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Abstract. This paper investigates the coding of change-points in the
information-theoretic Minimum Message Length (MML) framework. Change-
point coding regions affect model selection and parameter estimation
in problems such as time series segmentation and decision trees. The
Minimum Message Length (MML) and Minimum Description Length
(MDL78) approaches to change-point problems have been shown to per-
form well by several authors. In this paper we compare some published
MML and MDL78 methods and introduce some new MML approxima-
tions called ‘MMLDc’ and ‘MMLDF’. These new approximations are
empirically compared with Strict MML (SMML), Fairly Strict MML
(FSMML), MML68, the Minimum Expected Kullback-Leibler Distance
(MEKLD) loss function and MDL78 on a tractable binomial change-
point problem.

1 Introduction

Change-points can be found in many machine learning problems. They arise
where there is a need to partition data into contiguous groups which are to
be modelled distinctly. The inference of change-points (the boundaries of the
contiguous groups) is important since change-points describe a point of transition
between different states of stochastic behaviour of the data. They can be used
to explain the generating process and also for prediction of future data.

The Minimum Message Length (MML) principle [1–3] is an invariant Bayesian
point estimation technique based on information theory. MML selects regions
from the parameter space which contain models that can justify themselves with
high posterior probability mass [3, page 276]. Using MML we are able to capture
the important information in the posterior. For example, the best explanation
of the data might be that “a change-point occurred between times t1 and t2 and
the point estimate that best summarizes this region is t̂”. The MML method
is especially useful when many change-points are being estimated and on large
data-sets - for example, segmentation of a DNA string. DNA strings can be very
large, containing millions of characters. It would be impractical to deal with a
posterior distribution over such strings using contemporary computational tech-
niques.



Previous work on coding change-point parameters in the MML framework
has resulted in analytical approximations which treat the change-point as a
continuous parameter [4–7] or avoid stating them altogether [8]. These methods
work well in practice. However, change-points are realized as discrete parameters
since they partition a data sample, and in this paper we investigate new MML
approximations which treat them discretely.

The paper proceeds by describing a binomial change-point problem. We then
consider the two computationally infeasible MML criteria: Strict MML (SMML)
and Fairly Strict MML (FSMML) in Section 3.1 and 3.2. The algorithms to
compute the SMML and FSMML codes have exponential time complexity for
the binomial problem, which limits the experiments to small samples, but the
results still give insight into the behaviour of the methods. We then describe two
new approximations called MMLDc and MMLDF. These are practical methods
that are motivated by SMML (in part), FSMML and MML87 [2]. In Section 5
we empirically compare these new approximations with SMML, FSMML and
other existing methods.

2 Binomial Problem

A Bernoulli trial is conducted with K independent coin tosses. The results are
recorded in a binary string x, where T = 0 and H = 1. It is suspected that the
bias of the coin may have changed at some point in time, φ, during the trial.
Given the data from the trial, we wish to infer the best explanation: was there
a change-point and, if so, where was it? We denote the change-point parameter
by φ and its parameter-space by Φ. We often speak in terms of the number of
groups of data rather than the number of change-points. And, in our notation,
we use G for the number of groups (G = {1, 2}).

The likelihood for the change-point model is:

f(x|G) =
{

f(x) = fnull(x) G = 1
f(x|φ) = fL(xφ1 )fR(xKφ+1) G = 2

(1)

where fnull is the model for the G = 1, no change-point hypothesis; and fL and
fR are the models for groups to the left and right of the change-point.

The likelihood function for an ordered Bernoulli trial, which we will be using
for fnull, fL and fR is:

fbin(x|p) = p
∑
xi(1− p)K−

∑
xi xi = 0, 1 (2)

To make the SMML and FSMML solutions computationally feasible, the ex-
periments are simplified as follows. For G = 2, we use a uniform prior over the
change-point location (i.e. h(φ) = 1

K−1 ), and we have a uniform prior for the
number of change-points (i.e. h(G=1) = h(G=2) = 0.5). The fnull, fL and fR
likelihood functions that we have chosen to use have fixed biases, and therefore
have no free parameters. The biases we use are 0.25, 0.15 and 0.75 for fnull,
fL and fR respectively. We use fixed coins to reduce the estimation problem to



the two discrete parameters of interest: G and φ. This is necessary to make the
construction of the SMML and FSMML (code-books and) estimators feasible.
However, even though we are using such a simple model there is still an expo-
nential step (see Section 3.1), so experimenting with large amounts of data is
not possible.

3 The Minimum Message Length Principle

In the Minimum Message Length (MML) framework [1–3], inference is framed
as a coding process. The aim is to construct a code-book that would (hypo-
thetically) allow for the transmission of the data in a two-part message over a
noiseless channel as briefly as possible. From coding theory we know that an
event with probability p can be encoded in a message with length − log2(p) bits
using an ideal Shannon code. Using a Bayesian setting, the sender and receiver
agree on a prior distribution h(θ) and likelihood function f(x|θ) over the param-
eter space Θ and data-space X. An estimator is a function from the data-space
to the parameter-space, denoted m : X → Θ. After observing some data x, we
can use an estimator to construct a two-part message encoding the estimate
θ̂ = m(x) in the first part and then the data using the estimate, x|m(x), in the
second.

3.1 Strict Minimum Message Length (SMML)

The probability that m(.) returns an estimate θ̂ is q(θ̂) =
∑
x:m(x)=θ̂ r(x), where

r(x) is the marginal probability of the data, x. The length of the first part of
the message is therefore − log q(m(x)), and the length of the second part of the
message is − log f(x|m(x)). The sender and receiver will use the code-book with
estimator, m(.), which minimises the expected message length:

I1 = −
∑
x∈X

r(x) (log q(m(x)) + log f(x|m(x))) (3)

The estimator which minimises I1 is called the Strict Minimum Message
Length (SMML) estimator [2, page 242] [9, 10, 3]. The construction of I1 is NP-
hard for most distributions. The only distributions that it has reportedly been
constructed for are the binomial and trinomial (trinomial using a heuristic) [9]
and N(µ, 1) [11, page 22].

The construction of SMML estimators is simplified when there exists a suf-
ficient statistic of lesser dimension than the data-space. Unfortunately, for uni-
variate change-point parameters, the minimal sufficient statistics are of the same
dimension as the data. Since we therefore cannot reduce the dimensionality of
the data-space, we are left with the SMML code-book construction problem of
trying to optimally assign the 2K elements of the data-space to estimates. For
the experiments in this paper we use an EM algorithm which randomly selects
an element of the data-space and then finds the optimal code-book assignment
θ̂ = m(x) using: θ̂ = argmaxθ∈Θ [q(θ)f(x|θ)].



This is not guaranteed to minimise I1 since the algorithm can easily get stuck
in local optima. To try and avoid this, we iterate the SMML algorithm a number
of times with and without seeding the algorithm with the FSMML partition
discussed in the next section. The resulting algorithm still has exponential time
complexity. The SMML estimates for up to K = 15 can be seen in Figure 1.
The bold dots in the diagram illustrate the point estimates that are used in
the code-book. We can see that for up to, and including, K = 7 the estimator
always infers that there was no change-point. As the data-space gets larger, point
estimates start appearing to the left of the change-point parameter space. This
asymmetry is explained by the choice of biases used.

3.2 Fairly Strict Minimum Message Length (FSMML)

The FSMML [12] estimator is an approximation to SMML based on a partition
of the parameter space. The FSMML expected message length is:

I1a = −
∑
θ̂∈Θ∗

q(θ̂) log q(θ̂)−
∑
θ̂∈Θ∗

∫
θ∈s(θ̂)

h(θ)
∑
x∈X

f(x|θ) log f(x|θ̂) dθ (4)

where q(θ̂) is approximated as q(θ̂) =
∫
θ∈s(θ̂) h(θ) dθ, Θ∗ is the set of point

estimates, and s(θ̂) is the region of the parameter-space which is grouped with
point estimate θ̂.

We minimise I1a by searching for the optimal partition of the parameter-
space and the θ̂ for each segment of the partition. Since I1a consists of a sum
over independent partitions, we can use W. D. Fisher’s [13] polynomial time
dynamic programming algorithm1. We therefore seek the partition of change-
points and the estimates which minimise I1a. We allow the partition to contain
models from different subspaces since all we are attempting to do is group similar
models in such a way that minimises the expected two-part message length.

The algorithm we use is guaranteed to find the optimal solution. It consists
of a high-order polynomial step to find the partition (using Fisher’s algorithm),
and an exponential step to compute a revised version of the message length
(I1b in the Figures). The FSMML partitions for up to K = 15 can be seen in
Figure 2. The partition is represented by the solid shapes, and the bold dots
represent the point estimates used in each region. We can see that once K is
greater than eight, the partitions consist of models from different subspaces.
This allows data generated by change-points on the right to be modelled by the
no change-point model. What the FSMML partition is saying is that we cannot
reliably distinguish between models in this region, and they are best modelled
with the no change-point model. In the figures, the FSMML code-book looks
very similar to the SMML code-book. However, as expected, for many values of
K, the SMML estimator has a slightly better message length. This is because it
is able to individually assign elements of the data-space to estimates.
1 This is the same algorithm that has been used for partitioning the data-space in the

SMML binomial case [9].



Fig. 1. SMML Estimates K = 2..15
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Fig. 2. FSMML Partitions K = 2..15
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3.3 MML68 Change-Point Approximation

Oliver, Baxter and co-workers have applied the MML68 [1] estimator methodol-
ogy to the segmentation problem with Gaussian segments [4] [11, chapter 9] [5, 6].
They have derived MML formulas for stating the change-point locations to an op-
timal precision independently of the segment parameters. The same method has
been used [7] for the problem of finding change-points in noisy binary sequences
[14] - where it compared favourably with Akaike’s Information Criterion (AIC),
Schwarz’s Bayesian Information Criterion (BIC), an MDL-motivated metric of
Kearns et al. [14] and a more correct version of Minimum Description Length[7].

We apply the MML68 approximation to the binomial problem in this paper.
Assuming that the true change-point is uniformly distributed in some range of
width, R, we encode the data using the point estimate φ̂ at the centre of this
region. The true change-point is equally likely to be to the right or to the left of
the point estimate. If it is located to the right then its expected value is φ̂+ R

4 ,
and if it is located to the left its expected value is φ̂− R

4 . The expected message
length is computed by averaging the expected coding inefficiency of these two
scenarios which for our Bernoulli problem simplifies to an expression involving
the Kullback-Leibler distance, KL(.||.):

MessLen ≈ − log(
R

K − 1
) +

R

8
(KL(pR||pL) +KL(pL||pR))− log f(x|φ̂) (5)

where pL and pR correspond to the distributions of the coins to the left and
right of the change-point respectively. Using Equation 5, the size of the region
which minimises the message length is easily derived.

4 A New Approximation to FSMML: MMLD

Minimum Message Length approximation D (MMLD) can be thought of as a
numerical approximation to FSMML. It was proposed by D. L. Dowe and has
been investigated by his student [15]. MMLD is based on choosing a region
R of the parameter space after observing some data. It was partly motivated
by improving the Taylor expansion approximation of MML87 [2] while retaining
invariance and, like MML87, avoids the problem of creating the whole code-book,
which would typically require enumeration of the data and parameter spaces in
SMML and FSMML. Given an uncertainty region, R, MMLD approximates the
length of the first part of the message as the negative log integral of the prior
over R (like FSMML). The length of the second part is approximated by the
expected value (with respect to the prior), over R, of the negative log-likelihood.
This gives rise to an MMLD message length of

MessLen ≈ − log
(∫

R

h(θ) dθ
)
−
∫
R
h(θ) log f(x|θ) dθ∫

R
h(θ) dθ

(6)

Equation 6 makes no explicit claim about which point estimate should be
used to encode data for the region, R. Once the region has been found which



minimises it, we need to find a point estimate which summarizes the models in
the region. Since the estimates produced by the FSMML estimator are equivalent
to the minimum expected Kullback-Leibler distance estimator (the expectation
being taken with respect to the prior over the region, rather than the posterior)
[12, 10], we have used this for the experiments involving MMLD:

θ̂ = argminθ̂∈R

∫
θ∈R

h(θ)KL(θ, θ̂) dθ (7)

Whereas FSMML can build code-books consisting of non-contiguous regions
(i.e., combine modes or models from different subspaces) with minimum expected
message length, MMLD cannot in general. This is because MMLD does not take
into account the similarity of the models it combines in R - it only cares about
their prior probability and likelihood. If we attempt to build non-contiguous
regions, then in variable dimension problems or where the likelihood is multi-
modal, MMLD will possibly combine modes. The models contained within these
modes may be quite different (i.e., have large Kullback-Leibler distances), or
they may be similar (i.e., have small Kullback-Leibler distances). For the latter
case, combining modes is a valid thing to do. However, in general, we would
expect the models contained in two distinct modes to be quite different and, for
inference, we risk underestimating the message length if they are grouped into
the same region.

So, rather than simply choose the region R to optimise Dowe’s MMLD mes-
sage length expression in Equation 6, Fitzgibbon has suggested that we invoke
the FSMML ‘Boundary Rule’ [12] to determine whether a model should be con-
sidered for membership of R. The Boundary Rule is a heuristic used to choose
the optimal partition for the FSMML expected message length equation (Equa-
tion 4), where a candidate model θ is considered to be a member of the region
(with point estimate θ̂ - the minimum prior-weighted expected Kullback-Leibler
distance estimate for the region) if the following constraint is satisfied:

θ ∈ R iff KL(θ, θ̂) ≤
∫
θ∈R h(θ)KL(θ, θ̂) dθ∫

θ∈R h(θ)
+ 1

We denote the MMLD approximation augmented by the FSMML Bound-
ary Rule as MMLDF. While other (non-contiguous) versions of MMLD exist,
throughout the remainder of this paper, MMLDc will refer to using a contiguous
region (i.e. R contains only models of the same dimension and from a single
mode). We include both MMLDc and MMLDF in the experiments to compare
the advantage of allowing the region to consist of models from different sub-
spaces. For the binomial problem with known biases, the parameter space is
discrete - so an exhaustive search for the optimal region was performed.

5 Empirical Comparison and Discussion

Compact coding methods attempt to minimise the expected length of a two-
part message. However, they cannot be judged on this criterion since - other



than SMML and FSMML - the methods only approximate the message length.
Furthermore, we are not really interested in creating short messages per se but
rather in how good the inferred statistical model is. The definition of a good
model will depend on what use the model will be put to. We therefore use the
following general criteria: the Kullback-Leibler (KL) distance between the true
and inferred models; and the mean squared error in estimation of the change-
point location (if it exists). We have compared the MMLD approximation both
with and without the FSMML Boundary Rule (MMLDF and MMLDc respec-
tively) with SMML, FSMML, MML68 (as described in Section 3.3), Minimum
Description Length (MDL78) [16] and the Minimum Expected KL Distance loss
function (MEKLD) [10]. We ran 104 trials for each K = 2..15 where we sampled
from the prior and then generated data. Each method was given the data and
the biases of the coins used to generate the data and then asked to infer whether
or not a change-point occurred and, if so, where it was located.

We have plotted the average KL distance for each method in Figure 3. The
SMML and FSMML estimators had significantly higher KL distances than the
other methods for K > 4. MEKLD had the lowest on average, as expected.
MML68 performed well and was not far behind MEKLD. Our MMLDF estimator
was close behind MML68 and slightly better than our MMLDc estimator.

Figure 4 shows the average squared error in estimating the change-point loca-
tion for each method. The average is taken over the instances where the method
correctly inferred that there was a change-point. The SMML and FSMML es-
timators performed exceptionally well. Their good performance here and poor
KL distance performance indicates that they prefer not to infer a change-point
unless they are reasonably certain of its location. The MMLDF estimator comes
second to SMML and FSMML for K < 13. The MML68 method, which had
very good KL distance performance, performed poorly for this criterion.

We note that MMLDF outperforms MMLDc for both criteria, therefore pro-
viding evidence that building non-contiguous coding regions - which SMML the-
ory and FSMML theory both advocate - is advantageous. The MMLDF estima-
tor appears to be robust and has good explanatory (i.e., has small squared error
in change-point location when correctly inferring change-points) and predictive
powers (i.e., has small KL distances).

6 Conclusion

We have empirically compared a number of information-theoretic methods for
estimating change-points including two new Minimum Message Length approx-
imations. The comparison was based on a binomial problem using small sample
sizes which allowed us to include the computationally impractical Strict MML
(SMML) and Fairly SMML (FSMML) estimators. In the comparison we found
that the performance of the MMLDc approximation was improved by incorpo-
rating the Kullback-Leibler Boundary Rule, therefore allowing coding regions to
contain models from different subspaces (MMLDF) whilst still approximating an
efficient FSMML code-book. MMLDF was robust and performed well in terms
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of Kullback-Leibler distance and (squared) error in estimation of the change-
point location (where inferred). Use of MMLD and variations for more difficult
problems will be investigated in forthcoming work.
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