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Abstract

Minimum Message Length (MML) is an invariant
Bayesian point estimation technique which is also con-
sistent and efficient. We provide a brief overview of
MML inductive inference (Wallace and Boulton (1968),
Wallace and Freeman (1987)), and how it has both
an information-theoretic and a Bayesian interpretation.
We then outline how MML is used for statistical pa-
rameter estimation, and how the MML mixture mod-
elling program, Snob (Wallace and Boulton (1968), Wal-
lace (1986), Wallace and Dowe(1994)) uses the message
lengths from various parameter estimates to enable it to
combine parameter estimation with selection of the num-
ber of components. The message length is (to within
a constant) the logarithm of the posterior probability
of the theory. So, the MML theory can also be re-
garded as the theory with the highest posterior proba-
bility. Snob currently assumes that variables are uncor-
related, and permits multi-variate data from Gaussian,
discrete multi-state, Poisson and von Mises circular dis-
tributions.

1 Introduction - About Minimum
Message Length (MML)

The Minimum Message Length (MML)[37, p185][43]
(and, e.g., [5, pp63-64][38]) principle of inductive infer-
ence 1s based on information theory, and hence lies on the
interface on computer science and statistics. A Bayesian
interpretation of the MML principle is that it variously
states that the best conclusion to draw from data is the
theory with the highest posterior probability or, equiv-
alently, that theory which maximises the product of the
prior probability of the theory with the probability of
the data occuring in light of that theory. We quantify
this immediately below.

Letting D be the data and H be an hypothesis (or
theory) with prior probability Pr(H), we can write the
posterior probability Pr(H|D) = Pr(H&D)/Pr(D) =
Pr(H).Pr(D|H)/Pr(D), by repeated application of

Bayes’s Theorem. Since D and Pr(D) are given and we
wish to infer H, we can regard the problem of maximis-
ing the posterior probability, Pr(H|D), as one of choos-
ing H so as to maximise Pr(H).Pr(D|H) .

An information-theoretic interpretation of MML 1s
that elementary coding theory tells us that an event of
probability p can be coded (e.g. by a Huffman code) by
a message of length | = —log, p bits. (Negligible or no
harm is done by ignoring effects of rounding up to the
next positive integer.)

So, since — logy(Pr(H).Pr(D|H)) = —log,(Pr(H)) —
log,(Pr(D|H)), maximising the posterior probability,
Pr(H|D), is equivalent to minimising

MessLen = —logy(Pr(H)) — log,(Pr(D|H)) (1)

the length of a two-part message conveying the theory,
H, and the data, D, in light of the theory, H. Hence
the name “minimum message length” (principle) for thus
choosing a theory, H, to fit observed data, D. The prin-
ciple seems to have first been stated by Solomonoff[31,
p20] and was re-stated and apparently first applied in a
series of papers by Wallace and Boulton[37, p185][4][5,
pp63-64][6, 8, 7, 38] dealing with model selection and
parameter estimation (for Normal and multi-state vari-
ables) for problems of mixture modelling (also known as
clustering, numerical taxonomy or, e.g. [3], “intrinsic
classification”).

An important special case of the Minimum Message
Length principle is an observation of Chaitin[9] that data
can be regarded as “random” if there is no theory, H, de-
scribing the data which results in a shorter total message
length than the null theory results in. For a comparison
with the related Minimum Description Length (MDL)
work of Rissanen[28, 29], see, e.g., [32]. We discuss later
some (other) applications of MMTL.

2 Parameter Estimation by

MML

Given data z and parameters g, let h(é) be the prior
probability distribution on @, let p(a:|5) be the likelihood,
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let L = —logp(z|@) be the negative log-likelihood and
let
F=E("0"0/0607) (2)

be the Fisher information, the determinant of the (Fisher
information) matrix of expected second partial deriva-
tives of the negative log-likelihood. Then the MML es-
timate of § [43, p245] is that value of § minimising the
message length,

- - -

— log(h(D)p(z|@)/\/ F(B)) + 1/2l0g(c/12)  (3)

(Tf € is the measurement accuracy of the data and N
is the number of data things, then we add the constant
term N log(1/€) to the length of the message. This is
elaborated upon elsewhere[43, p245][39, pp1-3].)

The two-part message describing the data thus com-
prises first, a theory, which is the MML parameter esti-
mate(s), and, second, the data given this theory.

It is reasonably clear to see that a finite coding can be
given when the data is discrete or multi-state. For con-
tinuous data, we also acknowledge that it must only have
been stated to finite precision by virtue of the fact that
it was able to be (finitely) recorded. (In practice[41], as
below equation (3), we assume that, for a given continu-
ous or circular attribute, all measurements are made to
some accuracy, €.) Just as all recorded data is finitely
recorded and can be finitely represented, by acknowl-
edging an uncertainty region in the MML estimate of
approximately[43, 36, 39] \/12/F(#), the MML estimate
is stated to a (non-zero) finite precision. The MML es-
timate has a genuine, non-zero, prior probability (not a
density) and can be encoded by a genuine finite code.
(Indeed, the object of MML is to choose a finitely stated
estimate or hypothesis, H, to make the two-part message
of length —log,(Pr(H)) — log,(Pr(D|H)) stating H fol-
lowed by D given H as short as possible.) The MML
theory is thus different, in general, from the standard
Bayesian maximum a posteriori (MAP) theory.

In the remainder of this section, we give several ex-
amples of the result of using the MML formula to ob-
tain parameter estimates from “innocuous” priors. For
the Gaussian, multi-state and Poisson distributions, the
MML estimate can be written in a simple analytic form
and closely approximates the Maximum Likelihood (ML)
estimate. For the von Mises distribution, the estimators
take a messier form[30, 18, 39, 14].

The following two sections are on extending MML pa-
rameter estimation to MML mixture modelling, and on
the invariance[43, 38] of MML and the consistency and
efficiency[43, 36, 1] of MML. Further sections mention al-
ternative mixture modelling programs, and applications
of and extensions to the Snob program.

2.1 Gaussian Variables

For a Normal distribution (with sample size, N), as-
suming a uniform prior on g and a scale-invariant,
1/o prior on o, we get that the Maximum Likelihood
(ML) and MML estimates of the mean concur, i.e., that
pamr = finr = 2. Letting s* = 5" (z; — 2)?, we get
that 0%y, = s?/N and[37, p190] that

o*mmr = s /(N — 1) (4)

corrects this minor but well-known bias in the Maximum
Likelihood estimate.

2.2 Discrete, Multi-State Variables

Since multi-state attributes are discrete, the above issues
of measurement accuracy do not arise.

For a multi-state distribution with M states, a
(“colourless” ) uniform prior, A(p) = (M —1)!, is assumed
over the (M — 1)-dimensional region of hyper-volume
1/(M—1)! givenby p1 +pa+...+puw=1; pi >0.

Letting n,, be the number of things in state m and
N = ni+...4npr, minimising the message length formula
gives that the MML estimate of py, is given[37, p187(4),
ppl91-194][41] by

Pm = (nm +1/2)/(N + M/2) ()

This nominally gives rise to a (minimum) message

length[37, p187(4),p194(28)] of

(M—=1)log(N/12+1)/2—log(M—1)1=> "(nm+1/2)log pm
) (6)

for both stating the parameter estimates and then en-
coding the things in light of these parameter estimates.

2.3 Poisson Variables

Earlier versions of Snob originally[37, 33, 34] permitted
models of classes whose variables were assumed to come
from a combination of either (discrete) multi-state or
(continuous) Normal distributions. Snob has since been
augmented by permitting Poisson distributions and von
Mises circular distributions[39, 40, 14].

With « the population rate, ¢ the total count and
t the total time, with a prior on the rate, r, of
h(r) = (1/a).e~"* we get an MML estimate of

fMMLZ(C—i—l/Q)/(t—}-l/a) (7)



2.4 von Mises Circular Variables

The von Mises distribution, M3(y, ), with mean direc-
tion p, and concentration parameter, &, is a circular ana-
logue of the Normal distribution[18, 21, 39], — both be-
ing maximum entropy distributions. Letting Iy(x) be
the relevant normalisation constant, it has probability
density function (p.d.f.)

F(elu, k) = (1/2mlo())e™ o) (8)

and corresponds to the distribution of the angle, x, of a
circular pendulum in a uniform field (at angle p) sub-
jected to thermal fluctuations, with k representing the
ratio of field strength to temperature. For small &, it
tends to a uniform distribution and for large «, it tends
to a Normal distribution with variance 1/k. Circular
data arises commonly in many fields[18, 12].

MML estimation of the von Mises concentration pa-
rameter, k, is obtained by minimising the earlier formula
for the message length, using[39] a uniform prior on p in
[0, 27) and the prior h3(k) = /(1 + f’i2)3/2 on k. The
contrast between MML and ML estimation is sharper
for the von Mises distribution than it is for the Nor-
mal, multi-state and Poisson distributions, with Monte
Carlo simulations[39, pp12-18] showing a very impres-
sive performance by the MML estimator against ML
and other classical rivals (e.g. marginalised Maximum
Likelihood)[30, 18].

Being able to associate a message length both with the
number of components and, in turn, with each compo-
nent enables us to use (the minimisation of) the message
length as a natural metric for model selection.

2.5 Corrections (and missing data)

Additionally, in calculating the length of the part 2 of the
message, D given H, appropriate corrections are made
(e.g. Shepherd’s approximation for the Normal distri-
bution, or when M > N for the multi-nomial distribu-
tion) to account for expected effects on this length of
rounding-off parameter values to limited precision.

We further note that, in principle, a separate code-
word of some length can be set aside for missing data.
The transmission of the missing data will thus be of con-
stant length regardless of the hypothesised classification,
and as such will affect neither the minimisation of the
message length nor the (statistical) inference.

2.6 A note on higher dimensions

A slight saving can be made in the length of the state-
ment of a message of two or more parameters by gener-
alising the 1-dimensional case at the start of this section

to permit (e.g.) in 2 dimensions, the uncertainty re-
gion to be a hexagon rather than a rectangle since (in
short) both hexagons and rectangles tile the Euclidean
plane but a hexagon has a smaller (average or) expected
squared distance from its centre than a rectangle or any
other tiling shape. This is quantified elsewhere[43, 39] in
terms of lattice constants[11] for optimally! tesselating
Voronoi regions.

3 Applying MML to Mixture
Modelling - the Snob Program

Snob uses MML for both the model selection (number
of components and assignment of data things to com-
ponents) and parameter estimation (estimating means
and standard deviations, etc.). Snob will prefer to hy-
pothesise the existence of an additional component in
the data precisely when the information cost of stating
the parameter estimates for this additional component
is more than offset by the information gain in stating
the things assigned to this new component in terms of
the newer, more appropriate, parameter estimates. Re-
call throughout the equivalence[38] between the proba-
bility paradigm and the message length paradigm, with
an event of probability p corresponding to a message of
length | = —log, p bits, and a message of length [ bits
corresponding to a probability of p = 27!, That stated
and understood, 1t seems conceptually simpler to con-
tinue below in the message length paradigm.

3.1 Stating the message — a first draft

Following earlier work[37, 33, 34, 41], we suppose the
data (for mixture modelling) to be given as a matrix of
D attribute values for each of N “things”, with some at-
tribute values possibly missing. We assume the variables
to be independent of one another.

The first part of the message, stating the hypothesis,
H, comprises several concatenated message fragments,
stating in turn:

la. The number of components. (All numbers are
considered equally likely a priori, although this could
easily be modified.)

1b. The relative abundance of each component. (Cre-
ating names or labels for each component of length
—log, of the relative abundance, via a Huffman code,
gives us a way of referring to components later when,
e.g., we wish to say which component a particular data
thing belongs to.)

lin terms of minimum average squared distance from the centre
for a region of unit hyper-volume



lc. For each component, the distribution parameters
of the component (as discussed in Section 2). Each pa-
rameter is considered to be specified to a precision of
the order of its expected estimation error or uncertainty
(see Section 2 or, e.g., [39, pp3—4]). For a larger compo-
nent, the parameters will be encoded to greater precision
and hence by longer fragments than for a less abundant
component.

1d. For each thing, the component to which it is esti-
mated to belong. (This can be done using the Huffman
code referred to in 1(b) above.)

Having stated in part 1 of the message above, our
hypothesis, H, about how many components there are
and what the distribution parameters (u, o, etc.) are
for each attribute for each component, in part 2 of the
message we need to state the data, D, in light of this
hypothesised model, H.

The details of the encoding and of the calculation of
the length of part 1 of the message may be found in
Section 2 and elsewhere[37, 39]. It is perhaps worth not-
ing here that since our objective is to minimise the mes-
sage length (and maximise the posterior probability), we
never need construct a message - we only need be able
to calculate its length.

Given that part 1(d) of the message told us which com-
ponent each thing was estimated to belong to and that,
for each component, part 1(c) gives us the (MML) esti-
mates of the distribution parameters for each attribute,
part 2 of the message now encodes each attribute value
of each thing in turn in terms of the distribution param-
eters (for each attribute) for the thing’s component.

3.2 Stating the message more concisely
using partial assignment

Part 1(d) of the message described in the previous
section (§3.1) implicitly restricts us to hypotheses, H,
which assert with 100% definiteness which component
each thing belongs to. Given that the population that
we might encounter could consist of two different but
highly over-lapping distributions, forcing us to state def-
initely which component each thing belongs to 1s bound
to cause us to mis-classify outliers from one distribu-
tion as belonging to another. In the case of two over-
lapping (but distinguishable) 1-dimensional Normal dis-
tributions, this would cause us to over-estimate the dif-
ference in the component means and under-estimate the
component standard deviations.

Since what we seek is a message which enables us to
encode the attribute values of each thing as concisely
as possible, we note that a shorter message than that of
Section 3.1 can be obtained by a probabilistic (or partial)

assignment of things to components. The reason for this
is that[33, §3][34, p77]if p(j, ),5 = 1, ..., J, is the proba-
bility of component j generating datum z, then the total
assignment of z to its best component results in a mes-
sage length of —log(max; p(j,z)) to encode z whereas,
letting P(2) = >_; p(j, #), a partial assignment of 2 hav-
ing probability p(j, z)/P(z) of being in component j re-
sults in a shorter message length of —log(P(z)) to en-
code z. As shown in [33, §3][34, p77][41], this shorter
length is achievable by a message which asserts definite
membership of each thing by use of a special coding trick.

4 Consistency, invariance and ef-
ficiency of MML estimates

If the outcomes of any random process are encoded us-
ing a code that is optimal for that process, the result-
ing binary string forms a completely random process[43,
p241]. This fact and the fact that general MML codes
are (by definition) optimal implicitly suggest that, given
sufficient data, MML will converge as closely as possible
to any underlying model. Indeed, MML can be thought
of as extending Chaitin’s idea of randomness[9] to al-
ways trying to fit given data with the shortest possible
computer program (plus noise) for generating it. This
general convergence result for MML has been explicitly
re-stated elsewhere[36, 1]. Similar arguments show that
MML estimates are not only consistent, but that they
are also efficient, i.e., that they converge to any true un-
derlying parameter value as quickly as possible.

The fact that \/F transforms like a prior 1s a basis
used by some to choose V/F as a Jeffrey’s prior. Al-
though we do not wish to advocate the use of a Jeffrey’s
prior, we do note that h/\/F is invariant under parame-
ter transformation. Since the likelihood function is also
invariant under parameter transformation, we see from
equation (3) that MML is also invariant under parameter
transformation[43, 38].

The problem of model selection and parameter estima-
tion in mixture modelling can, at its worst, be thought
of as a problem for which the number of parameters
to be estimated grows with the data. It is well known
that Maximum Likelihood can become inconsistent (or
very inefficient) with such problems; e.g. multiple factor
analysis[35] and the Neyman-Scott problem[24, 16].

5 Alternative Bayesian methods

In doing inductive inference of mixture models from
data, there are several levels of inference that we might



conceivably wish to make. We might wish simply to in-
fer the most likely number of components. Or, alterna-
tively, we might wish to infer the number of components,
their relative abundances and the parameter values as-
sociated with each component. Or, we might further
wish to infer the above and a probabilistic assignment
of things to components. It is these last two variations
which are variously understood by the term “mixture
modelling”. Finally, one might wish to infer the number
of components and the identities of their members with-
out regard to parameter estimation. This form is often
termed “clustering”.

MAP (maximum a posteriori) operates on a density
and must marginalise over (or integrate out) parameters
to estimate memberships, and must likewise marginalise
over memberships to estimate parameters. MAP (like
penalised likelihood methods) is unable consistently to
estimate both parameter values and class memberships.
Let us see why this is: consider some estimate of the
number of components followed by parameter estimates
for each of these components. (We could, for example,
have two equally abundant and substantially overlapping
1-dimensional Normal distributions with the same stan-
dard deviation, o.) If we assign each thing to its most
probable class, there will be a neat division of things to
classes, a division which will not be consistent with the
original estimates of means and o.

Rather than obtain probabilities from densities of
real-valued parameters by integrating (as MAP does),
MMIL obtains such probabilities by rounding-off (or
quantising)? the possible parameter estimates into cod-
ing blocks (or uncertainty regions) as discussed in Sec-
tion 2. By shortening the length of the message to a
minimum, MMTL arrives at the (quantised) theory of the
highest probability (see Section 1) whose resulting binary
string forms[43, p 241][41, p 41] a completely random
process. The fact that the first part of the message
string® and the second part of the message are com-
pletely random (and “noise”) means that the coding
trick* causes the assignment of data things to compo-
nents to be done (pseudo-)randomly in a way which is
consistent with the parameter estimates. If we do not
minimise the message length (by taking advantage of the
coding trick), as with MAP estimation, inconsistencies
will arise.

Results of Barron and Cover[1] show MML to be con-
sistent for any i.i.d. problem, and other results[36][43, p
241] show MML (and Strict MML[38, 43]) to be consis-
tent and efficient for problems of arbitrary generality.

2hence, Peter Cheeseman (private communication) refers to
MML as “quantised Bayes”
3and part 1d in particular see Section 3.1

4gsee Section 3.2

Furthermore, whereas MML is known to be
invariant[38, 43] under 1-to-1 transformations, the MAP
(posterior mode) estimate is known generally not to be
invariant under 1-to-1 transformations — e.g., von Mises
circular parameter estimation[14] in polar and Cartesian
co-ordinates.

While the authors do not advocate MAP, another
Bayesian method which the authors do advocate is es-
timation by minimising the Expected Kullback-Leibler
distance (min EKL). Like the MML estimator, min EKL
is invariant under re-parameterisation. Work to appear®
follows Wallace[36] and shows strong similarities between
Strict MML[38, 43] and min EKL (as is easily seen in the
case of M-state Bernoulli sampling).

6 Alternative mixture modelling
programs

The first Snob program (since out-dated)[37] was possi-
bly the first program for Gaussian mixture modelling,
although many statistical and machine learning ap-
proaches to this problem have been developed since (e.g.,
McLachlan et al.[23, 22], D. Fisher’s CobWeb[17]). Dis-
cussions of early alternative algorithms for Gaussian
mixture modelling have been given by Boulton[3].

6.1 Comparison with AutoClass II

Like Snob, AutoClass II [10] assumes® a prior distribu-
tion over the number of classes and independent prior
densities over the distribution parameters of the sample
class densities. However[34], AutoClass IT is not based
on a message length criterion, but instead makes a more
direct inference of the number of classes, J.

Let V be the vector of abundance and distribution
parameters needed to specify a model with J compo-
nents. Let P(J) be the prior probability of having J
components, and let A(V') be the prior probability of the
parameters, V. Let X denote the data, 1.e. the set of
attribute values for all things, and let P(X|V) be the
probability of obtaining data X given the J-component
model specified by V. The joint probability P(J, X) of
J and X is then

P(JX) = /h(V)P(XH/)dV )

and the posterior probability, P(J|X), of J given the
data, X, is

PJIX) = P(J,X)/(ZP(J}X)) (10)

J

5by the current authors, and R. Baxter and J. Oliver
8This sub-section is very much a re-writing of [34, pp78-80].



The calculation of the posterior, P(J|X), requires
the calculation of an integral for each possible num-
ber of classes, J, in order to obtain the joint proba-
bility, P(J,X). The integrand is proportional to the
posterior density of the parameters of a J-class model,
hV) x P(X|V).

AutoClass IT approximates the integral by making the
assumption that most of the contribution to the integral
will come from the neighbourhood of the highest peak
value of the integrand. Tt effectively fits a Gaussian func-
tion to the integrand at this peak and uses the integral
of the Gaussian as its estimate of the true integral. Let-
ting F' be the Fisher information (from Section 2), the
estimate is very similar, both analytically and numeri-
cally, to the quantity h(V)x P(X|V)/VF, which is what
MML (in general) and Snob (in particular) endeavour to
maximise. Thus, although AutoClass II is differently
motivated from Snob, in practice it gives almost identi-
cal results.

6.2 Comparison with other methods

Oliver et al.[25] re-wrote the Gaussian mixture modelling
part of Snob[41, 42] by modifying the Bayesian priors
and introducing lattice constants[43, 39] (see Section 2.5)
and then empirically showed a successful performance
of (this slightly modified) Snob against ATC (Akaike’s
Information Criterion), BIC [28] and other methods.

The literature does not yet seem to contain any al-
ternative algorithms for mixture modelling of von Mises
circular and Poisson distributions.

In general, with problems such as mixture modelling or
multiple factor analysis where the number of parameters
to be estimated increases with (and is potentially pro-
portional to) the amount of data, one must beware Max-
imum Likelihood and MAP methods, which are both
liable[24, 16] to give inconsistent results.

7 Snob (and MML) Applications

Earlier applications of Snob include several to medi-
cal, psychological, biological and exploratory geological
data, with a survey in [41]. The Poisson module seems
to be accurately able to discriminate between pseudo-
randomly generated classes from different Poisson dis-
tributions. It has also been used to analyse word-counts
from a data-set of 17th Century texts. On this data-
set, a shorter message length was obtained by using a
Normal model than a Poisson model, and hence MML
advocated the Normal model. The von Mises module
has found clusters in data of several thousand sets of

protein dihedral angles[12]. The Poisson module is cur-
rently being used to model run lengths of helices and
other protein conformations as being a mixture of Pois-
son distributions. This work should indirectly lead to a
better way of predicting protein conformations.

Extensive surveys of Snob applications are given in
Patrick[27] and Wallace and Dowe[41], with a recent ap-
plication of Gaussian mixture modelling to data on mem-
bers of grieving families is given in Kissane et al.[20].

In applying Snob, a difference of more than 5 to
6 bits[43, p251] or of more than 10 bits[33] might be
deemed to be statistically significant under certain mod-
elling conditions.

As well as having been applied to mixture models (dis-
cussed here), MML has also been successfully applied to
a variety of problems of parameter estimation[37, 38, 43,
36, 39, 40, 14, 16], hypothesis testing[43, 39], Hidden
Markov Models[19] and other multi-variate models[43,
36, 44, 35, 16]. Further references are given in [13].

8 Notes on further work and
Snob program extensions

The Snob program currently implicitly assumes that
variables are independent and uncorrelated. This could
be modified to permit single linear (Gaussian) fac-
tor analysis[44] or multiple linear (Gaussian) factor
analysis[35], or to model correlations via an inverse
Wishart or some other such prior.

It would not be too difficult[41] to permit the user to
modify the colourless priors (see Section 2) used by Snob
to better represent the user’s prior beliefs (or knowledge,
or bias).

MML estimators have been obtained for the spheri-
cal Fisher distribution[15] and work is currently under-
way[26] to deal with the mixture modelling of these.

When there are two or more overlapping components,
a slight inefficiency will arise in the message length cal-
culations since parameters will be stated to a slightly
higher than necessary degree of precision. The correc-
tion for this can be computationally very slow and has
been inspected in the Gaussian case by Baxter[2].

9 Availability of the Snob pro-
gram

The current version of the Snob program (written
in Fortran 77) is freely available for not-for-profit,
academic research, and not for re-distribution, from

ftp://ftp.cs.monash.edu.au/pub/snob/Snob.README



(or from C. S. Wallace). Published or otherwise recorded
work using Snob should cite the current paper. User
guidelines are given in[41] and in the documentation file,
snob.doc .
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