
Introduction

Although other methods of organising data have been

used , unsupervised clustering has been widely employed

in analysing vegetation data. Most such analyses have

used hierarchical clustering methods; for example, the

widespread Braun-Blanquet method (Westhoff and van

der Maarel 1978) is formidably hierarchical in its ap-

proach. Whatever the a priori likelihood that vegetation

falls neatly into the nested clusters demanded by such a

model, it is surely more appropriate to test if a hierarchy

does provide a better model of the data than alternatives,

such as Galois lattices (Rodin et al. 1998) or Gaussian re-

sponse curves (ter Braak and Prentice 1988). This, of

course, requires that we have some means of measuring

the quality of a model. The Minimum Message Length

(MML) principle (Wallace and Dowe 2000) provides just

such a measure; the shorter the message length, the higher

the prior probability of the model.

In a previous paper, Dale (2002) examined the use of

MML criteria for estimating the number of clusters re-

quired in unsupervised clustering of vegetation data. The

clustering program used was Wallace and Dowe’s (2000)

SNOB. This provides a general regionalisation using a

nonhierarchical clustering. A variant of the program in-

corporates possible spatial correlations (Wallace 1998)

and thereby encourages spatial contiguity of cluster mem-

bers but this was not used. The program does not provide

a segmentation (cf. Oliver et al. 1998) with crisp bounda-

ries for clusters. Instead it employs a fuzzy assignment of

things to clusters; such fuzziness is necessary to obtain

consistent estimates of cluster parameters.

Boulton and Wallace (1973a,b) presented a method

(HSNOB) using MML estimation for hierarchical cluster-

ing. This means that we can actually make a comparison

of non-hierarchic and hierarchic analyses based on the

message lengths. In this paper we propose to first examine

the concept of hierarchy, and then consider possible rea-

sons why vegetation might have such structure. We shall

then examine the application of HSNOB and compare the

hierarchical and non-hierarchical solutions to determine

Hierarchical clusters of vegetation types

C. S. Wallace1 and M. B. Dale2

Department of Computer Science and Software Engineering, Monash University, Clayton, Victoria, Australia.
Email: Chris.Wallace@infotech.monash.edu.au

Australian School of Environmental Studies, Griffith University, Nathan, Qld 4111, Australia.
Corresponding Author. Phone: +61 7 33714414, email: m.dale@mailbox.gu.edu.au

Keywords: Cluster, Comprehensibility, Hierarchy, Minimum Message Length, Modifiable unit area problem.

Abstract: In this paper, we examine possible sources of hierarchical (nested) structure in vegetation data. We then use
the Minimum Message length principle to provide a rational means of comparing hierarchical and non-hierarchical
clustering. The results indicate that, with the data used, a hierarchical solution was not as efficient as a nonhierarchical
one. However, the hierarchical solution seems to provide a more comprehensible solution, separating first isolated types,
probably caused from unusual contingent events, then subdividing the more diverse areas before finally subdividing the
less diverse. By presenting this in 3 stages, the complexity of the non-hierarchical result is avoided. The result also
suggests that a hierarchical analysis may be useful in determining ‘homogeneous’ areas.

Abbreviatons: MML - Minimum Message Length; MUAP - Modifiable unit area problem.



which provides a preferable model of the variation we

have observed.

Hierarchies and ecology

Ecologically hierarchies have attracted much atten-

tion, with studies like those of Allen and Starr (1982) and

Ahl and Allen (1996), but they have been most employed

in providing classifications of vegetation, often for bu-

reaucratic purposes. As an example of one such classifi-

cation we use an example from the California Vegetation

Classification (Californian Department of Fish and

Game, 2003). A single vegetation community is de-

scribed by a code such as [6 1 . 3 1 1 . 0 2]. Here there are

4 levels in the hierarchy and the key to the code is pre-

sented in Table 1. The reason for this example is to illus-

trate that, in practice, ecological hierarchies may be a

composite of habitat, physiognomic and floristic attrib-

utes. In contrast, our study will use only floristic data.

If we cluster both species and sites we can arrange our

data as a two-way table. The intersections of the 2 cluster

sets can be used in a nodal analysis (Lambert and Wil-

liams 1962), and this makes any hierarchical structure

much easier to identify visually. A node represents a

block where a subset of species is represented strongly in

a subset of sites. Quantitatively the definition can be more

subtle, depending on the permissible form of variation

within clusters (cf. Dale and Anderson 1973). An ideal-

ised nested structure is presented in Table 2

But do real data display such patterns? In Table 3, we

show structures abstracted from Doherty and Coops

(1995) concerning Eucalyptus species in South-eastern

New South Wales. These were sorted using a numerical

agglomerative clustering and a Bray-Curtis similarity

measure. The concentration of entries in each nodal call

was visually assessed. The results from qualitative and

quantitative data differ, and neither shows any marked

nested structure. Both do show a general gradient pattern

although in neither case is a single gradient sufficient.

A more complex situation is shown in Table 4, which

is adapted from Dale and Quadraccia (1973) after Lang

(1970). The organisation here was obtained by manual

sorting and encompasses all species, not just the trees.

While there is certainly some nesting, the patterns of

nodes are clearly quite complex, with a reticulate pattern

more likely than any binary tree structure.

The final example is taken from Webb et al. (1967)

and records the vegetation in 10 plots for 12 years (Table

5). As with all the other examples, it is possible to obtain

a hierarchy from the relationships between the groups.

However, it is not obvious that the nesting could be easily

described monothetically, and in several cases a common

substructure would be repeated, complicating the tree

structure.

These examples show us that, while a hierarchy can

be used to organise data, it will often suffer from defects

as a representation of the nodal pattern. One particular

problem is that of duplication where a similar subtree re-

curs at several places in the tree. In supervised clustering

this has been addressed by introducing decision graphs,

but such a reticulate pattern has not been commonly

sought in unsupervised clustering. Similarly, insistence

on a hierarchical structure could result in fragmentation

of the data into numerous small clusters. It seems that

vegetation hovers tantalising between hierarchy and

other structure, so that a means of determining which is

the ‘better’ model is highly desirable. It is this task that

the MML principle permits us to accomplish.

Hierarchy and level

Mathematically, a hierarchy is a partially ordered set,

a collection of parts with ordered asymmetric relation-

Table 1. Explanation of Californian vegetation coding.

Table 2. Hierarchy of nodes: idealised pattern. o indicates
strong concentration, ... indicates weak concentration.

Table 3. South-east Australian forest - tree species.
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ships inside a whole. That is to say, upper levels are above

lower levels, and the relationship upwards is asymmetric

with the relationships downwards. Bunge (1969) notes

that hierarchies are usually employed where there is some

concept of power relationships between nodes at different

levels. Such concepts are not necessarily relevant to vege-

tation where a better description might be what Bunge

(1969; cf. Dale 1976) calls a ‘level structure’. This implies

a nested structure but without any implication that higher

levels have any ‘power’ with respect to subordinate

groups. It is doubtful that the nomenclature will cause dif-

ficulties and we shall use hierarchy throughout.

Most numerical methods for clustering, both agglom-

erative or divisive, have used binary trees, whereas the hu-

man products very often the ‘arity’ is much greater. One

method that does find higher ‘arity’ branches is Goodall’s

probabilistic method (see Clifford and Goodall 1967;

Goodall and Feoli 1988) although paradoxically it does so

by separating sub-clusters one at a time. Visual methods

have not been thus restricted; cf. the Braun-Blanquet

method described in Westhoff and van der Maarel (1978).

The HSNOB program is not restricted to binary splits.

Methodologically, any tree can be simulated by a binary

tree but the higher arity splits can be useful for compre-

hension.

There are several criteria whereby some levels reside

above lower levels. These criteria often run in parallel, but

sometimes only one or a few of them apply. Upper levels

are above lower levels by virtue of:

! being the context of lower levels (contextual);

! offering constraint to lower levels (power);

! behaving more slowly at a lower frequency than

lower levels (dynamic);

! being populated by entities with greater integrity and

higher bond strength than lower levels (organisa-

tional);

Table 4. Brindabella forest vegetation - all species. o indicates strong concentration; … indicates weak concentration.

Table 5. Nodal cells, Mt Glorious data, Webb et al. (1975).
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! containing and being made of lower levels (anatomi-

cal).

We need to examine mechanisms producing pattern in

vegetation that might also demonstrate one or other of

these level-differentiating properties. But we cannot ig-

nore the possibility of interactions between processes also

contributing to the structuring. That the interactions can

be complex is illustrated by the work of Herben et al.

(1993). They found that, although there was considerable

change locally, such changes did not result in correspond-

ing variation over larger areas. Hogeweg (2002) com-

ments that “processes do not, in biotic systems, operate in

isolation and the existence of entanglement at different

time and space scales does not need explanation, being

there by default. Ignoring it by segregating time and space

scales is simply a modelling artefact”. Entanglement in

time and space means that any causal relationships may

be difficult to separate, nor need any single process lead

to hierarchical structure. But such structure may be a rea-

sonable initial starting point for examining such entangle-

ment. So we must look at processes forming patterns in

vegetation and determine which, if any, might individu-

ally or in combination produce hierarchical structure.

Concepts and comprehension

Analyses are performed to increase human compre-

hension and to this end hierarchies are a common means

of dealing with complex structure. Whether vegetation is

regarded as a continuum or has some form of discrete

structure, we do not expect all species to be equally com-

mon and organising them into blocks of approximately

the same abundance or diversity may well provide a con-

venience for human comprehension. This is independent

of any properties of the data themselves. In principle, it is

possible to determine whether a continuum model or a

cluster model is to be preferred; indeed, this is a question

we are presently examining. However, Dale and Ander-

son (1973) suggest a two-parameter analysis combining

elements of both continuous and discrete variation, which

should also be considered and there are other models.

It may still remain true that the less preferred is easier

to understand! Pattern is, after all, ‘pattern is for an agent’

(MacKay 1969) and Kodratoff’s (1986) principle of ex-

plicability should apply; i.e., the user should be able to

interpret the results easily even if they are less efficient.

This principle is really the basis for the ‘logical AI school’

as opposed to the statistical school. Statisticians seek ef-

ficiency above explication.

It is difficult to suggest measures that would assess

such subjective properties numerically. Such measures

would have to include a concept of the fruitfulness of

some particular choice over some period into the future as

well as accommodating the value of predictions made

(and tested?).

Modifiable unit area problem

In the study of vegetation there is a major problem: the

area sampled to identify each plot or ‘thing’ is modifiable.

There is no obvious means of delimiting an ‘individual’

thing and the investigator has to simply decide on some

specific size and shape. This decision seems to depend on

the sizes of the individual plants and on the recognition of

mosaic areas. In addition, there may be conflict suggest-

ing that more than one size is needed. As a result any plot

can contain elements of more than one vegetation type.

(Dale 1988). Fuzzy assignment can obviously cope with

this by partial assignment but this is not available to the

hierarchical analysis at the moment.

There are several methods that seek to determine

some optimal size (and shape) but most of these assume

regularity of pattern and this is unlikely (Kershaw 1970;

Goodall 1974). Methods avoiding the use of areal samples

have been developed seeking to avoid this difficulty, but

in most cases they have other problems (Williams et al.

1969, De Jong et al. 1980). A spatial segmentation would

probably be a useful means of studying this; e.g., a two-

dimensional segmentation possibly based on Markov ran-

dom fields.

Even when a decision has been taken about the nature

of the individual plot to be described, the investigator still

has to specify the pattern of distribution in space. Is this

to be random, stratified, regular or specially selected by

the user. The choice will also interact, in Bayesian meth-

odology, with the prior probabilities assigned to models.

These will possibly become context sensitive. Another

possibility is to identify ‘objects’ spatially which need not

have uniform size and shape, and use these as sampling

units. Ciazlo and Ferer (2000) provide an example from

image analysis. However, some limited attempts (by

MBD) to identify ‘objects’ in vegetation data have not

proved very successful, largely because closed areas were

not obtained. But what is critical is that all structures iden-

tified in vegetation have to be viewed against the ambi-

guities of scale interacting with sample size, shape and

distribution (Huston 1999). Hierarchy is one way of al-

lowing this.

Hierarchical structure in vegetation

In order to create a hierarchic structure, some species

must be relatively widespread, while others must be re-
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stricted within the larger ranges. Such a situation can be

produced in many ways and can also apply recursively to

provide several levels in the hierarchy. We shall use the

major categories shown in Table 6.

Environmental

This is probably the most obvious source of pattern in

vegetation, associated with variables such as soil type,

water availability and radiation impact. One major prob-

lem is that effects are often dynamic, so the active effect

may be the probability (intensity and recurrence interval)

of some extreme events; eg. ice storms, frost, flooding,

drought, cyclones and so on. If these events occur too fre-

quently then the plants may not succeed in reproducing,

and thereby maintaining the population, although they

may be able to survive as adults and in especially good

times invade. In some cases recurrent events such as fire

are a necessary component of regeneration, as in some

Eucalypt forests or Banksia heaths. This cannot then be

regarded as a contingent event though it is unpredictable.

The ‘good times’ may of course be an historical ‘golden

age’ which climate change has banished.

In some cases the environment may lead directly to

hierarchic structure, as for example in the Gilgai struc-

tures of arid Australia or of the polygons resulting from

cryoturbation. Many environmental factors can be re-

garded as continuously varying, although there may be

critical values where marked changes occur; for example

the effects on aluminium and manganese ionisation in soil

around pH 4.5 or freezing point for temperature. Lo-

molino (1996) Wright et al. (1998) and Huston (1999),

among others, have examined nested properties of diver-

sity gradients, most notably the latitudinal gradient,

where temperature and radiation properties are varying.

Other studies, for example Brown (2001), have examined

altitude gradients. Wright and Reeves (1992) describe

various measures of ‘nestedness’ but these seem mostly

to assume something like Dale and Anderson’s (1973)

two-parameter model and not a hierarchy .

More generally a hierarchical structure will form if

different species have differential and nested responses.

So, niche differentiation and competitive or facilitative

effects can lead to hierarchy. Another possible source is

that the generating processes produce self-similar frac-

tals.

Contingent variation

Variation in vegetation has a large noise component

because the success of any single propagule is often re-

lated to quite specific, even unique, and unpredictable

events. Such isolated, unusual events are present in al-

most every vegetation cover. So deposition of animal

dung, local disturbance by animal burrowing or even

damage by passing animals all provide opportunities or

emergencies for one species or another – assuming the

propagules are able to reach the place. This means that,

while most of an area may be covered by one general type,

a few unusual places are always to be expected. If such

events become too frequent then they can be better re-

garded as an environmental effect although the chance

component remains large. The most obvious example of

this would be wind-throw in forests, which leads to gap

regeneration. In some cases the isolated plots will repre-

sent particular specialised environments, such as outcrops

of ultra-mafic rocks. In such a case detailed study would

reveal this, but with much contingent variation it may be

impossible to determine the original cause, it being lost in

unrecorded history.

Patches: disturbance and imperturbability

We shall distinguish 3 different kinds of patch-form-

ing process – gap phase, morphological and behavioural.

All can lead to hierarchical structure via Maslof’s (2001)

observations of limited favourability of patches.

Patches are of course related to scale. And, as Bar

Yam (2002) says of hierarchical clustering, ‘Clustering is

not a complete description of the process of complex-

ity/information loss (entropy increase) implied by the for-

malism, but the conditions at which clustering occurs are

the characteristic scales at which degrees of freedom are

lost to the observer’. By examining the rate of loss it may

be possible to simplify the tree structure. Notice that this

view of the value of hierarchies is not associated with cor-

responding structure in the attributes. The trade-off be-

Table 6. Potential sources of hierarchical organisation in
vegetation.
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tween scales of behaviour characterizes the relationship

between dynamic and coherent structures at different

scales in non-equilibrium systems (Bar Yam loc cit; cf.

Herben et al. 1993)

A casual visual inspection will show that most vege-

tation exhibits patchiness at various local scales. Several

possible causes exist for this but, although environmental

differences may exist between patches, these could well

be the result, rather than the cause, of the patches. Attri-

bution of all patterns to environmental causes is unwar-

ranted, if only because it is a universal model which can-

not be tested. In any case, if there exists sociologically

induced pattern then the result over time is likely to be the

development of environmental differences. The existence

of a difference is not enough to demonstrate its causal na-

ture.

Spatially, in a uniform environment, patch structure

should tend to have a regular pattern but this may not be

clear in a practice where environmental changes also oc-

cur for in that case the sizes of the patches will vary, pos-

sibly over a large range. In fact, regularity of patch distri-

bution has only been identified in a few cases, mostly

where regularity in environmental conditions can also be

observed.

Gap phase dynamics: carousel

Another form of dynamic pattern, similar to contin-

gent variation, is the carousel process discussed by Van

der Maarel and Sykes (1993). It is marked by the greater

random component and the lack of interaction between

species. The carousel model suggests that there exists

space that can be occupied by any of several species for

short periods; the species complement is itself in flux.

Glenn and Collins (1993) argue that the gap phase con-

stituents are a random selection. Over a longer period, it

is likely that all of the species may appear temporarily in

combination. Herben et al. (1993) suggest that pattern at

local spatial scales is not a major cause of pattern at larger

spatial scale. This would be counter to any hierarchical

organization. Vandvik (2004) finds dependence on gaps

increases during succession and that a large proportion of

the species are gap associated (74%). Poulin and Guégan

(2000) report a spatial pattern for ectoparasites which

might then be nested because of host distribution.

Morphological patterns: sociability

This is pattern based on morphological properties of

individuals. Many plants use vegetative reproduction that

involves occupying patches of ground, leaving the inter-

stices for other species. This effect can be negative where

other plants are excluded but can also be positive, as with

the ‘nurse plant’ effect where seedlings develop in the

shelter of other individuals or hepatics in a Sphagnum

mat.

Sociability or gregariousness is an expression of hori-

zontal pattern of species. It measures the degree of clus-

tering (contagion) of the species. It can be directly re-

corded as an ordered scale from observations within a

single sample plot, provided this is of sufficient extent.

Thus:

! Growing solitary, singly;

! Growing in small groups of a few individuals, or in

small tussocks;

! Growing in small patches, cushions or large tus-

socks;

! Growing in extensive patches, carpets, or broken

mats;

! Growing in great crowds or extensive mats com-

pletely covering the whole plot

(from Westhoff and van der Maarel 1978).

Because of MUAP, such spatial pattering could well ex-

tend beyond a single plot and it could lead to a hierarchi-

cal pattern being generated if several such single species

patterns are conjoined to form a mosaic, which is at least

partially repetitive.

Behavioural patches

Extending beyond morphological patterns, the disper-

sal of propagules may induce local patterns maintained

dynamically (cf. Dale and Hogeweg 1998; Dale 1999).

This results in a mosaic of slightly different patches of

varying shapes and sizes that exist for some period and

then are modified or eliminated. There is no necessity for

environmental variation to pre-exist for such patches to

form. Rather, the existence of the patches would lead to

environmental differences and evolutionary conse-

quences. Such patterns have been discussed both by Bo-

erlijst and Hogeweg (1991, 1995a,b) and by Rietkerk et

al. (2002). They differ from morphological patterns in that

the patches have an essentially fixed size through time,

rather than expanding with age. Boerlijst-Hogeweg pat-

terns require relatively strong interactions. Sociological

patterns tend to have at least some components with fixed

scales; indeed these are generated by the process.

Thus, hummocks in bogs might well be a result of dis-

persal patterning, as could many observed ‘ring’ struc-

tures commonly regarded as being due to expansion with
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age. Boerlijst and Hogeweg’s work would suggest that the

‘rings’ are really double spirals and that the whole patch

might rotate, albeit slowly. The size of the ‘rings’ depends

on interaction intensity and not on time. Hummocks we

have examined do seem to have a small gap in the perime-

ter but long term studies to identify rotation do not seem

to have been made. A mosaic will develop from such pat-

terns without environmental influence; environmental

changes are likely to disturb any regularity.

The result of both morphological and dispersal proc-

esses will be the break-up of the vegetation cover into a

series of patches of irregular size, making any choice of a

single sampling area for plots hazardous. The plot may

include part of a single patch or parts of several patches.

Each patch will differentiate form the others because it

has a different flora, so that environmental differences

will appear. This can lead to evolutionary consequences

(Pagie and Hogeweg 1997).

Non-equilibrium – migration, expansion and
contraction

Another source of variation concerns the disparity be-

tween the actual state of the vegetation and the potential

state; these are rarely in equilibrium. Such a non-equilib-

rium state may be directed (‘al) or fluctuating (chaotic at-

tractors) and differences between timing for various spe-

cies might lead to hierarchical organization. Plants are

generally immobile in the adult state, which means that

any moderate change in environmental conditions need

not result in immediate change in the vegetation. The ad-

vent of propitious conditions does not mean an immediate

colonisation, since the plants must first transport them-

selves from some source overcoming any barriers along

the way. Some tree species appear to have only recently

managed to cross the Alps after extinction north of them

during the last glaciation! Conversely, while intense ad-

verse condition may destroy a population rapidly, slow

deterioration will mean that resistant individuals may be

present even when the population is no longer self-sus-

taining; viable populations will only exist in more fa-

voured refugial areas. Adult plants are often much more

robust than seedlings so that failure of reproduction does

not mean immediate extinction of perennial species. Im-

migration and extinction, and their hierarchical potential,

have been discussed by Lomolino (1996).

Non-equilibrium means that species may be increas-

ing, stable or decreasing dynamically and a snapshot sam-

ple cannot distinguish such temporal properties. A mix-

ture of species results that may not all be associated with

the same vegetation type, resulting in fuzziness of assign-

ment to types. In fact the non-hierarchical clustering

showed little fuzziness and this source of variation will be

largely ignored for the rest of this paper.

One special case is that of adventitious species intro-

duced thorough human activity. Since these tend to be

generalists they may well have native species nested in

communities. Unfortunately, the data we are using does

not contain such species.

Idiotaxonomy

A possible source of hierarchical structure in vegeta-

tion lies in the taxonomic hierarchy. The nesting of taxo-

nomic units means that structure associated with higher

level categories such as super-orders, orders and families

might have nested within it structure related to genera

and species. Even if we have only species records, sub-

specific units might still present some hierarchical struc-

ture. However, it is more likely that the clustering will be

used to suggest such possibilities than that we shall have

available suitable data to interpret any hierarchical struc-

ture in this way. Apomictic species are likely to produce

patches of this kind but they will be difficult to distinguish

from patches of morphological origin. A study by Dale

and Clifford (1976) did not show any indication of hier-

archic structure. Genera were effective one-to-one substi-

tutes for species with no hierarchical implications. The re-

lationship with subfamilies, families and orders was much

less at this local scale and again was not clearly associated

with any hierarchical structure. However, an analysis of

rainforests in eastern Australia did produce a major dis-

junction associated with the occurrence of the epiphytic

subfamily of figs (Figs are family Moraceae Trevor to

find subfamilies from Corner, reference from

Specht’s book. The differences would seem to be associ-

ated with large areas. Taxonomic information was not

made available to the program so we would not expect to

discover such a hierarchy, even if it existed.

It might be possible to learn attribute hierarchies but

this is not a feature of the present program. Xiao et al.

(1993) and Hogeweg. (1998) discuss various aspects, but

any such discovery procedure is beset by the problem that

the hierarchy may not be unique. Thus soap is a subclass

of toiletry. It is also a subclass of cleaners and of chemi-

cals produced using sodium hydroxide; no unique hierar-

chy is necessarily present. This clearly adds problems be-

cause we need to learn appropriate structures. For plants

we have taxonomic, life form, dispersal, age and func-

tional relationships any of which might provide hierarchi-

cal structure for the primitive attributes.

Scale of measure
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There is in almost all vegetation a strong component

of presence/absence variation. Even if we have abun-

dance measures the measurement is conditional on pres-

ence. But, as Babad and Hoffer (1984) put it, even no data

may have value. It is therefore possible that we can find

structure based on the presence/absence component and

nested within this further structure reflecting patterns in

abundance. In fact, such nesting was observed in rain for-

est data by Dale (2000; see also Dale and Anand 2004)

and is illustrated in Table 7. This could be directly inves-

tigated by partitioning the data into presence and abun-

dance components (Williams and Dale 1962) and then de-

termining if levels of hierarchical structure are associated

with either measure. It is also possible that structure will

be reflected in variations of diversity which will be domi-

nated by presence effects initially. An alternative ap-

proach possible with the SNOB program is to first code

presence/absence as a nominal attribute and then code the

abundance values as numeric but with absences coded as

missing values.

The abundance measures themselves can be further

arranged in a series of increasing information; density, va-

lence, cover, cover-abundance and biomass form such a

sequence and all can be cast as probability measures. In

principle the structure at each position in such a series

could be nested in structure derived from preceding meas-

ures. In practice it is unusual to use more than one of these

abundance measures available.

Methods

The Minimum Message Length clustering principle is

described in Wallace and Dowe (2000). The principle is

based on the notion that an optimal clustering solution

will require a balance between the number of clusters and

the fit of the model and is an implementation of Occam’s

razor

A complex model will fit the data well, but is less

likely to generalise to novel observations and will usually

be less comprehensible. A simpler model will fit less well,

but will be more comprehensible and hopefully more gen-

erally applicable. There is still considerable argument

concerning the exact role of simplicity in induction,

which we shall here regard as a useful heuristic, at least.

Wallace and Dowe (loc cit) provided a k-means-like

procedure implemented in SNOB, which both estimated

the number of clusters and also provided a fuzzy assign-

ment of items to clusters to obtain consistent cluster sta-

tistics. The choice of the number of clusters relies on a

compromise between complexity of model, essentially its

prior probability, and the adequacy of fit to the data,

measured by the message length required to encode the

data assuming the correctness of the model.

It is possible that the required message length can be

reduced still further. Wallace and Dowe assume that at-

tributes are uncorrelated within clusters and the introduc-

tion of within cluster correlation might reduce the mes-

sage length. This is presently being studied. Agusta and

Dowe (2003) have examined this possibility and it is the

subject of on-going work. A similar reduction could occur

by changing the acceptable distribution of variation

within clusters, with a choice between Poisson, Gaussian,

t-distribution and gamma distribution being provided

within the present program. Dale (2001) has examined the

effects of choosing Poisson or Gaussian distributions. A

non-hierarchical clustering was obtained using 120 ran-

dom starts of the SNOB program (Wallace and Dowe

2000). This program uses the minimum message length

criterion to determine the number of groups and provides

a probabilistic assignment of all things to all clusters. It

also uses MML estimates for cluster parameters.

Another method of potentially reducing message

length is to organise the clusters hierarchically. Hierarchi-

cal clustering is not uncommon in ecological studies but

assumes a somewhat different aspect when combined

with MML clustering. The idea here is that it may be pos-

sible to describe a subset of clusters partially at a higher

level in the hierarchy, thus reducing the required message

length for the individual terminal clusters. This is the ap-

proach adopted in this paper. There are some difficulties

about how the search for clusters should be performed.

With a divisive search strategy, things may be misallo-

cated at high levels and will never be placed in their

Table 7. Nesting of density clusters within presence: Mt Glorious data (see Webb et al. 1967).
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proper final (low level) clusters. However, assignment of

new things is relatively easy. Agglomerative approaches

do not suffer from the misassignment problem, but they

do not provide any means of making assignments.

The hierarchical clustering was obtained using a pro-

gram, HSNOB, developed by Wallace from earlier pro-

posals of Boulton and Wallace (1973a). Details are pre-

sented in Appendix 1. It is worth noting here that the

program does not employ the same prior probabilities as

the non-hierarchical program and this renders exact com-

parison of message lengths difficult. In addition the hier-

archical analysis does not use fuzzy allocation to clusters,

which will tend to increase the message length and also

lead to inconsistent estimation of the cluster parameters.

Having recovered exemplars of the several clusters

from the data, we need to convert these, by induction, into

defining rule sets so that assignment of new sites is possi-

ble. Traditionally, emphasis has been on monothetically

defined clusters, which capture classical concepts in a

few, simple rules which are both necessary and sufficient.

Both SNOB and HSNOB are polythetic procedures so the

concepts they recover will generally be prototypic; that is

they are defined nondeterministically by some number of

a set of rules, individually neither necessary nor suffi-

cient .

Objectives and analyses

The first question to be addressed concerns the sepa-

ration of these sources through the use of an hierarchical

clustering procedure. Such a procedure may distinguish

various levels of nesting in vegetation typology some of

which hopefully will reflect these three sources. Whether

the hierarchy is to be preferred to a non-hierarchical rep-

resentation, where no nesting is assumed, is also of inter-

est. The preference may be determined empirically but

can also be affected by questions of comprehensibility.

One difficulty here is that both environmental and

morpho-dynamic structure will show spatial aggregation,

which is not a characteristic of the other sources. Envi-

ronmental patches are likely to be larger and probably

some zonation. Morpho-dynamic patches will generally

be smaller and more irregular in size, but may also show

regularity

The second question to be addressed here concerns the

nature of the data used. Recently much attention has been

paid to correspondence analysis, which implies an under-

lying chi-square metric whereas most clustering has re-

tained an underlying Euclidean metric. Legendre and Gal-

lagher (2001) proposed a transformation that allows the

user to modify the data so that the underlying metric is a

chi-square metric. While this is likely to emphasise rare

species, it is of interest to examine the effects such a trans-

formation might have on clustering results. The well-

known TWINSPAN method (Hill et al. 1975) also em-

ploys a chi-square metric but this method has no secure

estimate of the number of clusters and due to the hierar-

chical nature of the process the actual metric changes with

the subgroup being considered, which may be an advan-

tage of course.

What TWINSPAN does provide is an oligothetic ap-

proximation to the polythetic divisions. This leads to in-

teresting questions concerning the nature of the concepts

that we are seeking. The initial stage of class definition

will usually employ an exemplar model; i.e., an explicit

list of things which belong to the class. Classically we

then seek to define a few simple rules which permit other

things to be assigned to the class; typically these would be

monothetic conjunctions. However, in many cases, we

may actually need a prototypic definition and this is ex-

actly the kind of definition that TWINSPAN provides.

(There are other ways of providing appropriate defini-

tions.)

Data

The data used are the Mallee Data from Goodall’s

(1953) pioneering study on automated clustering. This

comprises 256 stratified random plots (‘things’) described

by 61 plant forms (mostly species but some life forms).

Of these 61 only 32 are common, the remainder being pre-

sent in only 1 or 2 plots. In each plot, the percentage cover

of all species present was recorded using point quadrats

for the estimation. The location of each plot is known so

that the clusters can be mapped. This allows visual assess-

ment of spatial contiguity. Formal methods for such as-

sessment are possible, based on the method of Krishna-

Iyer (1949) as extended by Critchlow (1985)

Goodall reported a dune-swale structure with some

asymmetry across the area making the left and right sides

dissimilar. The environmental reasons for this differentia-

tion have not been explored but could be due to burning

patterns, grazing

Results

General

Hierarchical clusters of vegetation types 9



In Table 8, we show the overall characteristics of the

MML analyses. While the non-hierarchical clustering

provides 16 clusters, the hierarchical clustering can be in-

terpreted at 5, 14 or 18 clusters; these will be discussed in

more detail later. The immediate conclusion, though, is

that the non-hierarchic result is to be preferred because of

its shorter message length, resulting in greater capture of

structure. The non-hierarchical structure is either less

complex or better fitting (or both).

The two analyses can be directly compared by exam-

ining the assignment of sites to clusters in non-hierarchi-

cal and hierarchical results. From Table 9, it can be seen

that the 5-cluster level does not show any marked corre-

spondence with the non-hierarchical result but that the 14

and 18 cluster levels do show a reasonable levels of cor-

respondence. (The " values are somewhat suspect as the

expected values in some cells are very small.) So, the hi-

erarchical analysis is apparently finding some structure

that is not identified by the non-hierarchical. Whether this

additional structure is valuable remains to be seen. The

simultaneous recognition and superposition of the clus-

Table 8. General results.

Table 9. Correspondence of the hierarchical and non-hierarchical clusters.

1

3031

32

33

29

34

35

50

46

11
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28

23

26

16
25

18

24 20
21

Figure 1. The recovered hierarchy.
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ters in space does complicate interpretation and some loss

of efficiency to gain comprehensibility is perhaps desir-

able.

Non-hierarchical analysis

Results are presented as a map of the distribution of

clusters (Fig. 1). Although the dune-swale structure and

the asymmetry can be discerned, the interpretation is

complicated by the superposition of the many patterns.

The dune structure is accidentally emphasised by the

choice of circles to indicate those clusters.

Hierarchical analysis

The hierarchical analysis resulted in a 3-level struc-

ture shown in fig 1. The initial division is into 5 clusters

(the high level), one of which then splits into 10 clusters

(the middle level) and one of these further splits into 5

sub-clusters (the low level). The sizes of these clusters are

shown in Table 10, which reveals that many of them are

quite small.

High level clusters. At the high level, there are 5 clusters,

4 of which are numerically small comprising in total 25

things only. The clusters are shown in Fig 2. I believe the

small clusters represent aberrant samples, possibly due to

contingent variation or perhaps very localised and dispa-

rate environmental conditions. The aberrant clusters are

spread over the area with little concentration spatially for

the small clusters. The bulk of the plots are assigned to a

single cluster 50. It would be interesting to have a fuzzy

assignment here to see if the 4 small clusters show any

tendency to overlap with the large cluster.

Middle level clusters. At the middle level, there are 14

groups (4 from the high level and 10 from the middle) of

which 9 are numerically small. Since the 4 remaining high

level clusters have already been examined, only the sub-

clusters of cluster 50 are shown in Fig. 3.There is an ob-

vious linear structure associated with a single large sub-

cluster (46) but little spatial aggregation for the others.

These latter are found in the swales between the dunes but

show a patchy structure. The swales are rather more di-

verse than the dunes but it is not clear that there is a strong

environmental control of the other sub-clusters. They

could well represent ‘fuzzy’ edges to the major clusters;

ie. they could represent ecotonal types that exist where

boundaries are gradual. Alternatively they may represent

patch dynamics of some kind. However some of cluster

24 is sufficiently large to suggest environmental control

and both cluster 20 and 33 could also be so defined.

One possibility is that there exists some kind of gradi-

ent leading to correlation between species. The analysis

does not consider correlation within clusters, and this

could result in the definition of extra clusters. A change

in the model to incorporate within-cluster correlation

would clarify this.

Low level clusters. At the low level there are 18 clusters

(4 high, + 9 middle +5 low, with 11 of these numerically

small). The blurring of the linear structure resembles that

for the non-hierarchical result – it is rather too detailed for

convenience.

In Figure 4, we show the sub-clusters of cluster 46

only, which resolves structure on the dunes. Some of the

clusters certainly show spatial aggregation and it is again

possible that there are local environmental differences un-

derlying, or correlation between species. We could for-

Table 10. Size of clusters formed at each level. Cluster 1 is the root cluster comprising the population.
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mally assess the spatial aggregation using Critchlow’s

(1985) extension of the Sandland and Young (1979) test

or Krishna-Iyer’s (1949) test. However, spatial aggrega-

tion is also a result of morpho-dynamic patch formation

and is not a prima facie case for an environmental cause.

Comparison of clusters. Hierarchically, we find 21

classes (18 leaves) for a message length of 22093.4 with

structure captured = 51.5%. The difference between non-

hierarchical and hierarchical = 1441.2. As noted earlier,

there is a difference caused by the use of different prior

probabilities in the 2 analyses and also the use of fuzzy

assignment in the non-hierarchical clustering. Whether

these sources are sufficient to account for what is a large

difference is doubtful; the odds in favour of the shorter

non-hierarchical result are approximately e :1! To re-

main faithful to the MML criterion, we would have to ac-

cept the non-hierarchical as the preferred clustering.

However, there remains an outstanding question concern-

ing the comprehensibility of the result, which we shall re-

turn to later.

Discriminating species

In Table 11, we show the species positively associated

with the various clusters at all levels. In all cases there was

a marked preponderance of negative associations and

cluster 46 show several cases of species being entirely ab-

Figure 2. Spatial distribution of non-hierarchical clus-

ters.

Figure 3. Spatial distribution of clusters - high level.

Figure 4. Sub-clusters of 50 - middle level. Figure 5. Sub-clusters of 46 - low level.
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sent from the cluster. Thus, at the high level cluster 50 is

largely defined by the absence of species critical for the

definition of the smaller clusters. There is no suggestion

of groups characterised primarily by quantitative vari-

ation. Possibly a denser sampling network is needed to

obtain such a result.

Discussion

Hierarchical analysis

The hierarchical analysis provides an interesting

structuring of these data. The hierarchy does provide

novel information and also presents it in a comprehensi-

ble format. Unfortunately, it seems that it is also less effi-

cient since the non-hierarchical message length is signifi-

cantly smaller. It is possible, of course, that further search

would recover an improved hierarchical solution. Also

the different prior probabilities assigned in the 2 methods

will also cause differences, although the message length

associated with the prior probability is the smaller com-

ponent of the total.

Using a fuzzy solution would reduce the message

length and it is possible that, if such were available, the

hierarchic solution would be preferred. However, the data

do not give extremely fuzzy assignments. The best SNOB

result, so far, estimates that there are 16 clusters with mes-

sage length shorter than that of the hierarchical result. If

we examine the fuzzy assignment, 15 things were as-

signed to 2 clusters and 5 of these had probabilities of 0.1

or higher of belonging to the second cluster; the worst

Table 11. Association of species and clusters at the several levels. # indicates no test possible as species is everywhere ab-
sent; o indicates no significant association with any group at that level; (.) indicates marginally significant association. ; +
indicates species occurs significantly more than expected; - indicates species occurs significantly less than expected. (Not all
absences are included).
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case had a probability of 0.33 of belonging to a second

cluster. The remaining things were uniquely assigned.

Thus only 0.02% of the things can be regarded as doubt-

fully assigned. Reduction in message length from this

source would not be expected to be large.

Examined spatially, the non-hierarchical result sug-

gests a linear arrangement across the area with some dis-

tinct types on the left side. This is in accord with the topo-

graphic features – a dune-swale system and a general

trend across the area. However, the simultaneous presen-

tation of 16 clusters tends to mask the horizontal linearity

somewhat because all patterns were superposed. We

think, because all 3 source of variation are being simulta-

neously addressed, some confusion is almost inevitable.

The hierarchical result is an interesting one because

the 3 levels give an opportunity to look at the vegetation

at 3 different scales. What it does not allow us to do is

distinguish patchy environmental controls from morpho-

dynamic or behavioural structure. Sub-clusters at the mid-

dle and low levels in some cases show spatial aggregation

while in other cases they do not.

So the hierarchical result allows us first to identify

(and eliminate if we wish) some contingent elements, then

provides a useful general organization at the environ-

mental level, before relapsing finally into a detailed pres-

entation rather similar to the non-hierarchical solution in

its complexity if not in the details of assignment. If we

regard it as a progression through the available structure,

from coarse to fine, it is rather helpful. It is possible that

the diversities of the individual clusters at the middle level

are similar to each other, and that the low level patterns,

internal to the dunes, reflect the larger size of that cluster,

although the size variation is not extreme, as it is at the

highest level. Certainly a hierarchy such as that in Figure

6, where cluster 46 is a sister group to the remainder of

cluster 50 might have been expected, but the analysis sug-

gests that this is not the case.

Clearly the results obtained to not allow us to separate

the possible causal processes. While patches are present

this alone is insufficient. The small high level clusters do

seem to represent exceptions to the general vegetation of

the area, but at middle and low levels morpho-dynamic,

disturbance and behavioural processes probably interact

with environmental differences.

Hierarchical relationships reflect a particular pattern

of between-cluster variation. Within-cluster variation can

be captured using a within-cluster ordination and more

complex patterns of sharing of axes can be envisaged than

that displayed by a hierarchy. Search procedures for such

models have yet to be developed and will probably re-

quire objective rotation of the axes to simple structure

(see Kiers 1994, 1998).

Scale of measure

This possibly does not fit well with the usual view of

hierarchy in vegetation that associates different suites of

species with each level. That is, we regard some species

as having patterns over larger areas (smaller scales) than

others. The present method of capturing hierarchical

structure actually corresponds with this exactly, since it

does not explicitly consider selection of subsets of fea-

1
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Figure 6. Alternative structure.
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tures apposite to hierarchical levels. Such subsets might,

of course, appear as a result of the modelling.

The present method for acquiring hierarchic organisa-

tion does not address the possibility of a hierarchy based

on the scale of measure of the data or the idiotaxonomic

hierarchy. The species table (Table 10) suggests that pres-

ence/absence is the dominant form of variation and there

is no suggestion of quantitatively defined groups within

the clusters. We hope to address this in a future study.

Comprehension and the value of hierarchies

However, there is an argument to be made that the hi-

erarchical model did provide a more immediately com-

prehensible picture than the non-hierarchical. The three

levels do provide a comprehensible representation of

three (different?) sources of variation in vegetation.

While these may be present in the non-hierarchical model,

they are more difficult to isolate and appreciate. The out-

standing question is whether any gain in comprehensibil-

ity is worth the loss in effectiveness of the model. We

need a considerable gain in comprehensibility to offset

the difference in message lengths. But how can we meas-

ure comprehension?
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Appendix

Because of sickness it was not possible for Chris Wal-

lace to update this description of the hierarchical cluster-

ing process. This description follows the original paper of

Wallace and Boulton and the program actually used em-

ploys a more sophisticated search strategy. The MML for-

mulae remain the same.

Minimum message length for an hierarchical clustering

Continuous attribute d is measured with accuracy

#[d], and with mean m[d,t] and standard deviation s[d,t]

for class t.

Multistate attribute d has M[d] states and distribution

{p[m,d,t]} (m=1…M[d]) where p[m,d,t] is the probability

that a thing in terminal class t will have attribute d in state

m.

If we have a population of U members which is split

into sub-clusters A and B, |A| $ |B|, the description of this

split will require a message of length

This is based on the occurrence of the split and the relative

abundance of the subclasses.

Next we need to specify the subclass distribution

functions. Let class A with N members divide into B and

C with L and M members, means a, b and s.d. r and t,

respectively. For some continuous attribute, specify the

class mean of A and the class standard deviation of A to

accuracies of ± 0.5s and ±0.5s , re-

spectively. For the subclasses, we must use a ± 0.5

and b ± 0.5 and for standard deviation

r ± 0.5r and t± 0.5r . For sim-

plicity drop the -1. The total message length needed for a

continuous attribute is

For a discrete attribute with Q states, the full expression

is given by

where Y is an occupancy constant and given in Boulton

and Wallace (1973).

For a binary split Y = 1 + min(L, M, n , n )

If N is the population of terminal class t, then the message

for the things is given by ln (S/N )

Valuesfor attributes are:

continuous

discrete

We then sum all the pieces to get an overall message

length for the entire hierarchy: i.e., sum for each class the

attribute values and add N ln (S/N) to code the class labels,

sum over all terminal classes and add the additional cost

of the hierarchic encoding of class properties and dendro-

gram structure.

For clustering, we examine the various message

lengths for class A and its subclasses B & C together with

the conditional information given the properties of A and

if I + I + I( > I we merge B and C. By maintaining

subclasses we can also look for possible splits. A standard

SAHN hierarchy can also be used agglomeratively. How-

ever, an agglomerative strategy leads to difficult decision

rules and the hierarchy can be fragmented into several dis-

connected subtrees. A divisive strategy can also be ob-

tained although things may not be assigned ideally be-

cause once a division is made it is not reconsidered.

However divisive strategies allow easy decision rules.

Davidson (1996) presents an MML evaluation that in-

corporates context, suggesting the use of

+ const.

for context c. Note that –log(probability) is in fact the

minimal coding length required. Thus, in principle we can

adjust the clustering according to the particular vegetation

context, while capturing our own views on the probability

of a hierarchy in that context in the prior probabilities as-

signed. The context, for example, might represent certain
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laws that we feel are acceptable. By comparing with the

unconstrained result, we can assess the value of the laws.

Minimisation strategies

If we fix the class membership and hierarchic struc-

ture we can choose the estimates of class parameters to

minimise the information by using essentially the maxi-

mum likelihood estimates. For fixed class properties and

fixed hierarchy we can minimise the information by as-

signing each thing to its most probable class. Both these

operations are independent of the hierarchical structure

and so can be applied cyclically to find a local optimum.

Davidson (1996) has considered using simulated anneal-

ing for the non-hierarchical case.

Given any two terminal classes we can ask if merging

them will improve matters. Given non-terminal A with

size N and its terminal subclasses B and C of sizes L and

M, we can calculate I and I the message lengths to give

the attributes of B and C, and also I , for specifying the

attributes of A. We can also work out I the informa-

tion needed to specify the existence relative sizes and

properties of B and C given the properties of A. It is then

advantageous to combine B and C if I + I + I > I .

All these elements are independent of the hierarchic struc-

ture and any classes other than A. If the hierarchy is not

yet established we can try all pairs - note that this does not

examine if maintaining B and C might not be preferable

if a hierarchy was not required. It is possible that the com-

bination is preferable to maintaining B and C as sub-

classes of A.

To increase the number of classes we maintain sub-

classes of every class as ‘half-classes’ that are treated as

if they were established and can be tested to see if promo-

tion to ‘real’ classes is worthwhile. Testing using I + I

+ I > I is then applied to the half-classes.

An agglomerative strategy based on the terminal

groups is then used to develop a hierarchy. However, such

a hierarchy may be disjoint, thus combining non-hierar-

chical and hierarchical elements.

The agglomerative hierarchy has a significant draw-

back. Assignment of new things has to be made to the ter-

minal classes and there is no easy ‘decision-making’ rule

proceeding down the hierarchy as the distribution within

the non-terminal classes is undefined (maybe some non-

parametric rule might be advanced?). By using a divisive

strategy of splitting classes into subclasses wherever this

is profitable does provide a decision rule but at the cost of

losing the assignment of things to their most probable ter-

minal class - once a split is made it is never reconsidered

and it can be wrongly assigned at an early stage (maybe a

monothetic split could also be introduced by constraining

the subclasses to be monothetically definable?) Also it as-

sumes that the distribution within each high level class is

the same as that for a terminal class, an assumption that is

certainly dubious. In general, the message length for the

divisive result will be greater than that for the agglomera-

tive result (and this latter will probably exceed that for a

non-hierarchical solution!).

In SNOB it is usual to use a fuzzy assignment to

classes with things partially belonging to classes in order

to provide consistent estimates. It might be possible to al-

low partial assignment in the hierarchical form by using

weighted means and S. D’s which should make the esti-

mates consistent.

Single linkage hierarchy

A common, and once recommended (Jardine and Sib-

son 1971) method of obtaining a hierarchy, based on dis-

similarity measures, is single linkage clustering. The

MML single linkage approach of Boulton and Wallace

(1975) was not used here, since the tree obtained using

this method does not address the hierarchy as a means of

minimising message length. In fact it is usually used to

develop a cluster tree based on a hierarchy of dense (mo-

dal) clusters. (see Wishart 1969; Hartigan 1975, 1981).

Wallace and Boulton show that underlying this approach

is an assumption that the occurrence of a thing in the space

means that it is likely other things will be found ‘near’ it.

The choice of dissimilarity measure is itself a difficult one

that is best avoided if possible.
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