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Abstract. We propose a multivariate decision tree inference scheme by
using the minimum message length (MML) principle (Wallace and Boul-
ton, 1968; Wallace and Dowe, 1999). The scheme uses MML coding as
an objective (goodness-of-fit) function on model selection and searches
with a simple evolution strategy. We test our multivariate tree inference
scheme on UCI machine learning repository data sets and compare with
the decision tree programs C4.5 and C5. The preliminary results show
that on average and on most data-sets, MML oblique trees clearly per-
form better than both C4.5 and C5 on both “right”/“wrong” accuracy
and probabilistic prediction - and with smaller trees, i.e., less leaf nodes.

1 Introduction

While there are a number of excellent decision tree learning algorithms such
as CART [2], C4.5 and C5 [13], much research effort has been continuously di-
rected to finding new and improved tree induction algorithms. Most decision
tree algorithms only test on one attribute at internal nodes, and these are often
referred to as univariate trees. One of the obvious limitations of univariate trees
is that their internal nodes can only separate the data with hyperplanes perpen-
dicular to the co-ordinate axes. Multivariate decision tree algorithms attempt
to generate decision trees by employing discriminant functions at internal nodes
with more than one attribute, enabling them to partition the instance space with
hyperplanes of arbitrary slope - rather than only parallel to the co-ordinate axes.

We propose an oblique decision tree inference scheme by using the mini-
mum message length (MML) principle [19, 21, 20, 17]. Test results show our new
oblique decision tree inference algorithms find smaller trees with better (or near
identical) accuracy compared to the standard univariate schemes, C4.5 and C5.

2 MML Inference of Multivariate Decision Trees

MML inference [19, 21, 8, 20, 17, 4, 5, 18] has been successfully implemented in
[22] to infer univariate decision trees (refining [14]) and in [12, 16, 17] to infer
univariate decision graphs, with the most recent decision graphs [16, 17] clearly
out-performing both C4.5 and C5 [13] on both real-world and artificial data-sets
on a range of test criteria - we had better “right”/“wrong” accuracy, substantially
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Fig. 1. The set of hyperplanes (Fig. 1a) defined by vector w ∈ Λ(θ), (Fig. 1b) a partial
sphere of radius θ formed by w ∈ Λ(θ) and (Fig. 1c) the upper bound of θ

better probabilistic score and [17, Table 4] fewer leaf nodes. In this paper, we
use MML to infer multivariate decision trees. The new multivariate, oblique,
decision tree scheme proposed here generalizes earlier MML decision tree work
and re-uses the Wallace and Patrick decision tree coding [22] as part of its coding
scheme. For further implementation details, please see [16].

2.1 Encoding an internal split using a linear discriminant function

To infer oblique decision trees by the MML principle, we extend the Wallace and
Patrick decision tree coding scheme [22]. The new MML decision tree coding
scheme is able to encode an internal split using a linear discriminant function.
Firstly, the data falling at an internal node is scaled and normalized so that
every data item falls within a D-dimensional unit hyper-cube, where D is the
number of input attributes. A linear decision function d(w, x, b)=0 is written as

(
∑D

i=1 wixi) + b = w · x + b = 0 where w, x ∈ RD, · denotes the dot (or scalar)
product, and the scalar b is often called the bias. The data is divided into two
mutually exclusive sets by the following rules:
If d(w, xj , b) > 0, j ∈ [1, N ], then xj is assigned to set I (denoted ‘1’ or ‘+’).
If d(w, xj , b) < 0, j ∈ [1, N ], then xj is assigned to set II (denoted ‘2’ or ‘−’).

To encode the hyperplane is equivalent to transmitting the vector w and the bias
b. Suppose the desired value of the vector w is wc. If we state wc exactly (to
infinite precision), it will cost infinitely many bits of information in the first part
of the message. So instead, we attempt to state a set of vectors Λ(θ), θ ∈ (0, π

2 ),
which is defined as Λ(θ) = {w : arccos( w·wc

‖w‖·‖wc‖
) < θ}. This is the set of vectors

which form an angle less than θ with the optimal vector wc as illustrated in Fig.
1b. The probability that a randomly picked vector falls into the set is given by
Vθ

VT
, where Vθ is the volume of a partial sphere of radius θ and VT is the total

volume of the unit sphere. The value of Vθ

VT
is given [15] by (sin θ)2(D−1), so the

information required to specify the set of the vectors is − log((sin θ)2(D−1)).
By specifying one data point on each side of the hyperplane hc, two hyper-

planes which are parallel to the decision surface d(w,x,b)=0 are also defined. We



denote these two hyperplanes as h+ and h−. These (h+ and h−) and the other
boundaries of the unit cube form a hyper-rectangle as shown in Fig. 1a.

We want to work out the value of θ so that the hyperplanes specified by
vectors in the set Λ(θ) do not intersect with the hyperplanes h+ and h−. We
can imagine a rectangle whose length of one side is the distance between h+ and
h− and whose length of the other side is

√
D, which is the longest diagonal in

a D-dimensional unit cube. As {x: kwx+kb=0} ≡ {x: wx+b=0} for any non-
zero k, we can choose w so that the margin between h+ and h− is equivalent
to 2

‖w‖ . As shown in Figure 1c, given the margin 2
‖w‖ , if θ < α, where α =

arcsin( 2√
D‖w‖2+4

), one can show that the hyperplane hw defined by the vector

w does not intersect with hyperplanes h+ and h− within the D-dimensional
hyper-cube (from Fig. 1a).

2.2 Search for the optimal hyperplane

In order to perform faster searches for optimal multivariate splits, we do not use
the search heuristic used in OC1 [10] and SADT [9]. Instead, we implement a
simple evolution strategy as the preliminary search heuristic for our scheme. A
similar approach has appeared in [3], in which promising results were reported.
The search process in our scheme can be summarized as follows. Assuming the
linear discriminant function in our scheme takes the form

∑d

i=1 wixi < wd+1,
for each leaf node L, let M(unsplit) denote the message length of the node L
while the node is unsplit, and let M(T) denote the message length of the subtree
when node L is split by vector wT at round T. The algorithm searches for the
best vector w via the following steps: Set T=0, input R, MaxP, M(unsplit)

1. Re-scale the coefficients of the vector w such that
∑d

i=1 w2
i = 1.

2. With v ∼ N(0, 1), randomly pick j ∈ [1, d + 1], wT+1
j = wT

j + v.
3. if M(T + 1) < M(T ), go to step 5
4. wT+1

j = wT
j

5. T=T+1; if T < R, go to step 1.
6. Randomly pick d (in this paper, d is limited to 2 or 3) attributes
7. P=P+1; if P < MaxP , go to step 1
8. if M(R) < M(unsplit), return w, M(R), else return null and M(unsplit).

The search process (from steps 2 and 6) is non-deterministic, thus our algorithm
is able to generate many different trees. As such, our algorithm can be extended
to take advantage of this by choosing the best one (i.e., MML tree) among these
trees or by averaging [20, p281] results from these trees.

3 Experiments

3.1 Comparing and scoring probabilistic predictions

To evaluate our new oblique decision tree scheme, we run experiments on nine
data sets selected from the UCI Repository [1]. The performance of our scheme
is compared with those of C4.5 and C5 [13]. In addition to the traditional
right/wrong accuracy, we are also keen to compare the probabilistic performance



[17, sec 5.1] [7, 6, 11, 16] of the learning algorithms. In a lot of domains, like onco-
logical and other medical data, not only the class predictions but also the proba-
bility associated with each class is essential. In some domains, like finance, (long
term) strategies heavily rely on accurate probabilistic predictions. For C4.5, C5
and our approach, we ascribe class probabilities from frequency counts in leaves
using “+1.0” (Laplace estimation) from [17, sec. 5.1]. To compare probabilistic
prediction performances, we propose a metric called the related (test data) code

length (RCL), defined as RCL = −
∑

n

i=1
log(pi)

n log(M) , where n is the total number

of test data, M is the arity of the target attribute and pi is the probability as-
signed to the real class associated with the test instance i by the model. The
related test data code length (RCL) is equivalent to the code length of the test
data encoded by a model divided by the code length encoded by the null theory;
thus normalizing [17, Sec. 5.1] [7, 6, 11, 16] −

∑n

i=1 log(pi). The smaller RCL, the
better the model’s performance on probabilistic prediction.

3.2 Data sets

The purpose of the experiment is to have our algorithms perform on real world
data, especially on oncological and medical data, such as Bupa, Breast Can-

cer, Wisconsin, Lung Cancer, and Cleveland. The nine UCI Repository [1]
data-sets used are these five, Balance, Credit, Sonar and Wine. For each of
the nine data sets, 100 independent tests were done by randomly sampling 90%
of the data as training data and testing on the remaining 10%.

4 Discussion

We compare the MML oblique tree scheme to C4.5 and C5. The results from
Table 1 clearly suggest that the MML oblique trees are much smaller (fewer
leaves) than the C4.5 and C5 univariate trees. The MML oblique trees perform
significantly better than C4.5 and C5 (which often have RCL scores worse than
the default “random null” of 1.0) on all data-sets. MML oblique trees also have
higher “right”/“wrong” accuracy than C4.5 and C5 except (for very close results)
on the Bupa and Wine (and Cleveland) data, suggesting a possible need to refine
the searches. As expected, none of the algorithms have good results on the Lung
Cancer data - learning from a small set of data with a great number of attributes
remains a great challenge for machine learning algorithms.

5 Conclusion and Future Research

We have introduced a new oblique decision tree inference scheme by using the
MML principle. Our preliminary algorithm produces very small trees with excel-
lent performance on both “right”/“wrong” accuracy and probabilistic prediction.
The search heuristic could be (further) improved. Also, as pointed out in section
2.2, the performance of the system may be enhanced by using multiple tree aver-
aging. Further down the track, to use MML coding for internal nodes with SVMs
or nonlinear splits is also an interesting research topic, as is generalising oblique
trees to oblique graphs. We also wish to apply Dowe’s notion of inverse learning



Table 1. Test Results

Name Metric C4.5 C5 MML Oblique Tree Random NULL

Accuracy(%) 77.8 ±4.3 77.8 ± 4.5 88.5 ± 4.0 33.3
Balance RCL 0.93±0.12 0.92 ±0.11 0.33 ± 0.08 1.00

Tree Size 81.6±9.7 41.7 ±4.6 10.4 ±0.9 1

Accuracy(%) 65.5 ± 7.4 65.5 ± 7.8 65.1 ± 8.1 50.0
Bupa RCL 1.07±0.22 1.07 ±0.21 0.96 ± 0.15 1.00

Tree Size 49.2±9.8 27.3 ±5.4 6.7 ± 2.6 1

Accuracy(%) 71.2 ± 8.7 71.1 ± 8.4 72.8 ± 8.0 50.0
Breast Cancer RCL 0.88±0.17 0.88 ±0.17 0.84 ± 0.14 1.00

Tree Size 24.2±8.3 13.1 ±4.2 3.0 ± 0.6 1

Accuracy(%) 94.6 ± 2.5 94.8 ± 2.5 96.0 ± 2.3 50.0
Wisconsin RCL 0.26±0.10 0.25 ±0.12 0.21 ± 0.10 1.00

Tree Size 23.7±5.3 12.3 ±2.8 5.5 ± 0.9 1

Accuracy(%) 73.2 ± 4.3 73.3 ± 3.8 75.4 ± 4.7 50.0
Credit RCL 0.88±0.08 0.88 ±0.08 0.79 ± 0.09 1.00

Tree Size 151.4±17.7 77.6 ±9.1 6.5 ± 2.4 1

Accuracy(%) 40.0 ± 23.3 40.7 ± 24.8 46.8 ± 22.4 33.3
Lung Cancer RCL 1.83±0.50 1.86 ±0.65 0.94 ± 0.30 1.00

Tree Size 12.2±2.3 6.6± 1.1 2.2 ± 0.4 1

Accuracy(%) 77.1 ± 7.6 77.2 ± 7.9 77.2 ± 7.8 50.0
Cleveland RCL 0.80±0.24 0.81 ±0.21 0.76 ± 0.22 1.00

Tree Size 36.7±7.2 20.0 ±4.2 7.3 ± 1.8 1

Accuracy(%) 72.8 ± 9.2 73.9 ± 10.0 76.0 ± 9.2 50.0
Sonar RCL 1.07±0.37 1.06 ±0.42 0.98 ± 0.33 1.00

Tree Size 28.2±3.1 14.9 ±1.6 11.6 ± 9.3 1

Accuracy(%) 93.6 ± 5.7 93.2 ± 5.8 93.2 ± 6.1 33.3
Wine RCL 0.42±0.30 0.44 ±0.29 0.28 ± 0.18 1.00

Tree Size 9.6±1.3 5.4 ±0.7 3.6 ± 0.5 1

[8] and its special case of generalised Bayesian networks [4, 5] to Dowe’s notion
of a(n inverse) decision graph model where two values of the target attribute
have the same probability ratio in every leaf - e.g., the ternary target attribute
has values (i) Female, (ii) Male whose height rounds to an even number of cm
and (iii) Males whose height rounds to an odd number of cm.

The second author expresses great fondness and gratitude to his mother. We
also thank our mentor, Chris Wallace (1933-2004), a quietly-achieving humble
unsung genius and brilliant light clearly ahead of his time. Read his works (e.g.,
via www.csse.monash.edu.au/∼dld/CSWallacePublications/).

References

1. C.L. Blake and C.J. Merz. UCI repository of machine learning databases, 1998.
http://www.ics.uci.edu/∼mlearn/MLRepository.html.

2. Leo Breiman, Jerome H. Friedman, Richard A. Olshen, and Charles J. Stone.
Classification And Regression Trees. Wadsworth & Brooks, 1984.



3. Erick Cantu-Paz and Chandrika Kamath. Using evolutionary algorithms to induce
oblique decision trees. In Proc.Genetic and Evolutionary Computation Conference,
pages 1053–1060, Las Vegas, Nevada, USA, 2000. Morgan Kaufmann.

4. Joshua W. Comley and David L. Dowe. Generalised Bayesian networks and asym-
metric languages. In Proc. Hawaii International Conference on Statistics and Re-
lated Fields, 5-8 June 2003.

5. Joshua W. Comley and David L. Dowe. Minimum message length, MDL and
generalised Bayesian networks with asymmetric languages. In P. Grünwald, M. A.
Pitt, and I. J. Myung, editors, Advances in Minimum Description Length: Theory
and Applications (MDL Handbook). M.I.T. Press, to appear.

6. D.L. Dowe, G.E. Farr, A.J. Hurst, and K.L. Lentin. Information-theoretic football
tipping. In N. de Mestre, editor, Third Australian Conference on Mathematics
and Computers in Sport, pages 233–241. Bond University, Qld, Australia, 1996.
http://www.csse.monash.edu.au/∼footy.

7. D.L. Dowe and N. Krusel. A decision tree model of bushfire activity. In (Technical
report 93/190) Dept. Comp. Sci., Monash Uni., Clayton, Australia, 1993.

8. D.L. Dowe and C.S. Wallace. Kolmogorov complexity, minimum message length
and inverse learning. In 14th Australian Statistical Conference (ASC-14), page
144, Gold Coast, Qld, Australia, 6-10 July 1998.

9. David G. Heath, Simon Kasif, and Steven Salzberg. Induction of oblique decision
trees. In International Joint Conference on AI (IJCAI), pages 1002–1007, 1993.

10. Sreerama K. Murthy. On Growing Better Decision Trees from Data. PhD thesis,
The John Hopkins University, 1997.

11. S.L. Needham and D.L. Dowe. Message length as an effective Ockham’s razor in
decision tree induction. In Proc. 8th International Workshop on Artificial Intelli-
gence and Statistics, pages 253–260, Key West, Florida, U.S.A., Jan. 2001.

12. J.J. Oliver and C.S. Wallace. Inferring Decision Graphs. In Workshop 8 Interna-
tional Joint Conference on AI (IJCAI), Sydney, Australia, August 1991.

13. J.R. Quinlan. C4.5 : Programs for Machine Learning. Morgan Kaufmann,San Ma-
teo,CA, 1992. The latest version of C5 is available from http://www.rulequest.com.

14. J.R. Quinlan and R. Rivest. Inferring Decision Trees Using the Minimum Descrip-
tion Length Principle. Information and Computation, 80:227–248, 1989.

15. R. Schack, G. M. D. Ariano, and C. M. Caves. Hypersensitivity to perturbation
in the quantum kicked top. Physical Review E., 50:972–987, 1994.

16. P.J. Tan and D.L. Dowe. MML inference of decision graphs with multi-way joins.
In Proc. 15th Australian Joint Conf. on AI, LNAI 2557 (Springer), pages 131–142,
Canberra, Australia, 2-6 Dec. 2002.

17. P.J. Tan and D.L. Dowe. MML inference of decision graphs with multi-
way joins and dynamic attributes. In Proc. 16th Australian Joint Conf.
on AI, LNAI 2903 (Springer), pages 269–281, Perth, Australia, Dec. 2003.
http://www.csse.monash.edu.au/∼dld/Publications/2003/Tan+Dowe2003.ref .

18. Chris Wallace. Statistical and Inductive Inference by Minimum Message Length.
Springer, to appear.

19. C.S. Wallace and D.M. Boulton. An Information Measure for Classification. Com-
puter Journal, 11:185–194, 1968.

20. C.S. Wallace and D.L. Dowe. Minimum Message Length and Kolmogorov Com-
plexity. Computer Journal, 42(4):270–283, 1999.

21. C.S. Wallace and P.R. Freeman. Estimation and Inference by Compact Coding.
Journal of the Royal Statistical Society. Series B, 49(3):240–265, 1987.

22. C.S Wallace and J.D. Patrick. Coding Decision Trees. Machine Learning, 11:7–22,
1993.


