
1

A computer program capable of passing I.Q. tests

Pritika Sanghi (psan5@student.monash.edu)
School of Computer Science and Software Engineering

Monash University, Clayton, VIC 3800 Australia

David L. Dowe
School of Computer Science and Software Engineering

Monash University, Clayton, VIC 3800 Australia

Abstract

The Imitation Game (Alan M. Turing, 1950), now
commonly known as the Turing Test (see, e.g., Oppy and
Dowe, http://plato.stanford.edu/entries/turing-test, 2003),
was proposed as a way in which thinking or intelligence
could be ascribed to any agent - including a computer
program or machine - able to play the game. People
routinely ascribe intelligence to humans and other
animals by a variety of means, including those discussed
by Turing. But when humans wish to specifically
quantify intelligence, this is most commonly done by
means of an intelligence quotient (I.Q.) or other aptitude
test. Many such aptitude test questions fit in to Turing's
(1950) framework of being able to be typewritten to a
teleprinter communicating between two rooms - or, using
modern technology still well within the spirit of Turing's
game, being able to be typed as text into a World Wide
Web (WWW) page applet. Sequences of such questions -
such as an entire I.Q. test of them - may well form a
strict subset of Turing imitation games, since they
typically are independent of one another and do not take
any advantage (or even account) of the contextual
(conversational) framework of Turing's game. We
present here a fairly elementary WWW-based computer
program (shown in large part at http://www-
personal.monash.edu.au/~psan5) which, on a variety of
I.Q. tests, regularly obtains a score close to the purported
average human score of 100. One conclusion that some
might make is to ascribe intelligence to the program.
Another conclusion to make is that the reason that I.Q.
test success can be automated with comparative ease is
that administering an I.Q. test requires little intelligence -
it requires comparatively little more than giving a list of
questions with known answers. Turing's imitation game
test requires greater intelligence to pass largely because
of the flexibility it permits to an intelligent questioner -
such as in the use of language and in taking into account
the responses to previous questions before continuing the
line of questioning. We also briefly consider
administration of the imitation game “test” via “detection 
programs” as a test in its own right (Dowe and Hajek,
1998; CalTech Turing Tournament,
http://turing.ssel.caltech.edu, 2003). All other things
being equal, a more intelligent administrator can
administer a more challenging test - and this notion can
be continued recursively (Dowe and Hajek, 1998).

1. Introduction
Alan Turing suggested the Imitation Game (Alan M.
Turing, 1950), now known as the Turing Test, in 1950
as a way of ascribing thinking, or intelligence, to
machines. It involves the interrogation by a judge of a
human and a machine using teletype from behind a
screen where the judge knows that one is a human and
one is a machine, but the judge does not know a priori
which is which. The test requires the machine to fool
the judge into believing that it is human and that the
human is the machine - and the Turing Test has
certainly been frequently discussed and surveyed
(Moor, 2000; Saygin et al., 2000; Copeland, 2000; V.
Akman and P. Blackburn, 2000; Oppy and Dowe,
2003). I.Q. tests are used to measure the level of
intelligence of humans. If a computer is made to take an
I.Q. test, it, too, can be given a score based on its
performance. Given that such scores are used as a
measure of human intelligence, it seems plausible that
such a score might be used as an indication of the level
of intelligence of the computer.

We present here a program which takes I.Q. tests in
the form of questions typed in the text box of a simple
webpage. The score can be calculated based on the
number of questions it answers correctly. In cases
where the question cannot (yet) be represented to the
program (e.g., picture questions, such as in Figure 1)
and there are n options, the program gets a score of 1/n
for the question. This is because the probability of
getting the answer right is 1/n and so the long run
average score from guessing is (n-1)/n x 0 + 1/n x 1 =
1/n.

More is said about I.Q. tests and their constituent
questions in Section 2, the program in Section 3, and
the program's performance in Section 4; and in Section
5 we discuss administration of the Turing Test as a test
in its own right and the relevance of information-
theoretic compression to inductive learning and
intelligence.



2

Figure 1: A picture question.

2. I.Q. Tests
Intelligence Quotient or I.Q. (A.C.E., unknown; H. J.
Eysenck, 1988; Helenelund HB, 2001;
http://heim.ifi.uio.no/~davidra/IQ/, unknown; I.Q. Test
Labs, 2003; KHAN-UUL Institute, 2001; Mensa, 2000;
Testedich.de, 2002) is used as a measure of human
intelligence. The first I.Q. test was conducted by a
French scholar, Alfred Binet, around 1906 (KHAN-
UUL Institute, 2001; Enyclopedia Britannica, 2000).
The original purpose of the test was to identify slow
learners in school. I.Q. is the ratio of mental age over
chronological age. For example, consider a child of age
12. A mental age of 10 will suggest an I.Q. of 10/12 x
100 = 83; and a mental age of 14 will suggest an I.Q. of
14/12 x 100 = 117. An I.Q. of 100 implies that the
mental age is same as the chronological age.

If a computer program can achieve a score between
90 and 110, it can arguably be said to have average
intelligence (H. J. Eysenck, 1988). The program should
ideally not be test specific, as it would be rather
abnormal to get a score of over 120 on one I.Q. test and
under 50 on another test.

2.1 Forms of frequently asked I.Q. questions
Most I.Q. tests seem to have certain similar
characteristics. An analysis of various I.Q. tests (such as
those listed above) shows that the following types of
questions are common:

1. Insert missing number
a. At end
b. In middle

2. Insert missing letter
a. At end
b. In middle

3. Insert suffix/prefix to complete two or more
words

4. Complete matrix of numbers/characters (see
Figure 2)

5. Questions involving directions
6. Questions involving comparison
7. Picture questions (see Figure 1)
8. Pick the odd man out (word or picture)

9. Coding

Figure 2: A matrix question

3. The Program
The program, which can be accessed from http://www-
personal.monash.edu.au/~psan5, recognizes these
characteristics (forms of frequently asked I.Q.
questions) from Section 2.1 and tries to find the best-
suited solution. It is written in Perl and is about 960
lines of code.

A parser with a restricted vocabulary and a basic
string search for keywords can be implemented to
recognise the type of question. It can then be simple for
the program to calculate the answer based on some pre-
defined rules.

A trivial way of recognising the question would be to
look for patterns such as “What is the next number in 
the sequence”. A small change in the format of the 
question will cause the current version of the program
to fall over. We can overcome this by looking for
certain keywords (e.g., number + sequence). A
comprehensive list of keywords can be made for each
type of question. If two questions have similar or
identical keywords, extra keywords or patterns need to
be included to differentiate between them.

A thorough list of possible keywords for a certain
type of question can be made by analysing a large
number of I.Q. tests. Even then there may be cases
where it cannot identify the question or identifies it
incorrectly. Provided the keyword list is made properly,
this should be rare.

Once the type of question is established, it can be
simple for the program to find the answer. An algorithm
that does calculations and/or searches can easily be
made that can find most of the answers to the questions.
A large number of questions that involve simple logic
can be programmed.
We now discuss the program’s answers to I.Q. 

questions of frequently asked forms, such as those from
Section 2.1.

3.1 Insert missing number or letter at end
Consider the question – “Insert the next number in the 
sequence - 1 2 3 4 5”. ‘Number’ could be replaced by 



3

‘digit’, and ‘sequence’ could be replaced by ‘series’. It 
could also be phrased as “Which number follows 
logically - 1 2 3 4 5” or “What is next in the sequence -
1 2 3 4 5”. Keywords for this type of question could be 
((insert || what || which) && (number || digit || sequence
|| series)), where ‘&&’ denotes ‘and’ and ‘||’ denotes 
‘or’. An example of phrasing that can be used for more
than one type of question would be – “What is next in 
the sequence - 1 2 3 4 5”, or “What is next in the 
sequence - A B C D E”. They can be differentiated by 
the fact that one has a sequence of numbers and the
other has letters. The keywords for number sequences
may be extended to check that there are only digits (0-
9) and separators in the sequence section. The keyword
for character sequences will not be extended as they can
contain numbers and characters in the sequence section.

In the case of sequence questions, certain types of
sequences (Arithmetic Progression, Geometric
Progression, Fibonacci Series, Powers of a series, etc.)
are used frequently in I.Q. tests - see, e.g., (A.C.E.,
unknown; H. J. Eysenck, 1988; Helenelund HB, 2001;
http://heim.ifi.uio.no/~davidra/IQ/, unknown; I.Q. Test
Labs, 2003; KHAN-UUL Institute, 2001; Mensa, 2000;
Testedich.de, 2002). If the given sequence is any of the
types of sequence described above, it can be checked
with ease. If it is, the next number/character can be
calculated simply according to the properties of the
sequence, although at least three numbers/letters are
required to find a pattern. The program can solve this
type of question from I.Q. tests most of the time. There
will be cases when an answer cannot be found or the
answer found is incorrect. Since it is rare for humans to
get all answers correct, it is not considered a big
problem.

3.2 Insert missing number or letter in middle
This type of question will be recognised using a
technique similar to the one used in Section 3.1. An
example would be ‘Insert the missing number: 10 20 ? 
40 50’. The program will look for a special character (x 
|| _ || ?) inside the sequence, where, again, ‘||’ denotes 
‘or’. The number/s or letter/s for that position/s can be 
guessed using the properties for sequences mentioned in
Section 3.1. The entire sequence is then checked. If
valid, the answer is found. This is not yet implemented
in the program.

3.3 Insert suffix/prefix to complete two or more
words
This kind of question can again be recognised by
keywords. For questions involving suffix and prefix
(e.g., What completes the first word and starts the
second: wi..nt), keywords could be ((suffix && prefix)
|| (complete && word)), where, ‘||’ denotes ‘or’ and 
‘&&’ denotes ‘and’. Brute force is then used to search 

for a suffix for the prefix from the word list. Next it
checks if that suffix is a prefix for the suffix.
Sometimes, only a suffix is requested for more than one
word (e.g., Insert a word of size 2 that completes the
words: ma, fa, chara (..)). The technique remains much
the same. Instead of checking if the prefix is valid the
next time it will check if it is a valid suffix for the rest
of the words. A repeated prefix can also be found using
the technique with slight modifications (e.g., Insert the
word of size 2 that completes the words: (..) de, ke, lt,
trix). Most of this is implemented in the program.
Currently, the program requires the question to be re-
formatted from ‘wi..nt’ (it is found on I.Q. tests in this 
or similar format) to ‘2-wi-nt’. This can be 
implemented but it hasn’t yet been done in the program. 
With the re-formatted input the program generally finds
the solution.

3.4 Complete matrix of numbers/characters
In order to complete the matrix, patterns (e.g., for
Figure 2, a column is double the previous column)
existing inside the matrix have to be identified. Once
they are identified, the pattern can be applied to find the
most appropriate value. Patterns can be found using the
following techniques:

1. The sum of rows can be the same.
2. It could be in the form described in Figure 3,
where ‘o’ represents an arithmetic function 
such as ‘+’, ‘-’, ‘*’, ‘/’, ‘̂’, etc. 

3. Operators (‘+’, ‘-’, ‘*’, ‘/’, ‘̂’, etc. and one 
‘=’) are inserted between columns. If the same 
combination is valid for each row, that is the
pattern.

4. Zig-zag through rows to find a pattern.
5. The matrix is transposed and above steps are

repeated.
6. Columns are shuffled and steps 3, 4 are

repeated.
This is not yet implemented in the program

Figure 3: Patterns in matrix questions

3.5 Questions involving directions
Keywords like (left || right || east || west || north || south)
can be used to identify questions involving directions.
Directions can be represented quite easily using



4

degrees. Assuming north to be 0o and moving
clockwise, east becomes 90o. The points can be
represented relative to the starting point. The distance
between them can be calculated using methods such as
Pythagoras’s theorem. For example, ‘Joe moves three 
blocks east, takes a right turn and walks further four
steps. How far is he from his original position?’ From 
the first part of the sentence it will take ‘three’ and 
‘east’ and make the new position 3 units 90o right of
north. Next, ‘right turn’ and ‘four’ will be taken into 
consideration, making the new position 90o right, 4
units away from previous position. The distance
between points can be calculated using properties of a
triangle. This is not yet implemented in the program.

3.6 Questions involving comparison
First, all the elements being compared should be listed.
Positions are given to elements relative to others based
on initial sentences. The list is parsed for elements,
which can be given position relative to other elements.
Consider, e.g., “A is taller than B, B is taller than C”. In 
the second parse, A, B, and C will be given positions
relative to one another (rather than merely the two
initial separate comparisons not relating A to C). The
two extremes and the complete, total ranking can then
be found. This is not yet implemented in the program.

3.7 Picture Questions
The aim of picture question is to check for pattern
recognition. It will be hard for a program to solve
picture questions (see, e.g., Figure 1). This is mainly
because it is tough to represent them in a teletype
environment. If the picture were defined symbolically,
perhaps too much work would have been done in overly
assisting the program. If the picture is described (e.g.,
the second element in the sequence is an unshaded
square with a diagonal top right to bottom left), then
parsing will be a challenge (see also Section 5.1). This
is not yet implemented in the program.

3.8 Odd man out
Odd man out questions are commonly used in I.Q. tests
(A.C.E., unknown; H. J. Eysenck, 1988; Helenelund
HB, 2001; http://heim.ifi.uio.no/~davidra/IQ/,
unknown; I.Q. Test Labs, 2003; KHAN-UUL Institute,
2001; Mensa, 2000; Testedich.de, 2002). They require
one to differentiate names of countries, cities,
vegetables, fruits, etc. To differentiate between objects,
one probably needs to understand their concept. But,
there may be many categories for objects (e.g., for
picture questions from Section 3.7, a circle is in both
the family of geometric shapes, and also geometric
shapes with no edges). It could be a challenge for some
time yet to make a computer program understand the
concept behind different pictorial objects. However,

odd man out questions not involving pictures may well
be amenable before too long to a search analogous to a
much more complicated version of that required in
Section 3.3. This is not yet implemented in the
program.

3.9 Coding
These questions generally involve coding from
alphabets to numbers or vice versa (e.g., If KNOW is
20 23 24 32, what is CODE?). These questions are of
the kind
(if && (a-z || A-Z || 0-9)+ && is && (a-z || A-Z || 0-9)+
&& what && is && (a-z || A-Z || 0-9)+), where ‘+’ 
denotes one or more and, as before, ‘||’ denotes ‘or’ and 
‘&&’ denotes ‘and’. A relation is found between 
‘KNOW’ and ‘20 23 24 32’ based on ACSII values. 
The same relation is then used to find the code for
‘CODE’. This is not yet implemented in the program.

3.10 Other kinds of questions
An I.Q. test that steers away from the usual way of
testing (certain types of questions can be expected most
of the time) or a non-standard test will be cause for
concern. Not being able to identify the questions, the
program will fail the test. It is highly unlikely that a
human can’t comprehend any or most of the questions 
on an I.Q. test.

4. Results– the program’s “I.Q.”
We present here the results of the program on various
I.Q. tests. Most of the questions from the I.Q. tests were
re-formatted before being entered to the program (see
Section 3).

Table 1: I.Q. Scores on various tests.

Test I.Q. Score Human
Average

A.C.E. I.Q. Test 108 100
Eysenck Test 1 107.5 90-110
Eysenck Test 2 107.5 90-110
Eysenck Test 3 101 90-110
Eysenck Test 4 103.25 90-110
Eysenck Test 5 107.5 90-110
Eysenck Test 6 95 90-110
Eysenck Test 7 112.5 90-110
Eysenck Test 8 110 90-110
I.Q. Test Labs 59 80-120
Testedich.de –The I.Q.
Test

84 100

I.Q. Test from Norway 60 100
Average 96.27 92-108

As seen from Table 1, the program scores high on
some tests and low on others. A link can be seen
between the score and the type of I.Q. test. The program



5

can attain a high score with ease on I.Q. tests which are
more focussed on mathematics, pattern recognition,
logical reasoning and computation. On the other hand,
I.Q. tests that are based on general knowledge, language
skills and understanding are a challenge to the program.
The case is often the reverse for humans. Of course,
human I.Q. tests are anthropomorphic (or
“chauvinistic”), and an intelligent non-English speaker,
non-human earthling or extraterrestrial could be
expected to struggle on an English-language I.Q. test.

5. Some thoughts and discussion
First, apart from relatively minor issues such as
memory and running speed, the “intelligence” of a 
computer presumably depends almost solely on the
software program it is running. That said, we now ask
some additional rhetorical questions.

Are I.Q. tests really a measure of our intelligence?
Will getting a higher score than a human mean that the
computer program is more intelligent than that human?

Without necessarily fully answering either or both of
these two questions, let us take this discussion in two
directions. In so doing, we shall consider two possible
modifications to the Turing test.

5.1 Administering the Turing test
Recalling Sections 2.1 and 3, most I.Q. test questions fit
straightforwardly into Turing’s original conversational 
framework. With however much more work (to a
human or possibly a non-human possibly poised with
pen(cil) and paper), picture/diagram questions can
probably also –by careful description –be brought
within Turing’s conversational framework. So, I.Q. test 
questions seem, by and large, to fit neatly into Turing’s 
conversational framework. Whereas the judge (or
administrator) of Turing’s imitation game test can lead 
the conversation in any number of directions given the
conversation so far, I.Q. test questions asked largely or
totally neglect the answers to previous questions. In
other words, an I.Q. test requires less intelligence to
administer than a Turing imitation game test –and this
is essentially why it is less challenging and easier (for a
computer program) to pass. This raises the issue that
intelligence is required to administer a Turing test–and
this ability could be used as a measure in a test for
intelligence. Of course, we can continue this recursively
(Dowe and Hajek, 1997; Dowe and Hajek, 1998). More
explicitly, some intelligence is required to pass a Turing
test (TT0). If we set up a new test, TT1, which is to
correctly administer/judge TT0, then that presumably or
seemingly requires more intelligence to pass. The test
for “detection programs” in the Caltech Turing 
Tournament (CalTech, 2003) is a case in point. And, of
course, we can continue this recursively (Dowe and

Hajek, 1997; Dowe and Hajek, 1998) and, e.g., set up a
new test, TT2, which is to correctly
administer/judge/detect in TT1. (Passing the Turing
Test, TT0, is analogous to writing a good academic
paper. Passing TT(1) is analogous to being a good
referee. Passing TT(2) is analogous to being a good
member of a program committee or editorial board –
one must be able to choose appropriate referees.)
Continuing recursively by induction, given test TT(i),
we can set up a new test, TT(i+1), which is to correctly
administer/judge/detect in TT(i). Etc. While all of the
above is true and TT(1), TT(2), …, TT(i), … are all 
interesting, salient and worthwhile directions in which
to re-examine the Turing Test (TT0), it would also at
least appear to follow by mathematical induction that
each of TT(1), TT(2), …, TT(i), … can be expressed –
albeit seemingly in increasing order of difficulty –in
Turing’s original conversational framework, TT0.

5.2 Inductive learning, compression and MML
The other direction in which we take this discussion is
the observation –see (Dowe and Hajek, 1998) and
elsewhere –that traits which seem to be necessary for
(human) intelligence and which certainly are assessed
in human I.Q. tests include rote learning (and memory),
deductive learning (e.g., via modus ponens) and
inductive learning. Inductive learning is perhaps the
most important, significant and impressive of these.
When asked for a list of great thinkers and minds, the
primary reason for the inclusion of Newton, Darwin,
Einstein and others is because of their inductive
inferences - or inductive learning - of theories (gravity
and laws of motion, evolution, relativity, etc.).

The relevance of compression to learning languages
is discussed in (Wolff, 1995). The Minimum Message
Length (MML) theory of inductive inference (Wallace
and Boulton, 1968; Wallace and Freeman, 1987;
Wallace and Dowe, 1999) states that the best theory, H,
to infer from data, D, is that which minimises the
(compressed) length of a two-part message transmitting
H followed by D given H. MML is a quantitative form
of Ockham’s razor (Needham and Dowe, 2001), 
rewarding simple theories which fit the data well. The
relationship between MML, Kolmogorov complexity
(Kolmogorov, 1965) and related (information-theoretic)
works (e.g., (Solomonoff, 1964)) is thoroughly
discussed in (Wallace and Dowe, 1999). MML is
relevant to inductively learning all range of models –
not just languages–from data.

Given the relevance of two-part MML compression
to inductive learning, Dowe and Hajek have argued
(Dowe and Hajek, 1997; Dowe and Hajek, 1998) that
an “additional requirement on Turing’s test is to insist 
that the agent being subjected to the Turing test not
only pass the test but also have a concise, compressed
representation of the subject domain”. Independently 



6

but quite relatedly, Hernandez-Orallo and Minaya-
Collado (1998) also propose that “intelligence is the 
ability of explanatory compression”. They then go on to 
propose a variation of the I.Q. test based on
Kolmogorov complexity.

6. Conclusion
While Section 5 considers two interesting possible
modifications to the Turing (imitation game) test, the
bulk of the paper concerns the performance of a
comparatively small computer program (approximately
960 lines of Perl code) on human I.Q. tests. The
program obtains very close to the purported human
average score both on a variety of I.Q. tests and on
average. Although some human pre-processing
admittedly takes place with some forms of questions, it
should be emphasised (see Section 3) that both viable
improvements in the parser(s) and an increase in the
number of question forms attempted should enhance the
program’s score while reducing or even eliminating 
human pre-processing requirements. In addition and at
the very least, even the current preliminary version of
the program could assist and augment the score of a
human able to parse the questions.

7. Acknowledgments
The second author expresses his life-long gratitude,
encouragement, best wishes and more to a life-long
special friend.

8. References
A.C.E. (unknown). Official A.C.E. I.Q. Test,

Association of Christian Era (A.C.E.),
http://www.aceviper.net/.

V. Akman and P. Blackburn (2000). Editorial: Alan
Turing and Artificial Intelligence. Journal of Logic,
Language & Information (vol. 9, no. 4, pp 391-395).

CalTech Turing Tournament (2003). Turing
Tournament at California Institute of Technology
(CALTECH), http://turing.ssel.caltech.edu.

B.J. Copeland (2000). The Turing Test, Minds and
Machines (vol. 10, no. 4, pp 519-539).

D.L. Dowe and A.R. Hajek (1997). A computational
extension to the Turing Test, Technical Report
#97/322, Department of Computer Science, Monash
University, Clayton 3168, Australia.

D.L. Dowe and A.R. Hajek (1998). A non-behavioural,
computational extension to the Turing Test,
Proceedings of the International Conference on
Computational Intelligence & Multimedia
Applications (ICCIMA'98) (pp 101-106), World
Scientific publishers (ISBN 981-02-3352-3), Feb.
1998, Gippsland, Australia.

Enyclopedia Britannica (2000). Britannica
Encyclopedia 2000 Deluxe Edition CD-ROM.

H.J. Eysenck (1962). “Know your own I.Q”, Penguin,
U.K.

Helenelund HB (2001). I.Q. Tests,
http://www.2h.com/iq-tests.html.

J. Hernandez-Orallo and N. Minaya-Collado (1998), A
Formal Definition of Intelligence Based on an
Intensional Variant of Algorithmic Complexity,
Proceedings of International Symposium of
Engineering of Intelligent Systems (EIS’98) (pp 146-
163), Tenerife, Spain.

http://heim.ifi.uio.no/~davidra/IQ/ (unknown). I.Q.
Test, Norway.

I.Q. Test Labs (2003). I.Q. Test,
www.intelligencetest.com/quizzes/quiz1/index.htm.

KHAN-UUL Institute (2001), IQ center, http://khan-
uul.mn/Eng/IQ_centre.html#4.

A.N. Kolmogorov (1965). Three approaches to the
quantitative definition of information, Problems in
Information Transmission (vol. 1, no. 1, pp 1-7).

Mensa (2000). Mensa Workout,
http://www.mensa.org/workout.html.

J.H. Moor (2000). Alan Turing (1912-1954), Minds and
Machines (vol. 10, no. 4, p 461).

S.L. Needham and D.L. Dowe (2001). Message Length
as an Effective Ockham’s Razor in Decision Tree 
Induction, Proc. 8th International Workshop on
Artificial Intelligence and Statistics (AI+STATS
2001) (pp 253-260), Key West, Florida, U.S.A.

Oppy, G.R. and D.L. Dowe (2003). Stanford
Encyclopedia of Philosophy
(http://plato.stanford.edu) entry on the Turing Test
(http://plato.stanford.edu/entries/turing-test), Thu. 10
Apr. 2003.

A.P. Saygin, I. Cicekli and V. Akman (2000). Turing
Test: 50 Years Later, Minds and Machines (vol. 10,
no. 4, pp 463-518).

R.J. Solomonoff (1964). A Formal Theory of Inductive
Inference I and II, Information and Control, 7 (pp 1-
22 & 224-254).

Testedich.de (2002). The I.Q. Test,
http://allthetests.com/tests/iqtest.php3.

Alan M. Turing (1950). Computing Machinery and
Intelligence, Mind, Vol 59, (pp 433-460); also at
http://www.loebner.net/Prizef/TuringArticle.html.

C.S. Wallace and D.M. Boulton (1968). An information
measure for classification, Computer Journal (vol.
11, pp 185-194).

C.S. Wallace and D.L. Dowe (1999). Minimum
Message Length and Kolmogorov Complexity,
Computer Journal (vol. 42, no. 4, pp 270-283).

C.S. Wallace and P.R. Freeman (1987). Estimation and
inference by compact coding, Journal of the Royal
Statistical Society (Series B) (vol. 49, pp 240-252).

J.G. Wolff (1995). Learning and reasoning as
information compression by multiple alignment,
unification and search, In A. Gammerman (ed.),
Computational Learning and Probabilistic Reasoning
(pp 223-236), Wiley, New York.


