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MML and statistically
consistent invariant

(objective?) Bayesian
probabilistic inference

Statistical invariance

Statistical consistency

— Fixed number of parameters

— Amount of data per parameter bounded
above
e Neyman-Scott problem

Statistical likelihood function
Inference: Maximum likelihood, etc.



Euvidence-based medicine

— Statistical inference
— Machine learning

— Econometrics

— Inductive inference
— “Data mining”

Inference
One model (typically)

Prediction
Possibly more than one model
Models can be averaged

—non-weighted (equal weights), or
—weighted (different weights)



Easy problems

— Known likelihood function f(D|H),
Prob(Data|Hypothesis), f(x|0)

— Fixed number of parameters
Amount of data per parameter un-
bounded

— Little noise

Intermediate problems ...

Hard(er) problems

— (Unknown likelihood function)
— Much noise
— Amount of data per parameter bounded
above - e.g..
e Neyman-Scott problem (with known
likelihood function)



Desiderata (in inference)
Statistical invariance

— Circle: Afl = 72 A
—Cube: | = AY?2 = y1/3 A A
— Cartesian/Polar: (z, ¢) = (7 cos(d), 7 sin(0))

Statistical consistency

As we get more and more data, we
converge more and more closely to
the true underlying model

(But what if data-generating source
is outside our model space?)

FEfficiency

Not only are we statistically consis-
tent, but as we get more and more
data we converge as rapidly as is
possible to any underlying model.



Some methods of inference
Maximum Likelihood: Given data
D, choose (probabilistic) hypoth-
esis H to maximise f(D|H) and
minimise — log f(D|H).

— Statistically invariant —  but
tends to over-fit, “finding” non-
existent patterns in random noise

— Also, how do we choose between
models of increasing complexity
and increasingly good fit e.g., con-
stant, linear, quadratic, cubic, ...”7

— Also, maximum likelihood chooses
the hypothesis to make the already
observed data as likely as possi-
ble.

But, shouldn’t we choose H so as
to maximise Pr(H|D) ?



Bayesianism, prior prob’s, Pr(H|D)
Prior probability, Pr(H)

Pr(H).Pr(D|H) = Pr(H&D) =
Pr(D&H) = Pr(D).Pr(H|D)

So, Pr(H|D) = P LD

Pr% py(Pr(H).Pr(D|H))

posterior(H|D) = trior 1) likelihond DI

Probability vs probability density

What is your (friend’s) height? weight?
Measurement accuracy - used in
MML in lower bound for some pa-
rameter estimates, but overlooked
and ignored in classical approaches



Information Theory

Given data D already observed,
max g Pr(H|D) =

max g M(Prm).zﬂr(pm)) =
maxy Pr(H).Pr(D/H) =

minyg —log Pr(H) —log Pr(D|H)

Can do this if everything is a proba-
bility and not a density, whereupon
l; = —logop; is the binary code-

length of an event of probability p;
1

Hes | s = = =
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Bayesian Maximum A Posteri-
ori (MAP) maximises prior den-
sity multiplied by likelihood

This is not statistically invariant.
It also suffers the inconsistency and
other problems of Max Likelihood.

Minimum Message Length (MML)
is statistically invariant and has gen-

cral statistical consistency proper-

ties (which Maximum Likelihood and
Akaike’s Information Criterion (AIC)
don’t have).

— MML is also far more efficient than
Maximum Likelihood and AIC

— MML is always defined, whereas
for some problems AIC is either
undefined or poor



Turing Machine
f: Statesx Symbols — {L, R} U Symbols.

With binary alphabet,
f: Statesx{0,1} — {L, R} U{0,1}.

Any known computer program can
be represented by a Turing Machine.

Universal Turing Machines (UTMs)

are like a compiler and can be made
to emulate any Turing Machine (TM).



Recalling from information theory
that an event of probability p; can
be encoded by a binary code-word
of length [; = logy p;, and recall-
ing from MML that choosing H to
maximise Pr(H|D) is equivalent to
choosing H to minimise the length
of a two-part message,

—log Pr(H) —logPr(D|H),

we can see the relationship between
MML, (probabilistic) Turing machines
and (two-part) Kolmogorov complex-

1ty.



Kolmogorov complexity

The Kolmogorov complexity of a
string, s, relative to some (Univer-
sal) Turing machine, U, is the length
1|, of the shortest input [ to U such
that

U(l) =s and then U halts.

)

MML is Bayesian, and the choice of
UTM is Bayesian.

But does this appeal to UTMs and
Kolmogorov complexity give us a
(fairly?) objective(?) Bayesianism?

In practice, use approrimations to
MML, typically quantising (round-
ing off) in parameter space:



Approximations to (Strict) MML
For discrete variables, relatively easy:.

For continuous variables (note mea-

surement accuracy):
MMLD l|or I p] ({1999,} 2002, ...)

minp —log(ip h(0) df) —'F h% f(gej;f%e) do

Wallace-Freeman (J RoyStatSoc 1987)
— log(h(0) z|0) + 2

. \//?g Flisher(e)) N lOg f(

Example (slightly hybrid): Uni-
variate Polynomial Regression (x known)
y=(ga; ')+ N(0,0%)

15% part of message (hypothesis, H):

CZ; ag, ..., G, 02

o part of message: Data|H .



Neyman-Scott problem (1948)
We measure NV people’s heights J
times each (say J = 2) & then infer

—the heights uq, ..., up of each of
the N people,

— the accuracy (o) of the measuring
istrument.

We have JN measurements from
which we need to estimate N + 1
parameters.  JN/(N +1) < J,
so the amount of data per parame-
ter is bounded above (by J).

~2 J—1 2
O MazximumLikelihood — ~—J 9

and so for fixed J as N — o0
Maximum Likelihood is statistically
inconsistent - under-estimating o and
“finding” patterns that aren’t there.



Variants on Neyman-Scott prob-
lem

What makes Neyman-Scott difficult

is that the amount of data per pa-
rameter is bounded above.

This is awful for Maximum Likeli-
hood and Akaike’s Information Cri-

terion (AIC).

Other examples include

— latent factor analysis
— fully-parameterised mixture mod-
elling

By acknowledging uncertainty (or
quantising) when doing parameter
estimation, MML is statistically con-
sistent on all of these problems.



MML is about inference, seeking
the truth.

— It gives a statistically invariant -
and statistically consistent - Bayesian
method of point estimation.

— It gives general consistency results
where classical non-Bayesian ap-

proaches are known to break down.

— It is also efficient, working well on
all range of real inference prob-
lems.

Conjecture (1998, ...) that only
MML and very closely-related Bayesian
methods are in general both statis-
tically consistent and invariant.
Back-up Conjecture: If there are

any such non-Bayesian methods, they
will be far less efficient than MML.



%9

Some of MML’s many “friends
Scoring probabilistic predictions

MML and Efficient Markets Hypoth-
esis: markets not provably eflicient

MML, Kolmogorov complexity and
measures of “intelligence”

MML and Econometric Time Series

MML, Entropy and Time’s Arrow

MML and Linguistics - inferring “dead”
languages

MML, cosmological arguments and
“Intelligent Design” (I.D.)



MML in medicine, psych’ & bio’:
Amer. J. Psychiatry:

Kissane D.W., S. Bloch, D.L. Dowe, R.D. Sny-
der, P. Onghena, D.P. McKenzie and C.S. Wal-
lace (1996a). The Melbourne Family Grief Study, I:
Perceptions of family functioning in bereavement.
American Journal of Psychiatry, 153, 650-658.

Kissane D.W., S. Bloch, P. Onghena, D.P. McKen-
zie, R.D. Snyder, D.L. Dowe (1996b). The Mel-
bourne Family Grief Study, II: Psychosocial mor-
bidity and grief in bereaved families. American
Journal of Psychiatry, 153, 659-666.

Pilowsky, 1., Levine, S., & Boulton, D.M. (1969).
The classification of depression by numerical taxonomy.
British Journal of Psychiatry, 115, 937-945.

Prior, R. Eisenmajer, S. Leekam, L. Wing, J. Gould, B.
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children with autistic spectrum disorders. J. Child Psy-
chol. Psychiat. Vol. 39, No. 6, pp893-902

Clarke, D.M., G.C. Smith, D.L. Dowe and D.P. McKen-
zie (2003). An empirically-derived taxonomy of common
distress syndromes in the medically ill. J. Psychosomatic
Research 54 (2003) pp323-330.

Edgoose, T., L. Allison and D. L. Dowe (1998). An
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Reading (on general MML):

— Wallace, C.S. and D.L. Dowe (1999a). “Minimum Mes-
sage Length and Kolmogorov Complexity”, Computer
Journal, Vol. 42, No. 4, pp270-283
[As of May 2005, this has been the Computer Journal’s
most downloaded article.]

— Wallace, C.S. (2005) [posthumous|, “Statistical and
Inductive Inference by Minimum Message Length”,
Springer (Series: Information Science and Statistics),
2005, XVI, 432 pp., 22 illus., ISBN: 0-387-23795-X

— Dowe, D.L., S. Gardner and G.R. Oppy (2007+). “Bayes
not Bust! Why Simplicity is no problem for Bayesians”,
accepted (Thu 29/6/2006) to - and forthcoming in -
British Journal for the Philosophy of Science (BJPS).

— Dowe, D.L. and G. Oppy (2001). “Universal Bayesian
inference?”. Behavioral and Brain Sciences [special is-
sue re R. Shepard], Vol 24, No. 4, Aug 2001, pp662-663.

— Comley, J. W. and D.L. Dowe (2005). “Minimum Mes-
sage Length and Generalized Bayesian Networks with
Asymmetric Languages”, Chapter 11 (pp265-294) in
P. Grumwald, I. J. Myung & M. Pitt (eds.), Advances
in Minimum Description Length: Theory and Appli-
cations, MIT Press, April 2005, ISBN 0-262-07262-9.
[Final camera-ready copy submitted October 2003.]

e {See also Comley, J. W. and D.L. Dowe (June 2003).
“General Bayesian Networks and Asymmetric Lan-
guages”, Proc. 2nd Hawaii International Conference

on Statistics and Related Fields, 5-8 June, 2003.}
— Wallace, C. S. and D. M. Boulton (1968), “An infor-

mation measure for classification”, Computer Journal,
Vol. 11, No. 2, August 1968, pp185-194.



