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Abstract. Effectiveness of maintenance programs of existing concrete bridges 
is highly dependent on the accuracy of the deterioration parameters utilised in 
the asset management models of the bridge assets. In this paper, bridge deterio-
ration is modelled using non-homogenous Poisson processes, since deteriora-
tion of reinforced concrete bridges involves multiple processes. Minimum Mes-
sage Length (MML) is used to infer the parameters for the model. MML is a 
statistically invariant Bayesian point estimation technique that is statistically 
consistent and efficient. In this paper, a method is demonstrated estimate the 
decay-rates in non-homogeneous Poisson processes using MML inference. The 
application of methodology is illustrated using bridge inspection data from road 
authorities.  Bridge inspection data are well known for their high level of scat-
ter. An effective and rational MML-based methodology to weed out the outliers 
is presented as part of the inference. 

1 Introduction 

Bridge asset management is an emerging concept in road authorities. Bridge man-
agement is a systematic process of maintaining, upgrading and operating bridge assets 
cost-effectively.  It combines engineering principles with sound business practices 
and economic theory, and it provides tools to facilitate a more logical approach to de-
cision-making.  Thus, bridge asset management provides a framework for handling 
both short-and long-term planning.  As defined by the American Public Works Asso-
ciation Asset Management Task Force, asset management is “… a methodology 
needed by those who are responsible for efficiently allocating generally insufficient 
funds amongst valid and competing needs.” 
 
Asset management of bridges has come of age because of (1) an increase in allowable 
truck loads of bridges, (2) changes in public expectations, and more importantly (3) 
extraordinary advances in information technology and data-mining. Currently, bridge 
investment and maintenance decisions are based on tradition, intuition, personal ex-
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perience, resource availability, and political considerations, with systematic applica-
tion of objective analytical techniques applied to a lesser degree. Many road authori-
ties limit application of their management systems to monitoring conditions and then 
plan and program their projects on a “worst first” basis. 

The deterioration of a reinforced concrete element is not a homogeneous process. It 
involves chloride ingress, corrosion initiation, crack initiation and crack propagation 
stages. Therefore, a multi-stage, non-homogeneous Poisson process with multiple de-
terioration rates to capture the entire phenomenon of concrete bridge deterioration is 
adopted. The application of the methodology is illustrated using real-life bridge in-
spection data from VicRoads.  VicRoads is a state government owned agency respon-
sible for the maintenance and management of bridges on state highways and main 
roads in Victoria, Australia. In Victoria alone, more than $50 million per year is spent 
on the maintenance and upgrade of bridges valued at more than $6 billion. 

Bridge inspection data used in this paper for modelling deterioration is based on 
Level 2 inspections according to VicRoads [ 9]. Level 2 inspections are managed on a 
state-wide basis to assess the condition state of each structure and its main compo-
nents. The frequency of inspection varies between 2 and 5 years depending on bridge 
rating. The bridge element condition state is described on a scale of 1 to 4, where 1 
stands for “excellent condition” and 4 stands for “serious deterioration”. The inspec-
tor records the condition states of the bridge element and the percentage of that ele-
ment in a particular condition state. 

2 Non-Homogeneous Poisson Process 

The non-homogeneous or non-stationary Poisson process is a process where the arri-
val rate, )(tr  at time t , is a function of t . The counting process { }0),( ≥ttN  is said 
to be a non-homogeneous Poisson process with intensity function )(tr , 0≥t , if 
(i) 0)0( =N ; (ii) The process has independent increments;  
(iii) { } )(2)()( hotNhtNP =≥−+ ; (iv) { } )()(1)()( hohtrtNhtNP +==−+  

Let ∫=
t

dssrtm
0

)()( . Then it can be shown that the probability of n  parts moving 

from condition state i  to state 1+i  can be expressed by Equation (1). 
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3 Minimum Message Length 

The Minimum Message Length (MML) principle [ 12][ 16][ 14][ 3][ 2][ 11] is widely 
used for model selection in various machine learning, statistical and econometric 
problems [ 12][ 16][ 14][ 13][ 15][ 10][ 1][ 2][ 5][ 8][ 11][17] and references therein. The 
principle is that the best theory for a body of data is the one that minimises the size of 



 

 

  
 

the theory plus the amount of information necessary to specify the exceptions relative 
to the theory. 

A Bayesian interpretation of the MML principle is that it variously states that the 
best conclusion to draw from the data is the theory with the highest posterior prob-
ability or, equivalently, that theory which maximises the product of the prior probabil-
ity of the theory with the probability of the data occurring in light of that theory. For a 
hypothesis (or theory), H , with prior probability )Pr(H  and data, D , the relation-
ship between the probabilities can be written [ 4][ 15] as shown in the Equation (2) by 
application of Bayes’s Theorem. 

)|Pr()Pr()|Pr()Pr()&Pr( DHDHDHDH ⋅=⋅=  . (2) 

Equation (3) can be derived by re-arranging Equation (2). 

)Pr(/)|Pr()Pr()|Pr( DHDHDH ⋅=  . (3) 

Since D  and )Pr(D  are given and H  needs to be inferred, the problem of maxi-
mising the posterior probability, )|Pr( DH , can be regarded as the one of choosing 
H  so as to maximise )|Pr()Pr( HDH ⋅ . Elementary coding theory tells us that an 
event of probability, p , can be coded by a message length )log( pl −= . So, the 
length of a two-part message ( )MessLen  conveying the parameter estimates based on 
some prior and the data encoded based on these estimates can be given as in Equation 
(4).  In this paper, natural logarithms are used and the message lengths are in nits. 

( ) ( ))|Pr(log)Pr(log)&( HDHDHMessLen −−=  .  (4) 

Since ( ) ( ) ( ))|Pr(log)Pr(log)|Pr()Pr(log HDHHDH −−=⋅− , maximising the 
posterior probability, )|Pr( DH , is equivalent to minimising )&( DHMessLen  
given in Equation (4). The receiver of such a hypothetical message must be able to 
decode the data without using any other knowledge. The model with the shortest two-
part message length is considered to give the best explanation of the data.  For a dis-
cussion of the relationship of the works of Solomonoff, Kolmogorov and Chaitin with 
MML and the subsequent Minimum Description Length (MDL) principle [ 7], see [ 14] 
and [ 2]. 

The Poisson distribution is used in this paper for modelling bridge element deterio-
ration. Let r be the rate at which the number of parts in a bridge element moving from 
condition state i  to 1+i , it  be the length of the time interval and ic  be the number 
of parts moved in that time interval. In order to infer the rate of the process [ 13][ 15], 
first a Bayesian prior density on r  is required. Let this prior be ( ) αα /)( /rerh −=  for 
some α . The message length can be expressed as in Equation (5), where L is the 
(negative) log-likelihood and F is the Fisher information [ 15][ 16][ 14][ 13]. 
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We then estimate r by minimizing the message length [ 15] (Equation (6)). 
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Cut-points can be found in many machine learning problems. They arise where 
there is a need to partition data into groups which are to be modelled distinctly 
[ 4][ 10]. A piece-wise function is used for partitioning of data and the rate of the Pois-
son process, r , is assumed to be constant in between the cut-points. The message 
length including the penalties for cutting the data into groups assuming a uniform 
prior can be roughly given as a first draft (see, e.g. [ 10]) by Equation (7): 
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where MessLenCp  = Message length including penalties for cutting data; 
)(iMessLen  = Message length for data in between cut-point )1( −i  and cut-point )(i  

calculated using Equation (5); n = Maximum possible number of cut-points; and 
ncp  = number of cut-points. 

Note that it costs )1(log +ne  nits to specify ncp  because nncp ≤≤0 . Letting cut-
point 1+ncp  refer to the end of the data, )1( +ncpMessLen  refers to the data after 

the thncp  (i.e., last) cut. 
A separate code-word of some length can be set aside for missing data. The trans-

mission of the missing data will be of constant length regardless of the hypothesis 
classification, and as such will affect neither the minimisation of the message nor the 
(statistical) inference (Section 2.5 of [ 15] and Section 5, p.42 of [ 13]). 

3.1 Models of Outliers and Multi-State Distribution 

The bridge inspection data is from visual inspections, and the inspectors employed to 
gather data varied in their experience. Factors such as visibility at the time of inspec-
tion and resources available for the inspectors to carry out the bridge inspections, etc. 
may also affect the reliability of the data. A comprehensive study [ 6] on visual bridge 
inspection data concluded that significant measurement errors exist. Further, the 



 

 

  
 

measurement errors may show a seeming improvement in bridge element conditions 
(which is a physical impossibility) or give rather unusual data. Therefore, the data has 
to be screened or have an explicit model of outliers in order to take account of those 
errors before modelling the data. 

If there are )(tn  members of class t  ( )Tt ,...,2,1=  then the label used in the de-
scription of a thing to say that it belongs to class t  will occur )(tn  times in the total 
message. If the relative frequency of class t  is estimated as )(tp  (where 
p(1)+p(2)+…+p(T) = 1) then the information needed to quote the class membership 
of all things is given in Equation (8) [ 12]: 

∑
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t
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1
)(log

2
1)(  (8) 

It was decided to have two classes in our bridge deterioration modelling problem, 
known as outliers and non-outliers. An outlier is a datum which is considered to be er-
roneous and therefore not used in the estimation of Poisson rate. However, there is a 
cost to classifying a datum as an outlier. The message length for the outlier data 
points is given – ignoring partial assignment (sec. 3.2 of [13] and sec. 4.2 of [15]) - by 

( ))1log()log( ++−= HqNMessLenOl ol  (9) 

where MessLenOl  = Message length from (uniform) outlier data; olN  = Number of 

data in outlier class;  q  = Frequency of outlier class = 
1
2
1

+

+

N

Nol
 (see Equation (12)); 

1+H  = Maximum possible values a data point can take (100+1= 101); 
N  = Total number of data.  These two terms in Equation (9) are so because each out-
lier must be encoded as an outlier and then its value is encoded as being uniformly 
equally likely from (H+1) different values. 

The message length for non-outlier data points is similarly given by 

( ) MessLenCpqNMessLenNol Nol +−−= )1log(  (10) 

where MessLenNol  = Message length from non-outlier data; NolN  = Number of data 
in non-outlier class = olNN − ; and MessLenCp  is from Equation (7). The message 
length for all data points is then given  –  slightly inefficiently (sec. 4.1 of [15])  –  by 
 

MessLenOlMessLenNolMessLenMo +=  (11) 

Multi-State Distribution 
For a multi-state distribution with M  states, a uniform prior, )!1()( −= Mph  is as-
sumed over the )1( −M -dimensional region of hyper-volume )!1/(1 −M  given by 
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0;1...21 ≥=+++ iM pppp . Letting mn  be the number of things in state m  and 

MnnnN +++= ...21 , minimising the message length Equation (5) gives that the 
MML estimate mp̂  of mp  is given by [ 13][ 15][ 12][ 16]: 

)2//()2/1(ˆ MNnp mm ++=  (12) 

Substituting Equation (12) into the message length Equation (5) gives rise to a 
(minimum) message length shown in the Equation (13) for both stating the parameter 
estimates and then encoding the things in light of these parameter estimates [ 12],[ 15]. 
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In this case, the distribution is binomial with M=2 in Equation (13). So, approxi-
mating partial assignment with total assignment [13][15], the total message length  - 
including the cost of cut-points, modelling outliers and multi-state variables  -  is given 
by Equation (14). 

MessLenMsMessLenMoMessLenT +=  (14) 

4 Application of Methodology 

4.1 Bridge Inspection Data 

There are four condition states defined in the bridge inspection data. The deterioration 
process of a bridge element can be treated as three separate Poisson processes as de-
fined below (there can be deterioration observed, but we assume not improvement; 
and we also assume Cs13=Cs14=Cs24=0): 
− Process Cs12: parts of element deteriorate from condition state 1 to state 2 
− Process Cs23: parts of element deteriorate from condition state 2 to state 3 
− Process Cs34: parts of element deteriorate from condition state 3 to state 4 

It is assumed that the bridge element was new when constructed, and the initial 
condition state is assumed to be ipc1  = 100, ipc2  = 0, ipc3  = 0, and ipc4  = 0 at 
time 0. Since the bridge inspections are recorded in percentages, it is assumed that 
there are 100 parts in an element. 12Cs , 23Cs  and 34Cs  during the period between 
the ith and (i+1)th inspections can be calculated from Equations (15) to (17). 

fpcipcCs 1112 −=  (15) 

ipcfpcCs 4434 −=  (16) 

)22()11(
)44()33(23

ipcfpcfpcipc
ipcfpcipcfpcCs

−−−=
−+−=

 (17) 



 

 

  
 

where ipc1 , ipc2 , ipc3 , ipc4  = number of parts in condition state 1, 2, 3 and 4 
respectively at the ith inspection; fpc1 , fpc2 , fpc3 , fpc4  = number of parts in 
condition state 1, 2, 3 and 4 respectively at the (i+1)th inspection. 

The bridge element considered in this study is precast concrete deck/slab (element 
number: 8P) in the most aggressive environment [ 9]. This element includes all precast 
concrete deck slabs and superstructure units forming the span and the deck of a 
bridge. Bridge inspection records (from 1996 to 2001) of 22 bridges were selected 
from the VicRoads database for the analysis. Fig. 1 shows the condition states of 
these selected bridges versus the ages (ranging from 0 to 39) of the bridges in years. 
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Fig. 1. Bridge element 8P in aggressive environment – condition states 

4.2 Number and Location of Cut-Points and Estimation of Parameters 

The minimum size of the time interval for the estimation of cut-points is assumed to 
be less than or equal to two years because the minimum time period for Level 2 in-
spections is in two-year cycles [ 9] and the deterioration expected for a bridge element 
within this time is relatively small. 

The cut-points and the rates of the Poisson processes are estimated for each process 
by minimising the Message Length for each process separately. The multi-state (bi-
nary) distribution is used with both the Outlier model and the non-homogenous Pois-
son process model. 

Fig. 2 shows the message lengths for various cut-points for Poisson process Cs12. 
The minimum message length of 165.24 nits was found to be with two cut-points 
(ncp=2) - hence three Poisson rates are estimated. Table 1 gives the cut-points fol-
lowed by the Poisson rates of the processes. A closer examination of Poisson rates 
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21, rr  and 3r  reveals that 3r =0.041 could not occur unless there is an improvement in 
the condition states of the bridge element. An improvement in condition states of 
bridge element can occur by carrying out repair works or by measurement errors. A 
closer look at the bridge inspection data revealed that this is most probably the im-
provement works carried out to bridge elements (after 37 years of service) rather than 
measurement errors. But, this conclusion cannot be confirmed, since the data avail-
able is for 39 years only. We therefore decided to exclude the Poisson rate 3r  from 
further calculations. 

Table 1. Poisson rates and cut-points for Cs12 
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Fig. 2. Variation of message length for 
Poisson process Cs12 

The message lengths for the Poisson process Cs23 for various cut-points were es-
timated in similar manner. The minimum message length of 85.66 nits was estimated 
for this Poisson process with no cut-point and a (very small) rate of 0.0006. 

Similarly, the message lengths for Poisson process Cs34 for various cut-points re-
sulted in the minimum message length of 36.42 nits for no cut-point and an even 
smaller Poisson process rate of 0.0005. 

The estimated Cs12, Cs23 and Cs34 values are used to calculate the distribution of 
condition states of the bridge element. Fig. 3 shows the deterioration model for the 
bridge element estimated from the bridge inspection data shown in Figure 1. The 
number of parts moved from condition state 3 to state 4 (Cs34) and state 2 to state 3 
(Cs23) were estimated to be zero and therefore there are no parts in condition states 3 
and 4 in Fig. 3. 

5 Conclusions 

Concrete bridge elements in aggressive environments considered in this paper are 
normally expected to have an initiation period of about 30 years during which no de-
terioration occurs. The fact that this is accurately inferred by our (heterogeneous Pois-
son with outliers) model adds confidence to this modelling process adopted here. 

Deterioration models for predicting the distribution of future condition states of 
bridge elements are an essential part of a bridge asset management system. It has been 
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shown in this paper that concrete deterioration can be modelled using a non-
homogeneous Poisson process together with an application of MML inference to es-
timate the Poisson rates. The estimated cut-points and Poisson rates in turn are used 
for predicting the distribution of the future condition states of bridge elements. 

Bridge inspection data contain measurement errors or highly erroneous data due to 
a range of reasons including inspector subjectivity. Past attempts to model the data 
indicated that finding a structure in this type of data is very difficult. The methodol-
ogy illustrated using bridge inspection data in this paper gives an objective and rea-
sonably accurate way to identify and exclude measurement errors in the data. 
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Fig. 3. Deterioration model for the bridge element 8P 
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