)) and for
a (0,5)-vertex v (see Figs. 17 and 18). Similarly, for (1,5)- and (2,4)-vertices, Hv is
the same as for (1,4)- and (2,3)-vertices, respectively. That is, the result for graphs
with unbalanced degree six vertices in the vertex-ordering reduces to the result for
vertex-orderings without such vertices. We therefore need only consider (0,5)-, (1,4)-
and (0,4)-vertices.

Consider a (0,5)-vertex v. v1 may be balanced or a (1,4)-vertex. If v1 is balanced
then, as shown in Fig. 17, (v; v1) has degree two and can be removed. In the remaining
graph, (v; v2) and (v1; v) have degree three.

Now, if v1 is a (1,4)-vertex then, as shown in Fig. 18, (v; v2) and (v1; (v1)1) are the
non-adjacent vertices in a K4\{e} subgraph. If we merge these vertices then (v1; v) and
(v; v1) have degree two and can be removed. If v2 is balanced then there is no edge
{(v; v2); (v2; (v2)1}. If v2 is unbalanced then v2 must be a (1,4)-vertex, and therefore
(v2; v) and the r-edge {(v; v2); (v2; v)} will be removed (see Fig. 19). In either case
(v; v2) (= (v1; (v1)1)) has degree three.

Consider a (1,4)-vertex v, and assume that v−1 is not a (0,5)-vertex with (v−1)1 = v
(we have already considered this case). As shown in Fig. 19, (v; v−1) has degree two
and can be removed. (v; v1) now has degree at most three. For a (0,4)-vertex v, Hv

simply consists of the degree one vertex (v; v1), which can be removed.
Consider a vertex (v; vQ)∈V (H) for some Q∈{D; E; F}, or Q∈{A; B; C} if v is

balanced. (v; vQ) is incident with at most two unlabelled edges and to at most one

D.R. Wood / Theoretical Computer Science 299 (2003) 151–178 173

Fig. 18. The subgraph Hv for a (0,5)-vertex or a (0,6)-vertex v with v1 a (1,4)-vertex.

Fig. 19. The subgraph Hv of H for a (1,4)-vertex or a (1,5)-vertex v.

r-edge. Unless vQ is a (0,5)- or (0,6)-vertex and (vQ)1 = v (in which case (v; vQ) is
incident with a ∗∗-edge, and has already been considered), (v; vQ) has degree at most
three.

We have shown that all remaining vertices in H have degree at most three, and
trivially H �=K4; thus by Brooks’ Theorem [11], H is 3-colourable. Using the above
case-analysis, the K4\{vw} subgraphs and vertices with degree at most 2 can be
identi7ed in O(n) time. The proof of Brooks’ Theorem due to Lov?asz [27] leads
to an algorithm for computing a vertex 3-colouring of H in O(|V (H)|+ |E(H)|⊆O(n)
time [3].

Theorem 10. Given a 6-graph G, the DIAGONAL LAYOUT & MOVEMENT algorithm will
determine, in O(n2) time, a 4-bend drawing of G with volume at most 2:13n3 and an
average of at most 2 2

7 bends per edge. If G is a 5-graph then the volume is n3 and
each edge has two bends.

Proof. We 7rst prove the correctness of the algorithm. To do so, we prove the cor-
rectness of the PORT ASSIGNMENT algorithm; that is, it determines an arc-orientation
and an arc-colouring of G satisfying (1). By Lemma 9, H is vertex 3-colourable. At
a non-negative (respectively, negative) vertex v, the arcs (v; vA), (v; vB) and (v; vC)
have orientation −(+) (see Step 2 of PORT ASSIGNMENT), and are pairwise coloured
diKerently due to the unlabelled edges in H . Similarly, the arcs (v; vD), (v; vE) and
(v; vF) have orientation +(−), and are pairwise coloured diKerently. Hence, at most
three outgoing arcs vw→ incident to a vertex v have equal orientation; thus � is an arc-
orientation of G. At most two outgoing arcs incident to v receive the same colour;
thus we have an arc-colouring of G. It follows that for all colours I ∈{X; Y; Z} and

174 D.R. Wood / Theoretical Computer Science 299 (2003) 151–178

for all d∈{+;−}, there is at most one outgoing arc vw→∈A(G) at v coloured I with
�(vw→) =d. Thus, the arc-orientation and arc-colouring satisfy (1). Therefore, the condi-
tions for the application of the GENERAL POSITION DRAWING algorithm are satis7ed when
this algorithm is called in Step 5 of DIAGONAL LAYOUT & MOVEMENT.

If a vertex v has two outgoing movement arcs then v is either a (0,5)- or (0,6)-
vertex, and the two movement arcs are (v; vA) and (v; vB). Since {(v; vA); (v; vB)} is an
(unlabelled) edge of H , these arcs will be coloured diKerently. Hence in Step 4 of the
DIAGONAL LAYOUT & MOVEMENT algorithm, v will move within each of the orderings
corresponding to the colours of these movement arcs. Therefore Step 4, and the entire
algorithm, is valid.

We now prove it is precisely the special arcs which become anchored when the
GENERAL POSITION DRAWING algorithm is applied in Step 5 of the DIAGONAL LAYOUT &
MOVEMENT algorithm. Consider an arc vw→ coloured I ∈{X; Y; Z} with its reversal arc wv→
coloured J ∈{X; Y; Z}. Without loss of generality the vertex v is non-negative.

Suppose vw→ is special. Then w = vC , and in the initial vertex-ordering, v¡w. The
only possible movement arcs at v are (v; vA) and (v; vB). Since {(v; vA); (v; vC)} and
{(v; vB); (v; vC)} are edges in H , v will not move in the I -ordering, and w does not
move past v in any ordering as otherwise M1(wv→) would be applicable. Hence in the
7nal I -ordering, v¡I w. Step 2 of the PORT ASSIGNMENT algorithm de7nes �(vw→) =−.
Therefore port(vw→) = I−v , which points away from w. Thus, the EDGE CONSTRUCTION

algorithm anchors vw→.
We now show that arcs which are not special do not become anchored when the

EDGE CONSTRUCTION algorithm is applied. Suppose vw→ is not special. We consider the
following three cases.
Case 1. vw→ is a movement arc: By Lemma 7, wv→ is not a movement or special arc,

and by the de7nition of movement arcs in Table 2, in the initial vertex-ordering, v¡w.
In Step 4 of the DIAGONAL LAYOUT & MOVEMENT algorithm, v will move past w in the
I -ordering. For any movement arc wx→ there is a ∗-edge {vw→; wx→} in H , which ensures
that w does not also move in the I -ordering. Hence in the 7nal I -ordering, w¡I v.
Since vw→ is a movement arc, w = vA or w = vB (refer to Tables 2 and 3). Hence,
Step 2 of the PORT ASSIGNMENT algorithm de7nes �(vw→) =−. Therefore port(vw→) = I−v ,
which points towards w. Since both vw→ and wv→ are not special arcs, {vw→; wv→} is an edge
in H , and hence I �=J . Thus port(vw→) and port(wv→) are perpendicular, and therefore
vw→ is not anchored.
Case 2. vw→ is a successor arc which is not a movement arc: Then w∈{vD; vE; vF},

and in the initial vertex-ordering, v¡w. Step 2 of the PORT ASSIGNMENT algorithm
de7nes �(vw→) = +. Thus port(vw→) = I+

v .
Case 2(a). w is non-negative: In Step 4 of the DIAGONAL LAYOUT & MOVEMENT

algorithm, if v moves then it will not move past w, and if w moves then it will move
away from v. Hence in the 7nal I -ordering, v¡I w.
Case 2(b). wv→ is a movement arc, and (i) v=w1 and (w; w2) is not a movement

arc, or (ii) v=w2: If w moves in the I -ordering, then it moves toward v, however, by
Lemma 8, any movement arcs at v do not ‘cross over’ or have the same destinations
as a movement arc at w (ignoring wv→ which is not coloured I). Hence, in the 7nal
I -ordering, v¡I w.

D.R. Wood / Theoretical Computer Science 299 (2003) 151–178 175

Case 2(c). wv→ is a movement arc, v=w1 and w2 is a movement arc: Then w is
a negative (0; 5)- or (0; 6)-vertex. If the arc (w; w2) is coloured K , then the ∗∗-edge
{(w; w2); vw→} in H ensures that K �= I . The unlabelled edge {(w; w1); (w; w2)} ensures
that K �=J . Hence I , J and K are pairwise distinct. Thus, w will not move in the
I -ordering, and if v moves in the I -ordering then it will not move past w (otherwise
vw→ would also be a movement arc). Thus in the 7nal I -ordering, v¡I w.
Case 2(d). wv→ is not a movement arc: By Lemma 8, in the initial vertex-ordering

the movement arcs of v do not ‘cross over’ or have the same destination vertex as the
movement arcs of w. Thus, in the 7nal I -ordering, v¡I w.

We have shown that in each of the sub-cases of Case 2 that in the 7nal I -ordering,
v¡I w. Thus port(vw→) points toward w. Unless wv→ is special, the r-edge {vw→; wv→} in H
ensures that I �=J . Thus port(vw→) and port(wv→) are perpendicular. If wv→ is special then,
as shown above, port(wv→) points away from v. Thus, the EDGE CONSTRUCTION algorithm
will not anchor vw→.
Case 3. vw→ is a predecessor arc: Then w∈{vA; vB; vC}, vw→ is not a movement arc nor

a special arc, and in the initial vertex-ordering, w¡v. Step 2 of the PORT ASSIGNMENT

algorithm de7nes �(vw→) =−. Thus port(vw→) = I−v .
Case 3(a). wv→ is not a movement arc and is not a special arc: If w moves it does

not move past v. If v moves then it moves away from w. Thus in the 7nal I -ordering,
w¡I v.
Case 3(b). wv→ is a movement arc, and (i) v=w1 and w2 is not a movement arc,

or (ii) v=w2: w will only move in the J -ordering. If v moves then it moves away
from w. Thus in the 7nal I -ordering, w¡I v.
Case 3(c). wv→ is a movement arc, v=w1 and (w; w2) is a movement arc: (that

is, w is a (0; 5)- or (0; 6)-vertex) If the arc (w; w2) is coloured K∈{X; Y; Z}, then
the ∗∗-edge {(w; w2); vw→} ensures that K �= I . The unlabelled edge {(w; w1); (w; w2)}
ensures that K �=J . Hence I , J and K are pairwise distinct. Thus, w will not move in
the I -ordering, and if v moves in the I -ordering then it will move away from w. Thus
in the 7nal I -ordering, w¡I v.
Case 3(d). wv→ is a special arc: In this case it is possible for I = J . If w is a (1; 5)-

or (0; 6)-vertex then w may move in the I -ordering, but it will not move past v. If v
moves in the I -ordering then it will move away from w. Thus in the 7nal I -ordering,
w¡I v.

We have shown that in each of the sub-cases of Case 3, in the 7nal I -ordering
w¡I v. Thus port(vw→) points toward w. Unless wv→ is special, the r-edge {vw→; wv→} in
H ensures that I �=J . Thus, port(vw→) and port(wv→) are perpendicular. If wv→ is special
then, as shown above, port(wv→) points away from v. Thus, the EDGE CONSTRUCTION

algorithm will not anchor vw→.
Hence an arc which is not special does not become anchored (before edge-crossings

are removed), and thus the number k of anchored arcs is the number of special arcs.
Theorem 2 asserts that the DIAGONAL LAYOUT & MOVEMENT algorithm computes a 4-
bend drawing of G with volume (n + 1

3k)3 and 2m + k bends. There is precisely
one special arc for each vertex with degree six which is unbalanced in the initial
vertex-ordering. Therefore by Lemma 5, k6 6

7n. Hence the volume is at most (9
7n)3

62:13n3.

176 D.R. Wood / Theoretical Computer Science 299 (2003) 151–178

Let (be the average degree of those vertices with no outgoing special arcs; that is,
vertices which are balanced or with degree at most 7ve. Then (66 and by Lemma 5
for 6-graphs, k6(=((+ 1)n, which implies 1

7k((+ 1)6 1
7(n and k − 6

7k6
1
7((n− k).

Hence k6 1
7 (((n − k) + 6k), and since all vertices not contributing to (have degree

six, k62m=7. Therefore, the total number of bends 2m+ k6 16
7 m; that is, the average

number of bends is at most 2 2
7 .

For maximum degree 7ve graphs, no special arcs are introduced by the DIAGONAL

LAYOUT & MOVEMENT algorithm, and hence the EDGE CONSTRUCTION algorithm produces
no anchored edge routes. With no anchored edge routes, no new anchors can be in-
troduced by the CROSSING REMOVAL algorithm. Thus, the crossing-free drawing has two
bends per edge route and volume n3.

By Lemma 6, determining the initial vertex-ordering takes O(�4m) time, which is
O(n) for 6-graphs. By Lemma 9, the 3-colouring of H takes O(n) time. By
Theorem 2, algorithm GENERAL POSITION DRAWING takes O(n2) time, and thus the
DIAGONAL LAYOUT & MOVEMENT algorithm takes O(n2) time. The drawings produced are
orientation-independent since throughout the algorithm each dimension is ‘equivalent’;
in particular, the box surrounding the vertices asymptotically is a cube, as is the bound-
ing box.

Note that special arcs are precisely those arcs which become anchored, and if vw→ is
a special arc then wv→ is not a special arc (Lemma 7). Thus, no 4-bend edge routes are
initially constructed—it is only by removing edge-crossings that a 4-bend edge route
is introduced.

4. Conclusion

This paper describes an algorithm which determines three-dimensional orthogonal
drawing of a 6-graph with at most an average of 2 2

7 bends per edge. This is the
best known upper bound on the number of bends in three-dimensional orthogonal
graph drawings. The drawings produced are in the general position model. For general
position drawings the above bound is tight for K7. Since every edge in a general
position drawing has at least two bends, the DIAGONAL LAYOUT & MOVEMENT algorithm
is an 8

7 -approximation for the problem of minimising the number of bends in a general
position orthogonal drawing of a given 6-graph. For drawings not necessarily in general
position, however, there is a substantial diKerence between our upper bound and the
best lower bounds. For example, the best known lower bound is 20

21 average bends per
edge [39]. Closing this gap is an interesting open problem.

Acknowledgements

The advice, encouragement and help with proofs provided by the author’s Ph.D.
supervisor Dr Graham Farr is gratefully acknowledged.

D.R. Wood / Theoretical Computer Science 299 (2003) 151–178 177

References

[1] A. Aggarwal, M. Klawe, P. Shor, Multilayer grid embeddings for VLSI, Algorithmica 6 (1) (1991)
129–151.

[2] H. Alt, M. Godau, S. Whitesides, Universal 3-dimensional visibility representations for graphs, Comput.
Geom. 9 (1998) 111–125.

[3] B. Baetz, D.R. Wood, Brooks’ vertex-colouring theorem in linear time, See Technical Report
CS-AAG-2001-05, Basser Department of Computer Science, The University of Sydney, 2001, submitted
for publication.

[4] T.C. Biedl, Heuristics for 3D-orthogonal graph drawings, Proc. 4th Twente Workshop on Graphs and
Combinatorial Optimization, Universiteit Twente, Netherlands, 1995, pp. 41–44.

[5] T.C. Biedl, Three approaches to 3D-orthogonal box-drawings, in: S. Whitesides (Ed.), Proc. 6th Internat.
Symp. on Graph Drawing (GD’98), Lecture Notes in Computer Science, Vol. 1547, Springer, Berlin,
1998, pp. 30–43.

[6] T. Biedl, T. Chan, Cross-coloring: improving the technique by Kolmogorov and Barzdin, Technical
Report CS-2000-13, Department of Computer Science, University of Waterloo, Canada, 2000.

[7] T. Biedl, T. Chan, Y. Ganjali, M. Hajiaghayi, D.R. Wood, Balanced vertex-orderings of graphs,
Technical Report CS-AAG-2001-01, Basser Department of Computer Science, The University of Sydney,
Australia, 2001.

[8] T. Biedl, J.R. Johansen, T. Shermer, D.R. Wood, Orthogonal drawings with few layers, in: P. Mutzel,
M. JVunger, S. Leipert (Eds.), Proc. 9th Internat. Symp. on Graph Drawing (GD’01), Lecture Notes in
Computer Sci., Vol. 2265, Springer, Berlin, 2002, pp. 297–311.

[9] T. Biedl, T. Thiele, D.R. Wood, Three-dimensional orthogonal graph drawing with optimal volume,
in: J. Marks (Ed.), Proc. 8th Internat. Symp. on Graph Drawing (GD’00), Lecture Notes in Computer
Science, Vol. 1984, Springer, Berlin, 2001, pp. 284–295.

[10] P. Bose, H. Everett, S. Fekete, M. Houle, A. Lubiw, H. Meijer, K. Romanik, G. Rote, T. Shermer, S.
Whitesides, C. Zelle, A visibility representation for graphs in three dimensions, J. Graph Algorithms
Appl. 2 (3) (1998) 1–16.

[11] R.L. Brooks, On colouring the nodes of a network, Proc. Cambridge Philos. Soc. 37 (1941) 194–197.
[12] M. Chrobak, M. Goodrich, R. Tamassia, Convex drawings of graphs in two and three dimensions, Proc.

12th Annual ACM Symp. on Computational Geometry, ACM, New York, 1996, pp. 319–328.
[13] M. Closson, S. Gartshore, J. Johansen, S.K. Wismath, Fully dynamic three-dimensional orthogonal graph

drawing, J. Graph Algorithms Appl. 5 (2) (2001) 1–34.
[14] R.F. Cohen, P. Eades, T. Lin, F. Ruskey, Three-dimensional graph drawing, Algorithmica 17 (2) (1996)

199–208.
[15] G. Di Battista, P. Eades, R. Tamassia, I.G. Tollis, Graph Drawing: Algorithms for the Visualization of

Graphs, Prentice-Hall, Englewood CliKs, NJ, 1999.
[16] G. Di Battista, M. Patrignani, F. Vargiu, A split & push approach to 3D orthogonal drawing, J. Graph

Algorithms Appl. 4 (3) (2000) 105–133.
[17] P.F. Dietz, D.D. Sleator, Two algorithms for maintaining order in a list, Proc. 19th Annual ACM Symp.

on Theory of Computing (STOC’87), ACM, New York, 1987, pp. 365–372.
[18] P. Eades, Q.-W. Feng, Multilevel visualization of clustered graphs, in: S. North (Ed.), Proc. 4th Internat.

Symp. on Graph Drawing (GD’96), Lecture Notes in Computer Science, Vol. 1190, Springer, Berlin,
1997, pp. 101–112.

[19] P. Eades, P. Garvan, Drawing stressed planar graphs in three dimensions, in: F.J. Brandenburg (Ed.),
Proc. Internat. Symp. on Graph Drawing (GD’95), Lecture Notes in Computer Science, Vol. 1027,
Springer, Berlin, 1996, pp. 212–223.

[20] P. Eades, C. Stirk, S. Whitesides, The techniques of Kolmogorov and Barzdin for three dimensional
orthogonal graph drawings, Inform. Proc. Lett. 60 (2) (1996) 97–103.

[21] P. Eades, A. Symvonis, S. Whitesides, Two algorithms for three dimensional orthogonal graph drawing,
in: S. North (Ed.), Proc. 4th Internat. Symp. on Graph Drawing (GD’96), Lecture Notes in Computer
Science, Vol. 1190, Springer, Berlin, 1997, pp. 139–154.

[22] P. Eades, A. Symvonis, S. Whitesides, Three dimensional orthogonal graph drawing algorithms, Discrete
Applied Math. 103 (2000) 55–87.

178 D.R. Wood / Theoretical Computer Science 299 (2003) 151–178

[23] A. Garg, R. Tamassia, P. Vocca, Drawing with colors, in: J. Diaz, M. Serna (Eds.), Proc. 4th Annual
European Symp. on Algorithms (ESA’96), Lecture Notes in Computer Science, Vol. 1136, Springer,
Berlin, 1996, pp. 12–26.

[24] P.L. Garvan, Drawing and labelling graphs in three-dimensions, in: M. Patel (Ed.), Proc. 20th
Australasian Comput. Sci. Conf. (ACSC’97), Australian Computer Science Commissions, Vol. 19 (1),
Macquarie University, 1997, pp. 83–91.

[25] N.D. KazarinoK, Analytic Inequalities, Holt, Rinehart and Winston, New York, 1961.
[26] A.N. Kolmogorov, Y.M. Barzdin, On the realization of nets in 3-dimensional space, Problems

Cybernetics 8 (1967) 261–268.
[27] L. Lov?asz, Three short proofs in graph theory, J. Combin. Theory Ser. B 19 (1975) 269–271.
[28] B.Y.S. Lynn, A. Symvonis, D.R. Wood, Re7nement of three-dimensional orthogonal graph drawings,

in: S. North (Ed.), Proc. 4th Internat. Symp. on Graph Drawing (GD’96), Lecture Notes in Computer
Science, Vol. 1190, Springer, Berlin, 1997, pp. 308–320.

[29] J. Pach, T. Thiele, G. Toth, Three-dimensional grid drawings of graphs, in: G. Di Battista (Ed.),
Proc. 5th Internat. Symp. on Graph Drawing (GD’97), Lecture Notes in Computer Science, Vol. 1353,
Springer, Berlin, 1998, pp. 47–51.

[30] A. Papakostas, I.G. Tollis, Improved algorithms and bounds for orthogonal drawings, in: R. Tamassia,
I.G. Tollis (Eds.), Proc. DIMACS Internat. Workshop on Graph Drawing (GD’94), Lecture Notes in
Computer Science, Vol. 894, Springer, Berlin, 1995, pp. 40–51.

[31] A. Papakostas, I.G. Tollis, Algorithms for incremental orthogonal graph drawing in three dimensions,
J. Graph Algorithms Appl. 3 (4) (1999) 81–115.

[32] M. Patrignani, On the complexity of orthogonal compaction, Comput. Geom. 19 (1) (2001) 47–67.
[33] M. Patrignani, F. Vargiu, 3DCube: a tool for three dimensional graph drawing, in: G. Di Battista (Ed.),

Proc. 5th Internat. Symp. on Graph Drawing (GD’97), Lecture Notes in Computer Science, Vol. 1353,
Springer, Berlin, 1998, pp. 284–290.

[34] A.L. Rosenberg, Three-dimensional VLSI: a case study, J. ACM 30 (2) (1983) 397–416.
[35] C. Ware, G. Franck, Viewing a graph in a virtual reality display is three times as good as a 2D

diagram, in: A.L. Ambler, T.D. Kimura (Eds.), Proc. IEEE Symp. Visual Languages (VL’94), IEEE,
Los Alamitos, CA, 1994, pp. 182–183.

[36] C. Ware, G. Franck, Evaluating stereo and motion cues for visualizing information nets in three
dimensions, ACM Trans. Graphics 15 (2) (1996) 121–140.

[37] D.R. Wood, On higher-dimensional orthogonal graph drawing, in: J. Harland (Ed.), Proc. Computing:
the Australasian Theory Symposium (CATS’97), Vol. 19(2), Australian Computer Science Commission,
1997, pp. 3–8.

[38] D.R. Wood, Three-dimensional orthogonal graph drawing, School of Computer Science and Software
Engineering, Ph.D. Thesis, Monash University, Melbourne, Australia, 2000.

[39] D.R. Wood, Lower bounds for the number of bends in three-dimensional orthogonal graph drawings,
in: J. Marks (Ed.), Proc. 8th Internat. Symp. on Graph Drawing (GD’00), Lecture Notes in Computer
Science, Vol. 1984, Springer, Berlin, 2001, pp. 259–271.

[40] D.R. Wood, Minimising the number of bends and volume in three-dimensional orthogonal graph
drawings with a diagonal vertex layout, See Technical Report CS-AAG-2001-03, Basser Department of
Computer Science, The University of Sydney, 2001, submitted for publication.

	Optimal three-dimensional orthogonal graph drawing in the general position model
	Introduction
	Aesthetic criteria
	Algorithms and bounds

	The general position model
	Representation
	Constructing edge routes
	Removing edge-crossings

	DIAGONAL LAYOUT & MOVEMENT algorithm
	Determining the initial vertex-layout
	Determining a port assignment

	Conclusion
	Acknowledgements
	References

